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We present a simple model of defects embedded in flat spacetime, where the model is designed to
maintain Lorentz invariance over large length scales. Even without remnant Lorentz violation, there are still
effects from these spacetime defects on the propagation of physical fields, notably mass generation for
scalars and Dirac fermions.
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I. INTRODUCTION

It has been argued that spacetime over small length
scales might have a nontrivial structure [1–5]. What the
precise nature of this small-scale “structure” would be is,
however, unclear.
It is known, for example, that static Swiss-cheese-type

models affect particle propagation and experimental data
strongly constrain the “holes” of such a classical spacetime
[6,7]. As the static holes of such a model violate Lorentz
invariance, the above-mentioned bounds strongly constrain
this type of Lorentz violation; see also the related dis-
cussion in Ref. [8]. The conclusion appears to be that, if
spacetime somehow has a small-scale structure, the under-
lying (quantum) theory manages to keep Lorentz invariance
to high precision.
For this reason, it may be of interest to investigate toy

models of spacetime-defects, where themodels are designed
tomaintain Lorentz invariance on average. One class of such
models involves pointlike defects, as studied in Refs. [9–11]
(see also Refs. [12,13] for a general discussion). In the
present article, we present one further toy model with
pointlike defects and study the induced modifications of
the standard particle propagation (“standard” referring to the
perfect Minkowski spacetime without defects).

II. POISSON DISTRIBUTION AND LORENTZ
INVARIANCE

It is a nontrivial issue to find distributions of defects over
four-dimensionalMinkowski spacetime, which preserve the
Lorentz symmetry in the large. Let us assume, for example,
that the defects are distributed over a regular hypercubic
lattice in one particular reference frame. Averaged over large
scales, the distribution is homogeneous. But if we go to a

Lorentz-boosted frame, the density of defects will increase
in the direction of the boost, while remaining constant in the
perpendicular directions. Apparently, the Lorentz symmetry
is broken by having a preferred reference frame in the
original setup with a regular lattice.
Still, if the defects are distributed according to a Poisson

process (a “sprinkling” procedure), boosts do not break
Lorentz invariance [14–16]. The probability of finding n
defects in a four-dimensional volume V4 is then given by

PnðV4Þ ¼
1

n!
ðρdV4Þn exp ð−ρdV4Þ: ð2:1Þ

The parameter ρd characterizes the distribution and corre-
sponds to the average spacetime density of defects. Note
that the Poisson process, for constant parameter ρd,
depends only on the four-dimensional volume of the region
considered. This implies that the probability of finding n
defects contained in a region of volume V4 is invariant
under volume-preserving transformations. Since Lorentz
transformations preserve the spacetime volume, the sprin-
kling is Lorentz invariant. Phrased in a different way, the
defect distribution from the Poisson process has no built-in
“structure.” If present, such a built-in structure would be
deformed by Lorentz contraction, just as for the regular-
lattice setup discussed above.
We see immediately from the Poisson distribution (2.1)

that, on average, the typical number of defects inside a
region of volume V4 is given by hniV4

¼ ρdV4 and that the
fluctuations of this number are of order

ffiffiffiffiffiffiffiffiffiffi
ρdV4

p
, so that the

relative fluctuations become irrelevant for large V4.

III. EFFECTIVE MODEL FOR A GAS OF
SPACETIME DEFECTS

A. General remarks

The explicit calculation of physical observables in a
theory with finite-size spacetime defects (corresponding to,
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e.g., soliton-type solutions [17]) is prohibitively difficult.
We can use, instead, a simple model with a gas of pointlike
defects [9,11].
In the new model presented here, the spacetime defects

are represented by randomly-positioned delta functions in a
classical backgroundMinkowski spacetime, where the delta
functions are coupled to a “mediator” real scalar field σðxÞ
with random charges ϵn ∈ f−1; 1g and a coupling constant
λ. The charges of the individual defects are randomly chosen
with probability 1=2 to get chargeþ1 and probability 1=2 to
get charge −1, so that the average charge vanishes over a
large enough spacetime volume. The mediator field σðxÞ is
also coupled to three “physical” fields: a massless real scalar
field ϕðxÞ with a nonderivative quartic-coupling term, a
massless Dirac fermion field ψ1ðxÞwith a Yukawa coupling
term, and a massless Dirac fermion field ψ2ðxÞ with a
nonrenormalizable Yukawa-type coupling term.
In short, a nontrivial spacetime with defects is modeled

by a perfect classical Minkowski spacetime and an action
with delta functions coupled to a real scalar field σðxÞ. In
turn, this mediator field σðxÞ is coupled to physical fields
ϕðxÞ, ψ1ðxÞ, and ψ2ðxÞ, where all fields propagate over
Minkowski spacetime.

B. Massless mediator field

The following effective action is considered:

Seff ¼−
Z
R4

d4x

�
1

2
ημν∂μϕ∂νϕþ iψ̄1γ

μ∂μψ1þ iψ̄2γ
μ∂μψ2

þ1

2
ημν∂μσ∂νσþλσ

�X∞
n¼1

ϵnδ
ð4Þðx−xnÞ

�
fxngfrom Poisson

þgsσ2ϕ2þgf;1σψ̄1ψ1þgf;2λσ2ψ̄2ψ2

�
; ð3:1aÞ

ϵn ∈ f−1;þ1g; with P−1 ¼ Pþ1 ¼ 1=2; ð3:1bÞ

where the Minkowski metric is given by ημν ≡
½diagð−1; 1; 1; 1Þ�μν for standard Cartesian coordinates xμ.
The dimensionless quartic scalar coupling constant gs
is taken to be positive, so that the scalar potential is
bounded from below. Throughout, we use natural units
with ℏ ¼ 1 ¼ c.
In the action (3.1a), the cores of the spacetime defects are

modeled by Dirac delta functions centered at the points
x1; x2;… of Minkowski spacetime. As discussed in Sec. II,
these points are distributed according to a Poisson process
(sprinkling), in order to preserve the Lorentz symmetry.
The long-range effects of the defect cores are modeled by a
real scalar field σ with coupling strength λ and random
charges ϵn ∈ f−1; 1g. With equal probabilities (3.1b) for
having a positive and a negative charge (no correlation
between the different defects), the average charge vanishes
asymptotically,

lim
N→∞

1

N

XN
n¼1

ϵn ¼ 0: ð3:2Þ

The scalar field σðxÞ mediates between the defect cores at
random positions x ¼ xn and the physical fields ϕðxÞ and
ψaðxÞ, for a ¼ 1, 2.
The massless scalar fields ϕ and σ in (3.1a) have mass

dimension 1, the massless fermionic fields ψa have mass
dimension 3=2, the coupling constant λ has mass dimension
−1, and the couplings gs and gf;a are dimensionless. As
mentioned in Sec. III A, the idea behind the action (3.1) is
that a nontrivial spacetime (manifold or not) is modeled
by delta functions located at the spacetime points xn of the
Minkowski manifold and by a mediator field σðxÞ. The
mediator field σðxÞ is coupled to the delta functions and
to additional physical fields ϕðxÞ and ψaðxÞ, with all fields
propagating over classical Minkowski spacetime and the
interaction terms given by the last three terms of the
integrand of (3.1a).
In order to recover the standard perturbative results by

use of Feynman diagrams, the interactions terms of (3.1a)
essentially need to be “turned off” in the asymptotic regions
[18]. This can be done by making the couplings in (3.1a)
spacetime dependent,

fλðxÞ; gsðxÞ; gf;aðxÞg ¼
(
fλ̄; ḡs; ḡf;ag; for x ∈ V4;cutoff ;

f0; 0; 0g; otherwise;

ð3:3Þ

where the barred quantities on the right-hand side are truly
constant. The spacetime volume V4;cutoff in (3.3) is taken to
be suitably large and the behavior in the transition region
can be adequately smoothed. In the following, we will keep
this spacetime dependence of the couplings fλ; gs; gf;ag
implicit. Incidentally, restricting the sum in (3.1a) to the
finite volume V4;cutoff makes this sum well behaved, with a
finite number N of defects.
The classical solution for the mediator field σ can be

easily obtained for gs ¼ gf;a ¼ 0,

δSeff
δσ

����ðgs¼gf;a¼0Þ
¼ 0 ⇒ □σðxÞ ¼ λ

X
n

ϵnδ
ð4Þðx − xnÞ; ð3:4Þ

with the flat-spacetime d’Alembert operator □≡ ∂μ∂μ.
The solution is given by

σðxÞ¼ σ0ðxÞþλ
X
n

ϵn

Z
d4x0G0ðx;x0Þδð4Þðx−xnÞ; ð3:5Þ

where σ0ðxÞ is the free solution [corresponding to the
homogeneous equation (3.4) with λ ¼ 0] and G0ðx; x0Þ is a
Green’s function of the d’Alembert operator □,
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G0ðx; x0Þ ¼
1

4π2jx − x0j2 : ð3:6Þ

Explicitly, the solution of (3.4) takes the following form:

σðxÞ¼ σ0ðxÞþλ
X
n

ϵn
4π2jx−xnj2

≡σ0ðxÞþσ1ðxÞ: ð3:7Þ

Let us now determine the two-point function for σ. In the
quantization procedure, the free part of σ can be split in
positive and negative frequency modes as usual,

σ0ðxÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωp

p ðape−ipx þ a†peipxÞ; ð3:8Þ

with p0 ¼ ωp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2 þ p2
3

p
. If we define

jðxÞ≡ λ
X
n

ϵnδ
ð4Þðx − xnÞ; ð3:9Þ

the Fourier transform takes a simple form

jðpÞ ¼
Z

d4xeipxjðxÞ ¼ λ
X
n

ϵneipxn : ð3:10Þ

With the help of (3.10), we can expand the correction
term in (3.7) as follows:

σ1ðxÞ ¼ λ

Z
d3p
ð2πÞ3

�P
nϵne

ipxne−ipx

2ωp
1þ H:c:

�
; ð3:11Þ

where 1 is the identity operator. The only nonvanishing
contributions to the two-point function come from terms
proportional to h0japa†qj0i ¼ ð2π3Þδð3Þðp − qÞ or propor-
tional to h0j12j0i ¼ 1. The final result is given by

h0jσðxÞσðyÞj0i ¼
Z

d3p
ð2πÞ3

e−ipðx−yÞ

2ωp

þ 4λ2
X
m;n

ϵnϵm

Z
d3p
ð2πÞ3

e−ipðx−xnÞ

2ωp

×
Z

d3q
ð2πÞ3

e−iqðxm−yÞ

2ωq
: ð3:12Þ

Taking into account that the first term on the right-hand side
of (3.12) corresponds to the free two-point function
[denoted by Δ0ðx − yÞ as usual] we get

h0jσðxÞσðyÞj0i
¼ Δ0ðx − yÞ þ 4λ2

X
m;n

ϵmϵnΔ0ðx − xnÞΔ0ðxm − yÞ:

ð3:13Þ

The expression (3.13) has a simple interpretation: the
amplitude for the scalar field σ to propagate from a
spacetime point x to a spacetime point y is given by the

free amplitude plus all possible products of the free
amplitude of particle propagation from x to the position
of a defect xn times the free amplitude of particle
propagation from another defect xm to y. In the random-
phase approximation (see Appendix), all cross terms join-
ing different defects in (3.13) are subdominant. The
expression (3.13) then simplifies to

h0jσðxÞσðyÞj0i≈Δ0ðx−yÞþ4λ2
X
n

Δ0ðx−xnÞΔ0ðxn−yÞ:

ð3:14Þ

This full tree-level propagator contains the free propagator
and the sum of all possible insertions of a single defect.

C. Massive mediator field

For completeness, we also consider the case where the
mediator field has a nonzero initial mass m0. The massive
version of the original action (3.1a) takes the following
form:

Seff;m0
¼ −

Z
R4

d4x

�
1

2
ημν∂μϕ∂νϕþ iψ̄1γ

μ∂μψ1

þ iψ̄2γ
μ∂μψ2 þ

1

2
ημν∂μσ∂νσ þ 1

2
m2

0σ
2

þ λσ
X∞
n¼1

ϵnδ
ð4Þðx − xnÞ þ gsσ2ϕ2

þ gf;1σψ̄1ψ1 þ gf;2λσ2ψ̄2ψ2

�
; ð3:15Þ

with the physical fields ϕ and ψa still being massless, as
long as interactions are neglected.
As before, the classical equation for σ can be written as

ð□ −m2
0ÞσðxÞ ¼ λ

X
n

ϵnδ
ð4Þðx − xnÞ; ð3:16Þ

again setting gs ¼ gf;a ¼ 0. The complete solution of this
equation can be split in two parts,

σðxÞ¼ σ0ðxÞþλ
X
n

ϵn

Z
d4x0 ~G0ðx;x0Þδð4Þðx−xnÞ; ð3:17Þ

where, now, σ0ðxÞ is the solution of the homogeneous
equation ð□ −m2

0Þσ0ðxÞ ¼ 0 and ~G0ðx; x0Þ is a Green’s
function of the operator □ −m2

0,

~G0ðx; x0Þ ¼
m0K1ðm0jx − x0jÞ

4π2jx − x0j ; ð3:18Þ

with KνðzÞ the modified Bessel function of the second
kind [19].
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A calculation similar to the one of Sec. III B gives the
following result for the two-point function:

h0jσðxÞσðyÞj0im0

¼ ~Δ0ðx−yÞþ4λ2
X
n;m

ϵnϵm ~Δ0ðx−xnÞ ~Δ0ðxm−yÞ; ð3:19Þ

where ~Δ0ðx − yÞ is the free massive propagator. In the
random-phase approximation (see Appendix), the expres-
sion (3.19) simplifies to

h0jσðxÞσðyÞj0im0

≈ ~Δ0ðx − yÞ þ 4λ2
X
n

~Δ0ðx − xnÞ ~Δ0ðxn − yÞ; ð3:20Þ

which has the same structure as expression (3.14) for the
massless-mediator case.

IV. MASS GENERATION FOR THE
MEDIATOR FIELD

As found in Sec. III, the interaction of the mediator field
σðxÞ with the delta functions leads to a nontrivial modi-
fication of the σ propagator. Let us focus on the initially
massless case given by the action (3.1a). The propagator for
the mediator field (3.14) can then be rewritten as follows:

Δðx; yÞ ≈ Δ0ðx − yÞ þ 4λ2Δ1ðx; yÞ; ð4:1Þ

where Δ0ðx − yÞ corresponds to the free propagator and
Δ1ðx; yÞ to the correction from the interactions with the
delta functions (corresponding to the defect cores). We will
see that this last term Δ1 generates a nonzero mass for the
σ field.
If a nonzero mass mσ is indeed generated, then the

following equation must hold:

ð□x −m2
σÞΔðx; yÞ ¼ −δð4Þðx − yÞ; ð4:2Þ

for m2
σ ≠ 0. After inserting the propagator (4.1) in (4.2), we

obtain to order λ2

4λ2
X
n

δð4Þðx − xnÞΔ0ðxn − yÞ −m2
σΔ0ðx − yÞ

þO½λ4ρ2dΔ1ðx; yÞ� ¼ 0: ð4:3Þ

It is still not easy to interpret the first term on the left-hand
side of (4.3). To do so, we can use the fact that the points xn
are distributed according to a Poisson process as discussed
in Sec. II. According to (2.1), the number of defects grows
with the spacetime volume, dN ∝ d4x, where the propor-
tionality factor is given by the density parameter ρd.
Furthermore, the distribution is assumed to be dense
and, therefore, the characteristic distance between defects,
ld ≡ ρ−1=4d , is assumed to be small compared to the typical

wavelengths of the fields considered. This allows us to
approximate the sum in (4.3) by an integral,

X
n

→ ρd

Z
R4

d4x: ð4:4Þ

Applying (4.4) to (4.3) we obtain the result

m2
σ ¼ 4λ2ρd; ð4:5Þ

in terms of the defect density ρd from (2.1) and the coupling
constant λ from (3.1a).
The first corrections to the mass-square (4.5) will appear

as loop corrections involving the dimensionless couplings
gs and gf;a.
We conclude that, as a result of the interactions with the

delta functions, the mediator field σ has acquired a mass.
This result can be confirmed by working in the momentum-
space representation. Start from the full propagator (3.14)
and take (4.4) into account,

h0jσðxÞσðyÞj0i

≈ Δ0ðx − yÞ þ 4λ2ρd

Z
d4zΔ0ðx − zÞΔ0ðz − yÞ: ð4:6Þ

After shifting the z variable (in order to make explicit the
dependence of the two-point function on the difference
x − y), we can rewrite (4.6) in momentum space as follows:

GðpÞ ¼ 1

p2 þ iϵ
þ 4λ2ρd

Z
d4zΔ0ðzÞ

eipz

p2 þ iϵ
: ð4:7Þ

Integration with respect to z then gives

GðpÞ ¼ 1

p2 þ iϵ
−

1

p2 þ iϵ
4λ2ρd

1

p2 þ iϵ
: ð4:8Þ

The expression (4.8) can be rewritten to quadratic order in λ
as follows:

GðpÞ ¼ 1

p2 − 4λ2ρd þ iϵ
þO½λ4ρ2dðp2 þ iϵÞ−3�: ð4:9Þ

The mass-square term (4.5) for σ appears in this repre-
sentation as a pole in the momentum-space propagator. In
the limit λ → 0 (no long-range effects of the defect cores)
and/or in the limit ρd → 0 (vanishing density of defect
cores), the mediator field remains massless.
For the initially massive case (3.15), the pole in the σ-

propagator is already shifted by the mass-square m2
0 and an

effective mass-square m2
σ ¼ m2

0 þ 4λ2ρd is obtained.
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V. PHYSICAL FIELDS

A. Setup

The massless physical fields ϕ and ψa only “feel” the
presence of the defect cores by interaction with the mediator
field σ. From now on, we work with the effective action
obtained from (3.1a) for a vanishing initial σ mass. We can
write the obtained effective action at order λ2 as follows

Seff;λ2 ¼ −
Z
R4

d4x

�
1

2
∂μϕ∂μϕþ iψ̄1γ

μ∂μψ1 þ iψ̄2γ
μ∂μψ2

þ 1

2
∂μσ∂μσ þ 2λ2ρdσ

2 þ gsσ2ϕ2 þ gf;1σψ̄1ψ1

þ gf;2λσ2ψ̄2ψ2 þO½λ4ρ2d�
�
; ð5:1Þ

where the delta functions have produced a mass term for the
σ field as calculated in Sec. IV.

B. Physical scalar field ϕ

We now ask what happens to the massless physical field
ϕ by its interaction with the mediator field σ. The self-
energy for the scalar field is given by Fig. 1. With
appropriate regularization, the last term in Fig. 1 corre-
sponds the counterterm of Fig. 2. This counterterm cancels
the divergence coming from the one-loop integral.
Consider the Pauli–Villars (PV) regularization method

[20,21]. For the 1-loop diagram of Fig. 1, the divergent
integral is

Iðm2
σÞ≡ gs

Z
d4kE
ð2πÞ4

1

k2E þm2
σ
; ð5:2Þ

where kE is the Euclidean momentum. We now define the
PV-regularized integral by

IPVðm2
σÞ ¼ Iðm2

σÞ − IðΛ2Þ − ðm2
σ − Λ2ÞI0ðΛ2Þ; ð5:3Þ

with the PV regulator mass Λ and I0ðxÞ≡ dIðxÞ=dx.
Evaluating (5.3) gives

IPVðm2
σÞ ¼ −gs

m2
σ

ð4πÞ2 þ gs
Λ2

ð4πÞ2
�
1 − log

Λ2

m2
σ

�
: ð5:4Þ

The counterterm of Fig. 2 cancels exactly the Λ terms
of (5.4),

δϕ ¼ 0; ð5:5aÞ

δmϕ
¼ gs

Λ2

ð4πÞ2
�
1 − log

Λ2

m2
σ

�
: ð5:5bÞ

As a result, a nonzero mass for ϕ is generated at one-
loop level,

M2
ϕ

���ðPV regÞ ¼ lim
p→0

ΣϕðpÞ
���ðPV regÞ ¼ gs

m2
σ

ð4πÞ2 ; ð5:6Þ

with m2
σ ¼ 4λ2ρd from (4.5). The point-splitting and

dimensional-regularization methods [21] give a similar
result for the generated scalar mass-square, with the same
parametric dependence gsm2

σ.
The generated mass-square for the scalar field as given

by (5.6) depends linearly on both ρd and λ2. This implies
that, in order to give a nonzero mass to the scalar field, both
the presence of defect cores (ρd ≠ 0) and the interaction of
defect cores with the mediator field (λ ≠ 0) are essential.
Two general remarks are in order. First, the underlying

nontrivial spacetime produces not only the model (3.1)
but also the required counterterms such as (5.5). If a
single energy scale Efoam (equal or not equal to the
Planck energy EP ≡G−1=2) sets the parameters λ ∼
1=Efoam and ρd ∼ ðEfoamÞ4, then it is also to be expected
that Λ ∼ Efoam, and the Pauli–Villars “regularization” is no
longer a mere mathematical device but is rooted in physical
reality. The generated mass-square (5.6) can be very much
smaller than ðEfoamÞ2 if gs ≪ 1.
Second, the following simple question arises: is it not

possible that the generated mass-square (5.6) gets absorbed
in the square of the renormalized mass and that, thereby, the
effects from our spacetime defects become invisible? In
general, this is certainly possible, but not for the setup of
the theory as outlined in Sec. III. Specifically, the coupling
λ is taken to vanish far out, according to (3.3). This means
that the constant renormalized mass relevant to the infinite-
volume perfect Minkowski spacetime is unaffected by
spacetime defects, as their effects (λ̄ ≠ 0) are confined to
the finite volume V4;cutoff .

C. Physical fermion field ψ1

The interaction of the massless fermionic field ψ1 with σ
gives rise to different effects compared to those of the scalar
field ϕ. The self-energy for the fermion including the
counterterm is given by Figs. 3 and 4.
Consider again Pauli–Villars regularization. The unsub-

tracted regularized integral from the 1-loop diagram of
Fig. 3 gives

FIG. 1. Self-energy contribution for the physical scalar ϕ. The
dashed propagator corresponds to the mediator scalar field σ and
the counterterm is given in Fig. 2.

FIG. 2. Counterterm for Fig. 1.
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Σψ1
ðpÞjðPV reg; unsubtrÞ

¼ −
g2f;1
16π2

=p log

�
Λ2

m2
σ

�

−
g2f;1
8π2

=p
Z

1

0

dzz log

�
m2

σ

m2
σ − p2ð1 − zÞ

�
; ð5:7Þ

with the Pauli–Villars regulator Λ and the Feynman slash
notation =p≡ γμpμ. The required counterterm is then

δψ1
¼ g2f;1

16π2
=p log

�
Λ2

m2
σ

�
; ð5:8aÞ

δmψ1
¼ 0: ð5:8bÞ

This results in

Mψ1

���ðPV regÞ ¼ lim
p→0

Σψ1
ðpÞ

���ðPV regÞ ¼ 0: ð5:9Þ

The point-splitting and dimensional-regularization meth-
ods also give a vanishing generated mass for ψ1.
Hence, the fermion ψ1 does not get a mass due to the

interaction with the mediator field σ, at least at the 1-loop
level and under the assumption that σ does not acquire a
vacuum expectation value. Expanding on this last point, the
effective action (5.1) is invariant under the following axial
transformation:

ψ1ðxÞ → exp½iðπ=2Þγ5�ψ1ðxÞ; ð5:10aÞ

σðxÞ → −σðxÞ: ð5:10bÞ

If unbroken, the axial symmetry (5.10) of the effective
action (5.1) rules out a direct (or generated) mass
term Mψ̄1ψ1.

D. Physical fermion field ψ2

The interaction of the massless fermionic field ψ2 with σ
differs from that of ψ1 with σ and is, in fact, similar to the
interaction of the scalar field ϕ with σ.
The self-energy for the ψ2 fermion including the counter-

term is given by Figs. 5 and 6. It is now clear that the ψ2

self-energy of Fig. 5 has the same structure as the ϕ self-
energy of Fig. 1. In other words, the divergent integral for
the ψ2 self-energy is proportional to (5.2).
Consider again Pauli–Villars regularization and take over

the relevant results from Sec. V B. The counterterm is then
given by

δψ2
¼ 0; ð5:11aÞ

δmψ2
¼ gf;2λ

Λ2

ð4πÞ2
�
1 − log

Λ2

m2
σ

�
; ð5:11bÞ

and, adapting the constants in (5.6), the following gen-
erated mass is obtained:

Mψ2

���ðPV regÞ ¼ lim
p→0

Σψ2
ðpÞ

���ðPV regÞ ¼ gf;2λ
m2

σ

ð4πÞ2 ; ð5:12Þ

with m2
σ ¼ 4λ2ρd from (4.5). The point-splitting and

dimensional-regularization methods give a similar result
for the generated fermion mass, with the same parametric
dependence gf;2λm2

σ.
As the ψ2 interaction term of the effective action (5.1)

involves a factor σ2 [instead of the single factor σ of the ψ1

interaction term], the axial transformation (5.10), with ψ1

replaced by ψ2, no longer leaves the action (5.1) invariant.
Hence, there is no axial symmetry for the ψ2 field to
exclude the appearance of a ψ2 mass term.

VI. DISCUSSION

It has become clear over the last years that, if a “quantum
spacetime foam” somehow results in an effective classical
spacetime manifold with small-scale structure, this effec-
tive manifold must be Lorentz-invariant to high precision
(at the 10−15 level in the photon sector [7]). In the present
article, we have, therefore, investigated a model of space-
time defects which is Lorentz-invariant over large enough
spacetime volumes. Even though there is no apparent
Lorentz violation in this model, there may still be nontrivial
effects for the propagation of particles. The quantities that

FIG. 5. Self-energy contribution for the physical fermion ψ2.
The dashed propagator corresponds to the mediator scalar field σ
and the counterterm is given in Fig. 6.

FIG. 6. Counterterm for Fig. 5.

FIG. 3. Self-energy contribution for the physical fermion ψ1.
The dashed propagator corresponds to the mediator scalar field σ
and the counterterm is given in Fig. 4.

FIG. 4. Counterterm for Fig. 3.
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feel the effects of this small-scale structure must be
themselves Lorentz-invariant, an obvious example being
mass. Indeed, we have found a generated mass for both a
scalar field and a Dirac fermion field, as long as there is no
effective axial symmetry of the toy model considered. It is,
in fact, possible to keep the Dirac fermion field massless, if
an effective axial symmetry is built into the toy model.
Incidentally, the mass generation found here is not

entirely surprising, as mass generation is known to occur
for non-Minkowskian manifolds [22]. The manifold con-
sidered in Ref. [22] has nontrivial topology at large length
scales (manifold R3 × S1), whereas we are interested in
nontrivial topology at small length scales (cf. the discussion
in Ref. [9]).
Assuming our results to apply to the Higgs scalar boson

of the standard model of elementary particle physics (with a
Higgs mass around 125 GeV [23]), we have from (5.6) the
following upper bound:

gs
4λ2ρd
ð4πÞ2 ≪ ð125 GeVÞ2; ð6:1Þ

where the defect density ρd is defined by (2.1) and the
dimensional coupling constant λ and the positive dimen-
sionless coupling constant gs are defined by (3.1a). We
have used a strong inequality in (6.1), in order to make sure
that the spacetime defects, if present, do not upset the
standard Higgs mechanism for mass generation of gauge
bosons and fermions.
In Sec. V B, we already mentioned the possibility that a

single energy scale Efoam controls the small-scale structure
of spacetime and, therefore, sets the parameters of our
model (3.1a),

λ ∼ 1=Efoam; ð6:2aÞ

ρd ∼ ðEfoamÞ4: ð6:2bÞ

With the scenario (6.2) and gs ∼ 10−2, bound (6.1) gives

Efoam ≪ 8 TeV

�
10−2

gs

�
1=2

: ð6:3Þ

In this case, the picture is that the spacetime defects have an
effective size [of order 1=mσ ∼ λ−1ðρdÞ−1=2] and typical
distance between neighboring defects [of order ðρdÞ−1=4]
with the sameorder ofmagnitude, 1=Efoam. This single length
scale is, however, very much larger than the Planck length
1=EP≈1.62×10−35m, with EP≡G−1=2≈1.22×1016TeV.
Scenarios different from (6.2) are also possible.

One scenario has, for example, λ ∼ 1=EP and
ρd ≪ ð10−2=gsÞð8 TeVÞ2ðEPÞ2. Ultimately, only the deri-
vation of our model (3.1) from the underlying spacetime
(assuming the toy model to be relevant at all) can decide
between the different scenarios.

From a general perspective, it may be of interest to have
found another possible origin of mass, barring questions of
naturalness and the unknown nature of quantum spacetime.
The toy model considered here is rather simple in that it
only gives mass to scalars and Dirac fermions. More
difficult would be spacetime-defect mass generation for
the Weyl fermions and the gauge bosons of a chiral gauge
theory (the type of theory relevant to the standard model).
For the Weyl fermions, we may consider replacing the
single real scalar field σðxÞ of our model by a complex
scalar field ΣðxÞ in an appropriate representation of the
gauge group and using this scalar Σ in a gauge-invariant
Yukawa-type coupling term. For the gauge bosons, perhaps
the spacetime-defect mechanism can be merged with a
modified version of the Higgs mechanism.
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APPENDIX: RANDOM-PHASE APPROXIMATION

Let us investigate a double momentum integral of the
following form:Z

d4pd4qfðp; qÞJðpÞJ⋆ðqÞ; ðA1Þ

where JðpÞ is defined by

JðpÞ≡X
n

ϵneipxn ; ðA2Þ

with random defect positions xn ∈ R4 and random defect
charges ϵn ∈ f−1;þ1g as discussed in Secs. II and III A,
respectively. The defect index n runs over positive integers,

n ∈ N ≡ f1; 2; 3;…; Ng; ðA3Þ

where N is taken to infinity at the end of the calculation,
together with the volume V4;cutoff discussed in Sec. III B.
Now consider the product of two J’s at different

momenta,

JðpÞJ⋆ðqÞ ¼
X
m;n

ϵmϵneipxn−iqxm ; ðA4Þ

where the indices m and n run over the set N as given by
(A3). The product (A4) can be split in two parts, a single
sum and a double sum,

JðpÞJ⋆ðqÞ ¼
X
n

eixnðp−qÞ þ
X
m≠n

ϵmϵneipxn−iqxm : ðA5Þ

It is instructive to rewrite the double sum of (A5) as followsX
m≠n

ϵnϵmeipxn−iqxm ¼
X
m≠n

eipxn−iqxmþiπgm;n ; ðA6Þ
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with

gm;n ≡ 1

2
ð1 − ϵnϵmÞ ∈ f0; 1g: ðA7Þ

Hence, the double sum (A6) is a sum of pure random
phases, even for the case p → q. For p ¼ q ¼ 0, the norm
of this double sum is of order

ffiffiffiffi
N

p
, and the same holds for

generic values of p and q. The norm of the single sum of
(A5) has a maximum value N for p ¼ q.
Let us briefly recapitulate. As discussed in Sec. III A, the

charges of individual defects are chosen randomly and the
average charge approaches zero in the limit of an infinite
number of defects (N → ∞). The random distribution of
defect charges ϵn also makes that the double sum on the
right-hand side of (A5) scatters around zero for a large
number of defects (N ≫ 1), with a spread proportional toffiffiffiffi
N

p
. Note that the single sum on the right-hand side of (A5)

is independent of the charge distribution, being propor-
tional to ϵ2n ¼ 1, and takes the value N for p ¼ q. For

further discussion and a numerical example, see Sec. IV
of Ref. [9].
With the double sum on the right-hand side of (A5) being

subdominant, we can approximate the product (A4) by

JðpÞJ⋆ðqÞ ≈
X
n

eixnðp−qÞ; ðA8Þ

where the sum approaches the value N as p → q. If we now
take into account that the points xn are randomly distributed
by a Poisson sprinkling process, there is only a significant
contribution to (A8) if p ≈ q. This allows us to replace the
sum (A8) by a delta function, which becomes exact under
the identification (4.4). We, finally, have

JðpÞJ⋆ðqÞ≈ρd

Z
d4zeizðp−qÞ ¼ ð2πÞ4ρdδð4Þðp−qÞ; ðA9Þ

which simplifies the original double integral (A1).
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