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We study the pair-production process in the presence of two counterpropagating linearly polarized short
laser pulses. By means of a nonperturbative technique, we take into account the full coordinate dependence
of the external field going beyond the dipole and standing-wave approximations. In particular, we analyze
the momentum distribution of particles created. It is demonstrated that the spatial variations of the laser
pulses may play a crucial role. The more accurate treatment reveals a number of prominent features: the
pair-production probabilities become considerably smaller, the quantitative behavior of the momentum
spectra changes dramatically, and the pulse shape effects become much less pronounced. The results of our
study are expected to be very important for future theoretical and experimental investigations.
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I. INTRODUCTION

Electron-positron pair production (PP) in strong external
fields is a fundamental nonlinear phenomenon predicted by
quantum electrodynamics [1–3]. In the presence of a
quasistatic electric background, the vacuum decay rate
becomes non-negligible if the corresponding field strength
approaches the Schwinger critical valueEc¼m2c3=ðjejℏÞ¼
1.3×1016V=cm (m and e are the electron mass and charge,
respectively), which is not accessible to modern experimen-
tal facilities. However, because of the recent progress in laser
technology, it is expected that, in the near future, one will be
able to achieve the peak electric field strength E0 which is
sufficiently close to Ec [4] (e.g., ELI-Ultra High Field
Facility [5] aims to attain E0=Ec ∼ 10−3). Moreover, the
Schwinger limit effectively lowers in the presence of rapid
oscillations of the external field. An oscillating background
can be characterized by the dimensionless adiabaticity
parameter ξ ¼ jeE0j=ðmcωÞ, where ω is the corresponding
frequency (ξ is the inverse of the Keldysh parameter γ [6]). If
ξ ≪ 1, the PP process can be accurately described bymeans
of perturbation theory. Within this multiphoton regime, the
phenomenon of pair creation has already been observed
experimentally [7]. In the opposite limit ξ ≫ 1, i.e., the
Schwinger (tunneling) regime, the process can only be
considered with the aid of nonperturbative calculations.
The corresponding studies are supposed not only to illumi-
nate various theoretical aspects of the PP phenomenon but
also to advance the search for the most favorable exper-
imental scenarios and thus to make the observation of the
Schwinger effect feasible.
One of these scenarios could be a collision of two

high-intensity laser pulses [8–11] (see also [12–18] and

references therein) which is the focus of our investigation.
In this article we assume that the pulses have the same
linear polarization along the x axis: E⃗∥e⃗x, B⃗∥e⃗y, and z is the
propagation direction. Accordingly, an individual pulse can
be described by the following vector potential (hereafter we
employ the relativistic units ℏ ¼ c ¼ 1):

Ay ¼ Az ¼ 0;

Að�Þ
x ðt; zÞ ¼ −

E0

ω
Fðωt ∓ kzzÞ sinðωt ∓ kzzþ φÞ; ð1Þ

where E0 is the peak electric field strength, ω is the carrier
frequency (kz ¼ ω), φ describes the carrier-envelope phase
(CEP), and FðηÞ is a smooth envelope function. If the pulse
contains several cycles, the spatial dependence of the
carrier is stronger than that of the envelope. This means
that one can neglect the latter: Fðωt ∓ kzzÞ → FðωtÞ. In
this case, the resulting field Axðt;zÞ¼AðþÞ

x ðt;zÞþAð−Þ
x ðt;zÞ

becomes a standing wave oscillating with time, and the
vector potential reads

AðSWAÞ
x ðt; zÞ ¼ −

2E0

ω
FðωtÞ sinðωtþ φÞ cosðkzzÞ: ð2Þ

In what follows, this approximation will be referred to as
the standing-wave approximation (SWA). If one assumes
that the eþe− pairs basically form in the vicinity of the
points zn ¼ πn=kz (n ∈ Z) where the electric field is
maximal and the magnetic component vanishes, one can
further simplify the expression (2) by neglecting the
coordinate dependence of the carrier,

PHYSICAL REVIEW D 96, 076006 (2017)

2470-0010=2017=96(7)=076006(8) 076006-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.076006
https://doi.org/10.1103/PhysRevD.96.076006
https://doi.org/10.1103/PhysRevD.96.076006
https://doi.org/10.1103/PhysRevD.96.076006


AðDAÞ
x ðtÞ ¼ −

2E0

ω
FðωtÞ sinðωtþ φÞ: ð3Þ

The external field is now purely electric and spatially
homogeneous. We will call this the dipole approximation
(DA). It is worth noting that the DA is expected to provide
adequate predictions only when the laser wavelength is
much larger than the typical length scale of the pair-
production process 2mc2=jeE0j. This requirement is equiv-
alent to the condition ξ ≫ 1=π.
Most theoretical studies of the problem have been

conducted within DA [8–16,18–23]. These investigations
identified the main general patterns of the PP process and
revealed a number of distinctive features regarding the
pulse shape, governed by the envelope function FðηÞ and
the CEP parameter φ [14,16,21,23]. Taking into account
the coordinate dependence of the external field is a very
challenging task. The effects of the spatial inhomogeneities
of the laser pulses were partially included in Refs. [24,25]
where the role of the laser pulse polarization was examined
within SWA. To our knowledge, the only study beyond
SWA was reported in Ref. [17] where the resonant Rabi
oscillations and the resonant behavior of the PP proba-
bilities were discussed. It was shown that the influence of
the spatial variations of the external field and its magnetic
component may play a very important role in the PP
process. However, the momentum distribution of particles
created was not investigated.
Within the present study we go beyond DA and SWA

taking into account the spatial dependence of both the
carrier and the envelope. We demonstrate that these
approximations fail to correctly describe the momentum
spectrum of particles. As will be shown below, a number of
characteristic features revealed within DA and SWA arise
merely due to the inaccuracy of the corresponding approx-
imations. Moreover, both DA and SWA substantially
overestimate the PP probabilities.
In order to analyze the pulse shape effects, we vary the

parameter φ and employ two different envelope functions.
First, we use a “flat” profile which has an extended plateau
region,

F1ðηÞ ¼

8>><
>>:

sin2
h1
2
ðπN − jηjÞ

i
if πðN − 1Þ ≤ jηj < πN;

1 if jηj < πðN − 1Þ;
0 otherwise;

ð4Þ

where N is the number of cycles in the pulse, so the pulse
duration is τ ¼ 2πN=ω. Second, we employ a slowly
varying cos2 envelope,

F2ðηÞ ¼ cos2
�

η

2N

�
θðπN − jηjÞ: ð5Þ

In this study we choose E0 ¼ 0.1Ec and τ ¼ 2 × 10−19 s
and use N ¼ 1–5. This corresponds to ω=m ≈ 0.04–0.20
and 2ξ ≈ 1.0–4.9. The adiabaticity parameter 2ξ regards
the resulting field of the two laser pulses. This choice of the
laser background parameters ensures that the classical-
external-field approximation is valid and the PP process
reflects the nonperturbative nature. We examine ultrashort
laser pulses since it allows us to clearly illustrate the main
findings of our investigation and helps us to save the
computational time, which becomes extremely important
beyond SWA.
In order to evaluate the necessary PP probabilities, we

utilize the nonperturbative technique described in Ref. [26].
The method is based on the general formalism [27] of
quantization in the Furry picture and is briefly described in
Appendix A. To test our numerical procedures, we first
reproduced the main results of Refs. [16–18,24]. Note that
the potential (1) does not vanish at jtj → þ∞. To make sure
that our computations provide the probabilities of the
production of real particles (electrons and positrons), one
has to introduce a temporal window function RðtÞ, so the
resulting vector potential reads

Axðt; zÞ ¼ ½AðþÞ
x ðt; zÞ þ Að−Þ

x ðt; zÞ�RðtÞ: ð6Þ

The function RðtÞ is a smooth function which slowly
vanishes when the pulses do not overlap. If this profile
is sufficiently wide, our results converge and do not depend
on the shape of this function (for more details, see
Appendix B). In Fig. 1 the process is illustrated in the
t-z plane.

II. DIPOLE AND STANDING-WAVE
APPROXIMATIONS

Let us first examine the momentum spectra obtained
within DA and SWA. In Fig. 2 they are depicted for the case
of the flat envelope (4) as a function of the momentum
component along the magnetic field direction y. The values
represent the mean number of electrons (positrons)

FIG. 1. The dynamics of two counterpropagating laser pulses in
the t-z plane. The pulses overlap within the square region
(yellow). The switching function RðtÞ has a wide plateau region
and slowly vanishes outside this interval.

ALEKSANDROV, PLUNIEN, and SHABAEV PHYSICAL REVIEW D 96, 076006 (2017)

076006-2



produced per unit volume (if the spin state is not taken
into account, the results should be multiplied by a factor
of 2). Because of the symmetry of the vector potential,
the spectrum is invariant with respect to the reflection
p → −p. A very important difference between DA and
SWA arises due to the fact that, within the former, the
external field is purely electric and thus the y and z axes
are equivalent in DA. In contrast, the spectrum found
within SWA behaves differently along these directions. It
turns out that the magnetic component of the resulting
field drastically alters the momentum distribution in the
px − pz plane, so we compare the py dependences fixing
px ¼ pz ¼ 0. In Fig. 2 we observe a quite nontrivial
behavior which is reproduced within both DA and SWA,
provided the results obtained in DA are multiplied by a
factor of about 0.25. This quantitative discrepancy can be
accounted for if one performs the calculations within DA
for various E0ðzÞ ¼ E0 cosðkzzÞ and then averages the
results over one cycle of the standing wave (we refer to
this procedure as local DA). This leads to the spectrum
which does not require any additional normalization
(see Fig. 2).
The oscillatory behavior in Fig. 2 contains two different

scales. We observe slow oscillations with period Δp ≈ ω
and faster oscillations with period δp ≈ ω=10. The
former were found within DA in Ref. [16] (see also
Refs. [20,21,23,28,29]) for the case of a Gaussian envelope
profile and interpreted as resonances in a one-dimensional
quantum-mechanical scattering problem. We suppose that
the faster oscillations appear for the similar reasons due to
the nonmonochromaticity of the laser pulses (i.e., their
Fourier transform contains modes with various frequencies
depending on N). Since each pulse contains N cycles of the
carrier, the envelope function is essentially a half-cycle
oscillation with frequencyω=N. The analysis of pulses with
other values of N showed that indeed δp ≈ ω=ð2NÞ. Note

that within local DA the faster oscillations are suppressed.
Although the averaging allows one to partially include the
spatial inhomogeneities of the external field, this approach
does not properly capture the effects of the interference
among modes with various frequencies.
The pulse shape effects become evident when we employ

the cos2 envelope function (see Fig. 3). In this case, the
slow oscillations disappear, which indicates that the inter-
ference strongly depends on the pulse shape. Moreover, one
observes that the production probability is now about 2
orders of magnitude smaller than that presented in Fig. 2.
An obvious reason for this could be that the envelope
functions (4) and (5) satisfy F1ðηÞ ≥ F2ðηÞ.
Finally, we study the effects of CEP. It turns out that this

parameter plays a very important role. For instance, within
SWA for φ ¼ 0, the PP probabilities are much smaller than
those found for φ ¼ π=2 (the number of particles integrated
over py is 4.9 times smaller). Despite this great quantitative
difference, the two spectra have nearly the same qualitative
behavior discussed above.
In the following, we will study how our findings should

change if one goes beyond SWA and takes into account the
spatial variations of both the carrier and the envelope.

III. BEYOND SWA

First, one has to note that taking into consideration the
coordinate dependence of the envelope function makes the
system finite in the z direction. We normalize our results, so
one obtains again the mean number of particles per unit
volume (see Appendix A). This allows one to directly
compare the spectra found beyond SWA to those presented
in Figs. 2 and 3.
In Fig. 4 we depict the spectrum of particles produced for

the case of the flat profile (4) and three different values of
the CEP parameter φ (N ¼ 5). First, one observes that the

FIG. 2. The momentum spectrum of particles created with px ¼
pz ¼ 0 in the case of the flat envelope calculated within DA,
SWA, and local DA (N ¼ 5, φ ¼ π=2). The results obtained in
DA are multiplied by a factor of 0.25.

FIG. 3. The momentum spectrum of particles created in the
case of the cos2 envelope calculated within DA, SWA, and local
DA (N ¼ 5, φ ¼ π=2). The results obtained in DA are multiplied
by a factor of 0.25.
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oscillatory structure now disappears. The reason for this is
that the temporal dependence of the external field is not
separated from the spatial one as in the previously used
approximations. Whereas within DA and SWA, the time-
dependent factor FðωtÞ induces the oscillatory patterns
discussed above, beyond SWA the temporal and spatial
variations are related, and therefore the overall dynamics in
the collision process does not exhibit any resonant behav-
ior. Besides, the spectra are now much less sensitive to the
CEP parameter. The quantitative discrepancy between the
red curve (φ ¼ 0) and the others in Fig. 4 is the largest
difference that we observed within our study beyond SWA.
Finally, we note that the PP probabilities evaluated beyond
SWA are about 2 orders of magnitude smaller. For instance,
for φ ¼ 0, the number density integrated over py is now
3.66 × 10−8, while in SWA it amounts to 8.38 × 10−6. This
can be understood if one notes that beyond SWA the
overlap region occupies much less area in the t-z plane.
According to the normalization used (see Appendix A), one
should compare the field configurations within the “unit”

interval z ∈ ½−τ=2; τ=2�. In Fig. 5 we display the electric
field strength Exðt; zÞ within SWA and beyond this
approximation. We observe that in SWA the field occupies
the whole interval z ∈ ½−τ=2; τ=2� and has the same
amplitude for each value of z depending only on time
via the factor FðωtÞ. Beyond SWA, the overlap region is
considerably smaller. Thus, the neglect of the spatial
finiteness of the external pulses leads to a great overesti-
mation of the particle yield.
In Fig. 6 we present the momentum spectra of particles

for the case of the cos2 envelope. We observe that the
momentum distribution is almost independent of the CEP
parameter in contrast to our findings within DA and SWA.
As was expected, in the case of the flat profile, the PP
probabilities are greater than those found for the cos2

envelope function. Nevertheless, the difference is now
much smaller in comparison to SWA, which indicates
again that the previously used approximations fail to
provide adequate quantitative predictions. The qualitative
behavior of the spectra in Fig. 6 does not strongly differ
from that presented in Fig. 4, and as in the case of the flat
envelope, the spectra are now much narrower than they
were within DA and SWA. A crucial difference between the
field configurations in DA and SWA and that arising
beyond SWA relates to the way the external field is being
switched on and off. Beyond SWA the envelope FðηÞ
governs the spatial profiles of the two colliding pulses
while the function RðtÞ is now responsible for switching on
and off the external background. Once the results are stable
with respect to the changes of the function RðtÞ, the
physical quantities are not so sensitive to the parameters
of the spatial envelope FðηÞ. On the other hand, the profile
FðωtÞ plays a different role within DA and SWA. Apart
from the appearance of the oscillatory structure discussed
above, this fact also leads to a number of striking effects
regarding the pulse shape and carrier-envelope phase.
Beyond DA and SWA these effects are suppressed. The
analysis of pulses with other values of N confirms the
aforementioned findings.

FIG. 4. The momentum spectrum evaluated beyond SWA in the
case of the flat envelope for various values of the CEP parameter
φ (N ¼ 5).

FIG. 5. The electric field strength Exðt; zÞ (in units of E0) calculated within SWA (left) and beyond SWA (right).
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IV. CONCLUSION

In the present study it was demonstrated that the dipole
and the standing-wave approximations predict a number of
well-pronounced effects that do not appear once more
precise calculations extended to the (1þ 1)-dimensional
laser field configuration are performed. In particular, it was
found that the oscillatory patterns in the momentum
spectrum of particles created vanish beyond SWA, the
PP probabilities become much smaller, and the spectra are
much less sensitive to the pulse shape parameters (in the
recent studies [30,31], it was also found that the imaginary
part of the effective action in a spatially inhomogeneous
background obeys universal scaling laws). This strongly
suggests that DA and SWA do not properly describe the
quantitative as well as qualitative characteristics of the
momentum distribution of particles produced. The results
obtained within these approximations should be treated and
interpreted very carefully, for they may not reflect the real
patterns. This point is extremely important for experimental
studies since they could involve a great number of
parameters which cannot be varied without any guidance.
More accurate theoretical predictions are needed if one
attempts to identify most promising experimental setups for
the practical observation of the Schwinger effect. We note
that several techniques for pulse shape optimization were
developed for the case of spatially homogeneous back-
grounds in Refs. [32–35]. Our findings indicate a great
importance of the spatial variations of the external fields in
the particular scenario of two counterpropagating short
pulses. However, we expect that going beyond the dipole
approximation is strongly required within a much broader
class of problems concerning quantum dynamics in exter-
nal fields (see also, e.g., Refs. [36,37]). For instance,
calculations similar to those performed in our study may
play a significant role in the context of the dynamically
assisted Schwinger effect [38] (see also Refs. [39–41] and

references therein). It is already known that the subcycle
structure of the external pulses and the shape of their
temporal profiles have a notable impact on the pair-creation
probabilities [32–34,42–44]. Nevertheless, of particular
interest is the role of the spatial inhomogeneities of the
electromagnetic pulses. This is an important issue for future
research.
Finally, we point out that the analysis of more realistic

field configurations should also be important within the
studies of the Schwinger mechanism in other fields of
physics. Similar processes can be identified in various
nanostructures (e.g., in graphene [45–47]) and with ultra-
cold atoms in optical lattices [48–50]. In quantum chromo-
dynamics, quark-antiquark pairs can be produced in
relativistic heavy ion collisions (see, e.g., Refs. [51–53]).
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APPENDIX A: NONPERTURBATIVE
TECHNIQUE

According to the general formalism described in detail in
Ref. [27], one can extract all the information about the PP
probabilities from two special sets of time-dependent
solutions of the Dirac equation. Assuming that the external
field vanishes for t ≤ tin and for t ≥ tout, we define these
solutions by the following conditions:

ζΨnðtin; xÞ ¼ ζΨð0Þ
n
ðxÞ; ζΨnðtout; xÞ ¼ ζΨð0Þ

n ðxÞ; ðA1Þ

where ζΨð0Þ
n
ðxÞ and ζΨð0Þ

n ðxÞ are the eigenfunctions of the
Dirac Hamiltonian considered at t ¼ tin and t ¼ tout,
respectively, and ζ is the sign of the corresponding energy
eigenvalues. The sets fζΨng and fζΨng are orthonormal
and complete. One can rigorously demonstrate [27] that the
mean number of electrons (positrons) produced with given
quantum numbers m can be evaluated as

n−m ¼
X
n

Gðþj−ÞmnGð−jþÞnm; ðA2Þ

nþm ¼
X
n

Gð−jþÞmnGðþj−Þnm; ðA3Þ

where the G matrices can be defined as the inner products

FIG. 6. The momentum spectrum evaluated beyond SWA in the
case of the cos2 envelope for various values of the CEP parameter
φ (N ¼ 5).
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GðζjκÞnm ¼ ðζΨn; κΨmÞ; ðA4Þ

GðζjκÞnm ¼ðζΨn; κΨmÞ: ðA5Þ

We first consider the problem beyond SWA, i.e., employ
Eqs. (1) and (6). Since the asymptotic solutions in (A1) are
essentially plane waves (in what follows,m ¼ fp; rg where
r determines a spin state), it is convenient to work in the
momentum representation. Besides, the transverse momen-
tum p⊥ ¼ ðpx; pyÞ is conserved. Then, for instance, the out
solution with ζ ¼ þ reads

þΨp;rðt; xÞ ¼
eip⊥x⊥

ð2πÞ3=2
Zþ∞

−∞
dkeiðpz−kÞzþgp;rðt; kÞ: ðA6Þ

The function þgp;r obeys

þgp;rðtout; kÞ ¼ up;rδðkÞ; ðA7Þ

where p0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
and up;r is a constant bispinor corre-

sponding to the positive-energy states (u†p;rup;r0 ¼ δrr0 ). The
Dirac equation in terms of the function þgp;r reads

i∂t
þgp;rðt; kÞ ¼ α⊥p⊥þgp;rðt; kÞ þ βmþgp;rðt; kÞ

þ ðpz − kÞαzþgp;rðt; kÞ

− eαx

Zþ∞

−∞

dqaxðt; k − qÞþgp;rðt; qÞ; ðA8Þ

where axðt; kÞ is the Fourier transform of the vector
potential. Using the “initial” condition (A7), we propagate
the function þgp;r backwards in time according to Eq. (A8).
The step of the k grid should be sufficiently small, so the
delta function in Eq. (A7) is represented properly. The
specific forms (4) and (5) of the envelope function are
particularly convenient for our computations since the
Fourier transform of the vector potential can be found
analytically.
The matrix Gð−jþÞnm can be evaluated as follows:

Gð−jþÞp;r;p0;r0 ¼ δðp⊥ þ p0⊥Þv†p;rþgp0;r0 ðt; pz þ p0
zÞ; ðA9Þ

where the bispinor vp;r relates to the negative-energy states.
By means of Eqs. (A2) and (A9), we find the mean number
of particles created per unit cross-section area,

ð2πÞ2
Vxy

dNp;r

d3p
¼

X
r0¼�1

Zþ∞

−∞

dkjv†−p⊥;k;r0þgp;rðt; pz þ kÞj2:

ðA10Þ

Here we employ a conventional regularization
ð2πÞ2δðp⊥ ¼ 0Þ ¼ Vxy. This approach allows one to
directly evaluate the PP probabilities by propagating the
PP amplitudes themselves rather than the individual one-
particle solutions in the coordinate space. We solve
Eq. (A8) for each momentum of the particle produced in
parallel.
Within SWA the calculations become much less com-

plicated since the spatial dependence of the vector potential
contains only cosðkzzÞ which is a sum of two plane waves.
Accordingly, the problem naturally becomes discrete and
the integral in Eq. (A8) is reduced to the sum of two terms
corresponding to kþ kz and k − kz (see also Refs. [24,26]).
The numerical procedure now yields a number of particles
per unit volume as 2πδðpz ¼ 0Þ ¼ Lz. To compare the
spectra evaluated beyond SWA with those found in SWA,
we multiply the former by 2π=τ ¼ ω=N since τ represents a
characteristic size of the system in the z direction. Within
DA the component pz is also conserved, so the problem
becomes one dimensional, and it is necessary to solve an
ordinary differential equation, which can be done even
more efficiently.

APPENDIX B: TEMPORAL WINDOW
FUNCTION RðtÞ

The function RðtÞ should be introduced in order to
properly define the in and out solutions and employ the
theoretical formalism described above. It is clear that the
main contribution to the pair-production probabilities arises
due to the overlap of the two laser pulses since an
individual plane wave (i.e., single laser pulse) does not
produce eþe− pairs. The function RðtÞ has a sufficiently
wide plateau which is K cycles broader than the overlap
interval (see Fig. 7). The switching parts of this function
contain M half-cycles each. It turns out that once the
function RðtÞ is introduced, our numerical procedure yields
nonzero results for the case of an individual pulse. This
nonphysical contribution should be subtracted when one
evaluates the number density nðpÞ of particles created by
the superposition of two colliding pulses,

nðpÞ ¼ nðIIÞðpÞ − nðþÞðpÞ − nð−ÞðpÞ; ðB1Þ

FIG. 7. The temporal window function RðtÞ. The yellow bar
denotes the overlap interval.

ALEKSANDROV, PLUNIEN, and SHABAEV PHYSICAL REVIEW D 96, 076006 (2017)

076006-6



where nðIIÞðpÞ is the number density obtained numerically
for the case of two pulses [i.e., employing Eq. (6)] and
nð�ÞðpÞ are the results calculated for the right- and left-
propagating pulses, respectively. This subtraction leads to
reliable results if the following conditions are satisfied:
(1) The values of the function nðpÞ converge as one

increases K and M. As K;M → ∞, the pulses are
being switched on and offwhen they are far fromeach
other and therefore generate pairs independently.

(2) The results do not depend on the shape of the
switching parts of the function RðtÞ.

In our calculations we confirmed both of these con-
ditions. For instance, in Fig. 8 the momentum distribution
of particles for the case of the flat envelope is presented for
various values of the pair K, M (N ¼ 5, φ ¼ 0). As these
parameters increase, the results converge. We performed
our calculations for various shapes of the switching parts
and obtained identical results, although the individual terms

in Eq. (B1) were rather sensitive to these changes. This
sensitivity resembles that regarding the pulse shape effects
within DA and SWA.
It turns out that as one increases the duration of the

switching parts of the profile RðtÞ (M → ∞), the contri-
butions nð�ÞðpÞ continually decrease, which means that, in
principle, one can perform the computations for very large
M without any subtraction procedure. However, this
drastically increases the computational time, while the
subtraction (B1) makes the convergence much faster. In
Fig. 9 the corresponding relative errors are depicted as a
function of M. Although the results converge to the same
limit, the accuracy is about 1–2 orders of magnitude higher
if one employs the subtraction procedure. Besides, it is
reasonable to choose the shape of the function RðtÞ so that
the nonphysical contributions are as small as possible. This
allows one to perform more accurate and efficient calcu-
lations. We found that smooth and slowly varying profiles
are more advantageous in this respect.
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