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The K3 quantity, introduced in a context of the Leggett-Garg inequality violation, is studied for the
neutrino oscillations in matter with a phenomenologically modeled dissipative environment. It is shown
that the K3 function acquires different values depending on whether the neutrino is a Dirac or Majorana
particle, provided that there is a dissipative interaction between matter and neutrinos. The difference occurs
for various matter densities and can serve as a potential quantifier verifying the neutrino nature. Moreover,
working within a phenomenological model one can suggest the values of the matter density and dissipation
for which the difference is the most visible. There exist also special conditions in which the violation of the
Leggett-Garg inequality, to a different extent for both kinds of neutrino, is observed.
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I. INTRODUCTION

For a long time there were two central controversies in
neutrino physics. The first was the (already solved) problem
of neutrino masses. Neutrinos are massive [1,2]. The second
(still alive) concerns neutrino nature which can be either
Dirac, with particles and antiparticles being different, or
Majorana,with particles and antiparticles being the same as it
is in the case of photons.Measuring properties of such fragile
and weakly interacting particles as neutrinos is a challenge
for experimentalists. One can invoke here a short but
embarrassing history of faster-than-light neutrino anomaly.
That is why the proposal of a potentially helpful quantifier
credibly indicating desired neutrino’s property is of interest
to both theoretical and experimental physicists.
In the literature one can find numerous proposals for

solving the Dirac-Majorana neutrino controversy [3]. In
particular, interferometric pattern [4,5] or geometric phases
of various type [6,7] can serve as a quantifiers of Majorana
and Dirac neutrino’s difference.
In 1964 Bell proposed a way to experimentally exclude

deterministic local (hidden variable theories) as a possible
interpretation of quantum mechanics [8]. His celebrated
inequality has been later verified in the experiments per-
formed on the pairs of entangled photons [9,10] which
provided then quite convincing evidence against the hidden
local-variable theories. Quantum entanglement has been also
studied in a context of oscillating neutrino systems [11]. In

1984 another test of the quantum mechanics principles has
been developed [12]:while theBell inequality questioned the
correlations between spatially separated systems, the
Leggett-Garg inequalities (LGI) put the limits on the time
correlations. They were derived based on the assumptions of
macroscopic realism (MR) and noninvasive measurability
(NIM); the first of which presupposes that the system can be
only in one of the available sets of states, whereas the second
one claims that it is possible to perform a measurement
without disturbing a system [13,14]. Just as the Bell inequal-
ities, Leggett-Garg inequalities have been reported to be
violated in the variety of systems (see for instance [15,16]).
Especially interesting in terms of a study of the Leggett-Garg
inequalities seems to be the neutrinos oscillations, for which
the coherence length (the distance beyond which the inter-
ference of different massive neutrinos is not observable [17])
is much bigger than for the other systems. Such research has
already been made both from the theoretical [18,19] and
experimental points of view—cf. Ref. [20] reporting viola-
tion of the LGI in neutrino systems based upon the MINOS
experiment’s data.
Our aim in this work is essentially more modest: instead

of searching for violations of neutrino’s macro-realism our
primary aim is to present a quantifier which, being (at least
in principle) measurable, can discriminate between Dirac
and Majorana neutrinos.
In this work, complementary to recent studies of neu-

trinos conducted from the perspective of quantum infor-
mation [21], we propose such a quantifier. We show that the
K3 correlator, used in the simplest class of LGIs calculated
for neutrinos oscillating in matter in a presence of decoher-
ing interaction, has different value for both kinds of
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neutrinos. A possible source of such a decoherence in
neutrino oscillations can originate from quantum gravity
effects as suggested in Refs. [22–24].
Instead of complex modeling, following [25], in this

work we adopt Kossakowski-Lindblad-Gorini-type phe-
nomenological equations. This way of describing the open
quantum systems is particularly useful in the quantum
optics [26]. It is nevertheless very general as it can be
applied to any completely positive dynamics of quantum
systems [27]. Although in some cases of open quantum
dynamics one can directly relate the parameters of the
Lindblad equation to the microscopic system-plus-envi-
ronment [27], in a case of the neutrino oscillations our
modeling is purely phenomenological—the effect of
decoherence is encoded in a Kossakowski matrix describ-
ing the nonunitary character of quantum dynamics.
Furthermore, we show that a certain form of the

Kossakowski matrix describing decoherence is a sine qua
non condition for usefulness of theK3 function in determin-
ing theneutrino’s nature.We also theoretically investigate the
behavior of theLGI violation for oscillating neutrinos treated
as an open quantum system undergoing the dissipation and
decoherence while interacting with an environment.
The paper is organized as follows: first (in Sec. II) for self-

consistency of the presentation we review dissipative dynam-
ics of the neutrino oscillations following [7,28], then in
Sec. III, we introduce the notion of the Leggett-Garg inequal-
ities [13] simultaneously providing the conditions for which
the K3 correlator allows to discriminate between Dirac and
Majorana neutrinos. Finally, we summarize our work.

II. DISSIPATIVE NEUTRINO OSCILLATIONS
IN MATTER

As the neutrino of the given flavor α ¼ fe; μ; τg is
produced at some point, it propagates further as the coher-
ence mixture of 3 massive states. Mathematically, it means
that neutrino flavor states fjνei; jνμi; jντig can be considered
the linear combinations of the massive states fj1i; j2i; j3ig.
The correspondence between them is expressed via unitary
transformation sometimes referred to as the lepton mixing
matrix U [17]:

0
BB@

jνei
jνμi
jντi

1
CCA ¼ U

0
BB@

j1i
j2i
j3i

1
CCA: ð1Þ

In this paper, we limit ourselves only to the two neutrino
oscillations case (between e and μ). Since the third neutrino
effectively decouples it seems to be a quite reasonable
assumption [29]. Then U matrix can be parametrized by
one mixing angle θ12 ¼ θ and in the most general case by
one CP-violating phase ϕ:

� jνei
jνμi

�
¼U

� j1i
j2i

�
; U¼

�
cosθ sinθeiϕ

−sinθ cosθeiϕ

�
: ð2Þ

At this point, it is necessary to emphasize the importance
of the phase ϕ. The neutrino is the only massive and
electrically neutral elementary fermion. Its nature is there-
fore ambiguous: neutrino can be Dirac or Majorana
([30,31]). In the Dirac case, the phase ϕ is not physical
and can be easily removed by rephasing the neutrino fields
occurring in the weak lepton charged current. On the other
hand, in the Majorana case ϕ remains and is considered as a
real and measurable quantity.
Let us now consider Hamiltonian H describing neutrino

propagating in matter, which is divided into kinetic (H0)
and interaction (Hint) parts:

H ¼ H0 þHint: ð3Þ

In the ultrarelativistic limit energy of an individual neutrino
Ei can be expressed as [17]:

Ei ¼ Eþ 1

2

m2
i

E2
; ð4Þ

where E is an average energy of a neutrino. Then H0 can
be, in the mass basis, expressed as function of Δm2

21 ¼
m2

2 −m2
1 [29]:

H0 ¼
�
Eþ 1

2

Δm2
21

4E 0

0 E − 1
2

Δm2
21

4E

�
: ð5Þ

The potential part arises due to the coherent forward
scattering of the electron neutrinos with the electrons
(charged current) and all kinds of neutrinos with the
electrons, neutrons and protons (neutral current). Since
the contribution from the neutral current is the same for all
flavors, the real influence on the neutrino oscillation comes
only from the charged current VCC:

Hint ¼ U†
�
VCC 0

0 0

�
U

¼ VCC

2

�
1þ cos 2θ e−iϕ sin 2θ

eiϕ sin 2θ 1 − cos 2θ

�
; ð6Þ

where U is the mixing matrix given in Eq. (2).
It can be easily seen that the Hamiltonian given in Eq. (3)

does not allow for any discrimination between Dirac and
Majorana neutrinos: its transformation to the flavor basis
makes the phase ϕ disappear. However, the treatment of the
neutrinos propagating in matter as an open quantum system
can dramatically change the situation.
In general, the Markovian evolution of a system inter-

acting with an external environment can be described by the
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Lindblad-Kossakowski master equation, which in the
Heisenberg picture reads as [26,27,32,33]:

dAðtÞ
dt

¼L�½AðtÞ�;

L�½AðtÞ� ¼ i½H;A�þ1

2

Xn2−1
i;j¼0

cijðF†
l ½A;Fk�þ ½F†

l ;A�FkÞ; ð7Þ

where A stand for an observable and F ¼ fF0;
F1; ;…; Fn2−1g denotes a set of the matrices creating a basis
in the n-dimensional space.
Note that the right-hand side of Eq. (7) is split into two

parts. In the first part one recognizes the ordinaryHeisenberg
equation, whereas the second part is responsible for addi-
tional effects connected with an interaction of a system with
an environment. As for the latter part, in order to assure the
trace- andhermicity-preservingevolution, the coefficientscij
must obey the following conditions [26,34]:

jcijj ≤
1

2
ðcii þ cjjÞ; i; j ¼ 1; � � � n2 − 1: ð8Þ

Neutrino during its propagation interacts weakly with
matter. It is therefore subjected to the decoherence and
dissipation effects, which justifies the application of
Eq. (7). Since our system is two-dimensional, the master
equation is presented as (ℏ ¼ 1):

L�ðAÞ ¼ i½H;A� þ
X3
i;j¼0

cij

�
σ†jAσi −

1

2
fσ†j ; σigA

�
; ð9Þ

where σi denotes one of the set of matrices (I2; σx,σy,σz) for
i ¼ 0, 1, 2, 3, respectively.
Assuming the Hamiltonian given in Eq. (3) one can

easily simplify the form of Eq. (9) by rearranging it to the
Schrödinger-like form:

dAðtÞ
dt

¼ ðHþDÞAðtÞ ¼ HeffAðtÞ; ð10Þ

where

AðtÞ ¼
X3
i¼0

aiσi ¼

0
BBB@

a0ðtÞ
a1ðtÞ
a2ðtÞ
a3ðtÞ

1
CCCA

is a vector represented in the basis of the sigma matrices. Let
us notice that Eq. (10) is nothingmore than a convenient way
of rewriting the Lindblad master equation Eq. (7).
As for the matrix Heff , it consists of two parts. The

dissipative part D can be parametrized with six real
independent parameters [28]:

D ¼ −2

0
BBB@

0 0 0 0

0 a b c

0 b α β

0 c β γ

1
CCCA; ð11Þ

where elements of D have got the following correspon-
dence with the ½cij� matrix elements:

D11 ¼ c22 þ c33; D22 ¼ c11 þ c33;

D33 ¼ c11 þ c22; D12 ¼ D21 ¼ −c12;

D13 ¼ D31 ¼ −c13; D23 ¼ D32 ¼ −c23: ð12Þ

Subsequently, the direct calculation of the H matrix
elements reveals that:

H12 ¼ −H21 ¼ −
Δm2

21

2E
þ VCC · cos 2θ;

H13 ¼ −H31 ¼ −VCC · sinϕ sin 2θ;

H23 ¼ −H32 ¼ VCC · cosϕ sin 2θ: ð13Þ

The remaining elements in the H and D matrices are all
equal to 0.
It is now easy to solve Eq. (10), for which the formal

solution has an exponential form:

AðtÞ ¼ eHeff tAð0Þ: ð14Þ

Let us notice that in principle it is possible to derive the
coefficients Dij starting from microscopic description of a
system including its environment [27]. However, for the
systems, which require descriptions based on the relativistic
field theory this task is often very challenging [35].

III. LEGGETT-GARG K3 FUNCTION
FOR THE NEUTRINO

The Leggett-Garg inequalities are usually constructed for
the dichotomic (i.e. whose eigenvalues are eitherþ1 or −1)
observable Q̂ for which the quantity defined as:

Cij ¼ hQ̂ðtiÞQ̂ðtjÞi ð15Þ

constitutes a benchmark of the correlations between its
measurements performed in the different times ti < tj [13].
Then, the Leggett-Garg parameter K3:

K3 ¼ C21 þ C32 − C13; ð16Þ

defined for 3 times t3 > t2 > t1 is lower and upper-
bounded under the MR and NIM assumptions [13]:

−3 ≤ K3 ≤ 1; ð17Þ
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which is known as the simplest from the family of the
Leggett-Garg inequalities.
It is shown that for a 2-level system (the kind of which is

considered in this paper) the correlation function Cij can be
expressed as the expectation value of the symmetrized
product [13,36,37]:

Cij ¼
1

2
hϕjfQ̂ðtiÞ; Q̂ðtjÞgjϕi; ð18Þ

where fÂ; B̂g states for the anticommutator of the operators
Â and B̂. Then, representing an observable Q̂ in the basis of
sigma matrices as Q̂ðtiÞ ¼ q⃗ðtiÞ · σ⃗, σ⃗ ¼ ðσ0 ¼ I2; σ1; σ2;
σ3Þ one arrives to the simplified formula for the coefficient
Cij [20]:

Cij ¼ q⃗ðtiÞ · q⃗ðtjÞ: ð19Þ

It is important to point out that in the above-introduced
formulas we made use of the stationarity of the system
[no explicit time dependence in the Lindblad equation
governing time evolution of the neutrino system Eq. (10)],
according to which the values of the correlation functions
Cij are not the functions of the specific times ti and tj but
rather the time interval τ ¼ ti − tj. Such a requirement
accounts to the formal fulfillment of the NIM condi-
tion [38].
In order to observe the behavior of the LGI for the

neutrinos propagating in the interactive environment, it is
convenient to choose Qð0Þ ¼ σz as a dichotomic observ-
able. Note that, since

Qjνei ¼ jνei; Qjνμi ¼ −jνμi; ð20Þ

it measures the neutrino flavor as projected on the
z-axis [20].
Making use of the general solution [Eq. (14)] to the

Lindblad-Kossakowski master equation [Eq. (9)] for
AðtÞ ¼ QðtÞ we are able to examine the variability of
the parameter K3 [Eq. (16)] as a function of different
quantities. In particular, we focus on a difference

ΔK3 ¼ K3ðϕ ¼ 0Þ − K3ðϕÞ ð21Þ

between the K3 function calculated for the Dirac neutrino,
corresponding to vanishing CP-violating phase ϕ ¼ 0, and
the Majorana one with ϕ ≠ 0. Nonvanishing ΔK3 is a
potential quantifier, a hallmark, indicating different behav-
ior of these two types of neutrinos.
An influence of decoherence for the properties of ΔK3

for equal time intervals τ and for different values of the off-
diagonal elements c12 ¼ c21, with remaining parameters
(such as E and VCC) fixed, is presented in Fig. 1. As we set
ℏ ¼ 1 all other parameters are expressed in suitable powers
of eV. In particular, in our calculations we set τ ¼ 0.1 and

assume the experimental values of the solar mixing angle
θ12 ¼ 0.187π and Δm2

21 ≈ 7.54 × 10−5 [39]. Furthermore,
the values of the ½cij� Kossakowski matrix, rather than
derived from any fundamental properties of the system,
such as the coupling with the well-described thermal
environment [27,40], result from a phenomenological
modeling [7,28]. Our choice of the nonvanishing cij, yet
the simplest possible, has no qualitative influence on the
presented results. Increasing either the number or the value
[provided that Eq. (8) is satisfied] of nonvanishing matrix
elements cij simply lowers the amplitude of ΔK3.
Let us explicitly state here the central result of our work:

nonvanishing of any of the off-diagonal elements of the
Kossakowski matrix cij ≠ 0 is necessary for ΔK3 ≠ 0. In
other words, any “off-diagonal decoherence” is a sine qua
non condition for ΔK3 to be able to discriminate the Dirac
and Majorana natures of the oscillating neutrinos.
In Fig. 2 we present the parameter ΔK3 as function of ϕ

influenced by different values of VCC quantifying inter-
action of neutrinos with the normal matter. The results of
the numerical tests for Dirac and Majorana neutrinos bring
us to a conclusion that there is an optimal value of VCC (in
the case of parameters chosen here VCC ≈ 2) for which the

FIG. 1. The difference ΔK3 as a function of time for Dirac and
Majorana neutrinos versus ϕ for different values of c12 ¼ c21,
fixed potential VCC ¼ 2 and c11 ¼ c22 ¼ c33 ¼ 0.1 with E ¼ 1.

FIG. 2. The difference ΔK3 as a function of time for Dirac and
Majorana neutrinos for different values of potential VCC, given
energy E ¼ 1 and elements of the Kossakowski matrix c12 ¼
c21 ¼ c11 ¼ c22 ¼ c33 ¼ 0.1 with E ¼ 1.
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differenceΔK3 is maximal and allows for the most efficient
discrimination between Dirac and Majorana neutrino’s
nature. For our parameters the difference is the most
apparent for VCC ≈ 2, whereas is hardly visible for VCC <
0.6 and VCC > 7.0. As the potential VCC describes the
interaction of neutrinos with matter one can conjecture that
this type of interaction and, in particular, a presence of
matter, can enhance the possible implications of the
neutrino’s nature at least on certain measurable properties.
In studies of the K3 correlator, it is natural to investigate

the possibility of violation of the LGI Eq. (17) in dissipative
neutrino systems. We investigate whether the condition
K3 > 1 may be satisfied more likely either for Dirac or for
Majorana neutrinos. The first observation is that for both
nondissipative environments (with cij ¼ 0) and the diago-
nal Kossakowski matrix, there is no possibility of distin-
guishing them from Dirac and Majorana neutrinos solely
upon studies of LGIs’ violation. On the other hand, from
Fig. 3 one infers that for off-diagonal decoherence there
exists a certain value of the CP-violating phase ϕ for which
the value of K3 is maximized. Similarly, there is also an
optimal value of VCC, in our case VCC ≈ 10, such that the
violation of the LGI is most significant. Let us notice,

however, that the value of VCC which leads to a maximal
violation of the LGI is different compared to that which
results in a maximal value of ΔK3 discussed previously.
According to the results of our numerical analysis not
reproduced here this property is valid universally, i.e. for
any choice of parameters of the system.
Let us notice that both the K3 LG-correlator Eq. (16) and

the difference ΔK3 in Eq. (21) are formed by a very special
combination of correlation functions Cij defined in
Eq. (18). It is worth mentioning that all the properties of
the LG-correlators which seem to be useful for distinguish-
ing Dirac andMajorana neutrinos essentially originate from
the properties of Cij and ΔCij ¼ Cijðϕ ¼ 0Þ − CijðϕÞ as
presented in Fig. 4 and Fig. 5 respectively. However, the
additional physical content present in the LG-correlator K3

supported by recent experimental efforts on studies of a
LGI violation in neutrino systems [20] is encouraging to
relate this phenomenon—quantified by K3 rather than
Cij—and the investigation of the neutrino’s nature.
Eventually, let us notice that, contrary to VCC, an energy

E in Eq. (5)—one of these parameters which are crucial for
the properties of oscillating neutrinos—affects neither ΔK3

nor K3. The chosen value of E in Fig. 1, Fig. 2 and Fig. 3 is
completely arbitrary. In other words, one cannot either
make Dirac and Majorana neutrinos distinguishable or
improve their distinguishability solely via setting a value
of E in a similar manner as it can be done with VCC.

IV. CONCLUSIONS

Determination of the neutrino nature, if it is a Dirac or
Majorana particle, is one of the most important, still
unsolved, problems in studies of these fascinating particles.
There are various problems arising in this context. First of
all, the measurement of any of the neutrinos’ properties is a
hard task due to a well-known weakness of the neutrino’s
interactions. Secondly, one needs to find and measure an

FIG. 3. The dependence of the coefficient K3 on the potential
VCC in the dissipative (c12 ¼ c21 ¼ c11 ¼ c22 ¼ c33 ¼ 0.01)
environment with E ¼ 1.

FIG. 4. The dependence of the correlation function Cij Eq. (18)
on the potential VCC in the dissipative (c12 ¼ c21 ¼ c11 ¼
c22 ¼ c33 ¼ 0.01) environment with E ¼ 1.

FIG. 5. The difference of the correlation function ΔCij ¼
Cijðϕ ¼ 0Þ − CijðϕÞ for Dirac and Majorana neutrinos for differ-
ent values of potential VCC, given energy E ¼ 1 and elements of
the Kossakowski matrix c12 ¼ c21 ¼ c11 ¼ c22 ¼ c33 ¼ 0.1
with E ¼ 1.
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observable, which would allow for the establishment of the
neutrino nature. In this theoretical work we attempt to
contribute to this second aspect. We show that the K3

correlator studied recently in a context of violation of the
Leggett-Garg inequalities takes different values for Dirac
and Majorana neutrinos under certain conditions which
were identified in our work. We studied neutrino’s oscil-
lation in a presence of decoherence and matter using a
phenomenological approach based on the Kossakowski-
Lindblad-Gorini completely positive dynamics [27].
The main conclusion of our modeling is that the differ-

ence in K3 occurs provided that (i) there is a certain type of
decoherence represented by an off-diagonal Kossakowski
matrix and (ii) the neutrino interacts with a matter, i.e.
VCC ≠ 0 in Eq. (6). These two conditions are necessary for
making the difference ΔK3 a nonvanishing and potentially
useful candidate for a neutrino’s nature quantifier.
We also studied the difference in a possible violation of

the LGI for Dirac and Majorana neutrinos. We concluded
that the same two conditions as formulated above are valid
also for theK3 > 1 Leggett-Garg condition. However, there
is a crucial difference: the value of VCC necessary for
violation of the LGI (K3 > 1) is one order of magnitude
larger then the corresponding value necessary for ΔK3 ≠ 0.
As the value of VCC is related to density of matter affecting

neutrino’s oscillations, this observation may be potentially
interesting and useful for experimentalists.
Let us emphasize here that credibility of any quantitative

results obtained via any phenomenological model are
questionable as long as the model is not confronted with
a huge amount of experimental data. As neutrino physics
suffers from a shortage of experimental data quantitative
predictions presented in our work require considerable
caution in interpretation. One can not exclude a very
pessimistic scenario such that the proposed quantifier
discriminating neutrinos nature works in a tailored range
of parameters which is essentially inaccessible in any direct
experiment and that our predictions are of purely theoreti-
cal character.
Mysterious neutrinos, more than any other “fundamen-

tal” particles, attract physicists outside the particle physics
community. We hope that our results are not only a modest
contribution to physics of neutrinos per se but also indicate
some unusual properties of neutrinos shedding light on
even more unusual properties of the quantum world.
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