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Nambu–Jona-Lasinio-type models are frequently employed as low-energy models in various research
fields. With respect to the theory of the strong interaction, this class of models is indeed often used to
analyze the structure of the phase diagram at finite temperature and quark chemical potential. The
predictions from such models for the phase structure at finite quark chemical potential are of particular
interest as this regime is difficult to access with lattice Monte Carlo approaches. In this work, we consider a
Fierz-complete version of a Nambu–Jona-Lasinio model. By studying its renormalization group flow, we
analyze in detail how Fierz-incomplete approximations affect the predictive power of such model studies.
In particular, we investigate the curvature of the phase boundary at small chemical potential, the critical
value of the chemical potential above which no spontaneous symmetry breaking occurs, and the possible
interpretation of the underlying dynamics in terms of difermion-type degrees of freedom. We find that the
inclusion of four-fermion channels other than the conventional scalar-pseudoscalar channel is not only
important at large chemical potential but also leaves a significant imprint on the dynamics at small chemical
potential as measured by the curvature of the finite-temperature phase boundary.

DOI: 10.1103/PhysRevD.96.076003

I. INTRODUCTION

The Nambu–Jona-Lasinio (NJL) model and its relatives,
such as the quark-meson (QM)model, play a very prominent
role in theoretical physics. Originally, the NJL model has
been introduced as an effective theory to describe sponta-
neous symmetry breaking in particle physics based on an
analogywith superconductingmaterials [1]. Since then, it has
frequently been employed to study the phase structure of
quantum chromodynamics (QCD), i.e., the theory of the
strong interaction; see, e.g., Refs. [2–5] for reviews. In
particular at low temperature and large quark chemical
potential, NJL-type models have become an important tool
to analyze the low-energy dynamics of QCD as this regime is
at least difficult to accesswith latticeMonteCarlo techniques.
NJL/QM-type models indeed provide us with an effec-

tive description of the chiral low-energy dynamics of QCD,
giving us a valuable insight into the dynamics underlying
the QCD phase diagram. However, despite the great
success of the studies of these models, the phenomeno-
logical analysis of the results suffers from generic features
of these models as well as from approximations underlying
these studies. For example, NJL-type models in four space-
time dimensions are defined with an ultraviolet (UV) cutoff
Λ as they are perturbatively nonrenormalizable. In fact,
nonperturbative studies even indicate that they are also not
nonperturbatively renormalizable (see, e.g., Refs. [6,7]), in
contrast to three-dimensional versions of this class of
models [8]. In case of four space-time dimensions, the
UV cutoff Λ should therefore be considered as one of the

model parameters and also the regularization scheme
belongs to the definition of the model. Moreover, we
add that often so-called three-dimensional/spatial regulari-
zation schemes are employed which explicitly break
Poincaré invariance, potentially leading to spuriously
emerging symmetry breaking patterns in these studies.
The four-quark couplings appearing in a specific Ansatz

of anNJL-typemodel are usually considered as fundamental
parameters and are fixed such that the correct values of a
given set of low-energy observables is reproduced at, e.g.,
vanishing temperature and quark chemical potential.
Unfortunately, there may exist different parameter sets
which reproduce the correct values of a given set of low-
energy observables equally well. Moreover, these model
parameters may depend on the external control parameters,
such as the temperature and the quark chemical potential [9].
In any case, even in studies of the conventional NJL/QM
model defined with only a scalar-pseudoscalar four-quark
interaction channel, other four-quark interaction channels
(e.g., a vector channel) are in general induced due to
quantum fluctuations but have often been ignored in the
literature. In particular at finite chemical potential, effective
degrees of freedom associated with four-quark interaction
channels other than the scalar-pseudoscalar channel are
expected to become important or even dominant; see, e.g.,
Refs. [3,10–12] for reviews. In this work, we moreover
demonstrate that such channels may not only play a
prominent role at large chemical potential but also affect
the dynamics at small chemical potential. In fact, we observe
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that the inclusion of four-quark channels other than
the scalar-pseudoscalar channel results in a significantly
smaller curvature of the finite-temperature phase boundary
at small chemical potential. From a field-theoretical point of
view, the issue of including more than just the scalar-
pseudoscalar channel is already relevant in the vacuum
limit and is related to the ambiguities associated with Fierz
transformations, i.e., the fact that a given pointlike four-
quark interaction channel respecting the symmetries of the
underlying theory is reducible by means of these trans-
formations.AsQCD low-energymodel studies in general do
not take into account a Fierz-complete basis of four-quark
interactions, they are incomplete with respect to these
transformations. Even worse, mean-field studies of QCD
low-energy models show a basic ambiguity related to the
possibility to perform Fierz transformations. Therefore,
the results from these models potentially depend on an
unphysical parameter which reflects the choice of the mean
field and limits the predictive power of the mean-field
approximation [13].
In order to gain a better understanding of how Fierz-

incomplete approximations of QCD low-energy models
potentially affect the predictions for the phase structure at
finite temperature and density, we study a purely fermionic
formulation of the NJL model with a single fermion species
at leading order of the derivative expansion of the effective
action. In particular, we take into account the explicit
symmetry breaking arising from the presence of a heat bath
and the chemical potential.
In Sec. II, we discuss our model and aspects of sym-

metries relevant for our analysis. The renormalization group
(RG) fixed-point structure of the model at zero temperature
and density at leading order of the derivative expansion of
the effective action is then discussed in Sec. III, which also
includes a discussion of the relation between the fixed-point
structure and spontaneous symmetry breaking. In Sec. IV,we
finally discuss the phase structure of our model at finite
temperature and chemical potential and analyze how it is
altered when Fierz-incomplete approximations are consid-
ered. In particular, we analyze the curvature of the phase
boundary at small chemical potential, the critical value of the
chemical potential above which no spontaneous symmetry
breaking occurs, and the possible interpretation of the
underlying dynamics in terms of effective difermion-type
degrees of freedom. Our conclusions can be found in Sec. V.

II. MODEL

For studies of the QCD phase structure at finite temper-
ature and density, the most common approximation in
terms of NJL/QM-type models is to consider an action
which only consists of a kinetic term for the quarks and a
scalar-pseudoscalar four-quark interaction channel. The
latter is associated with σ-meson and pion interactions
and is usually considered most relevant for studies of chiral
symmetry breaking because of its direct relation to the

chiral order parameter. In our present work, we shall
consider a purely fermionic formulation of the NJL model
with a single fermion species. Clearly, this corresponds to a
simplification as the number of fermion species is drasti-
cally reduced compared to, e.g., QCD with two flavors and
three colors. Still, this simplified model already shares
many aspects with QCD in the low-energy limit and allows
us to analyze in a more accessible fashion how neglected
four-fermion interaction channels and the associated issue
of Fierz-incompleteness affect the predictions for the phase
structure at finite temperature and density.
In order to relate our present work to conventional QCD

low-energy model studies, we start our discussion by
considering a so-called classical action S which essentially
consists of a kinetic term for the fermions and a scalar-
pseudoscalar four-fermion interaction channel in four
Euclidean space-time dimensions:

S½ψ̄ ;ψ � ¼
Z

β

0

dτ
Z

d3x

�
ψ̄ði∂ − iμγ0Þψ

þ 1

2
λ̄σ½ðψ̄ψÞ2 − ðψ̄γ5ψÞ2�

�
: ð1Þ

Here, β ¼ 1=T denotes the inverse temperature T and μ is
the chemical potential. This action is invariant under simple
phase transformations,

UVð1Þ∶ ψ̄ ↦ ψ̄e−iα; ψ ↦ eiαψ : ð2Þ
As we do not allow for an explicit fermion mass term, the
action is also invariant under chiral UAð1Þ transformations,
i.e., axial phase transformations:

UAð1Þ∶ ψ̄ ↦ ψ̄eiγ5α; ψ ↦ eiγ5αψ ; ð3Þ

where α is the “rotation” angle in both cases. The chiral
symmetry is broken spontaneously if a finite vacuum
expectation value hψ̄ψi is generated by quantum fluctua-
tions. The UVð1Þ symmetry is broken spontaneously if,
e.g., a difermion condensate hψTCγ5ψi is formed, where
C ¼ iγ2γ0 is the charge conjugation operator.
Because of the presence of a heat bath and a chemical

potential, Poincaré invariance is explicitly broken and the
Euclidean time direction is distinguished. Note also that a
finite chemical potential explicitly breaks the charge con-
jugation symmetry C. However, the rotational invariance
among the spatial components as well as the invariance
with respect to parity transformations P and time reversal
transformations T remain intact.
Let us now consider the quantum effective action Γ

which is obtained from the path integral by means of a
Legendre transformation. The classical action S of the
theory entering the path integral can be viewed as the
zeroth-order approximation of the quantum effective action
Γ. If we now compute quantum corrections to Γ, we
immediately observe that four-fermion interaction channels
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other than the scalar-pseudoscalar interaction channel are
induced, even though they do not appear in the classical
action S in Eq. (1); see, e.g., Ref. [6] for a review. For
example, a vector-channel interaction ∼ðψ̄γμψÞ2 may be
generated. Once other four-fermion channels are generated,
it is reasonable to expect that these channels also alter
dynamically the strength of the original scalar-pseudoscalar
interaction. In particular at finite temperature and density,
the number of possibly induced interaction channels is even
increased because of the reduced symmetry of the theory.
For our present study of the quantum effective action at
leading order (LO) of the derivative expansion, we there-
fore consider the most general Ansatz for the effective
average action compatible with the symmetries of the
theory:

ΓLO½ψ̄ ;ψ �¼
Z

β

0

dτ
Z

d3x

�
ψ̄ðZ∥iγ0∂0þZ⊥iγi∂i−Zμiμγ0Þψ

þ1

2
Zσλ̄σðS−PÞ−1

2
Z∥
Vλ̄

∥
VðV∥Þ−

1

2
Z⊥
V λ̄

⊥
VðV⊥Þ

−
1

2
Z∥
Aλ̄

∥
AðA∥Þ−

1

2
Z⊥
A λ̄

⊥
AðA⊥Þ−

1

2
Z∥
Tλ̄

∥
TðT∥Þ

�
;

ð4Þ

where λ̄σ, λ̄
∥
V, λ̄

⊥
V, λ̄

∥
A, λ̄

⊥
A, and λ̄∥T denote the bare four-

fermion couplings which are accompanied by their vertex
renormalizations Zσ, Z

∥
V, Z

⊥
V, Z

∥
A, Z

⊥
A, and Z

∥
T, respectively.

The various four-fermion interaction channels are defined
as follows:

ðS − PÞ≡ ðψ̄ψÞ2 − ðψ̄γ5ψÞ2;
ðV∥Þ≡ ðψ̄γ0ψÞ2; ðV⊥Þ≡ ðψ̄γiψÞ2;
ðA∥Þ≡ ðψ̄γ0γ5ψÞ2; ðA⊥Þ≡ ðψ̄γiγ5ψÞ2;
ðT∥Þ≡ ðψ̄σ0iψÞ2 − ðψ̄σ0iγ5ψÞ2; ð5Þ

where σμν ¼ i
2
½γμ; γν� and summations over i ¼ 1, 2, 3 are

tacitly assumed. The renormalization factors associated
with the kinetic term are given by Z∥ and Z⊥, respectively.
Finally, the chemical potential is accompanied by the
renormalization factor Zμ. At T ¼ 0, we have Z−1

μ ¼ Z∥ ¼
Z⊥ for μr ≡ Zμμ < mf. Here, mf is the potentially gen-
erated renormalized (pole) mass of the fermions: mf ¼
m̄f=Z⊥ with m̄f being the bare fermion mass. The relation
between Zμ and Z⊥ is a direct consequence of the so-called
Silver-Blaze property of quantum field theories [14].
The Ansatz (4) is overcomplete. By exploiting the Fierz

identities detailed in Appendix A, we can reduce the
overcomplete set of four-fermion interactions in Eq. (4)
to a minimal Fierz-complete set:

ΓLO½ψ̄ ;ψ �¼
Z

β

0

dτ
Z

d3x

�
ψ̄ðZ∥iγ0∂0þZ⊥iγi∂i−Zμiμγ0Þψ

þ1

2
Zσλ̄σðS−PÞ−1

2
Z∥
Vλ̄

∥
VðV∥Þ−

1

2
Z⊥
V λ̄

⊥
VðV⊥Þ

�
:

ð6Þ
Any other pointlike four-fermion interaction invariant
under the symmetries of our model is indeed reducible
by means of Fierz transformations. Fermion self-
interactions of higher order (e.g., eight fermion inter-
actions) may also be induced due to quantum fluctuations
at leading order of the derivative expansion1 but do not
contribute to the RG flow of the four-fermion couplings at
this order and are therefore not included in our Ansatz (6);
see Ref. [6] for a detailed discussion.
In the following we shall study the RG flow of the four-

fermion couplings appearing in the effective action (6).
This already allows us to gain a valuable insight into the
phase structure of our model.

III. VACUUM FIXED-POINT STRUCTURE AND
SPONTANEOUS SYMMETRY BREAKING

Before we actually analyze the fixed-point structure of
our model and its phase structure at finite temperature and
chemical potential, we briefly discuss how a study of the
quantum effective action (6) at leading order of the
derivative expansion can give us access to the phase
structure of our model at all. A detailed discussion can
be found in, e.g., Ref. [6].
The leading order of the derivative expansion implies

that we treat the four-fermion interactions in the pointlike
limit,2 i.e.,

λ̄jðψ̄OjψÞ2

¼ lim
fpk→0g

ψ̄aðp1Þψ̄bðp2ÞΓð4Þ
j;abcdðp1;p2;p3;p4Þψcðp3Þψdðp4Þ;

where a, b, c, d are spinor indices, λ̄ ¼ fλ̄σ; λ̄∥V; λ̄⊥Vg,
and O ¼ fðS − PÞ; ðV∥Þ; ðV⊥Þg.
Apparently, the leading order of the derivative expansion

does not give us access to the mass spectrum of our model
which is encoded in the momentum structure of the
correlation functions. In particular, the formation of fer-
mion condensates associated with spontaneous symmetry
breaking is indicated by singularities in the four-fermion
correlation functions. Thus, this order of the derivative

1The leading order of the derivative expansion corresponds to
treating the fermion self-interactions in the pointlike limit; see
also our discussion below.

2Note that the anomalous dimensions associated with the
wave-function renormalizations Z∥ and Z⊥ vanish at leading
order of the derivative expansion; see our discussion below and
also Appendix B for a discussion of possible issues with the
derivative expansion in the presence of a finite chemical potential.
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expansion does not allow us to study regimes of the theory
in which one of its symmetries is broken spontaneously.
However, it can be used to study the symmetric phase of
our model, e.g., the dynamics at high temperature and/or
high density where the symmetries are expected to remain
intact. By lowering the temperature at a given value of the
chemical potential, we can then determine a critical temper-
ature Tcr below which the pointlike approximation breaks
down and a condensate related to a spontaneous breaking of
one of the symmetries may be generated. This line of
argument has indeed already been successfully applied to
compute the many-flavor phase diagram of gauge theories
[15–18]. We add that the phenomenological meaning of
TcrðμÞ obtained from such an analysis is difficult to assess.
To be more specific, various possible symmetry breaking
patterns exist and the breakdown of the pointlike approxi-
mation cannot unambiguously be related to the sponta-
neous breakdown of a specific symmetry, even in our
simple model; see Eq. (6). For example, the critical
temperature may be associated with, e.g., chiral symmetry
breaking or with spontaneous symmetry breaking in the
vector channel. We shall discuss this issue again below in
more detail.
The breakdown of the pointlike approximation can be

indeed used to detect the onset of spontaneous symmetry
breaking. This can be most easily seen by considering a
Hubbard-Stratonovich transformation [19]. With the aid of
this transformation, composites of two fermions can be
treated as auxiliary bosonic degrees of freedom, e.g.,
ψ̄ψ ↦ σ. On the level of the path integral, the four-fermion
interactions of a given theory are then replaced by terms
bilinear in the so introduced auxiliary fields and corre-
sponding Yukawa-type interaction terms between the
auxiliary fields and the fermions. Formally, we have

λ̄jðψ̄OjψÞ2 ↦
X
a

1

λ̄j
ϕðjÞ
a ϕðjÞ

a þ
X
a;b;c

ψ̄bh̄j ~O
abc
j ϕðjÞ

a ψc: ð7Þ

Here, the couplings h̄j denote the various Yukawa cou-

plings. The structure of the quantity ~Oabc
j with respect to

internal indices may be nontrivial and depends on the
corresponding four-fermion interaction channel Oj. The
same holds for the exact transformation properties of

the possibly multicomponent auxiliary field ϕðjÞ
a .

Once a Hubbard-Stratonovich transformation has been
performed, the Ginzburg-Landau-type effective potential
for the bosonic fields ϕðjÞ

a can be computed conveniently,
allowing for a straightforward analysis of the ground-state
properties of the theory under consideration. For example, a
nontrivial minimum of this potential indicates the sponta-
neous breakdown of the symmetries associated with those
fields which acquire a finite vacuum expectation value.
From Eq. (7), we also deduce that the four-fermion

couplings are inverse proportional to the masslike

parameters m2
j ∼ 1=λ̄j associated with terms bilinear in

the bosonic fields. Recall now that the transition from the
symmetric regime to a regime with spontaneous symmetry
breaking is indicated by a qualitative change of the shape of
the Ginzburg-Landau-type effective potential as some
fields acquire a finite vacuum expectation value. In fact,
in case of a second-order transition, at least one of the
curvatures m2

j of the effective potential at the origin
changes its sign at the transition point. This is not the
case for a first-order transition. Still, taking into account all
quantum fluctuations, the Ginzburg-Landau-type effective
potential becomes convex in any case, implying that the
curvature tends to zero at both a first-order as well as a
second-order phase transition point. Thus, a singularity of a
pointlike four-fermion coupling indicates the onset of
spontaneous symmetry breaking. However, it does not
allow to resolve the nature of the transition.
For our RG analysis, it follows that the observation of a

divergence of a four-fermion coupling at an RG scale kcr
only serves as an indicator for the onset of spontaneous
symmetry breaking. Below, we shall use this criterion to
estimate the phase structure of our model. For a given
chemical potential, the above-mentioned critical temper-
ature Tcr is then given by the temperature at which the
divergence occurs at kcr → 0. Note that this is not a
sufficient criterion for spontaneous symmetry breaking
as quantum fluctuations may restore the symmetries of
the theory in the deep infrared (IR) limit; see, e.g., Ref. [6]
for a detailed discussion. If the true phase transition is of
first order, this criterion at leading order of the derivative
expansion may even only point to the onset of a region of
metastability and not to the actual phase transition line.
From a QCD standpoint, this implies that the liquid-gas
phase transition, which is expected to be of first order,
cannot be reliably assessed in the setup underlying our
present work but requires to extend the truncation of the
effective action. (Color-)Superconducting ground states
can in principle be detected within our present setup, if
the transition is of second order (following our line of
arguments above). Indeed, we show that the scaling
behavior of physical observables associated with a super-
conducting ground state can be recovered correctly from
our analysis of the RG flow of four-fermion couplings; see
also Sec. IV. Thus, despite the discussed restrictions of our
present analysis, it already provides a valuable insight into
the dynamics underlying spontaneous symmetry breaking
of a given fermionic theory.
Instead of using the purely fermionic formulation of our

model, one may be tempted to consider the partially
bosonized formulation of our model right away in order
to compute conveniently the Ginzburg-Landau-type effec-
tive potential for the various auxiliary fields, as indicated
above. However, in contrast to the purely fermionic
formulation, in which Fierz completeness at, e.g., leading
order of the derivative expansion can be fully preserved by
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using a suitable basis of four-fermion interaction channels,
conventional approximations entering studies of the par-
tially bosonized formulation may easily induce a so-called
Fierz ambiguity. Most prominently, mean-field approxi-
mations are known to show a basic ambiguity related to
the possibility to perform Fierz transformations [13].
Therefore, results from this approximation potentially
depend on an unphysical parameter which is associated
with the choice of the mean field and limits the predictive
power of this approximation. However, it has been shown
[13] that the use of so-called dynamical bosonization
techniques [20–27] allow to resolve this issue; see also
Ref. [28] for an introduction to dynamical bosonization in
RG flows. As this is beyond the scope of the present work,
we focus exclusively on the purely fermionic formulation
of our model.
With these prerequisites, let us now begin with a

discussion of the RG flow of our model in the limit
T → 0 and μ → 0. For the computation of the RG flows
of the various four-fermion couplings and wave-function
renormalizations at leading order in the derivative expan-
sion, we employ an RG equation for the quantum effective
action, the Wetterich equation [29]. The effective action Γ
then depends on the RG scale k (IR cutoff scale) which
determines the RG “time” t ¼ lnðk=ΛÞ with Λ being a UV
cutoff scale; see Appendix B and also Ref. [6] for an
introduction to the computation of RG flows of fermion
self-interactions.
To regularize the loop integrals, we employ a four-

dimensional regularization scheme which is parametrized
in our RG approach in form of an exponential regulator
function; see Appendix B for details. In the limit T → 0 and
μ → 0, our regularization scheme becomes covariant which
is of great importance. To be more specific, so-called
spatial regularization schemes, which leave the temporal
direction unaffected and are often used in, e.g., model
studies, introduce an explicit breaking of Poincaré invari-
ance which is present even in the limit T → 0 and μ → 0.
This leads to a contamination of the results in this limit.
This is particularly severe since this limit is in general also
used to fix the model parameters. In principle, one may
solve this problem by taking care of the symmetry violating
terms with the aid of corresponding “Ward identities” or,
equivalently, one can add appropriate counter-terms such
that the theory remains Poincaré-invariant in the limit
T → 0 and μ → 0; see Ref. [30]. However, we have
observed that the predictions for the phase structure are
significantly spoilt when a spatial regularization scheme is
used without properly taking care of the associated
symmetry-violating terms in the limit T → 0 and μ → 0
(see Appendix B for details). Therefore we have chosen a
scheme which respects Poincaré invariance in the limit
T → 0 and μ → 0.
With respect to RG studies, we add that, apart from the

fact that spatial regularization schemes explicitly break

Poincaré invariance, they lack locality in the temporal
direction; i.e., all timelike momenta are taken into account
at any RG scale kwhereas spatial momenta are restricted to
small momentum shells around the scale k≃ jp⃗j. Loosely
speaking, fluctuation effects are therefore washed out by
the use of this class of regularization schemes and the
construction of meaningful expansion schemes of the
effective action is complicated due to this lack of locality.
Let us now analyze the fixed-point structure of our model

in leading order of the derivative expansion at zero temper-
ature and chemical potential. In this Poincaré-invariant
limit, the couplings λ∥V and λ⊥V can be identified,
λ∥V ¼ λ⊥V ¼ λV, provided the two couplings assume the
same value at the initial RG scale k ¼ Λ. The β functions
then simplify to3

∂tλσ ¼ βλσ ¼ 2λσ − 8v4ðλ2σ þ 4λσλV þ 3λ2VÞ; ð8Þ

∂tλV ¼ βλV ¼ 2λV − 4v4ðλσ þ λVÞ2; ð9Þ

where v4 ¼ 1=ð32π2Þ and the dimensionless renormalized
four-fermion couplings are defined as λi ¼ Zik2λ̄i=ðZ⊥Þ2
with λ̄ ¼ fλ̄σ; λ̄∥V; λ̄⊥Vg and Z ¼ fZσ; Z

∥
V; Z

⊥
Vg. Up to regu-

larization-scheme dependent factors, this set of equations
agrees with the one found in previous vacuum studies of
this model [6,13]. The wave-function renormalizations,
which we have set to Z∥ ¼ Z⊥ ¼ 1 at the initial RG scale,
remain unchanged in the RG flow at this order of the
derivative expansion, i.e., ∂tZ∥ ¼ ∂tZ⊥ ¼ 0.
Before we now discuss the dynamics of the Fierz-

complete system, it is instructive to consider a one-channel
approximation. To this end, we set λV ¼ 0 in Eq. (8) and
drop the flow equation for the vector-channel coupling λV.
Thus, we are left with the following flow equation for the
scalar-pseudoscalar coupling:

∂tλσ ¼ βλσ ¼ 2λσ − 8v4λ2σ; ð10Þ

which has a non-Gaussian fixed point at λ�σ ¼ 8π2. The
solution for λσ reads

λσðkÞ ¼
λðUVÞσ

ðΛkÞΘð1 − λðUVÞσ
λ�σ

Þ þ λðUVÞσ
λ�σ

: ð11Þ

Here, λðUVÞσ is the initial condition for the coupling λσ at the
UV scale Λ and Θ denotes the critical exponent which
governs the scaling behavior of physical observables close
to the “quantum critical point” λ�σ:

3Note that, for a spatial regularization scheme, we find
λ∥V ≠ λ⊥V even for T ¼ μ ¼ 0 since such a scheme explicitly
breaks Poincaré invariance.
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Θ ≔ −
∂βσ
∂λσ
����
λ�σ

¼ 2: ð12Þ

As Θ > 0, the fixed point λ�σ is IR repulsive. Indeed, we
readily observe from the solution (11) that λσ is repelled by
the fixed point. Moreover, λσ diverges at a finite RG scale

kcr, if λðUVÞσ is chosen to be greater than the fixed-point

value λ�σ, λ
ðUVÞ
σ > λ�σ . Thus, by varying the initial condition

λðUVÞσ , we can induce a “quantum phase transition,” i.e., a
phase transition in the vacuum limit, from a symmetric
phase to a phase governed by spontaneous symmetry
breaking.
Following our discussion above, the appearance of a

divergence for λðUVÞσ > λ�σ signals the onset of spontaneous
symmetry breaking. The associated critical scale kcr is
given by

kcr ¼ Λ
�
λðUVÞσ − λ�σ
λðUVÞσ

�1
Θ

θðλðUVÞσ − λ�σÞ: ð13Þ

We emphasize that this quantity sets the scale for all low-
energy quantitiesQ with mass dimension dQ in our model,

Q ∼ kdQcr .
Let us now turn to the discussion of the Fierz-complete

system by studying the flow equations (8) and (9). This
set of equations has three different fixed points ðλ�σ; λ�VÞ.4

The Gaussian fixed point at (0,0) is IR attractive whereas
the two non-Gaussian fixed points at ð3π2; π2Þ and at
ð−32π2; 16π2Þ have both one IR attractive and one IR
repulsive direction; see also Fig. 1.
In the following we shall use λV ¼ λ∥V ¼ λ⊥V ¼ 0 as

initial conditions for the couplings associated with the
vector channel interaction, independent of our choice for
the temperature and the chemical potential. Thus, these
couplings are solely induced by quantum fluctuations and
do not represent free parameters in our study. In other
words, the initial value of the scalar-pseudoscalar inter-
action channel is the only free parameter in our analysis
below. Note that this general setup for the initial conditions
of the four-fermion couplings mimics the situation in many
QCD low-energy model studies. However, since we do not
have access to low-energy observables at this order of
the derivative expansion, we shall fix the initial condition of
the scalar-pseudoscalar coupling such that a given value
of the critical temperature at vanishing chemical potential is
reproduced. This determines the scale in our studies of the
phase structure below.5

For an analysis of the fixed-point structure of our model,
the exact value of the initial condition of the scalar-
pseudoscalar coupling is not required. Similarly to our
discussion of the one-channel approximation, the qualita-
tive features of the ground state of our model are already

FIG. 1. Left panel: RG flow at zero temperature and chemical potential in the plane spanned by the scalar-pseudoscalar coupling λσ
and the vector-channel coupling λV. The black dot depicts the Gaussian fixed-point whereas the blue dot depicts one of the two non-
Gaussian fixed points. The pink line represents an example of an RG trajectory. This particular trajectory describing four-fermion
couplings diverging at a finite scale kcr approaches a separatrix (red line) for k → kcr. The dominance of the scalar-pseudoscalar
interaction channel is illustrated by the position of this separatrix relative to the bisectrix (dashed back line). Right panel: RG scale
dependence of the four-fermion couplings λσ and λV corresponding to the RG trajectory depicted by the pink line in the left panel. The
inverse of these two four-fermion couplings associated with the masslike parametersm2

i ∼ 1=λi of terms bilinear in the auxiliary fields in
a Ginzburg-Landau-type effective potential is shown by the dashed lines.

4This can be seen by shifting λσ → λσ − λV in Eq. (9), see
Ref. [6].

5Fixing the critical temperature Tcr to some value at μ ¼ 0 is
equivalent to fixing the zero-temperature fermion mass in the IR
limit since Tcrðμ ¼ 0Þ is directly related to the zero-temperature
fermion mass at μ ¼ 0, at least in a one-channel approximation.
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determined by the choice for the initial values of the various
couplings relative to the fixed points. Provided that the
initial value of the scalar-pseudoscalar coupling is chosen
suitably; i.e., it is chosen greater than a critical value λðcrÞσ

depending on the initial values of the vector-channel
couplings,6 we observe that the four-fermion couplings
start to increase rapidly and even diverge at a finite scale
kcr, indicating the onset of spontaneous symmetry
breaking.
In the left panel of Fig. 1, an example for an RG

trajectory (pink line) at zero temperature and chemical
potential is shown in the space spanned by the remaining
two couplings λσ and λV. In this case the initial condition
has been chosen such that the four-fermion couplings
diverge at a finite scale kcr. For k → kcr, the trajectory
approaches a separatrix (red line in Fig. 1) defining an
invariant subspace [31] and indicates a dominance of the
scalar-pseudoscalar channel, i.e., λσ=λV ≈ 3; see also right
panel of Fig. 1 where the RG scale dependence of the two
couplings corresponding to this RG trajectory is shown.
This observation appears to be in accordance with the naive
expectation that the ground state of our model is governed
by spontaneous chiral symmetry breaking as associated
with a dominance of the scalar-pseudoscalar interaction
channel.
The dominance of the scalar-pseudoscalar channel is

also observed when finite initial values of the vector-
channel coupling λV are chosen, provided that we use a
sufficiently large initial value of the scalar-pseudoscalar
coupling; see left panel of Fig. 1. However, we would like
to emphasize again that this dominance should only be
considered as an indicator that the ground state in the
vacuum limit is governed by chiral symmetry breaking. In
particular, our analysis cannot rule out, e.g., a possible
formation of a vector condensate. For the moment, we shall
also leave aside the issue that the Fierz-complete set of
four-fermion interaction channels underlying this analysis
can be transformed into an equivalent Fierz-complete
set of channels with different transformation properties
regarding the fundamental symmetries of our model. This
further complicates the phenomenological interpretation;
see our discussion of the finite-temperature phase diagram
in Sec. IV.
Let us close our discussion of the dynamics of our model

in the vacuum limit by commenting on the scaling behavior
of the critical scale kcr. In the one-channel approximation,
we have found that the scaling of kcr is of the power-law

type with respect to the distance of the initial value λðUVÞσ

from the fixed-point value λ�σ; see Eq. (13). In our

Fierz-complete setup, this is not necessarily the case. In

fact, even if we set the initial value λðUVÞσ of the scalar-
pseudoscalar coupling to zero, the system can still be driven
to criticality. This can be achieved by a sufficiently large
value of the initial condition of the vector-channel cou-
pling; see left panel of Fig. 1. To be more specific, a
variation of the vector-channel coupling λV in the flow
equation (8) of the scalar-pseudoscalar coupling allows to
shift the fixed points of the latter. In particular, a finite value
of λV turns the Gaussian fixed point into an interacting
fixed point; see Fig. 2. We also deduce from Eq. (8) and

Fig. 2 that a critical value λðcrÞV for the vector-channel
coupling exists at which the two fixed points of the λσ
coupling merge. For λV > λðcrÞV > 0, the fixed points of the
λσ coupling then annihilate each other and the RG flow is
no longer governed by any (finite) real-valued fixed point,
resulting in a diverging λσ coupling. Assuming that the
running of the vector-channel coupling is sufficiently slow,
it has been shown [6] that the dependence of kcr on the
initial value of the vector coupling obeys a Berezinskii-
Kosterlitz-Thouless (BKT) scaling law [32],

kcr ∼ ΛθðλðUVÞV − λðcrÞV Þ exp

0
B@−

cBKTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðUVÞV − λðcrÞV

q
1
CA; ð14Þ

rather than a power law. Here, cBKT is a positive constant.
This so-called essential scaling plays a crucial role in gauge
theories with many flavors where it is known as Miransky
scaling and the role of our vector coupling is played by the
gauge coupling [33]. Corrections to this type of scaling
behavior arising because of the finite running of the gauge
coupling have found to be of the power-law type [34] which
would translate into corresponding corrections associated
with the running of the vector coupling in our present study.
We emphasize that the dynamics of our present model close
to the critical scale is still dominated by the scalar-
pseudoscalar interaction channel in this case, even though
the latter has been set to zero initially, as can be seen in the
flow diagram in the left panel of Fig. 1.

FIG. 2. Sketch of the βλσ -function of the scalar-pseudoscalar
four-fermion coupling for λV ¼ 0 (black line) and λV > 0 (red/
dashed line). The arrows indicate the direction of the RG flow
towards the infrared.

6Note that the function λðcrÞσ ¼ λðcrÞσ ðλ∥V; λ⊥VÞ defines a two-
dimensional manifold, a separatrix in the space spanned by the
couplings of our model. In our one-channel approximation,
loosely speaking, this separatrix is a point which can be identified
with the non-Gaussian fixed point of the associated coupling.
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A detailed study of the scaling behavior and the
associated universality class associated with the quantum
phase transitions potentially occurring in our model in the
vacuum limit is beyond the scope of the present work. From
now on, we shall rather set the vector coupling to zero at the
initial scale and let it only be generated dynamically; i.e.,
we only tune the scalar-pseudoscalar coupling to fix the
scale in our calculations. Still, it is worth mentioning that
the mechanism, namely the annihilation of fixed points,
resulting in the exponential scaling behavior of kcr is quite
generic. In fact, it also underlies the exponential behavior
associated with the scaling of, e.g., a gap as a function of
the chemical potential in case of the formation of a
Bardeen-Cooper-Schrieffer (BCS) superfluid in relativistic
fermion models. We shall discuss the potential occurrence
of this type of scaling in more detail in the subsequent
section.

IV. PHASE STRUCTURE

To illustrate the scale-fixing procedure and the compu-
tation of the phase structure at finite temperature and
chemical potential, we consider first the approximation
with only a scalar-pseudoscalar interaction channel again.
This approximation has also been discussed in Refs. [6,35].
The results from the Fierz-complete set of flow equations
will be discussed subsequently.
We derive the RG flow equation for the scalar-

pseudoscalar coupling λσ from the full set of flow equations
by setting λ∥V ¼ λ⊥V ¼ 0 and also dropping the flow equa-
tions associated with these two couplings; see Appendix D
for details. Moreover, we do not take into account the
renormalization of the chemical potential and set Zμ ¼ 1.
The RG flow equation for λσ then reads

βλσ ¼ 2λσ − 16v4λ2σLðτ; ~μτÞ; ð15Þ

where τ ¼ T=k is the dimensionless temperature, ~μτ ¼
μ=ð2πTÞ and

Lðτ; ~μτÞ ¼ 3ðlðFÞ;ð4Þ⊥þ ðτ; 0;−i ~μτÞ þ lðFÞ;ð4Þ∥þ ðτ; 0;−i ~μτÞÞ
− lðFÞ;ð4Þ⊥� ðτ; 0;−i ~μτÞ − lðFÞ;ð4Þ∥� ðτ; 0;−i ~μτÞ: ð16Þ

The auxiliary function L is simply a sum of so-called
threshold functions which essentially represent 1PI dia-
grams describing the decoupling of massive modes and
modes in a thermal and/or dense medium. The definition of
these functions can be found in Appendix C. Here, we only
note that Lð0; 0Þ ¼ 1

2
. Thus, we recover the flow equa-

tion (10) in the limit T → 0 and μ → 0.
The flow equation (15) for the scalar-pseudoscalar

coupling can be solved analytically again. We find

λσðT; μ; kÞ ¼
λðUVÞσ

ðΛkÞΘð1þ 4 λðUVÞσ
λ�σ

IðT; μ; kÞÞ
; ð17Þ

where

IðT; μ; kÞ ¼ 1

Λ2

Z
k

Λ
dk0k0Lðτ0; ~μτ0 Þ ð18Þ

with τ0 ¼ T=k0 and λ�σ ¼ 8π2 is the non-Gaussian fixed-
point value of the scalar-pseudoscalar coupling at zero
temperature and chemical potential; see our discussion in
Sec. III. Using Lð0; 0Þ ¼ 1

2
to evaluate the solution (17) at

T ¼ μ ¼ 0, we recover Eq. (11), as it should be.
The critical temperature Tcr ¼ TcrðμÞ for a given chemi-

cal potential μ is defined as the temperature at which the
four-fermion coupling diverges at k → 0:

lim
k→0

1

λσðTcr; μ; kÞ
¼ 0: ð19Þ

With this definition, we obtain the following implicit
equation for the critical temperature Tcr:

0 ¼
�

λ�σ
λðUVÞσ

�
þ 4IðTcr; μ; 0Þ: ð20Þ

Using Eq. (13), we can rewrite this equation in terms of the
critical scale k0 at T ¼ μ ¼ 0, k0 ¼ kcrðT ¼ 0; μ ¼ 0Þ:

k0 ¼ Λð1þ 4IðTcr; μ; 0ÞÞ1
Θ: ð21Þ

From our discussion of the one-channel approximation in
the vacuum limit, it follows immediately that a finite critical

temperature is only found if λðUVÞσ > λ�σ. Apparently, the
critical temperature depends on our choice for k0, i.e., on

the initial condition λðUVÞσ of the scalar-pseudoscalar cou-
pling relative to its fixed-point value. For illustration
purposes and to make a phenomenological connection to
QCD, we shall choose a value for the critical temperature at
μ ¼ 0 in units of the UV cutoff Λ which is close to the
chiral critical temperature at μ ¼ 0 found in conventional
QCD low-energy model studies [2–5]. To be more specific,
we shall fix the scale at zero chemical potential by tuning the
initial conditionof the scalar-pseudoscalar coupling such that
T0=Λ≡ Tcrðμ ¼ 0Þ=Λ ¼ 0.15 and set Λ ¼ 1 GeV in the
numerical evaluation:

0 ¼
�

λ�σ
λðUVÞσ

�
þ 4IðT0 ¼ 0.15Λ; 0; 0Þ: ð22Þ

From here on, we shall keep the initial condition for the four-
fermion coupling fixed to the same value for all temperatures
and chemical potentials andmeasure all physical observables
in units of T0.
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To ensure comparability of our studies with different
numbers of interaction channels, we employ the same
scale-fixing procedure in all cases. As illustrated for the
one-channel approximation, we only choose a finite value
for the initial condition of the scalar-pseudoscalar coupling
and fix it at zero chemical potential such that the critical
temperature is given by T0=Λ≡ Tcrðμ ¼ 0Þ=Λ ¼ 0.15 in
this limit. The other channels are only generated dynami-
cally. The critical temperature for a given chemical poten-
tial is still defined to be the temperature at which the
four-fermion couplings diverge at k → 0. Note that the
structure of the underlying set of flow equations is such that
a divergence in one channel implies a divergence in all
interaction channels. However, the various couplings may
have a different strength relative to each other; see also
Fig. 1 and our discussion in Sec. III.
In the following we consider the one-channel approxi-

mation discussed above, a two-channel approximation, and
the Fierz-complete system. The RG flow equations for
the Fierz-complete set of couplings can be found in
Appendix D. Our two-channel approximation is obtained
from this Fierz-complete set by setting λ∥V ¼ λ⊥V and
dropping the flow equation of the λ∥V-coupling. Note that
this two-channel approximation is still Fierz-complete at
zero temperature and chemical potential.
In Fig. 3, we show our results for the ðT; μÞ phase

boundary associated with the spontaneous breakdown of at
least one of the fundamental symmetries of our model. We
observe right away that the curvature κ of the finite-
temperature phase boundary,

κ ¼ −T0

d2TcrðμÞ
dμ2

����
μ¼0

; ð23Þ

is significantly smaller in the Fierz-complete study than in
the one-channel approximation.7 To be specific, the curva-
ture κ in the one-channel approximation is found to be
about 44% greater than in the Fierz-complete study.
Interestingly, the curvature from our two-channel approxi-
mation, which is still Fierz-complete at T ¼ μ ¼ 0, agrees
almost identically with the curvature from the Fierz-
complete study; see also Table I.
From a comparison of the results from the one- and two-

channel approximation as well as the Fierz-complete study,
we also deduce that the phase boundary is pushed to larger
values of the chemical potential when the number of
interaction channels is increased. In particular, we observe
that the critical value μcr above which the four-fermion
couplings remain finite is pushed to larger values. In fact,
μcr as obtained from the Fierz-complete calculation is found
to be 16% greater than in the two-channel approximation

and 20% greater than in the one-channel approximation.
Note that μcr is an estimate for the value of the chemical
potential above which no spontaneous symmetry breaking
of any kind occurs.
In addition to these quantitative changes of the phase

structure, we observe that the dynamics along the phase
boundary changes on a qualitative level. In the one-channel
approximation, the dynamics is completely dominated by
the scalar-pseudoscalar channel by construction. In the
two-channel approximation, we then observe a competition
between the scalar-pseudoscalar channel and the vector
channel. Indeed, we find that the vector channel dominates
close to the phase boundary for temperatures
0.1≲ T=T0 ≲ 0.5, as indicated by the red dashed line in
Fig. 3. In case of the Fierz-complete study, we even observe
that the scalar-pseudoscalar channel is only dominant close
to the phase boundary for T=T0 ≳ 0.8. For T=T0 ≲ 0.8, we
find a dominance of the ðV∥Þ channel, apart from a small
regime 0.02≲ T=T0 ≲ 0.09 in which the ðV⊥Þ channel
dominates; see also Fig. 4 for an illustration of how the
dominance pattern of the channels along the phase boun-
dary changes. The dominance of the ðV∥Þ channel may not
come unexpected as it is related to the density, n ∼ hψ̄ iγ0ψi,
which is controlled by the chemical potential.
We emphasize again that the dominance of a particular

interaction channel only states that the modulus of the
associated coupling is greater than the ones of the other

FIG. 3. Phase boundary associated with the spontaneous break-
down of at least one of the fundamental symmetries of our model
as obtained from a one-channel, two-channel, and Fierz-complete
study of the Ansatz (6); see main text for details.

TABLE I. Curvature κ of the finite-temperature phase boundary
at μ ¼ 0 as obtained from a study of a one-channel approxima-
tion, a two-channel approximation, and the Fierz-complete set of
four-fermion channels. Note that the quoted two-channel
approximation is Fierz-complete at T ¼ μ ¼ 0.

Channels Curvature κ

ðS − PÞ 0.157
ðS − PÞ, ðV⊥Þ ¼ ðV∥Þ 0.108
Fierz-complete 0.109

7In order to estimate the curvature, we have fitted our
numerical results for TcrðμÞ for 0 ≤ μ=T0 ≤ 2=3 to the Ansatz
TcrðμÞ ¼ T0 − 1

2
κμ2 þ 1

24
κ0μ4 þOðμ6Þ.
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four-fermion couplings. It does not necessarily imply that a
condensate associated with the most dominant interaction
channel is formed. It may therefore only be viewed as an
indication for the formation of such a condensate.
Moreover, it may very well be that condensates of different
types coexist.
For example, note that the dominance of the scalar-

pseudoscalar channel close to the phase boundary may be
associated with the formation of a finite chiral condensate,
φ ∼ hψ̄ψi, which signals the spontaneous breakdown of the
chiral UAð1Þ symmetry of our model. On the other hand,
loosely speaking, a dominance of the ðV∥Þ channel may be
viewed as an indicator for a “spontaneous breakdown” of
Lorentz invariance in addition to the inevitable explicit
breaking of this invariance introduced by the chemical
potential and the temperature. A vector-type condensate
hψ̄γiψi associated with a dominance of the ðV⊥Þ channel
would furthermore indicate a breakdown of the invariance
among the spatial coordinates. Note that the condensates
hψ̄ iγ0ψi and hψ̄γiψi break neither the UVð1Þ symmetry nor
the chiral UAð1Þ symmetry of our model.
The explicit symmetry breaking caused by a finite

chemical potential also becomes apparent if we introduce
an effective density field n by means of a Hubbard-
Stratonovich transformation. The resulting effective action
then depends on the density n in form of an explicit field. In
such a functional, the chemical potential μ appears as a term
linear in the density field. The ground state can then be
found by solving the quantum equation of motion in the
presence of a finite source being nothing but the chemical
potential, ðδΓ=δnÞjμ ¼ 0. A divergence of the four-fermion

coupling associated with the ðV∥Þ channel is then related to
the coefficient of the n2-term becoming zero or even
negative. If the appearance of the divergence in the ðV∥Þ
channel is indeed related to a “spontaneous breakdown” of
Lorentz invariance, then corresponding pseudo-Goldstone
bosons resembling in some aspects a (massive) photon field
in temporal gauge may appear in the spectrum in this
regime of the phase diagram.8 Symmetry breaking scenar-
ios of this kind have indeed been discussed in the literature
[36–40]. However, their analysis is beyond the scope of the
present work. In any case, such a phenomenological
interpretation has to be taken with some care as we shall
see next.
Our choice for the Fierz-complete Ansatz (6) is not

unique. In order to gain a deeper understanding of the
dynamics of our model and how Fierz-incomplete approx-
imations may affect the predictive power of model calcu-
lations in general, we consider a second Fierz-complete
parametrization of the four-fermion interaction channels.
To this end, we introduce explicit difermion channels in our
Ansatz for the effective action:

ΓðDÞ
LO ¼

Z
β

0

dτ
Z

d3x

�
ψ̄ðZ∥iγ0∂0 þ Z⊥iγi∂i − Zμiμγ0Þψ

þ 1

2
λ̄D;σðS − PÞ − 1

2
λ̄DSPðSC − PCÞ

−
1

2
λ̄D0ðA∥CÞ

�
; ð24Þ

where

ðSC − PCÞ≡ ðψ̄Cψ̄TÞðψTCψÞ − ðψ̄γ5Cψ̄TÞðψTCγ5ψÞ;
ðA∥CÞ≡ ðψ̄γ0γ5Cψ̄TÞðψTCγ0γ5ψÞ: ð25Þ

By means of Fierz transformations (see Appendix A), we
can rewrite this Ansatz in terms of our original set of
interaction channels introduced in Eq. (6):

ΓðDÞ
LO ¼

Z
β

0

dτ
Z

d3x
�
ψ̄ðZ∥iγ0∂0 þ Z⊥iγi∂i − Zμiμγ0Þψ

þ 1

2

�
λ̄D;σ þ λ̄DSP þ

1

2
λ̄D0

�
ðS − PÞ

−
1

2

�
−λ̄DSP −

3

2
λ̄D0

�
ðV∥Þ

−
1

2

�
−λ̄DSP þ

1

2
λ̄D0

�
ðV⊥Þ

�
; ð26Þ

FIG. 4. RG scale dependence of jλσ j − jλ∥Vj and jλσ j − jλ⊥V j for
two sets of values ðT; μÞ corresponding to two points on the phase
boundary associated with the Fierz-complete study shown in
Fig. 3. The two points are located closely to the point where the
dominance pattern of the four-fermion channels changes. From
the depicted RG scale dependence of the couplings, we indeed
deduce that, at the latter point, the ðV∥Þ channel starts to dominate
over the ðS − PÞ channel while the ðV⊥Þ channel remains to be
subdominant. The thin dotted vertical lines indicate the position
of the critical scale kcr for the chosen values for the temperature
and chemical potential.

8Note that our fermionic theory of a single fermion species
may also be viewed as an effective low-energy model for
massless electrons. In QED with massless electrons (i.e.,
UAð1Þ-symmetric QED), such photonlike pseudo-Goldstone
bosons potentially appearing at high densities could mix with
the real photons.
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This allows us to identify the following relations between
the various couplings:

λ̄σ ¼ λ̄D;σ þ λ̄DSP þ
1

2
λ̄D0; ð27Þ

λ̄∥V ¼ −λ̄DSP −
3

2
λ̄D0; ð28Þ

λ̄⊥V ¼ −λ̄DSP þ
1

2
λ̄D0: ð29Þ

By inverting these relations we eventually obtain the β
functions of the couplings in our “difermion parametriza-
tion” of the effective action:

∂tλD;σ ¼ βλσ þ
1

2
βλ∥V

þ 1

2
βλ⊥V ; ð30Þ

∂tλDSP ¼ −
1

4
βλ∥V

−
3

4
βλ⊥V ; ð31Þ

∂tλD0 ¼ −
1

2
βλ∥V

þ 1

2
βλ⊥V : ð32Þ

The β functions on the right-hand side depend on the
couplings fλ̄σ; λ̄∥V; λ̄⊥Vg and can be expressed in terms of the
couplings fλ̄D;σ; λ̄DSP; λ̄D0g using Eqs. (27)–(29). Note that,
at T ¼ μ ¼ 0, the flow of the λDSP coupling is up to a global
minus sign identical to the flow of the vector coupling λV in
the effective action (6).
The ðS − PÞ channel in our Ansatz (24) is again the

conventional scalar-pseudoscalar channel. A dominance of
this channel indicates the onset of spontaneous chiral
UAð1Þ symmetry breaking in our model. A dominance
of the difermion channel ðSC − PCÞ is associated with the
spontaneous breakdown of both the chiralUAð1Þ symmetry
and the UVð1Þ symmetry of our model. Thus, a dominance
of the ðSC − PCÞ channel also suggests chiral symmetry
breaking as measured by the conventional ðS − PÞ channel
and, loosely speaking, the information encoded in both
channels is therefore not disjunct. In contrast to our
previous Ansatz (6), however, the parametrization of the
four-fermion couplings in the Ansatz (24) allows to probe
more directly a possible spontaneous breakdown of the
UVð1Þ symmetry. Phenomenologically, the latter may
naively be associated with the formation of a BCS-type
superfluid ground state. In particular, a dominance of this
channel may indicate the formation of a finite difermion
condensate hψTCγ5ψi in the scalar JP ¼ 0þ channel.9

We emphasize that these considerations do not imply that
the Ansatz (24) is more general by any means. In fact, as we
have shown, both Ansätze are equivalent as they are related
by Fierz transformations. Therefore, these considerations
only make obvious that the potential formation of a UVð1Þ-
breaking ground state may just not be directly visible in a
study with the Ansatz (6) but may nevertheless be realized
by a specific simultaneous formation of two condensates,
namely a hψ̄γ0ψi condensate and a hψ̄γiψi condensate,
according to Eqs. (27)–(32).10 We add that a dominance of
the ðA∥CÞ channel may indicate the formation of a con-
densate hψTCγ0γ5ψi with positive parity which breaks the
UVð1Þ symmetry of our model but leaves the chiral UAð1Þ
symmetry intact. However, this channel also breaks explic-
itly Poincaré invariance.
From our comparison of the Ansätze (6) and (24), we

immediately conclude that a phenomenological interpreta-
tion of the symmetry breaking patterns of our model
requires great care. This is even more the case when a
Fierz-incomplete set of four-fermion interactions is con-
sidered which has been extracted from a specific Fierz-
complete parametrization of the interaction channels.
In Fig. 5, we show our results for the ðT; μÞ phase

boundary associated with the spontaneous breakdown of at
least one of the fundamental symmetries of our model
which are now encoded in the four-fermion interaction
channels as parametrized in our Ansatz (24) for the
effective action. The one-channel approximation is the
same as in the case of our Ansatz (6) for the effective action
and the results for the phase boundary (solid black line)
are only shown to guide the eye. Moreover, the location of
the phase boundary from the Fierz-complete study of the
effective action (24) agrees identically with the Fierz-
complete study of the effective action (24), as it should
be. In the present case, we observe again a dominance of
the ðS − PÞ channel close to the phase boundary for
temperatures 1 ≥ T=T0 ≳ 0.8 (solid blue line in Fig. 5).
In the light of our results from the parametrization (6) of the
effective action, where the ðS − PÞ channel has also been
found to be dominant close to the phase boundary for
1 ≥ T=T0 ≳ 0.8, we may now cautiously conclude from the
combination of the results from the two Ansätze that at least
the phase boundary in the temperature regime 1 ≥ T=T0 ≳
0.8 is associated with spontaneous chiral symmetry

9Note that it is not possible in our present model to construct a
Poincaré-invariant JP ¼ 0þ condensation channel (from a cor-
responding four-fermion interaction channel) which only breaks
UVð1Þ symmetry but leaves the chiral UAð1Þ symmetry intact. In
QCD, the formation of the associated diquark condensate can be
realized at the price of a broken SUð3Þ color symmetry, even if
the chiral symmetry remains unbroken. In QED, on the other
hand, the required breaking of the UAð1Þ symmetry is realized by
a finite explicit electron mass.

10Within a truncated bosonized formulation (e.g., mean-field
approximation), the specific choice for the parametrization of the
four-fermion interaction channels is of great importance as it
determines the choice for the associated bosonic fields (e.g.,
mean fields). The latter effectively determine a specific para-
metrization of the momentum dependence of the four-fermion
channels. Therefore, the parametrization of the action in terms of
four-fermion channels is of relevance from a phenomenological
point of view. To be specific, even if two actions are equivalent on
the level of Fierz transformations, the results from the mean-field
studies associated with the two actions will in general be
different.
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breaking as the latter is indicated by a dominance of either
the ðS − PÞ channel or the ðSC − PCÞ channel.
In line with our study based on the parametrization (6) of

the effective action, we now also observe a dominance of a
channel associated with broken Poincaré invariance at 0 ≤
T=T0 ≲ 0.8 in the Fierz-complete study (dashed blue line in
Fig. 5), namely a dominance of the ðA∥CÞ channel. In case
of the two-channel approximation, which has been
obtained by setting λ̄D0 ¼ 0 and dropping the correspond-
ing flow equation, we only observe a dominance of the
ðS − PÞ channel (solid red line) close to the phase boundary
for all temperatures 1 ≥ T=T0 ≥ 0.
From a comparison of the results from the one- and two-

channel approximation, we also deduce that the phase
boundary is again pushed to larger values of the chemical
potential. However, we now observe that the phase boun-
dary is pushed back to smaller values of the chemical
potential again at low temperature when we go from the
two-channel approximation to the Fierz-complete Ansatz.
This underscores again that a phenomenological interpre-
tation of the phase structure and symmetry breaking
patterns in Fierz-incomplete studies have to be taken with
some care.

Whereas the phenomenological interpretation of the
dominance of the various interaction channels in different
parametrizations of the effective action may be difficult, a
qualitative insight into the symmetry breaking mechanisms
can be obtained from an analysis of the fixed-point
structure of the four-fermion couplings. To this end, we
may consider the temperature and the chemical potential as
external couplings, governed by a trivial dimensional RG
running ∂tðT=kÞ ¼ −ðT=kÞ and ∂tðμ=kÞ ¼ −ðμ=kÞ.
Two types of diagrams essentially contribute to the RG

flow of the four-fermion couplings at finite chemical
potential; see insets of Fig. 6 for diagrammatic representa-
tions and Appendix D for explicit expressions of the flow
equations. In a partially bosonized formulation of our
model, the interaction between the fermions is mediated
by the exchange of bosons with fermion number F ¼ 0 and
zero chemical potential (corresponding to states with zero
baryon number in QCD, such as pions) in the diagram in
the inset of the left panel of Fig. 6. On the other hand, the
fermion interaction is mediated by a bosonic difermion
state with fermion number jFj ¼ 2 and an effective
chemical potential μD ¼ Fμ in the diagram in the inset
of the right panel of Fig. 6.
Let us now assume that the RG flow of a given four-

fermion coupling λ is only governed by diagrams of the
type shown in the inset of the left panel of Fig. 6. The RG
flow equation is then given by

∂tλ ¼ 2λ − cþl
ðFÞ
þ λ2; ð33Þ

where, without loss of generality, we assume cþ is a
positive numerical constant. This flow equation has a
Gaussian fixed-point and a non-Gaussian fixed-point λ�.
Strictly speaking, the latter becomes a pseudo fixed-point in
the presence of an external parameter, such as a finite
temperature and/or finite chemical potential. The so-called

threshold function lðFÞþ depends on the dimensionless
temperature T=k as well as the dimensionless chemical
potential μ=k and essentially represents the loop diagram in
the inset of the left panel of Fig. 6. For an explicit
representation of such a threshold function, we refer the

FIG. 5. Phase boundary associated with the spontaneous break-
down of at least one of the fundamental symmetries of our model
as obtained from a one-channel, two-channel, and Fierz-complete
study of the Ansatz (24); see main text for details.

FIG. 6. Left panel: Sketch of the β-function of a four-fermion coupling which is only driven by a diagram of the type as shown in the
inset. For increasing T=k and μ=k, the non-Gaussian fixed-point is shifted to larger values. Right panel: Sketch of the β-function of a
four-fermion coupling at T ¼ 0 which is only driven by a diagram of the type as shown in the inset. For increasing μ=k, the non-
Gaussian fixed-point is shifted to smaller values and eventually merges with the Gaussian fixed-point.
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reader to Appendix C. Note that all threshold functions in

this work come in two different variations, e.g., lðFÞ∥;þ and

lðFÞ⊥;þ, which can be traced back to the tensor structure
becoming more involved due to the explicit breaking of
Poincaré invariance. Although we have taken this into
account in our numerical studies, we leave this subtlety
aside in our more qualitative discussion at this point.
For increasing dimensionless temperature T=k at fixed

dimensionless chemical potential μ=k, we have

lðFÞþ → 0 for
T
k
≫ 1; ð34Þ

due to the thermal screening of the fermionic modes.

Moreover, we also have lðFÞþ → 0 for sufficiently large
values of μ=k for a given fixed dimensionless temperature
T=k. This implies that the fermions become effectively
weakly interacting in the dense limit. Overall, we have
λ� → ∞ for the non-Gaussian fixed-point for T=k → ∞
and/or μ=k → ∞; see left panel of Fig. 6. Let us now
assume that we have fixed the initial condition λðUVÞ of the
four-fermion coupling such that λðUVÞ > λ� at T ¼ 0 and
μ ¼ 0 and keep it fixed to the same value for all values of T
and μ. As discussed in detail above, the four-fermion
coupling at T ¼ 0 and μ ¼ 0 then increases rapidly towards
the IR, indicating the onset of spontaneous symmetry
breaking. However, since the value of the non-Gaussian
fixed-point increases with increasing T=k and/or increasing
μ=k, the rapid increase of the four-fermion coupling
towards the IR is effectively slowed down and may even
change its direction in the space defined by the coupling λ,
the dimensionless temperature T=k and the dimensionless
chemical potential μ=k. This behavior of the (pseudo) non-
Gaussian fixed-point suggests that, for a fixed initial value
λðUVÞ > λ�, a critical temperature Tcr as well as a critical
chemical potential μcr exist above which the four-fermion
coupling does not diverge but approaches zero in the IR and
therefore the symmetry associated with the coupling λ is
restored. At least at high temperature, such a behavior is
indeed expected since the fermions become effectively
“stiff” degrees of freedom due to their thermal Matsubara
mass ∼T. This is the type of symmetry restoration
mechanism which dominantly determines the phase struc-
ture of our model at finite temperature and chemical
potential, as indicated in Figs. 3 and 5 by the finite extent
of the regime associated with spontaneous symmetry
breaking in both T- and μ-direction. We may even
cautiously deduce from this observation that the dynamics
close to and below the phase boundary at low temperature
is governed by the formation of a condensate with fermion
number F ¼ 0 as the general structure of the phase diagram
appears to be dominated by diagrams of the type shown in
the inset of the left panel of Fig. 6.

A dominance of the RG flow by diagrams of the type
shown in the inset of the right panel of Fig. 6 would suggest
the formation of a condensate with fermion number
jFj ¼ 2, i.e., a difermion-type condensate. In this case,
we would indeed expect a different phase structure, at least
at (very) low temperature and large chemical potential. To
illustrate this, let us now assume that the RG flow of a given
four-fermion coupling λ is only governed by diagrams of
the form shown in the inset of the right panel of Fig. 6:

∂tλ ¼ 2λ − c�l
ðFÞ
� λ2; ð35Þ

where, again without loss of generality, we assume c� is a
positive numerical constant. This flow equation has a
Gaussian fixed-point and a non-Gaussian fixed-point λ�.
The so-called threshold function lðFÞ� depends on the
(dimensionless) temperature T=k and the dimensionless
chemical potential μ=k and represents the associated loop
integral. Explicit representations of this type of threshold
function can be found in Appendix C. For increasing T=k at
fixed μ=k, we find again

lðFÞ� → 0 for
T
k
≫ 1; ð36Þ

due to the thermal screening of the fermionic modes.
However, we have

lðFÞ� ∼
�
μ

k

�
2

for
μ

k
≫ 1 ð37Þ

at T ¼ 0. For finite fixed T=k, we then observe that lðFÞ�
increases as a function of μ=k until it reaches a maximum
and then tends to zero for μ=k → ∞. The position of the
maximum is shifted to smaller values of μ=k for increas-
ing T=k.
Let us now focus on the strict zero-temperature limit. In

this case, the value of the non-Gaussian fixed-point is
decreased for increasing μ=k and eventually merges with
the Gaussian fixed-point. This implies immediately that the
four-fermion coupling always increases rapidly towards the
IR for μ > 0, indicating the onset of spontaneous symmetry
breaking, provided that the initial condition λðUVÞ has been
chosen positive, λðUVÞ > 0.11 Thus, the actual choice for
λðUVÞ relative to the value of the non-Gaussian fixed-point
plays a less prominent role in this case, at least on a
qualitative level. In other words, an infinitesimally small
positive coupling triggers the formation of a condensate
with fermion number jFj ¼ 2. This is nothing but the
Cooper instability in the presence of an arbitrarily weak
attraction [41] which destabilizes the Fermi sphere and

11For c� < 0, λðUVÞ has to be chosen negative in order to
trigger spontaneous symmetry breaking in the long-range limit.
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results in the formation of a Cooper pair condensate
[42,43], inducing a gap in the excitation spectrum. For
λðUVÞ ¼ 0, the four-fermion coupling remains at the
Gaussian fixed. For λðUVÞ < 0, the theory approaches the
Gaussian fixed-point in the IR limit. Thus, there is no
spontaneous symmetry breaking for λðUVÞ ≤ 0.
The fact that the two fixed points merge for μ=k → ∞ at

T ¼ 0 leaves its imprint in the μ dependence of the critical
scale kcr at which the four-fermion coupling diverges. In
fact, from the flow equation (35), we recover the typical
BCS-type exponential scaling behavior of the critical scale:

kcr ¼ Λ0θðλ̄0Þ exp
�
−
cBCS
μ2λ̄0

�
: ð38Þ

Here, we have assumed that the RG flow equation (35) has
been initialized in the IR regime at k ¼ Λ0 < Λ with an

initial value λ̄0 > 0, such that lðFÞ� can be approximated by

lðFÞ� ¼ c∞ðμ=kÞ2 with c∞ > 0. Moreover, we have intro-
duced the numerical constant cBCS ¼ 1=ðc∞c�Þ > 0. The
value λ̄0 of the four-fermion coupling can be directly related
to the UV coupling λðUVÞ. Recall that the dependence of kcr
on the chemical potential is then handed down to physical
observables in the infrared limit, leading to the typical
exponential scaling behavior [10].
The observed exponential-type scaling behavior of the

scale kcr appears to be generic in cases where two fixed
points merge; see, e.g., our discussion of essential scaling
(BKT-type scaling) in Sec. III which plays a crucial role in
gauge theories with many flavors [33,34].
At finite temperature and chemical potential, the shift of

the non-Gaussian fixed-point towards the Gaussian fixed-
point is slowed down and eventually inverted such that the
value of the non-Gaussian fixed-point eventually increases
with increasing T=k. This suggests again that a critical
temperature exists above which the symmetry associated
with the coupling λ is restored.
If the ground state of our model at large chemical

potential was governed by the Cooper instability as
associated with the exponential scaling behavior (38) of
the scale kcr, then the phase boundary would extend to
arbitrarily large values of the chemical potential, at least in
the strict zero-temperature limit. However, this is not
observed in the numerical solution of the full set of RG
flow equations; see Figs. 3 and 5. Of course, this does not
imply that difermion-type phases are not favored at all in
this model (e.g., a phase with a chirally invariant UVð1Þ-
breaking hψTCγ0γ5ψi-condensate) since the phase structure
also depends on our choice for the initial conditions of the
four-fermion couplings. The formation of such phases may
therefore be realized by a suitable tuning of the initial
conditions. Still, the vacuum phase structure of our model
suggests that the general features of the phase diagrams

presented in Figs. 3 and 5 persist over a significant range of
initial values for the couplings λσ and λV; see Fig. 1.

V. CONCLUSIONS

In this work we have analyzed the phase structure of a
one-flavor NJL model at finite temperature and chemical
potential. With the aid of RG flow equations, we aimed at
an understanding on how Fierz-incomplete approximations
affect the predictive power of general NJL-type models,
which are also frequently employed to study the phase
structure of QCD. To this end, we have considered the RG
flow of four-fermion couplings at leading order of the
derivative expansion. This approximation already includes
corrections beyond the mean-field approximation which is
inevitable to preserve the invariance of the results under
Fierz transformations.
We have found that Fierz-incompleteness affects strongly

key quantities, such as the curvature of the phase boundary at
small chemical potential. Indeed, the curvature obtained
in a calculation including only the conventional scalar-
pseudoscalar channel has been found to be about 44%
greater than in the Fierz-complete study. With respect to
the critical valueμcr of the chemical potential abovewhich no
spontaneous symmetry breaking occurs, we have found that
μcr in the Fierz-complete study is about 20% greater than in
the conventional one-channel approximation. Moreover, we
have observed that the position of the phase boundary
depends strongly on the number of four-fermion channels
included in Fierz-incomplete studies. In general, Fierz-
incomplete calculations may either overestimate or under-
estimate the size of the regime governed by spontaneous
symmetry breaking in the ðT; μÞ plane. The actual approach
to the result from the Fierz-complete study depends strongly
on the type of the channels included in such studies. In fact,
our analysis suggests that the use of Fierz-incomplete
approximations may even lead to the prediction of spurious
phases, in particular at large chemical potential.
With respect to a determination of the properties of the

actual ground state in the phase governed by spontaneous
symmetry breaking, our present study based on the analysis
of RG flow equations at leading order of the derivative
expansion is limited. In order to gain at least some insight
into this question, we have analyzed which four-fermion
channel dominates the dynamics of the system close to the
phase boundary. A dominance of a given channel may then
indicate the formation of a corresponding condensate. As
we have discussed, however, this criterion has to be taken
with some care, in particular when only one specific
parametrization of the four-fermion channels is considered.
This also holds for Fierz-complete studies. In this work, we
have used two different Fierz-complete parametrizations
and found that, over a wide range of the chemical potential,
the dynamics close to the phase boundary is dominated by
the conventional scalar-pseudoscalar channel associated
with chiral symmetry breaking. At large chemical potential,
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the dynamics close to the phase boundary then appears in
both cases to be dominated by channels which break
explicitly Poincaré invariance.
As a second criterion for the determination of at least

some properties of the ground state of the regime governed
by spontaneous symmetry breaking, we have analyzed on
general grounds the scaling behavior of the loop diagrams
contributing to the RG flow of the four-fermion couplings.
The scaling of these diagrams as a function of the
dimensionless temperature and chemical potential deter-
mines the fixed-point structure of the theory at finite
temperature and chemical potential. Our fixed-point analy-
sis suggests that the dynamics close to and below the phase
boundary is governed by the formation of a condensate
with fermion number F ¼ 0. In contrast to QCD (see, e.g.,
Refs. [3,10–12] for reviews), the formation of difermion-
type condensates with fermion number jFj ¼ 2 does not
appear to be favored, at least at large chemical potential for
the initial conditions of the RG flow equations employed in
our present study.
Of course, at the present order of the derivative expan-

sion, the employed criteria can only serve as indicators for
the actual properties of the ground state in regimes
governed by spontaneous symmetry breaking. In order
to determine the ground-state properties of a system
unambiguously, a calculation of the full order-parameter
potential is eventually required. Still, we expect that our
present analysis may already turn out to be useful to guide
future NJL-type model studies.
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APPENDIX A: FIERZ IDENTITIES

We have used the following Fierz identities to derive
Eq. (6) from Eq. (4):

ðA∥Þ ¼
1

2
ðS − PÞ − 1

2
ðV∥Þ þ

1

2
ðV⊥Þ; ðA1Þ

ðA⊥Þ ¼
3

2
ðS − PÞ þ 3

2
ðV∥Þ þ

1

2
ðV⊥Þ; ðA2Þ

ðT∥Þ ¼ 3ðV∥Þ − ðV⊥Þ: ðA3Þ
The Fierz transformations from the fermion-antifermion
channels to the difermion-type channels are given by

ðSC − PCÞ ¼ −ðS − PÞ − ðV∥Þ − ðV⊥Þ; ðA4Þ

ðA∥CÞ ¼ −
1

2
ðS − PÞ − 3

2
ðV∥Þ þ

1

2
ðV⊥Þ; ðA5Þ

ðA⊥CÞ ¼ −
3

2
ðS − PÞ þ 3

2
ðV∥Þ −

1

2
ðV⊥Þ; ðA6Þ

where

ðSC−PCÞ¼ðψ̄Cψ̄TÞðψTCψÞ−ðψ̄γ5Cψ̄TÞðψTCγ5ψÞ; ðA7Þ

ðA∥CÞ ¼ ðψ̄γ0γ5Cψ̄TÞðψTCγ0γ5ψÞ; ðA8Þ

ðA⊥CÞ ¼ ðψ̄γiγ5Cψ̄TÞðψTCγiγ5ψÞ; ðA9Þ

with C ¼ iγ2γ0 being the charge conjugation operator.

APPENDIX B: RG FORMALISM

For our computation of the RG flow equations of the
various couplings and renormalization factors, we have
employed the Wetterich equation [29] which is an RG
equation for the (scale-dependent) quantum effective
action Γk:

∂tΓk½Φ� ¼ −
1

2
Trf½Γð1;1Þ

k ½Φ� þ Rψ
k �−1 · ð∂tR

ψ
k Þg: ðB1Þ

Here, Γð1;1Þ
k denotes the second functional derivative of the

(scale-dependent) quantum effective action Γk with respect
to the fermion fields summarized in the “super” vector
ΦTðqÞ ¼ ðψTðqÞ; ψ̄ð−qÞÞ.

1. Regulator function and Fermi surface

The explicit calculation of RG flow equations requires
the specification of the regulator function Rψ

k which
encodes the regularization scheme. In this work, we have
employed a four-dimensional Fermi-surface-adapted regu-
lator, specifically tailored for a study of four-fermion
interactions. For our construction of this regulator taking
into account the presence of the Fermi surface, we start with
an analysis of the spectrum of the fermionic kinetic term in
the action (including the chemical potential μ):

T̂ ¼ −ðpþ iγ0μÞ: ðB2Þ

This operator has four eigenvalues. The eigenvalues are
partially degenerate. In fact, there are only two distinct
pairs of eigenvalues:

ϵ1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0 þ iμÞ2 þ p⃗2

q
: ðB3Þ

For p0 ¼ 0, we note that the eigenvalues assume the
following form:
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ϵ1;2jp0¼0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 − μ2

q
: ðB4Þ

Thus, for p0 ¼ 0, the eigenvalues tend to zero for momenta
close to the Fermi momentum μ. Moreover, we note that the
eigenvalues are in general complex-valued quantities at
finite μ.
We now construct a regulator function which also takes

into account the presence of a potential zero mode at the
Fermi surface (i.e., p0 ¼ 0); see Eq. (B4). To this end, we
first note that the fermion propagator appearing in the loop
integrals can be written in terms of the eigenvalues ϵ1;2:

1

pþ iγ0μ
¼ pþ iγ0μ

ϵ21;2
¼ ðpþ iγ0μÞððp0 − iμÞ2 þ p⃗2Þ

ω2þω2
−

;

ðB5Þ

where

ω2
� ≡ ω2

�ðp0; p⃗Þ ¼ p2
0 þ ðjp⃗j � μÞ2: ðB6Þ

Here, ω� is related to the quasiparticle dispersion relation
associated with ungapped massless fermions: For example,
ω−ð0; p⃗Þ may be viewed as the energy required to create a
particle with momentum p⃗ above the Fermi surface.
Correspondingly, ωþð0; p⃗Þ is associated with the energy
to create an antiparticle. Note that, for μ ¼ 0, ω2

� reduces to

ω2
�jμ¼0 ¼ p2

0 þ p⃗2: ðB7Þ

For p0 → 0, we have

1

ϵ21;2

����
p0→0

∼
1

p⃗2 − μ2
: ðB8Þ

For our evaluation of the path integral with the aid of the
Wetterich equation, we now construct a regularized kinetic
term:

T̂reg
kin ¼ −ðpþ iγ0μÞð1þ rψÞ: ðB9Þ

Here, rψ is a so-called regulator shape function and

Rψ
k ¼ −ðpþ iγ0μÞrψ ðB10Þ

is the associated regulator function.
The regulator function is to a large extent at our disposal

and only requires to fulfill a few constraints [29]; see also
below. Assuming that rψ is a real-valued dimensionless
function depending on p0, p⃗, μ, and the RG scale k, the
regularized eigenvalues are given by

ϵreg1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0 þ iμÞ2 þ p⃗2

q
ð1þ rψÞ: ðB11Þ

To regularize the finite-μ zero modes appearing at any finite
k [see Eq. (B4)], we require that

rψ jp0¼0;jp⃗j≈μ ∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jp⃗2 − μ2j
p : ðB12Þ

Moreover, we require that

rψ jμ¼0;fpν→0g ∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þ p⃗2

p ; ðB13Þ

which ensures that the regulator function reduces to the
conventionally employed covariant chirally symmetric
regulator functions in the limit μ → 0. A specific choice
for the shape function, which fulfills these conditions and
has been employed in the present work, is given by

rψ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−ω̄þω̄−

p − 1; ðB14Þ

where ω̄� ¼ ω�=k.
12 We add that other shape functions,

such as so-called Litim-type regulator functions [45–47],
can in principle be adapted accordingly by replacing p2

with ωþω−. In any case, with a regulator function fulfilling
the constraints (B12) and (B13), the eigenvalues of the
kinetic term are finite at any finite value of k.
Phenomenologically speaking, the so-defined class of

shape functions also ensures that the momentum modes are
integrated out around the Fermi surface, similarly to
regulator functions employed in RG studies of ultracold
Fermi gases [48] with spin- and mass-imbalance [49,50].
This implies that modes with momenta jp⃗j≃ μ are only
taken into account in the limit k → 0 where the regulator
vanishes, Rψ

k → 0. Thus, our regulator function screens
modes with momenta close to the Fermi surface μ but
leaves modes with (spatial) momenta farther away from the
Fermi surface unchanged. We note that this class of shape
functions also fulfills the standard requirements [29]:

(i) It remains finite in the limit of vanishing four-
momenta.

(ii) It diverges suitably for k → ∞ to ensure that the
quantum effective action approaches the classical
action.

(iii) It vanishes in the limit k → 0.
In addition, our Fermi-surface-adapted class of regulator
functions fulfills a set of “weak”/“convenience” requirements:
(iv) It does not violate the chiral symmetry of the kinetic

term in the fermionic action.

12In case of scale-dependent renormalization factors Z∥, Z⊥,
and Zμ, the following replacements in the definition of the
regulator function Rψ

k (including the shape function rψ ) may be
required: p0 → Z∥p0, pi → Z⊥pi, and μ → Zμμ.
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(v) It does not introduce an artificial breaking of
Poincaré invariance and, in particular, it preserves
Poincaré invariance in the limit T → 0 and μ → 0.

(vi) It respects the invariance of relativistic theories
under the transformation μ → −μ.

(vii) It ensures that the regularization of the loop dia-
grams is local in terms of temporal and spatial
momenta at any finite value of the RG scale k.

The requirement (vii) essentially corresponds to the fact that
the regulator function defines the details of the Wilsonian
momentum-shell integrations.
Alternatively, one may have considered to use regulator

functions which only act on the spatial momenta of the
fermions [51–54]. However, this class of regulator func-
tions introduces an artificial explicit breaking of Poincaré
invariance in the RG flow even at zero temperature and
chemical potential, i.e., in the Poincaré-invariant limit, and
therefore violates the requirement (v) above. The artificial
explicit breaking of Poincaré invariance appears to be
particularly severe as we shall discuss in Sec. B 3 below.
Moreover, this class of regulator functions lacks locality in
the direction of temporal momenta and therefore violates
the requirement (vii); i.e., all temporal momenta are taken
into account at any RG scale kwhereas spatial momenta are
restricted to (small) momentum shells around the scale
k≃ jp⃗j. Fluctuation effects are therefore washed out and
the construction of meaningful expansion schemes of the
effective action is complicated within such a regularization
scheme.

2. Silver-Blaze property and derivative expansion

At finite chemical potential, regularization prescriptions
face an additional complication, namely the so-called
Silver-Blaze “problem” [14]. This refers to the fact that
the free energy of, e.g., a fermionic system does not exhibit
a dependence on the chemical potential at zero temperature;
i.e., it remains as that of the vacuum, provided that the
chemical potential is less than some critical value. The
latter is determined by the (pole) mass of the lightest
particle carrying a finite charge associated with the chemi-
cal potential. This also so-called Silver-Blaze property of
the free energy carries over to the correlation functions (see,
e.g., Ref. [55]) and should in principle also be preserved by
the regulator functions employed in RG studies [56,57].
Phenomenologically speaking, this property simply states
that the fermion density (corresponding to the difference in
the numbers of fermions and antifermions) remains zero at
zero temperature while the chemical potential is less
than the fermion (pole) mass. Mathematically speaking,
the Silver-Blaze property is a consequence of the fact
that fermionic theories are invariant under the following
transformation13:

ψ̄ ↦ ψ̄e−iατ; ψ ↦ eiατψ ; μ ↦ μþ iα; ðB15Þ

where α parametrizes the transformation and τ is the
imaginary time. Setting α ¼ q0, Eq. (B15) immediately
implies the following invariance of the partition sum Z:

Zjμ→μþiq0 ¼ Z: ðB16Þ
Thus, the partition sum is invariant under a shift of the
chemical potential μ along the imaginary axis. Assuming
that Z is analytic, it follows that Z does not depend on μ at
all. In particular, we deduce from an analytic continuation
of Eq. (B16) from q0 to iq0 that Z does not depend on the
actual value of the real-valued chemical potential μ.
For the effective action Γ, it follows in the same way

from Eq. (B15) that

Γ½ψ̄e−iq0τ; eiq0τψ �jμ→μþiq0 ¼ Γ½ψ̄ ;ψ �; ðB17Þ
and similarly for higher n-point functions as the latter are
obtained from Γ by taking functional derivatives with
respect to the fields and setting them to zero subsequently.
On the level of correlation functions, we recall that, for

example, the two-point function has a pole at p2
0 ¼ −m2

f at
p⃗ ¼ 0, wheremf is the (pole) mass of the fermion. Thus, an
analytic continuation of the two-point function in the
complex p0-plane is restricted to the domain jp0j ≤ mf ,
as the pole mass is the singularity closest to the origin of the
complex p0-plane. From Eq. (B17), on the other hand, we
find the following relation for the two-point function:

Γð1;1Þðp0 − q0; p⃗;p0
0 − q0; p⃗0Þjμ→μþiq0

¼ Γð1;1Þðp0; p⃗;p0
0; p⃗

0Þ; ðB18Þ

where the four-momenta ðpð0Þ
0 ; p⃗ð0ÞÞ are associated with the

ingoing and outgoing fermion lines, respectively. Note that
Γð1;1Þ is diagonal in momentum space, i.e.,

Γð1;1Þðp0; p⃗;p0
0; p⃗

0Þ
¼ ~Γð1;1Þðp0; p⃗Þð2πÞδðp0 −p0

0Þð2πÞ3δð3Þðp⃗− p⃗0Þ: ðB19Þ

For q0 ¼ iμ, Eq. (B18) implies

ðlim
μ→0

Γð1;1Þðp0; p⃗;p0
0; p⃗

0ÞÞj
pð0Þ
0
→pð0Þ

0
−iμ

¼ Γð1;1Þðp0; p⃗;p0
0; p⃗

0Þ ðB20Þ

for μ < mf. The latter constraint follows from the definition
of the pole mass: Γð1;1Þ ¼ 0 for ðp0 − iμÞ2 ¼ −m2

f , i.e.,
p0 ¼ iðμ�mfÞ, and p⃗ ¼ 0. Note that mf refers to the pole
mass at μ ¼ 0. This line of argument can be generalized
straightforwardly to higher n-point functions.
Overall, it follows that, at zero temperature and μ < mf ,

the free energy of the system does not exhibit a dependence
on μ, as stated above [14]. The μ dependence of the

13Here, we effectively treat the chemical potential as an
external constant background field.
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correlation functions is trivially obtained by replacing the
zeroth components of the four-momenta in the vacuum
correlation functions with suitably μ-shifted zeroth com-
ponents; see, e.g., Eq. (B20). This then implies that these
functions also do not exhibit a dependence on μ due to the
analytic properties of these functions for μ < mf. An
immediate consequence is that the renormalization of the
fermion mass and the chemical potential are directly related
at T ¼ 0 and μ < mf ; see our discussion in Sec. II. In any
case, these statements cannot be generalized to the finite-
temperature case as the zeroth component of the Euclidean
four-momentum becomes discrete due to the compactifi-
cation of the Euclidean time direction and the analytic
continuation entering the above line of arguments cannot be
defined uniquely.
In this work, we use an RG approach to compute

correlation functions. The details of the Wilsonian momen-
tum-shell integrations are determined by our choice for the
infrared regulator Rψ

k ; see Eq. (B1). The regulator induces a
gap ∼k for the two-point function and renders the correlation
functions k dependent. Provided that μ < mgapðkÞ, the μ
dependence of the correlation functions at T ¼ 0 is now
trivially obtained by replacing p0 with ðp0 − iμÞ in the
vacuum correlation functions. Here, mgap denotes the k-
dependent gap determined by the distance of the singularity
closest to the origin in the complex p0-plane at T ¼ 0. For
example, we have mgap ∼ k for massless fermions. For
fermions with (pole) mass mf , on the other hand, we have
mgap → mf for k → 0 and mgap ∼ k for k ≫ mf. It follows
that the RG flows of correlation functions for a given μ <
mgapðkÞ at T ¼ 0 are identical to their vacuum flows.
Our conclusions following from the invariance of the

theory under the transformation (B15) are exact statements,
provided this invariance is not violated by the regulariza-
tion scheme and the expansion/approximation scheme.
With respect to, e.g., the derivative expansion of the

effective action, an expansion of the correlation func-
tions about the point ðp0 − iμ; p⃗Þ ¼ ð0; 0Þ rather than
ðp0; p⃗Þ ¼ ð0; 0Þ is required to preserve exactly the Silver
Blaze property [56]. This follows immediately from the fact
that the correlation functions do not have an explicit μ
dependence but depend only on the chemical potential via a
μ-shift of the zeroth component of the four momenta; see,
e.g., Eq. (B20). If the derivative expansion is nevertheless
anchored at the point ðp0; p⃗Þ ¼ ð0; 0Þ, an explicit breaking
of the invariance under the transformation (B15) is intro-
duced which, however, has been found to be mild in RG
studies of QCD low-energy models with conventional
spatial regulator functions [56–58]. Note that the choice
of the expansion point may be more delicate when conven-
tional spatial regulator functions without an adaption due to
the presence of a Fermi surface are employed; see, e.g.,
Refs. [51–54] for a definition of this class of regulariza-
tion schemes. This class of regulators lacks locality in the
direction of the zeroth component of the four-momentum;

i.e., the corresponding regulator functions are “flat” in this
direction and therefore all timelike momentum modes
effectively contribute to the RG flow at any value of k.
In fact, in our present analysis, we even observe that the
choice of the expansion point ðp0; p⃗Þ ¼ ð0; 0Þ leads to ill-
defined RG flows because of the analytic properties of the

threshold functions lðFÞ∥� and lðFÞ⊥� at T ¼ 0 and μ > 0; see
Appendix C 2 and the right panel of Fig. 6 for the Feynman
diagram associated with these functions. The use of a
suitably chosen expansion point, i.e., a point respecting the
Silver-Blaze property, cures this problem [59].
Although a suitably chosen expansion point respecting

the Silver-Blaze property may cure such pathologies in case
of spatial regulator functions, we should keep in mind a
subtlety coming along with the choice of a particular
expansion point. Usually, we are interested in choosing a
point for the expansion which is suitable to study a
particular physical effect. This point may indeed be in
conflict with the above considerations regarding the Silver-
Blaze property. To be specific, we may only be interested in
an evaluation of the fully momentum-dependent correlation
functions for a specific configuration of the external
momenta. For an estimate of the phase structure of a given
theory, for example, the limit of vanishing external
momenta may be considered for the two-point function
in order to project on screening masses. This evaluation
point may then serve as the anchor point for a derivative
expansion but violates the Silver-Blaze property as dis-
cussed above. On the other hand, the choice of an
expansion point respecting the Silver-Blaze property
may require to include high orders in the derivative
expansion in order to be able to reach reliably the actual
point of physical interest which, as an expansion point, may
violate the Silver-Blaze property. This is indeed the
situation in many studies and it is also the case in our
present work as we are interested in the evaluation of the
four-fermion correlation functions in a specific limit in
order to estimate the phase structure. To be concise, we
choose the limit of vanishing external momenta as the
expansion point. If we had chosen an expansion point
respecting the Silver-Blaze property, then we would have
not been able to reach reliably our actual point of interest at
leading order of the derivative expansion. A detailed
discussion of this issue is deferred to future work [59].
In cases where the full momentum dependence of the

correlation functions is resolved, the only source of an
explicit breaking of the Silver-Blaze property is the
regularization scheme. With respect to the regularization
scheme in RG studies, in addition to the requirements (i)-
(vii) listed above, the eigenvalues of the (matrix-valued)
regulator function Rψ

k are required to be only functions of
the spatial momenta p⃗ and the complex variable
z ¼ p0 − iμ, Rψ

k ¼ Rψ
k ðz; p⃗Þ [57] in order to preserve the

invariance of the theory under the transformation (B15).
This requirement is fulfilled by spatial regularization
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schemes (such as the class of regulator functions defined in
Refs. [51–54]) as these schemes simply do not depend on z
at all. However, our present class of four-dimensional/
covariant Fermi-surface-adapted regulator functions ful-
filling the requirements (i)–(vii) listed in Sec. B 1 breaks
explicitly the symmetry associated with the transformation
(B15) as it depends on ωþω− ¼ jðp0 − iμÞ2 þ p⃗2j.
Our discussion with respect to the derivative expansion

and the regularization schemes calls for an analysis of the
strength of the explicit breaking of the Silver-Blaze property
in our present study. To this end, we consider the RG flow of
the scalar-pseudoscalar coupling λσ in a simple one-channel
approximation and compute the dependence of the scale kcr
on the chemical potential μ using the covariant regulator
function defined by Eq. (B14) and the spatial regularization
scheme defined in Refs. [51–54]. Recall that the scale kcr is
defined as the scale at which the four-fermion coupling λσ
diverges. The scale dependence of the λσ-coupling is
governed by the following flow equation:

∂tλσ ¼ 2λσ − 48v4ðlðFÞ∥þðτ; 0;−i ~μτÞ þ lðFÞ⊥þðτ; 0;−i ~μτÞλ2σ;
ðB21Þ

where τ ¼ T=k and ~μτ ¼ μ=ð2πTÞ. The definition of the

threshold functions lðFÞ∥þ and lðFÞ⊥þ for the two regularization
schemes can be found in Appendix C. Compared to the flow

equation (15), we do not include the threshold functions lðFÞ∥�
and lðFÞ⊥� associated with the loop diagram depicted in the
inset of the right panel of Fig. 6 in this analysis since, for the
spatial regularization scheme, these threshold functions lead
to “spurious” divergences in the integration of the RG flow
equations at T ¼ 0 due to a second-order pole at k ¼ μ. We
refer to Appendix C 2 for explicit representations of these
functions. This behavior is associated with the presence of a
zero mode in the two-point function at k ¼ μ; see Eq. (B4).
Note that, for any even infinitesimally small finite temper-
ature, these functions are well behaved; i.e., no “spurious”
divergences in the integration of the RG flow equations
appear. Still, the contributions from these threshold functions
become arbitrarily large at μ > 0 for decreasing temperature
and therefore dominate artificially the RG flow of the
couplings at finite chemical potential and low temperature.
Note that this is not the case for our covariant regulator
function, which is well defined for T ¼ 0 and T > 0, as it is
constructed such that the zero mode at k ¼ μ is regularized.
Since kcrðμÞ sets the scale for all low-energy observables

including the fermion mass mf ∼ kcr (see our discussion in
Sec. III), kcrðμÞ should be independent of μ for μ < mf at
zero temperature because of the Silver-Blaze property.
Unfortunately, we do not have direct access to the fermion
mass mf in our present study. However, at least at zero
temperature and chemical potential, the RG flow
equation (B21) for the λσ in the one-channel approximation
can be mapped onto a corresponding mean-field equation

for the fermion mass; see, e.g., Ref. [6]. This provides us at
least with an estimate for the vacuum fermion mass mf in
our studies. Specifically, we find mf=k0 ≈ 0.53 for the
covariant regulator function and mf=k0 ≈ 0.44 for the
spatial regulator. Note that k0 has been fixed to the same
value in both calculations. In Fig. 7, we show kcr as a
function of μ at zero temperature for the covariant regulator
function defined in Eq. (B14) and the spatial regularization
scheme defined in Refs. [51–54]. In order to ensure
comparability, we have fixed the initial condition of the
flow equation (B21) such that the symmetry breaking scale
k0 ¼ kcrðμ ¼ 0Þ assumes the same value in both cases. In
accordance with our discussion, we observe that kcr does
not depend on μ for μ < k0, where k0 plays the role of the
zero-temperature fermion mass. Thus, this class of spatial
regularization schemes in general respects the symmetry
(B15) at zero temperature, as already mentioned above. For
our covariant regulator function, we observe that kcr
exhibits a weak dependence on μ for μ≲mf. This depend-
ence becomes stronger for increasing μ. For μ=k0 → 1, kcr
then does not terminate but tends to zero continuously at
μ=k0 ≈ 1.1. In any case, we find in both cases that the
critical scale kcr is only finite for chemical potentials below
some critical value μcr=k0 ∼Oð1Þ.
We emphasize that the artificial regulator-induced

dependence on the chemical potential illustrated in
Fig. 7 is an immediate consequence of the fact that our
covariant regulator function violates the Silver-Blaze prop-
erty. This violation becomes evident by the fact that the
four-fermion couplings depend on the chemical potential μ
at T ¼ 0 for any value of k. For k ≫ μ, for example, we
indeed deduce from Eq. (B21) that

λσ ≃ λ�σ

�
1þ c0

�
μ

k

�
2

ln

�
k
Λ

�

−
�
Λ
k

�
2
��

λ�σ
λðUVÞσ

�
− 1

�
þ…

�
; ðB22Þ

where c0 < 0 is a numerical constant.
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FIG. 7. Critical scale kcr=k0 with k0 ¼ kcrðμ ¼ 0Þ ≈ 0.35Λ as a
function of μ=k0 at zero temperature for two different regulari-
zation schemes; see main text for details.
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In a calculation of the pressure at zero temperature, the
violation of the Silver-Blaze property can also be observed.
From a direct integration of the flow equation (B1) for the
free gas, for example, we obtain the correct result for the
pressure pfree,

pfree ¼
7

2

π2

90
T4 þ 1

6
μ2T2 þ 1

12π2
μ4; ðB23Þ

if we choose the following initial condition for the effective
action:

ΓΛ ¼ −
1

2
trD

X∞
n¼−∞

Z
d3p
ð2πÞ3 ln ðΓ

ð1;1Þ
Λ þ Rψ

ΛÞ: ðB24Þ

with Γð1;1Þ
Λ ¼ −ððνn þ iμÞγ0 þ p⃗Þ and νn ¼ ð2nþ 1ÞπT.

The trace trD has to be taken with respect to the Dirac
indices. In this case, the violation of the Silver-Blaze
property becomes evident from the fact that ΓΛ contains
μ-dependent divergent terms (e.g., ∼μ2Λ2).

3. Covariant regulators versus spatial regulators

Our four-dimensional Fermi-surface-adapted regulator
function defined by Eq. (B14) violates the Silver-Blaze
property. Nevertheless, we have restricted ourselves to the
use of this regulator in our studies of the phase structure in
Secs. III and IV since spatial regularization schemes violate
the requirements (v) and (vii) listed in Sec. B 1; i.e., they
introduce an explicit breaking of Poincaré invariance and
they lack locality in the direction of timelike momenta. Our
four-dimensional Fermi-surface-adapted regulator fulfills
both requirements.
In our Fierz-complete studies, we have indeed found that

the artificial breaking of Poincaré invariance and the lack of
locality affects the dynamics of the system already at zero
chemical potential. Even more, also at T ¼ μ ¼ 0, the λ∥V-
and λ⊥V-coupling differ due to the explicit breaking of
Poincaré invariance. This eventually results in a dominance
of the λ∥V channel at finite temperature and zero chemical
potential; see Fig. 8. In our study with the covariant
regulator function, on the other hand, we find a clear
dominance of the ðS − PÞ channel along the temperature
axis at μ ¼ 0. This aspect is of relevance as such spatial
regularization schemes may spoil the phenomenological
interpretation of the results. In fact, at low temperature and
large chemical potential, a study with the spatial regulator
function even suggests that the dynamics of the system is
strongly dominated by the ðV⊥Þ channel such that the
ground state appears to be governed by spontaneous
symmetry breaking for all values of the chemical potential
considered in this work (μ=T0 ≲ 2); see Fig. 8. Using a
different basis of four-fermion channels, e.g., including
difermion-type channels, one may even be tempted to
associate the appearance of spontaneous symmetry

breaking at (arbitrarily) large chemical potential with the
formation of a difermion condensate in our model as it is
the case in QCD (see, e.g., Refs. [3,10–12] for reviews). In
our present model, however, the appearance of a regime
governed by spontaneous symmetry breaking at large
chemical potential is only observed when the spatial
regulator function is used but not when our covariant
Fermi-surface-adapted regulator is applied. In fact, we
consider the very appearance of spontaneous symmetry
breaking at large chemical potential in our present model as
an artefact of the use of the spatial regulator function, at
least at the order of the derivative expansion considered in

this work. Recall that the threshold functions lðFÞ∥� and lðFÞ⊥�
associated with the involved loop integrals are not well
behaved at T ¼ 0 and μ > 0 in case of the spatial regulator;
i.e., these threshold functions lead to “spurious” divergen-
ces in the integration of the RG flow equations; see our
discussion below Eq. (B21). The definitions of the thresh-
old functions in case of the spatial regulator are given in
Sec. C 2. From a phenomenological point of view, we note
that, in contrast to QCD, the formation of a Poincaré-
invariant difermion condensate associated with UVð1Þ
symmetry breaking also entails chiral symmetry breaking
in our present model; see Sec. IV.
The relevance of covariant regularization schemes has

also been discussed in the context of real-time RG studies
[60–62]. Along the lines of the construction of correspond-
ing regulator functions [61], it should in principle be
possible to construct a four-dimensional regulator which
fully respects the symmetry (B15) at zero temperature by
introducing a suitable deformation of the IR cutoff scale k.
However, this is beyond the scope of the present work and
deferred to future work [59]. Finally, we add that the
complications associated with the regularization of a theory

FIG. 8. Phase boundary associated with the spontaneous break-
down of at least one of the fundamental symmetries of our model
as obtained from the Fierz-complete Ansatz (6) using two
different regulator functions; see Sec. B 3 for a discussion of
the origin of the differences between the two phase boundaries.
The gray line corresponds to the blue line in Fig. 3 and is only
included to guide the eye.
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in the presence of a finite chemical potential as well as the
issues arising because of the use of spatial regularization
schemes are not bound to our functional RG approach but
are in principle present in any approach.

APPENDIX C: THRESHOLD FUNCTIONS

In this section we define the threshold functions which
appear in the RG flow equations in this work. The threshold
functions essentially represent 1PI diagrams and depend on
the employed regularization scheme. In order to define
these functions, we make use of various auxiliary dimen-
sionless quantities, namely the dimensionless temperature
τ ¼ T=k, the dimensionless (renormalized) chemical

potential ~μτ ¼ Zμμ=ð2πTÞ, and the dimensionless fer-
mionic Matsubara frequencies ~νn ¼ ð2nþ 1Þπτ.

1. Covariant regulator

It is convenient to define the dimensionless (regularized)
propagator for the fermions:

~Gψðy0; y;ωÞ ¼
1

ðy0 þ yÞð1þ rψÞ2 þ ω
: ðC1Þ

In the present work, the following purely fermionic thresh-
old functions appear in the RG flow equations:

lðFÞ∥þðτ;ω; ~μτÞ ¼ −
τ

2

Xþ∞

n¼−∞

Z
∞

0

dyy
1
2 ~∂t½ð~νn þ 2πτ ~μτÞ2ð1þ rψ Þ2ð ~Gψ ðð~νn þ 2πτ ~μτÞ2; y;ωÞÞ2�; ðC2Þ

lðFÞ⊥þðτ;ω; ~μτÞ ¼ −
τ

2

Xþ∞

n¼−∞

Z
∞

0

dyy
1
2 ~∂t½ðyð1þ rψÞ2 þ ωÞð ~Gψðð~νn þ 2πτ ~μτÞ2; y;ωÞÞ2�; ðC3Þ

lðFÞ∥�ðτ;ω; ~μτÞ ¼ −
τ

2

Xþ∞

n¼−∞

Z
∞

0

dyy
1
2 ~∂t½ð~νn þ 2πτ ~μτÞð~νn − 2πτ ~μτÞð1þ rψÞ2

× ~Gψ ðð~νn þ 2πτ ~μτÞ2; y;ωÞ ~Gψ ðð~νn − 2πτ ~μτÞ2; y;ωÞ�; ðC4Þ

lðFÞ⊥�ðτ;ω; ~μτÞ ¼ −
τ

2

Xþ∞

n¼−∞

Z
∞

0

dyy
1
2 ~∂t½ðyð1þ rψÞ2 þ ωÞ ~Gψðð~νn þ 2πτ ~μτÞ2; y;ωÞ ~Gψðð~νn − 2πτ ~μτÞ2; y;ωÞ�; ðC5Þ

where y ¼ p⃗2=k2 and the formal derivative ~∂t is defined as
~∂t ¼ ð∂trψÞ ∂

∂rψ . Here, we have already used that ∂tZ∥ ¼
∂tZ⊥ ¼ ∂tZμ ¼ 0 in our present study. For the regulator
function (B14), the latter assumes the following form:

~∂t ¼
ðy0 þ yÞe−ðy0þyÞ

ð1 − e−ðy0þyÞÞ32
∂
∂rψ : ðC6Þ

In the limit ~μτ ¼ 0, the above set of four distinct threshold
functions collapses to a set of merely two threshold
functions:

lðFÞ∥þðτ;ω; 0Þ ¼ lðFÞ∥�ðτ;ω; 0Þ≡ lðFÞ∥ ðτ;ω; 0Þ;
lðFÞ⊥þðτ;ω; 0Þ ¼ lðFÞ⊥�ðτ;ω; 0Þ≡ lðFÞ⊥ ðτ;ω; 0Þ:

Furthermore, we find

lðFÞ∥ ðτ;ω; 0Þ þ lðFÞ⊥ ðτ;ω; 0Þ

¼ τ
Xþ∞

n¼−∞

Z
∞

0

dyy
1
2

ð∂trψÞð1þ rψÞð~ν2n þ yÞ
½ð~ν2n þ yÞð1þ rψ Þ2 þ ω�2 : ðC7Þ

For the regulator function (B14) and T ¼ μ ¼ ω ¼ 0, we

then obtain lðFÞ∥ ð0; 0; 0Þ þ lðFÞ⊥ ð0; 0; 0Þ ¼ 1
4
. In the limit

T ¼ μ ¼ ω ¼ 0, the threshold functions indeed only enter
the RG flow equations in this particular combination.

2. Spatial regulator

Also in case of spatial regulator functions [51–54],

Rψ
k ðpÞ ¼ − p⃗rψ

�
p⃗2

k2

�
ðC8Þ

with
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rψ ¼
 ffiffiffiffiffi

k2

p⃗2

s
− 1

!
θðk2 − p⃗2Þ; ðC9Þ

it is convenient to define a dimensionless propagator:

~Gspatial
ψ ðy0; y;ωÞ ¼

1

y0 þ yð1þ rψÞ2 þ ω
: ðC10Þ

The threshold functions then read

lðFÞ∥þ;spatialðτ;ω; ~μτÞ ¼ −
1

2
τ
Xþ∞

n¼−∞

Z
∞

0

dyy
1
2 ~∂t½ð~νn þ 2πτ ~μτÞ2ð ~Gspatial

ψ ðð~νn þ 2πτ ~μτÞ2; y;ωÞÞ2�; ðC11Þ

lðFÞ⊥þ;spatialðτ;ω; ~μτÞ ¼ −
1

2
τ
Xþ∞

n¼−∞

Z
∞

0

dyy
1
2 ~∂t½ðyð1þ rψÞ2 þ ωÞð ~Gspatial

ψ ðð~νn þ 2πτ ~μτÞ2; y;ωÞÞ2�; ðC12Þ

lðFÞ∥�;spatialðτ;ω; ~μτÞ ¼ −
1

2
τ
Xþ∞

n¼−∞

Z
∞

0

dyy
1
2 ~∂t½ð~νn þ 2πτ ~μτÞð~νn − 2πτ ~μτÞ

× ~Gspatial
ψ ðð~νn þ 2πτ ~μτÞ2; y;ωÞ ~Gspatial

ψ ðð~νn − 2πτ ~μτÞ2; y;ωÞ�; ðC13Þ

lðFÞ⊥�;spatialðτ;ω; ~μτÞ ¼ −
1

2
τ
Xþ∞

n¼−∞

Z
∞

0

dyy
1
2 ~∂t½ðyð1þ rψ Þ2 þ ωÞ

× ~Gspatial
ψ ðð~νn þ 2πτ ~μτÞ2; y;ωÞ ~Gspatial

ψ ðð~νn − 2πτ ~μτÞ2; y;ωÞ�; ðC14Þ

where y ¼ p⃗2=k2 and

~∂t ¼
1

y
1
2

θð1 − yÞ ∂
∂rψ ðC15Þ

for ∂tZ∥ ¼ ∂tZ⊥ ¼ ∂tZμ ¼ 0. For the shape function (C9), the threshold functions can be computed analytically. For
example, we find

lðFÞ∥þ;spatialðτ;ω;−i ~μτÞ þ lðFÞ⊥þ;spatialðτ;ω;−i ~μτÞ ¼
1

6

∂
∂ω
�

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω

p
�
tanh

�
2πτ ~μτ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω

p

2τ

�
− tanh

�
2πτ ~μτ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω

p

2τ

�	�
;

ðC16Þ

lðFÞ∥�;spatialðτ;ω;−i ~μτÞ þ lðFÞ⊥�;spatialðτ;ω;−i ~μτÞ

¼ −
1

6

∂
∂ω
�

1

j ffiffiffiffiffiffiffiffiffiffiffiffi1þ ω
p

− 2πτ ~μj tanh
�j ffiffiffiffiffiffiffiffiffiffiffiffi1þ ω
p

− 2πτ ~μj
2τ

�
þ 1

j ffiffiffiffiffiffiffiffiffiffiffiffi1þ ω
p þ 2πτ ~μj tanh

�j ffiffiffiffiffiffiffiffiffiffiffiffi1þ ω
p þ 2πτ ~μj

2τ

��
: ðC17Þ

Note that not only the sum of the two threshold functions in Eq. (C17) has a second-order pole at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ω

p
¼ μ at T ¼ 0

but also the individual functions. Moreover, in the limit τ → 0, ω → 0, and ~μτ → 0, we find

lðFÞ∥þ;spatialð0; 0; 0Þ ¼ lðFÞ⊥þ;spatialð0; 0; 0Þ ¼ lðFÞ∥�;spatialð0; 0; 0Þ ¼ lðFÞ⊥�;spatialð0; 0; 0Þ ¼
1

12
: ðC18Þ
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APPENDIX D: RG FLOW EQUATIONS

For the derivation of the RG flow equations of our model, we have made use of existing software packages [63,64]. For
the covariant regulator function, we then find the following set of flow equations for the dimensionless four-fermion
couplings λσ, λ

∥
V and λ⊥V:

∂tλσ ≡ βλσ ¼ 2λσ − 16v4ð−λ2σ þ 2λ∥Vλ
⊥
V þ ðλ⊥VÞ2 − 2λσλ

⊥
VÞlðFÞ⊥�ðτ; 0;−i ~μτÞ

− 16v4ð3λ2σ þ 2λ∥Vðλσ þ λ⊥VÞ þ ðλ⊥VÞ2 þ 8λσλ
⊥
VÞlðFÞ⊥þðτ; 0;−i ~μτÞ

− 16v4ð−λ2σ − 2λσλ
∥
V þ 3ðλ⊥VÞ2ÞlðFÞ∥�ðτ; 0;−i ~μτÞ

− 16v4ð3λ2σ þ 4λσλ
∥
V þ 3ðλ⊥VÞ2 þ 6λσλ

⊥
VÞlðFÞ∥þðτ; 0;−i ~μτÞ; ðD1Þ

∂tλ
∥
V ≡ βλ∥V

¼ 2λ∥V þ 16v4ð−λ2σ þ 2λσλ
∥
V þ 4λ∥Vλ

⊥
V − ðλ⊥VÞ2 − 4λσλ

⊥
VÞlðFÞ⊥�ðτ; 0;−i ~μτÞ

þ 16v4ð−λ2σ − 2ðλ∥VÞ2 − 2λσλ
∥
V − 6λ∥Vλ

⊥
V − ðλ⊥VÞ2 − 4λσλ

⊥
VÞlðFÞ⊥þðτ; 0;−i ~μτÞ

þ 16v4ð3λ2σ þ ðλ∥VÞ2 þ 6ðλ⊥VÞ2 þ 6λσλ
⊥
VÞlðFÞ∥�ðτ; 0;−i ~μτÞ

þ 16v4ð−λ2σ þ ðλ∥VÞ2 þ 4λσλ
∥
V þ 6λ∥Vλ

⊥
V þ 6λσλ

⊥
VÞlðFÞ∥þðτ; 0;−i ~μτÞ; ðD2Þ

∂tλ
⊥
V ≡ βλ⊥V ¼ 2λ⊥V −

16

3
v4ð−λ2σ − ðλ∥VÞ2 − 2λ∥Vðλ⊥V − λσÞ − 10ðλ⊥VÞ2 − 4λσλ

⊥
VÞlðFÞ⊥�ðτ; 0;−i ~μτÞ

−
16

3
v4ð3λ2σ þ ðλ∥VÞ2 þ 2λσλ

∥
V þ 10ðλ⊥VÞ2ÞlðFÞ⊥þðτ; 0;−i ~μτÞ

− 16v4ðλ2σ − 2λ∥Vλ
⊥
V − ðλ⊥VÞ2 þ 2λσλ

⊥
VÞlðFÞ∥�ðτ; 0;−i ~μτÞ

− 16v4ðλ2σ þ 4λ∥Vλ
⊥
V þ 5ðλ⊥VÞ2 þ 6λσλ

⊥
VÞlðFÞ∥þðτ; 0;−i ~μτÞ: ðD3Þ

In the limit of vanishing temperature and chemical
potential, these RG flow equations simplify to

βλσ ¼ 2λσ − 4v4ð2λ2σ þ 2λσðλ∥V þ 3λ⊥VÞþ3ðλ⊥VÞ2 þ 3λ∥Vλ
⊥
VÞ;

ðD4Þ
βλ∥V

¼ 2λ∥V − 4v4ðλ2σ þ ðλ∥VÞ2þλσð−λ∥V þ 3λ⊥VÞÞ; ðD5Þ

βλ⊥V ¼ 2λ⊥V − 4v4ðλ2σ þ ðλ⊥VÞ2þλσðλ∥V þ λ⊥VÞÞ: ðD6Þ

Choosing Poincaré-invariant initial conditions, i.e., choos-
ing λ∥V ¼ λ⊥V ¼ λV at the initial RG scale, we deduce from
Eqs. (D1)–(D3) that Poincaré invariance remains intact in
the RG flow:

βλV ¼ βλ∥V
jλ∥V¼λ⊥V¼λV

¼ βλ⊥V jλ∥V¼λ⊥V¼λV
ðD7Þ

with

βλV ¼ 2λV − 4v4ðλσ þ λVÞ2: ðD8Þ

The flow equations in case of the spatial regulator function
(C8) are obtained from the flow equations (D1)–(D3) by
simply replacing the threshold functions with their counter-
parts for the spatial regulator defined in Sec. C 2. However,
note that Eqs. (D4)–(D8) are altered for the spatial regulator
as the actual values of the threshold functions for a given set
of values of τ, ω, and ~μτ depend in general on the details of
the regularization scheme. For example, we find that the
values of the threshold functions associated with the two
specific regulators used in this work differ in the limit
τ → 0, ω → 0, and ~μτ → 0. In any case, we stress that
Eq. (D7) no longer holds for the spatial regulator function
as the latter breaks explicitly Poincaré invariance, even
at T ¼ μ ¼ 0.
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