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We calculate the rate of thermal Schwinger pair production at arbitrary coupling in weak external fields.
Our calculations are valid independently of many properties of the charged particles produced, in particular
their spin and whether they are electric or magnetic. Using the worldline formalism, we calculate the
logarithm of the rate to leading order in the weak external field and to all orders in virtual photon exchange,
taking us beyond the perturbative expansion about the leading order, weak coupling result.
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I. INTRODUCTION

In the presence of an electric field, empty space is
unstable to the production of electron-positron pairs, called
Schwinger pair production [1]. The usual perturbative
vacuum is not the true vacuum, the lowest energy state,
and hence it decays. At finite temperature, the energy
available from the thermal bath enhances the rate of decay.
For weak coupling much has been done to generalize

Schwinger’s original result, including the effect of temporal
and spatial variation in the external field [2–9], the presence
of an additional high energy photon or other particle
[10–14], a finite temperature [15–24], higher loops [25–29]
and backreaction [30–34]. However, at stronger coupling,
where perturbation theory breaks down, much less is
known.
In this paper we calculate the rate of Schwinger pair

production from a thermal bath, making no assumptions
about the strength of the coupling. We do though restrict
ourselves to weak external fields. Our results are argued to
be valid for the full range from zero to infinite coupling
[27,35] (see, however, [36–38]).
There are many applications of this calculation but our

interest stems from the wish to better understand the pair
production of magnetic monopoles [39–41]. Theoretical
understanding of this is poor and there is a pressing need for
concrete calculations of rates and cross sections for
ongoing experimental searches such as MoEDAL [42] at
CERN. The Dirac quantization condition implies that if
magnetic monopoles exist, they are necessarily strongly
coupled. Their charge, g, must satisfy g ¼ 2πn=e ≈ 20.7n,
where n ∈ Z and e is the charge of the positron. As a result
of this, calculations are difficult and cross sections for their
pair production are extremely poorly understood.
In the collisions of elementary particles it has been

argued that the pair production of ’t Hooft-Polyakov
magnetic monopoles [40,41] is exponentially suppressed
by [43]

e−16π=e
2 ≈ 10−238; ð1Þ

even at arbitrarily high energies. The suppression can be
seen as due to its large, coherent structure and the small
overlap of this state with the initial, perturbative state. An
analogous exponential suppression has been explicitly
demonstrated for soliton pair production in a particular
scalar theory [44–46]. Note though that this argument does
not apply to pointlike, Dirac monopoles. For them, the lack
of any small parameter has meant that there have been no
estimates of pair production cross sections which have been
derived from first principles. Consequently accelerator
searches for magnetic monopoles can only yield upper
bounds on the production cross section [47]; they cannot
constrain the mass, spin or charge of magnetic monopoles.
In this paper, we consider a different process, relevant to

physical situations where there are strong magnetic fields
and high temperatures. In such situations pair production
proceeds via the magnetic dual of Schwinger pair produc-
tion, as first considered at zero temperature by Affleck et al.
[35,48]. For this process the arguments of Ref. [43] do not
apply. Further we can calculate the rate of pair production
from first principles, the result being valid for both Dirac
and ’t Hooft-Polyakov monopoles (see Appendix B).
In particular, strong magnetic fields and high temper-

atures arise in heavy ion collisions [49,50], though not in
elementary particle collisions. The difference is crucial and
our results suggest that, for sufficiently light magnetic
monopoles, pair production in heavy ion collisions is not
exponentially suppressed as in Eq. (1). Like the case of
(Bþ L) violation [51–56], we suggest that this is because,
in the initial thermal state, the energy is spread across many
degrees of freedom.
We can study magnetic monopole Schwinger pair

production via its electromagnetic dual as we do not
consider electric and magnetic charges simultaneously.
In this case the duality amounts simply to a relabeling
of electric degrees of freedom and charges as magnetic. We
will, in the bulk of the paper, refer to pair production of
particles with charge g in an external field E, whether
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electric or magnetic. The mass of the charged particles is
denoted bym. As our calculation reduces to a semiclassical
one, we only rely on the classical electromagnetic duality.
Our calculation is also of relevance to Schwinger pair

production of atomic nuclei, especially those with charges
Ze≳ 1 (Z ≳ 3) where the usual weak coupling approaches
break down, and to pair production of quarks in QCD, in the
Abelian dominance approximation [57–61]. Further it gives
an all-orders correction to the known weak coupling results.
This will be of interest to current and future experimental
studies of Schwinger pair production (see for example [62]
for a discussion), as well as to multiloop and asymptotic
analyses of the QED perturbation series [36–38].
In Sec. II we set up our calculation using the worldline

formalism, deriving an expression for the thermal
Schwinger rate at arbitrary coupling. In Sec. III we explain
a key approximation that we make, the dilute instanton gas
approximation. In Sec. IV we derive analytic results in
various limits and in Sec. V we extend beyond these limits
via numerical calculations. We also discuss the general
form of the rate in terms of a phase diagram. In Sec. VI we
conclude and suggest further work.
Throughout we use natural units, c ¼ ℏ ¼ kB ¼ ε0 ¼ 1.

II. WORLDLINE EXPRESSION

A. Zero temperature rate

Physically, we consider at an initial time a state, such as a
thermal state.We choose the state such that, in the absence of
an external field, there are no net production or annihilation
rates. If we then adiabatically turn on an external field, the
initial state becomes unstable to a net production of charged
particles. We wish to calculate this rate.
We denote by jΩi the zero temperature state in the

absence of the external field, the so-called false vacuum.
The probability of the decay of this state is given by

P ¼ 1 − jhΩjŜjΩij2 ¼ 1 − e−VΓ; ð2Þ
where Ŝ is the S-matrix including the external field. As both
the false vacuum state and the external field are homo-
geneous, the quantity of interest is the probability per unit
spacetime volume, or the rate per unit volume, Γ. The rate
of pair production is given by twice the imaginary part of
the energy density of the initial state:

Γ ¼ 2

V
Imð−i loghΩjŜjΩiÞ

¼ 2ImðEÞ; ð3Þ
where V is the volume of spacetime and E is the energy
density of the false vacuum. Note that for this to make sense
we should do the calculation in a finite volume and take the
volume to infinity at the end.
We can analytically continue Eq. (3) to Euclidean time,

as the energy density can equally well be calculated in
Euclidean time. It then becomes [63]

Γ ¼ 2

V
Imð− loghΩjŜEjΩiÞ; ð4Þ

where ŜE refers to the “S-matrix” corresponding to
Euclidean time evolution. The generalization of this result
to nonzero temperatures can then easily be made. Using the
Matsubara formalism, finite temperatures simply corre-
spond to finite Euclidean time extents and periodic boun-
dary conditions [64].
We consider quantum electrodynamics (QED) and scalar

quantum electrodynamics (SQED) in 4D flat spacetime. In
the worldline formalism these two theories are related, the
only difference being the presence of a spin factor in the
QED worldline path integral. In Appendix Awe show that
the spin factor does not turn up in the leading term for weak
external fields. As we will make this approximation below,
we restrict our attention to SQED, the final results also
being valid for QED. SQED is the model of a photon, Aμ,
interacting with a massive charged scalar particle, ϕ, with
charge g. The introduction of the external field, Aext

μ , is
achieved by shifting the gauge field, Aμ → Aμ þ Aext

μ , in the
covariant derivative of ϕ. The Euclidean Lagrangian is then

LSQED ≔
1

4
FμνFμν þDμϕðDμϕÞ� þm2ϕϕ�; ð5Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength, Dμ ¼ ∂μ þ
igAext

μ þ igAμ is the covariant derivative and m is the mass
of the charged particle. We assume the scalar self-coupling,
i.e. λðϕϕ�Þ2=4, is sufficiently small that we may ignore it, at
least in the range of energies considered. Note that for QED
no such term would arise.
We write the false vacuum transition amplitude as a path

integral and note that we may integrate out the charged
particle, as it enters quadratically:

hΩjŜEjΩi ¼
Z

DAμDϕe−
R
x
LSQED

¼
Z

DAμ detð−D2 þm2Þ−1e−
R
x
1
4
FμνFμν

¼
Z

DAμe
−Tr logð−D2þm2Þ−

R
x
1
4
FμνFμν ; ð6Þ

where
R
x ≔

R
d4x and the functional integrations are nor-

malized such that the amplitude is 1 for zero external field.
The normalization drops out once we take the imaginary
part of the logarithm to find the rate, as in Eq. (4).
We can now use Schwinger’s trick (i.e. Frullani’s integral)

to express the logarithm as a proper time integral [1],

logðAÞ ¼ −
Z

∞

0

ds
s
ðe−As − e−sÞ; ð7Þ

and drop the second term as it is field independent and
will not contribute an imaginary part. The UV divergences
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of the theory will then turn up as divergences at small s
which can be renormalized using the heat kernel expansion.
Introducing the proper time integral leads to the expression
Trðe−ð−D2þm2ÞsÞ, which we express as a path integral over
closed worldlines, [65–69]

Trðe−ð−D2þm2ÞsÞ ¼
Z

Dxμe−S0½xμ;Aext
μ þAμ;s�; ð8Þ

where the action is given by

S0½xμ; aμ; s� ≔ m2sþ 1

4

Z
s

0

dτ _xμ _xμ − ig
I

aμdxμ; ð9Þ

and _xμ ≔ dxμ=dτ. This is the worldline path integral for a
charged scalar particlewith the reparametrization invariance
fixed such that the einbein (also called the vierbein or tetrad
by analogy to four dimensions) is equal to 2 (see for example
Chapter 1 of [70]). The false vacuum transition amplitude is
now

Γ ¼ −
2

V
Im log

Z
DAμe

−
R
x
1
4
FμνFμν

�
1

þ
X∞
n¼1

1

n!

�Yn
j¼1

Z
∞

0

dsj
sj

Z
Dxμje

−S0½xμj ;Aext
μ þAμ;sj�

��
:

ð10Þ

At each order in n the integration over the photon is now
Gaussian and can be done exactly, resulting in an effective
nonlocal worldline action. If we denote the free photon
propagator by Gμνðxj; xkÞ, we can write this as

Γ ¼ −
2

V
Im log

�
1þ

X∞
n¼1

1

n!

�Yn
j¼1

Z
∞

0

dsj
sj

Z
Dxμj

�

× e−
P

n
k¼1

ðS0½xμk;Aext
μ ;sk�−g2

2

P
n
l¼1

H H
dxμkdx

ν
l Gμνðxk;xlÞÞ

�
: ð11Þ

Integrating out the photon has left us with a nonlocal,
long-range interaction. At this point we have made no
approximations regarding the strength of the external field
or of the coupling. The relatively simple exponential form
of Eq. (11) only obtains for Abelian gauge fields (see for
example [71]).
At weak coupling, g2 ≪ 1, the nonlocal interaction term

in Eq. (11) can be dropped at leading order. In this case the
sum exponentiates, leaving only one path integration which
can be carried out exactly, leading to Schwinger’s result [1]:

ΓSchwinger ¼
m4ϵ2

8π3
X∞
n¼0

ð−1Þnþ1

n2
e−

π
ϵn: ð12Þ

In this paper we consider arbitrary coupling, g, for which
the nonlocal interaction cannot be dropped.

B. Finite temperature rate

The derivation thus far has been at zero temperature. At
finite temperature, T ¼ 1=β, we make the following
replacements,

hΩjŜEjΩi → N −1Tre−Ĥβ;

V → VT;

where Ĥ is the Hamiltonian of the system in the presence of
the external field and the normalization, N −1, ensures the
amplitude is 1 in the absence of the external field (see [20]
for a physical discussion of thermal Schwinger pair
creation). In the second line VT is equal to the spatial
volume, V, multiplied by the inverse temperature β.1 The
rate is then given by

ΓT ¼ 2

VT
Imf− log ðTre−ĤβÞg: ð13Þ

This transition to finite temperature can be made straight-
forwardly using the Matsubara formalism, i.e. by enforcing
periodicity in the Euclidean time coordinate, x4ðτÞ ¼
x4ðτÞ þ β, and including interactions between the periodic
copies.
Including interactions between periodic copies is equiv-

alent to replacing the photon propagator, Gμνðxj; xkÞ, by its
thermal cousin, Gμνðxj; xk;TÞ. In a general Rξ gauge the ξ
dependent term drops out when integrated around a closed
loop leaving just a term proportional to δμν. This gauge
independent part is

Gμνðxj; xk;TÞ ≔
X∞
n¼−∞

G

�
xj; xk þ

n
T
e4

�
δμν

¼
X∞
n¼−∞

−δμν
4π2ðxj − xk − n

T e4Þ2

¼ T sinhð2πTrjkÞδμν
4πrjkðcos ð2πTtjkÞ − coshð2πTrjkÞÞ

;

ð14Þ

where e4 is the unit vector in the Euclidean time
direction and we have defined tjk ≔ x4j − x4k and rjk≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1j−x1kÞ2þðx2j−x2kÞ2þðx3j−x3kÞ2

q
. This is the Matsubara

thermal Green’s function in position space.
To generalize Eq. (11), and get an expression for the

rate at finite temperature, one need only replace the zero

1Equation (13) for the thermal rate has been advocated by
Linde [72,73]. An analysis by Langer shows that a different
expression for VT should be used, with the inverse temperature
replaced by the decay time of an intermediate state [55,74,75].
Though, as we only work to exponential accuracy (i.e. the leading
order of the logarithm) in this paper, the difference does not affect
our results.
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temperature Green’s function with that of Eq. (14), and
impose periodic boundary conditions in the Euclidean time
direction, with period 1=T. The aim of this paper is to
calculate this thermal rate.

C. Inclusive rate at fixed energy

We will also consider inclusive tunneling rates at a fixed
energy E, i.e. rates from a microcanonical ensemble. In this
case one makes the replacements

hΩjŜEjΩi → N −1TrðδðE − ĤÞÞ;
V → VE ;

where the normalization again ensures the amplitude is 1 in
the absence of the external field. In the second line VE is
equal to the spatial volume, V, multiplied by some time
scale, which we expect to be Oð1=EÞ on dimensional
grounds. The exact form of VE will not concern us in this
paper as our final results are only to exponential accuracy.
The rate, ΓE , is then given by

ΓE ¼ 2

VE
Imf− log ðTrδðE − ĤÞÞg: ð15Þ

The thermal density matrix is related to the microcanonical
one by a sum over Boltzmann weights, or a Laplace
transform,

e−Ĥβ ¼
Z

∞

0

dEe−EβδðE − ĤÞ: ð16Þ

Hence the inverse relation is via an inverse Laplace
transform,

δðE − ĤÞ ¼ lim
B→∞

Z
iB

−iB

dβ
2πi

eðE−ĤÞβ: ð17Þ

The microcanonical density operator is the projection
operator onto the subspace of states with energy, E.
These rates and their relationship to thermal tunneling
rates have been discussed by various authors [16,75–78].
For sufficiently slow rates one can expand the logarithms in
Eqs. (13) and (15) to derive the following approximate
relation,

ΓT ∼
Z

∞

0

dEe−EβΓE ; ð18Þ

where we have ignored the ratio VE=VT as we will only use
the relation to exponential accuracy.

III. THE DILUTE INSTANTON GAS

We wish to consider Schwinger pair production in QED
and SQED for arbitrary coupling, g. This requires going
beyond perturbation theory in g. For a sufficiently weak
external field, as we will show, an alternative set of

approximations are valid and allow us to proceed. These
are the semiclassical and dilute instanton gas approximations.
Although Feynman diagrams will not be utilized in this

calculation, they can illuminate the structure of the approx-
imations we will make. The rate, Eq. (11), contains only
connected Feynman diagrams, due to the logarithm. The
constituents of the contributing diagrams are internal
charged particles lines; external photon lines, for Aext

μ ;
internal, dynamical photon lines, forAμ; and vertices joining
two charged particle lines and one or two photon lines.
At weak coupling, g ≪ 1, to leading order all depend-

ence on the dynamical photon can be dropped. The path
integrations in Eq. (11) are then uncoupled and the sum
exponentiates. The Feynman diagrams which contribute to
this all contain one charged particle loop and an arbitrary
number of external photon lines. These are the diagrams in
the first row of Fig. 1. The sum of these diagrams at zero
temperature is Schwinger’s original result, Eq. (12). At
finite temperature the rate has been calculated in
Refs. [15,17,18,79]. The inclusion of a single dynamical
photon line (i.e. two loops) was calculated first by Ritus at
zero temperature [25–28] and by Gies at finite but low
temperature [29]. In these calculations the approximation
of weak external fields has not been made.
At stronger coupling one must include the extra infinitely

many diagrams containing arbitrary numbers of internal,
dynamical photon lines as well as arbitrary numbers of
charged particle loops. However, as we will argue, for a
sufficiently weak external field, diagrams with a large
number of charged particle loops will be suppressed and
hence a loop expansion in charged particle loops is
possible. At each order one must sum the infinite set of
diagrams containing a fixed, finite number of charged
particle loops and an arbitrary number of both external and
dynamical photon lines. To first order this is the quenched

FIG. 1. External photon legs denote couplings to the fixed
external field while internal photon lines denote dynamical virtual
photons. The Schwinger formula [Eq. (12)], valid at weak
coupling, accounts for the infinite set of diagrams represented
in the first row. The quenched approximation also includes all
diagrams which include any number of internal photon lines, with
any topology. Some examples are shown in the second line. Note
that in SQED there are also four-point interactions involving two
photons and two charged particles (not shown here though
included in quenched approximation). In all the diagrams there
is only one charged particle loop.
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approximation, which in this context was argued to be valid
(at zero temperature) in Refs. [48,35] (see also [80]).
Figure 1 shows some examples of diagrams which con-
tribute in the quenched approximation.
Following Refs. [48,35], we consider the situation where

the external field is weak and sufficiently slowly varying to
be considered constant. We choose the external field to
point in the 3 direction, Fμν ¼ −iðδμ3δν4 − δν3δμ4ÞE (the
factor of −i is present due to the Wick rotation and the fact
that E is the value of the Minkowskian field). As long as the
worldline xμðτÞ forms the boundary of some surface within
the space, we can use Stokes’s theorem to reexpress the
interaction with the external field,

−ig
I

Aext
μ dxμ ¼ −

ig
2

Z Z
Fμνdxμ ∧ dxν

¼ −gE
I

x3dx4; ð19Þ

which is simply the area enclosed by the worldline,
projected onto the 3-4 plane and multiplied by −gE.
Now, we are in a position to set up the weak field
approximation to Eq. (11), which will amount to a semi-
classical approximation. To see this it will be useful for us
to rescale the τ in the integrand of S0, the parameters sj and
the fields xμj ðτÞ. We rescale them according to

τ → τ=sj;

sj → sj=gE;

xμj → xμjm=gE; ð20Þ

making all three dimensionless. The inverse temperature
must be scaled in the same way as xμj ðτÞ. We define the

scaled temperature ~T ≔ mT=gE and ~β ≔ 1= ~T.
The full rate at finite temperature becomes, upon

rescaling,

ΓT ¼ −
2

VT
Im log

�
1þ

X∞
n¼1

1

n!

Yn
j¼1

�Z
∞

0

dsj
sj

Z
Dxμje

−1
ϵ
~S½xj;sj;κ; ~T�e

κ
ϵ

P
k<j

H H
dxμjdx

ν
kGμνðxj;xk; ~TÞ

��
; ð21Þ

where ϵ ≔ gE=m2 and κ ≔ g3E=m2 and we have defined ~S,
the scaled action, as

~S½x; s; κ; ~T�

≔ sþ 1

4s

Z
1

0

dτ _xμ _xμ −
Z

1

0

dτx3 _x4

−
κ

2

Z
1

0

dτ
Z

1

0

dτ0 _xμðτÞ _xνðτ0ÞGμνðxðτÞ; xðτ0Þ; ~TÞ:

ð22Þ

Everything inside the logarithm is now separately dimen-
sionless. Note that Eq. (21) is exact. We have as yet made
no approximations regarding the strength of the external
field or the coupling.
The parameters m, g, E and T only arise in Eqs. (21)

and (22) in three combinations: in the overall prefactor of
the exponent, 1=ϵ, as κ and as ~T. For a sufficiently weak
external field, ϵ ≪ 1, the path integral is calculable in the
stationary phase, or semiclassical, approximation. This is
independent of the value of the coupling, g. The world-
line configurations which dominate the path integral are
those which satisfy the classical equations of motion. Of
these, those which give a nonzero imaginary part are
those which are saddle points of the action with an odd
number of negative modes in the spectrum of fluctuations
about the solution. The solutions relevant to tunneling
have just one negative eigenvalue and are called bounces
or instantons.

Note that the requirement that ϵ ≪ 1, which ensures
semiclassicality, entails that

κ ≪ g2;

~T ≫
T
m
; ð23Þ

however, as we make no restrictions on g or T, κ and ~T are
not thus constrained. This is key as we will only calculate to
leading order in ϵ but to all orders in κ and ~T.
To proceed in calculating the rate, Eq. (21), we perform a

cluster expansion, as introduced by Ursell [81] and Mayer
[82]. We define the two-particle function fkl, for k ≠ l, by

fkl ¼ exp

�
κ

ϵ

I I
dxμkdx

ν
l Gμνðxk; xl; ~TÞ

�
− 1: ð24Þ

The cluster expansion to Eq. (21) is then found by
expanding in powers of fkl and grouping connected terms
into so-called clusters. Only connected terms contribute to
ΓT . The expansion can be written as

ΓT ¼
X∞
n¼1

γn; ð25Þ

where γn is the contribution to ΓT from clusters of n
worldlines. The terms in the expansion can be mapped to
connected graphs of increasing complexity, such as in
Fig. 2 (these are textbook results; see for example
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Ref. [83]). The γn are proportional to the imaginary parts of
what might conventionally be called cluster integrals
(commonly denoted bn) for the ensemble of charged
particle worldlines, and so for brevity we will refer to them
as cluster integrals.
The first three are given by

γ1 ¼ −
2

1!VT
Im

Z
∞

0

ds1
s1

Z
Dxμ1e

−1
ϵ
~S½x1;s1;κ; ~T�;

γ2 ¼ −
2

2!VT
Im

Y2
j¼1

�Z
∞

0

dsj
sj

Z
Dxμje

−1
ϵ
~S½xj;sj;κ; ~T�

�
f12;

γ3 ¼ −
2

3!VT
Im

Y3
j¼1

�Z
∞

0

dsj
sj

Z
Dxμje

−1
ϵ
~S½xj;sj;κ; ~T�

�

× f3f12f13 þ f12f13f23g: ð26Þ

Equation (25) is still formally exact but, importantly, is now
expressed in a form that we can directly approximate. We
follow Refs. [84–90] in performing a dilute instanton gas
approximation. Essentially we will assume that the leading
order behavior of ΓT is captured by the lowest nonzero term
in the cluster expansion. This is a self-consistent approxi-
mation, the higher order cluster integrals being exponen-
tially suppressed with respect to the leading term.
First, suppose that there exists an instanton for γ1, so that

γ1 ≠ 0. The path integral is invariant under translations
xμðτÞ → xμðτÞ þ aμ. The instanton solution for γ1 will
necessarily break the translation symmetry and hence
fluctuations around the instanton will contain (at least)
four zero modes. Integration over these can be done using
the collective coordinate method (see for example [91]),
resulting in an integral over the position of the instanton.
The higher order cluster integrals give the contributions

due to interactions between instantons. Approximate multi-
instanton solutions can be constructed by combinations of
single instantons a large distance apart. The contribution of
these approximate saddle points can be found using the
method of constrained instantons [87,92]. The integrations
over the collective coordinates and constraints of these
approximate instantons will take the form of cluster
integrals for a gas of classical point particles (rather than
worldlines), with dipole interactions (as the worldlines are
closed and hence have zero net charge). In this way, the
infinite number of degrees of freedom of each particle

worldline are reduced to the four degrees of freedom of a
point in spacetime.
From this perspective, the rate, ΓT , can be interpreted as

the pressure of the instanton gas. Standard statistical
mechanical relations then give the density of instantons,
ninst, as

ninst ¼
X∞
n¼1

nγn: ð27Þ

Combining Eqs. (25) and (27), the rate, ΓT , can be written
as an expansion in powers of the density

ΓT ¼ ninst þ B2n2inst þ B3n3inst þOðn4instÞ: ð28Þ

This is the virial expansion and the coefficients, Bn, are the
virial coefficients. For n ≥ 3 they are given by the irre-
ducible graphs in the cluster expansion, those which cannot
be cut into two pieces by cutting one line, and B2n2inst ¼
−γ2. At weak coupling, this virial expansion has been
introduced previously in Refs. [27,28].
To leading order in the cluster expansion the instanton

density will be given simply by γ1. The average separation
between instantons is then γ−1=41 . The density of instantons
can be considered small if this distance is much larger than
the maximum size of the instantons, R.
There is however a subtlety due to the long-range

interactions of the instantons which was also found in
the dilute instanton gas expansion of QCD [85,86]. The
contribution to the action due to the interaction between a
pair of dipoles in four dimensions a distance jxj apart
decreases as 1=jxj4. This is such that, at zero temperature,
its integral over the volume of spacetime diverges propor-
tionally to logðVTÞ. As a result there is such a divergence in
the second virial coefficient, B2, and in all reducible
diagrams, defined to be those diagrams that can be split
into two disconnected parts by cutting a single line. On the
other hand, at nonzero temperature, there is no logarithmic
divergence due to the finite extent of the Euclidean time
direction.
Hence, at finite temperature, for sufficiently small,

nonzero γ1, we expect

ΓT ¼ γ1ð1þOðγ1L4ÞÞ; ð29Þ

where L ¼ MaxðR; βÞ. This leading order approximation is
equivalent to the quenched approximation. The semiclass-

ical approximation of γ1 gives γ1L4 ∼ e− ~Sðκ; ~TÞ=ϵ, where we
have written ~Sðκ; ~TÞ for the value of the scaled action,
~S½x; s; κ; ~T�, evaluated at the saddle point.
On the other hand, if there does not exist an instanton

solution consisting of a single worldline, then γ1 ¼ 0. In
this case we must repeat the above arguments for the first
nonzero cluster integral, γn0 , say. In that case the particles of

FIG. 2. The first three orders of the cluster expansion of the
rate. Each circle symbolizes a closed worldline. The lines joining
them are interactions given by the two-particle function of
Eq. (24). These diagrams are expressed algebraically in Eqs. (25)
and (26).
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the instanton gas would consist of groups of n0 worldlines
and Eq. (29) would be replaced by

ΓT ¼ γn0ð1þOðγn0L4ÞÞ: ð30Þ

In this paper, we consider only the leading order term in
the dilute instanton gas approximation, γn0 . Further, we
only calculate the exponential suppression of the leading
term. This is equivalent to saying that we calculate the
logarithm of the rate to leading order in the small parameter
ϵ. When n0 ¼ 1, this is

logðΓTÞ ¼ −
~Sðκ; ~TÞ

ϵ
þOðlogðϵÞÞ: ð31Þ

In semiclassically evaluating the terms γn, the saddle point
of the sj integrations can be easily found. For γ1, we find

γ1 ¼ −
2m4ϵ4

~V ~T

ffiffiffiffiffiffiffiffi
2πϵ

p

× Im
Z

Dxμ
�Z

1

0

dτ _xμ _xμ

�
−1
4

e−
1
ϵ
~S½x;κ; ~T� ð32Þ

where ~V ~T ≔ VTm4ϵ4 is the (dimensionless) scaled volume
and we have defined ~S½x; κ; ~T� to be the scaled action
evaluated at the saddle point of the s integration,

~S½x; κ; ~T� ≔ L½x� − A½x� þ κV½x; ~T�; ð33Þ

written in this way to emphasize its geometric nature. The
constituent terms are the (parametrization fixed) length of
the worldline

L½x� ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

1

0

dτ _xμ _xμ

s
; ð34Þ

the area projected onto the 3-4 plane

A½x� ≔
Z

dτx3 _x4; ð35Þ

and the interaction term

V½x; ~T� ≔ 1

2

Z
1

0

Z
1

0

dτdτ0 _xμðτÞ _xνðτ0ÞGμνðxðτÞ; xðτ0Þ; ~TÞ:

ð36Þ

The first term, L½x�, is the only nongeometric term, in the
sense that it depends on the coordinates along the world-
line. It is however equal to the length of the worldline when
evaluated on shell. Note that the action is invariant under
τ → τ þ c, where c is a constant. The corresponding
conserved charge is _x2ðτÞ.

In some cases there may be no instanton solution
consisting of a single worldline. As we have argued, in
these cases one should next look for instanton solutions
consisting of two and then more worldlines. The (scaled)
action for n0 worldlines could be thought of as that for a
single discontinuous worldline (where one does not take
derivatives across the discontinuities), except that the
kinetic term, Eq. (34), does not appear to be additive.
However, the kinetic term is, in fact, additive if each of the
disconnected worldlines have the same (parametrization
fixed) length,

n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
1

0

dτ _xμ1 _x1μ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

1=n0

0

dτ _x1μ _x1μ þ � � � þ
Z

1

ðn0−1Þ=n0
dτ _xμn0 _xn0μ

s
: ð37Þ

For the instanton solutions relevant in this paper, this allows
us to always talk about a single (possibly discontinuous)
worldline and to always use the action in Eq. (33).

IV. INSTANTONS

A. Finite temperature rate

The problem of finding the rate of pair production due to
a weak external field at given g, E, m and T is now reduced
to a problem which depends only on two parameters, κ and
~T. The general solution amounts to finding the saddle point
of ~S½x; κ; ~T� with one negative mode, and the fluctuations
about it.
Integrations over fluctuations in the negative mode, via

an analytic continuation, give the all important factor of i
[74,93–95]. There are also zero modes due to translation
invariance. Integration over these degrees of freedom
requires first introducing a constraint which fixes the
translation invariance and then integrating over that con-
straint. We choose to fix the center of mass of the worldline
to be at the origin, x̄μ ¼ 0. Integration over the constraint
then gives a factor ~VT ¼ m4ϵ4V ~T, canceling the 1= ~V ~T in
Eq. (32). The remaining integrations over positive mode
fluctuations give a subleading prefactor.
To calculate the logarithm of the rate to leading order in

ϵ, we need only find the instanton solution and calculate its
action, ~Sðκ; ~TÞ. Even this is a difficult enough problem,
made so by the nonlocal photon interaction in (33). In the
following we consider the equations of motion analytically
in certain limits: κ ≪ 1, ~T ≪ 1 and large ~T. Then for
arbitrary κ and ~T we use numerical methods.

B. Inclusive rate at fixed energy

From ~Sðκ; ~TÞ, we can calculate the inclusive rate at fixed
energy. In the semiclassical approximation, Eq. (18) shows
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that the two rates are related by a Laplace transform and
hence the exponents of the rates are related via a Legendre
transform. In the thermodynamic language ~Sðκ; ~TÞ is the
free energy divided by the temperature. The (scaled) energy
of the solution ~E is

~E ¼ ∂ ~S
∂ ~β ; ð38Þ

corresponding to a physical energy E ¼ m ~E. By further
scaling the worldlines by x → x=~β, taking the derivative
with respect to ~β, and then reversing the scaling, we find the
following useful result,

~β ~E ¼ L½x� − 2A½x�; ð39Þ

which holds on shell. The exponential suppression of the
rate of pair production at fixed energy is

Σ ¼ 1

ϵ
ð ~S − ~E ~βÞ

¼ 1

ϵ
~Σðκ; ~EÞ: ð40Þ

C. Regularization

As we have mentioned the interaction term, V, diverges
at zero distance. For smooth worldlines, this is the long
known self-energy divergence of electromagnetism. Its
appearance in the worldline formulation of QED has been
studied by many authors (see for example [67,71,96,97]).
The divergence, being due to the strong interactions
between nearby sections of a worldline, is proportional
to its length.
We first consider a well-known regularization scheme

due to Polyakov [67]. At zero temperature this amounts to
replacing the interaction term, V½x; 0�, with

VPolyakov½x; 0� ≔
1

8π2

Z
1

0

Z
1

0

dτdτ0
_xμðτÞ _xμðτ0Þ

ðxðτÞ − xðτ0ÞÞ2 þ a2

−
1

8π2
π

a

Z
1

0

ffiffiffiffiffiffiffiffiffiffiffi
_x2ðτÞ

q
dτ: ð41Þ

The second term in (41), proportional to the length of the
worldline, is a counterterm which absorbs the short dis-
tance divergence of the first term. It is almost of the same
form as the term L½x� in the action [Eq. (34)], except
without the reparametrization fixing. On shell the two terms
are equal; hence we can see it as a mass counterterm.
This self-energy divergence has been shown to be the only

divergence for smooth loops with no intersections [71].
Worldlines with discontinuous first derivatives (cusps) and
intersections may arise when there are delta function inter-
actions in the action or when a ratio of scales is

taken to zero. Such worldlines also generate logarithmic
divergences.2

Unfortunately the regularization scheme of Eq. (41)
leads to problems when trying to formulate the equations
of motion which prevent us taking the limit a → 0 in our
numerical calculations. This is because, for sufficiently
small a, the counterterm gives a negative bare mass. To
bypass this problem we adopt an alternative regularization
in our numerical calculations for which the bare mass and
the renormalized masses are equal,

VR½x; 0� ≔
1

8π2

Z
1

0

Z
1

0

dτdτ0
_xμðτÞ _xμðτ0Þ

ðxðτÞ − xðτ0ÞÞ2 þ a2

−
1

8π2

ffiffiffi
π

p
a2

Z
1

0

Z
1

0

dτdτ0 _xμðτÞ _xμðτ0Þe−ðxðτÞ−xðτ0ÞÞ2=a2 :

ð42Þ

Equations (41) and (42) agree as a → 0 as can be seen by
recognizing the Gaussian representation of the delta func-
tion. At finite temperature we must include the infinite sum
of interactions with the periodic copies. If the periodic
copies are disconnected and a finite distance apart, there is
no ultraviolet divergence from their interaction and the
unregularized interaction may be used. However, if the
periodic copies are connected, the interaction between them
must be regularized.
As well as the mass, there is, of course, charge

renormalization. Physically this is due to charged
particle-antiparticle pairs popping into and out of existence
and screening the bare charge. Thus the dilute instanton gas
approximation, which only takes into account a small
number of charged particle loops, does not take into
account these effects. In the worldline formalism such
short-lived virtual pairs are represented by small, closed
worldlines. Though there are many such possible fluctua-
tions, any given one will have an action of order ϵ0 and
hence will not arise in the stationary phase approximation
we have made. Including these fluctuations should result in
the final rates depending on the renormalized charge as
argued for in Ref. [35].
For the small worldlines of the short-lived virtual pairs to

simply renormalize the charge, there must be a separation
of scales between them and the larger worldlines which
constitute the saddle point. We can make a simple estimate
for the scale of the virtual pairs by equating the rest mass to
the Coulomb attraction. This equality reads 2m ¼ g2=ð4πrÞ
and gives the distance between charges as r ¼ g2=ð8πmÞ.
In our dimensionless units, this translates to a distance
κ=ð8πÞ, which must be smaller than any scale present in the

2These logarithmic divergences can be interpreted as due to
bremsstrahlung radiation. They give the anomalous dimension
for Wilson loops, and hence for the propagator of the charged
particles.
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instanton for the charge renormalization effects to be
independent. The modification of the photon-charged
particle interaction at distances below g2=ð8πmÞ has been
discussed in Refs. [98,99], with regard to magnetic
monopoles.

D. Small κ expansion

1. A singular perturbation problem

Throughout this paper, we make the approximation that
the external field is weak, i.e. that 0 < ϵ ≪ 1. The
parameter κ ≔ g2ϵ is proportional to ϵ. Hence, for not
too large couplings, we will also have that 0 < κ ≪ 1. This
is the case we will consider in this section. Parametrically
large couplings, such that κ ¼ Oð1Þ, will be considered in
Secs. IV E, IV F and V.
For sufficiently small κ, one would naively expect that

we could simply set κ ¼ 0 in the scaled action ~S½xμ; κ; ~T�,
thus dropping the interaction term. The problem is that the
interaction term diverges at short distance and hence cannot
be ignored for arbitrarily small but positive κ. This signals
that for small κ we are dealing with a singular perturbation
problem related to the existence of widely separated scales
(see for example [100]).
We seek distinguished limits of the action ~S½x; κ; ~T�, and

its corresponding equations of motion, by considering the
scalings x ¼ καy and ~T ¼ κ−αΘ. The aim is to find scalings
such that there is a balance between two terms in the action
and that the leading order equations of motion give non-
trivial solutions. After the scaling the action is

~S½x; κ; ~T� ¼ καL½y� − κ2αA½y� þ κV½y; y0;Θ�: ð43Þ

There are three distinguished limits: α ¼ 0; 1=2; 1. The
first, the α ¼ 0 scaling, corresponds to scales x ¼ Oð1Þ,
which we will refer to as the infrared (IR) problem. The
last, the α ¼ 1 scaling, corresponds to shorter scales
x ¼ OðκÞ, which we will refer to as the ultraviolet (UV)
problem. The intermediate scaling, α ¼ 1=2, corresponds
to scales x ¼ Oðκ1=2Þ, which we will refer to as the
matching problem.
For small κ, an approximate solution to the equations of

motion valid on all scales can be found by solving the
leading order equations of motion in these three distin-
guished limits and matching them smoothly together. The
simplest of the three problems is the matching problem,
α ¼ 1=2. The leading approximation amounts to simply
keeping the length term

~Sðκ ≪ 1; ~TÞ ≈ κ1=2L½y�: ð44Þ

The area and interaction terms are equally subdominant on
these scales, both being of order κ. Solutions to the
minimization of the length term are simply straight lines.

Hence the IR and UV solutions must be matched with
straight lines. The matching is done at some scale λ ¼
Oðκ1=2Þ which acts as a UV cutoff for the IR problem and
as an IR cutoff for the UV problem. The final solution
should be independent of the specific choice of λ.
The IR problem, the α ¼ 0 scaling, in the leading

approximation amounts to simply dropping the interaction
term, i.e. to

~Sðκ ≪ 1; ~TÞ ≈ L½y� − A½y�: ð45Þ

In terms of a Feynman diagram language, this approxima-
tion takes into account all external field photon exchanges
but no virtual photon exchanges. This is the top row of
Fig. 1, a one-loop approximation. Making this action
stationary is the old problem of maximizing the area of
a field given a fixed length of fencing. The solution at zero
temperature is a circle of radius 1 in the 3-4 plane. At finite
temperature the solution can be found using the method of
images.
The UV problem, the α ¼ 1 scaling, in the leading

approximation amounts to dropping the area term, i.e. to

~Sðκ ≪ 1; ~TÞ ≈ κðL½y� þ V½y; y0;Θ�Þ: ð46Þ

This equation determines the dynamics at scales y ¼
κ−1x ¼ Oð1Þ. In terms of Feynman diagrams this approxi-
mation takes into account all virtual photon loops but no
external photon lines.
Equation (46) is the action of a massive charged particle,

in the absence of an external field. Hence we can immedi-
ately find one solution, that of a straight line, with the
particle sitting still (or 4D rotations thereof). To find a
solution to the full equations of motion, valid at all scales,
we can stitch this straight line solution together with a
solution of Eq. (45). This is possible if for every point x on
the worldline, we can draw a ball of size λwithin which the
worldline appears straight as κ → 0. As solutions to (45)
are independent of κ, this will always be possible as long as
the worldline has everywhere finite curvature and does not
self-intersect. Otherwise, in the region of a cusp or self-
intersection, the straight line solution to Eq. (46) cannot
be used.
Such cusps or self-intersections are not permissible when

all the parameters of the theory are finite as they give new
divergences which depend on the angle at the nonanalytic
point, γ in Fig. 4. Due to this the divergences cannot be
absorbed as counterterms in the field theory. However, if a
ratio of scales in the problem goes to zero, as when κ → 0,
such apparent cusps or self-intersections can appear at
larger scales,Oð1Þ andOðκ1=2Þ in our case. On the smallest
scale, OðκÞ in our case, these apparent nonanalytic points
can be resolved as in Fig. 3. The separation of scales in
processes which involve a large momentum transfer, such
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as deep inelastic scattering, gives divergences for the same
reason [101,102].
For apparent nonanalytic points to be resolved on scales

OðκÞ, there must exist solutions of (46) which have the
topology (in the plane) of Figs. 3(b) and 3(c). Note that
these two possibilities are related by a rotation by π=2.
Hence all points of self-intersection can be resolved if
solutions with the topology of Fig. 3(b) can be found for all
angles π=2 < γ ≤ π. These solutions must be stitched
together with the IR solutions at some scale λ. Thus we
must impose boundary conditions at λ such that the
solutions can be smoothly matched.
The existence of such solutions can be made plausible by

noting that for π=2 < γ ≤ π the scalar product between the
tangent vectors on the left- and right-hand sides of Fig. 3(b)
is negative and hence the interaction term is repulsive. The
magnitude of the repulsion increases without bound as the
worldlines approach each other, suggesting that the world-
lines should approach to some minimum distance,
jy − y0j ¼ Oð1Þ. The minimum distance is a function of
the incoming angle γ and is independent of κ, as long as γ

and π − γ are both Oð1Þ. Naively one might expect that the
scaled action L½y� þ V½y; y0� would then beOð1Þ and hence
the contribution to the ~S ¼ κðL½y� þ V½y; y0;Θ�Þ ¼ OðκÞ.
However the following argument shows that this is not
the case.
The matching of the IR and UV solutions is carried out at

the scale λ. Due to the long range of the interaction, the UV
scaled action, L½y� þ V½y; y0;Θ�, will get large as logðλ=κÞ.
This is the infrared divergence of the interaction of two long
straight worldlines which are not parallel. Upon matching
the IR and UV solutions all dependence on λmust drop out.
However we will be left with a contribution to the action of
the order κ logðκÞ.
Overall we find that for solutions with apparent cusps or

intersections

~Sðκ; ~TÞ ¼ cð ~TÞ þ dð ~TÞκ logðκÞ þOðκÞ; ð47Þ

for some cð ~TÞ and dð ~TÞ. For solutions without cusps or
intersections the κ logðκÞ term is absent, i.e. dð ~TÞ ¼ 0.

2. Small κ results

At zero temperature the solution to the IR problem is a
circle of radius 1. At every point, x, on the circle, a small
ball of radius λ ¼ Oðκ1=2Þ can be drawn within which the
worldline looks approximately straight. Hence, the circle of
radius 1 solves the equations of motion at all scales. The
resulting action is

~Sðκ; 0Þ ¼ π −
κ

4
: ð48Þ

This result was first derived in [35,48]. Due to the
symmetry of the problem this result is in fact exact for
arbitrary κ and hence applies even for a parametrically
strong coupling. The prefactor is given by the determinant
of fluctuations about this solution. This can be computed at
leading order in κ, giving for the rate

Γ ≈ ð2sþ 1Þm
4ϵ2

8π3
e−

1
ϵðπ−κ

4
Þ; ð49Þ

where s is the spin of the charged particle. At κ ¼ 0
this reduces to Schwinger’s result for weak external
fields [Eq. (12)].
At finite temperatures, ~T, and small κ, the leading order

solution to the IR problem is given by an infinite sequence
of circles of radius 1 separated by a distance ~β along the
Euclidean time axis [see Fig. 5(b)]. For temperatures such
that ~T < 1=2, these circles do not overlap and, for suffi-
ciently small κ, we are able to draw a small ball of radius
Oðκ1=2Þ within which there is a single worldline which
looks approximately straight. Hence for such temperatures,
the sequence of circles solves the equations of motion at all

FIG. 3. Sphere of influence of point x, size OðκÞ, compared to
the curvature of the worldline on scale Oð1Þ.

(a)

(b) (c)

FIG. 4. On scales x ¼ Oð1Þ there may appear an intersection, as
in (a). This must be resolved on shorter scales, x ¼ OðκÞ, as (b) or
(c). Due to the fact that the problem can be specified completely
in the plane, these are the only possibilities. The long and short
distance pictures are matched at some scale λ ¼ Oðκ1=2Þ.
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scales and, to lowest order in κ, the rate is the same as at
zero temperature. This means that, at one-loop order, we
find no corrections to the zero temperature rate for
~T < 1=2.
Corrections to this can be calculated using perturbation

theory, for small κ. We write the full action and its solution
as expansions in κ,

~S½x� ¼ ~S0½x� þ κΔ ~S½x�;
xμðτÞ ¼ xμ0ðτÞ þ κxμ1ðτÞ þ κ2xμ2ðτÞ þ � � � ð50Þ

where ~S0½x� ¼ L½x� − A½x� and Δ ~S½x� ¼ V½x�. First order
perturbation theory requires us to simply evaluate Δ ~S½x0�.
We split this up into interactions between pairs of loops,

κΔ ~S½x0� ¼ κ
X∞
n¼−∞

Δ ~Sn½x0�; ð51Þ

where we have defined Δ ~Sn½x0� to be the interaction
between the loop at the origin and that centred at
Euclidean time n= ~T,

κΔ ~Sn½x0� ¼
κ

8π2

I I
dxdx0

ðx − x0 − n
~T
e4Þ2

: ð52Þ

The x denotes the positions on the circle at the origin with
respect to the origin. The x0 denotes the positions on the
circle centred at Euclidean time n= ~T with respect to its
center. The e4 is a unit vector in the Euclidean time
direction. The result of the integration, for n ≠ 0, is

κΔ ~Sn½x0� ¼ −
κ

4

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
− ð ~TnÞ2

q
− 1

2


2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
− ð ~TnÞ2

q : ð53Þ

This was first derived in Ref. [13]. For n ¼ 0, the integral
is −κ=4 after regularization and is the zero temperature

correction in Eq. (48). The full first order correction
is given by the sum, (51). It is negative for ~T ≥ 0;
hence it increases the rate of pair production. It also
diverges to −∞ as ~T → 1=2, i.e. where the zero temper-
ature instantons touch. However, following the discussion
of Sec. IV D 1, the separation of scales breaks down when
neighboring circles are only a distance Oðκ1=2Þ apart,
when 1=2 − ~T ¼ Oðκ1=2Þ.
Unlike the zero temperature result, there are corrections

at second order in κ due to the warping of the shape of the
circles. To calculate these, we must solve

Z
1

0

�
δ2 ~S0

δxμðτÞδxνðτ0Þ
����
x0

xν1ðτ0Þ
�
dτ0 þ δΔ ~S

δxμðτÞ
����
x0

¼ 0: ð54Þ

The solution must lie in the 3-4 plane, due to the symmetry
of the problem, and must be closed. Hence, we may express
it as

xμ1ðτÞ ¼ ϵðτÞð0; 0; cosð2πτÞ; sinð2πτÞÞ: ð55Þ

In terms of ϵðτÞ, the terms in the action at second order in κ
are

κ2

2

�Z
1

0

_ϵ2

2π
dτ − 2πϵ̄2

�

−
κ2 ~T4

2π

Z
1

0

ð4ζð4Þ þ 24 ~T2ζð6Þð1 − cosð4πτÞÞÞϵðτÞdτ;

ð56Þ

where ϵ̄2 denotes the square of the average of ϵðτÞ (not the
average of the square) and ζ denotes the Riemann zeta
function.3 From Eq. (56) we find the equations of motion
for ϵðτÞ, the solution of which can be found straightfor-
wardly via a Fourier series expansion. The two arbitrary
parameters in the general solution are fixed by satisfying
the constraint, x̄μ ¼ 0, which we are using to fix translation
invariance. The solution is given by

κϵðτÞ ¼ −
κ ~T4

2π
f4ζð4Þ þ 24ζð6Þ ~T2 þ 6ζð6Þ ~T2 cosð4πτÞg:

ð57Þ

The constant terms reduce the radius of the circle and the
term proportional to cosð4πτÞ makes the circle prolate
(stretched in the x4 direction). Substituting this solution
into Eq. (56) and putting it together with the zeroth and first
order terms we arrive at

(a) (b) (c) (d)

FIG. 5. Instanton solutions at small κ: (a) at zero temperature;
(b) at 0 < ~T < 1=2; (c) at ~T > 1=2, the naive instanton of
overlapping circles; and (d) at ~T > 1=2, the lemon instanton.

3Note that had the kinetic term been the actual length, rather
than its reparametrization fixed form, the only difference would
be the replacement of ϵ̄2 with

R
1
0 ϵðτÞ2dτ.
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~Sðκ; ~TÞ ¼ π −
κ

4

8<
:1þ 2

X∞
n¼1

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
− ð ~TnÞ2

q
− 1

2



2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
− ð ~TnÞ2

q
9=
;

þ κ2

π
ð4ζð4Þ2 ~T8 þ 48ζð4Þζð6Þ ~T10

þ 126ζð6Þ2 ~T12Þ þOðκ3Þ: ð58Þ

For the corresponding inclusive rate at fixed energy we
consider the Legendre transform of this sum. The energy is,
from Eq. (38),

~E ¼ − ~T2 ∂ ~Sðκ; ~TÞ
∂ ~T : ð59Þ

The leading term on the right-hand side takes the form of κ
multiplying a function of ~T. A consideration of this
function implies that if we wish to consider energies much
larger than κ, the corresponding temperature must be very
close to 1=2. This is the region of parameter space where
the circular worldlines almost touch, the minimum distance
d ≪ 1. The UV problem in this case is nonrelativistic,
with y3 being the “time” direction. Solutions to this
nonrelativistic problem exist for d≳ κ1=2. This implies
that the Legendre transform of Eq. (58) is only valid for
~E ≲ κ1=4. For ~E ≲ κ taking the Legendre transform analyti-
cally is made difficult by the infinite sum. In the limited
regime κ ≪ ~E ≪ κ1=4; however we can fairly simply find
the leading few terms:

~Σðκ; ~EÞ¼ π−2~E−
3

4
κ2=3 ~E1=3

þ κ

4

�
1−

X∞
n¼2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1−

1

n2

r
−1

�
2
�
1−

1

n2

�
−1=2

�

−
11

64
κ4=3 ~E−1=3þ

X∞
n¼2

κ5=3 ~E−2=3

32nðn2−1Þ3=2þ
35

1536
κ2 ~E−1

þOðκ7=3 ~E−4=3Þ: ð60Þ

The leading enhancement, −2~E, has been long known in
the context of induced vacuum decay [103,104].
For ~T ≥ 1=2 the circles intersect and the above calcu-

lation breaks down [see Fig. 5(c)]. The intersection must be
resolved in a region of size κ as in Fig. 3. However, once we
include intersections a more general class of solutions to the
full problem is possible: we can combine sections of circles
with intersections. This is possible as solutions to Eq. (45)
must only locally be arcs of a circle with curvature 1. Of all
possible solutions describing pair production processes,
that with minimum action will dominate the path integral
and hence give the rate of pair production.
The minimum action solution of this kind has been found

by several authors [10,16,23,105], though there is some

dispute about this [24]. It is given by a lemon shape,
Fig. 5(d), and not by the overlapping circles, 5(c). The
angle of intersection (see Fig. 4) is given by

γ ~T ¼ 2 arcsin
�

1

2 ~T

�
: ð61Þ

However, note that this worldline on IR scales is only a
solution to the full problem if, for given γ ~T , the corre-
sponding UV solution exists. At small but finite κ our
numerical calculations in Sec. V find instanton solutions
which appear to approach the lemon instanton as κ → 0.
The action of the thermal lemon-shaped instanton, to

zeroth order in κ, is

~Sð0; ~TÞ ¼ γ ~T þ sinðγ ~TÞ ð62Þ

where ~T > 1=2. Below ~T ¼ 1=2 the action is equal to π, at
zeroth order in κ. The action and its first derivative are
continuous at ~T ¼ 1=2, though the second derivative
diverges as −8=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − 1=2

p
as ~T → 1=2 from above.

Hence we say that there is a second order phase transition
at ~T ¼ 1=2, for κ ¼ 0. Below the phase transition the
solution has circular symmetry. This is broken above it.
To get the leading order correction in κ it would seem

we must solve Eq. (46) in the region of the intersection
(assuming such a solution exists). However, we can in fact
bypass this hard problem using perturbative renormaliza-
tion. First, we evaluate the interaction term on the leading
order IR instanton, the lemon. This gives an unphysical
logarithmic UV divergence from the intersections,

VLemon ¼
κ

π2

��
π

2
− γ ~T

�
cotðγ ~TÞ þ 1

�
logðλÞ

þ finite terms; ð63Þ

where we have used λ for the short distance regulator,
rather than a, as this should be of the order of the matching
scale, as in Sec. IV D 1. Though we cannot solve the UV
problem, we know that it must provide a compensating
counterterm i.e.

κ

π2

��
π

2
− γ ~T

�
cotðγ ~TÞ þ 1

�
log

�
κ

λ

�
: ð64Þ

From the perspective of the short distance physics this is an
IR divergence, arising due to the matching scale λ being
much larger than κ. The presence of κ in the logarithm is
due to the scaling in the short distance problem. This meets
our expectations, as explained at the end of Sec. IV D,
leading to a contribution of order κ logðκÞ,
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~Sðκ; ~TÞ ¼ γ ~T þ sinðγ ~TÞ

þ 1

π2

��
π

2
− γ ~T

�
cotðγ ~TÞ þ 1

�
κ logðκÞ þOðκÞ;

ð65Þ

where ~T > 1=2. Note that the Oðκ logðκÞÞ term starts to
dominate over the leading term when γ ~T ¼ OðκÞ and
π − γ ~T ¼ OðκÞ, or ~T ¼ Oðκ−1Þ and ~T − 1=2 ¼ OðκÞ.
This signals a breakdown of the separation of scales
assumed in deriving Eq. (65) and a breakdown of the
approximate solution.
We have perturbatively renormalized the problem. The

subleading corrections at OðκÞ depend on the solution to
the short distance (α ¼ 1) problem. Our result could be
nonperturbatively improved using the methods of the
renormalization group.
From Eq. (65) we can find the inclusive pair production

rate at a fixed energy by Legendre transform,

~Σðκ; ~EÞ ¼ π − γ ~E − sinðγ ~EÞ

þ 1

π2

��
π

2
− γ ~E

�
cotðγ ~EÞ þ 1

�
κ logðκÞ þOðκÞ;

ð66Þ

where γ ~E ≔ 2 arcsinð ~E=2Þ. The leading result here is the
same as for pair production stimulated by the presence of a
particle of mass ~E [10] (or an off-shell photon [106]) or by a
collision of particles with the same center of mass energy
[107,108]. These calculations involve the same shaped
instanton, though without the periodic copies. The (scaled)
exponential suppression in that case, including the
Oðκ logðκÞÞ correction, is

π − γ ~E − sinðγ ~EÞ

þ 1

2π2
f−γ ~E cotðγ ~EÞ þ 1gκ logðκÞ þOðκÞ: ð67Þ

Note that as 0 < κ < 1 and jγ ~E j < π, the corresponding rate
is strictly lower than that given by the exponentiation of
~Σðκ; ~EÞ. This is as expected: the inclusive rate at energy ~E is
greater that the rate of the specific process at the same
energy.

E. Low temperature expansion

Let us now consider the case of low temperatures,
~T ≪ 1, but arbitrary coupling, κ. The effect of nonzero
temperature is felt through the interaction potential, cou-
pling periodic copies of the circular worldline. Perturbation
theory in ~T takes the form

~S½x� ¼ ~S0½x� þ ~T4 ~S4½x� þ ~T6 ~S6½x� þ ~T8 ~S8½x� þ � � � ;
xμðτÞ ¼ xμ0ðτÞ þ ~T4xμ4ðτÞ þ ~T6xμ6ðτÞ þ ~T8xμ8ðτÞ þ � � �

ð68Þ

The terms ~Sn½x� are simply defined to be the coefficients of
~Tn in the full action. Note that (i) there is no linear term in
~S½x�, (ii) the coefficient of the quadratic term is zero due to
the closure of the worldline loops and (iii) the coefficients
of all odd powers of ~T in ~S½x� vanish due to cancellation
between loops in the positive and negative Euclidean time
directions. These properties of the ~S½x� expansion carry
over to that of xμðτÞ by standard perturbation theory.
First order perturbation theory gives

~Sðκ; ~TÞ ¼ π −
κ

4
− ζð4Þκ ~T4 − 4ζð6Þκ ~T6 þOð ~T8Þ: ð69Þ

These first two terms are the same as those coming from the
expansion of Eq. (58). To calculate the coefficient of the
Oð ~T8Þ term requires second order perturbation theory,
which amounts to solving a somewhat complicated inte-
grodifferential equation.
As pointed out in Refs. [13,27], expanding the expo-

nential of Eq. (69) captures the two-loop corrections for
weak fields and low temperatures [Eq. (76) in Ref. [25] and
Eq. (65) in Ref. [29]],

e−
1
ϵðπ−κ

4
−ζð4Þκ ~T4Þ ≈

�
1þ παþ 2π5αT4

45m4ϵ4

�
e−π=ϵ; ð70Þ

where α ¼ g2=ð4πÞ. At higher loop orders one would need
to calculate also the semiclassical prefactor for comparison.
The Legendre transform of (69) gives the inclusive pair

production rate at fixed, perturbatively low energies. It is

~Σðκ; ~EÞ ¼ π −
κ

4
−
5ζð4Þ1=5κ

28=5

� ~E
κ

�4=5

−
ζð6Þκ

22=5ζð4Þ6=5
� ~E
κ

�6=5

þO

� ~E
κ

�8=5

ð71Þ

where the requirement of low temperatures translates into
the requirement that ð ~E=κÞ ≪ 1.4

F. High temperature

At sufficiently high temperatures the process of pair
production becomes classical. The instanton is then inde-
pendent of the Euclidean time direction and is called a

4The structure of this expansion is reminiscent of diagram-
matic low energy expansions about instantons, such as arose in
the discussion of electroweak baryon number conservation (see
for example [104,109]).
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sphaleron [53,72,73,110]. The problem reduces from four
to three dimensions. Further, due to the irrelevance of the
one and two directions (μ ¼ 1, 2) the problem becomes one
dimensional. The action gives the Boltzmann factor.
In our case the instanton consists of two worldlines: a

stationary charged particle, xμðτÞ, and its antiparticle,
yμðτ0Þ, at a fixed distance, jx3ðτÞ − y3ðτ0Þj ¼ r. On such
a path the action reduces to

~SStraight½r; κ; ~T� ¼
�
2 − r −

κ

4πr

�
1

~T
: ð72Þ

There is a stationary point of the action at r0 ¼
ffiffiffiffiffiffiffiffiffiffi
κ=4π

p
which gives the thermal instanton. The action is then

~SStraightðκ; ~TÞ ¼ 2

�
1 −

ffiffiffiffiffiffi
κ

4π

r �
1

~T
; ð73Þ

which can also be written as ~S ¼ ~E= ~T, where ~E is the
energy of the solution. Note that as ~T ¼ ϵT=m, the factors
of ϵ cancel in the exponent of the rate, leaving just the usual
Boltzmann suppression in physical units.
The instanton may give the rate of thermal pair pro-

duction when it is the lowest action solution for given
parameters ðκ; ~TÞ. In a broad class of theories, though not
including SQED or QED, it has been shown that a solution
must satisfy a further constraint for it to describe tunnelling:
the spectrum of linear perturbations about the solution must
have one negative mode [111]. Variation of r is one
negative mode, present for all κ and ~T.
Due to the periodic boundary conditions, the compo-

nents of both worldlines are each expressible as a Fourier
series. We define ζμðτÞ ≔ xμðτÞ − yμðτÞ and ξμðτÞ ≔
xμðτÞ þ yμðτÞ. The linearized eigenvalue equations about
the straight line solution inherit the nonlocality of the full
action. They are thus linear integrodifferential equations,
the expressions being very long, so we omit them here.
For κ ≪ 1, the integrands of the nonlocal interactions

become highly peaked, approaching delta functions which
make the eigenvalue equations local. In this regime the
dynamics is nonrelativistic and the eigenvalue equations
can be straightforwardly solved. In the spectrum of
eigenfunctions there are two sets of potentially unstable
linear fluctuations, one given by ζ3ðτÞ ¼ r0 þ δ cosð2πnτÞ
and the other by ξ3ðτÞ ¼ δ sinð2πnτÞ, where δ ≪ 1, n ∈ N,
and in each case all other components are zero. The
eigenvalues are

λnðκ; ~TÞ ≈
1

2
ð2πnÞ2 ~T −

4πffiffiffiffiffi
πκ

p
~T
: ð74Þ

The lowest frequency mode is thus least stable, and is
unstable when ~T < ~Tλ1¼0ðκÞ ≈

ffiffiffi
2

p
π−3=4κ−1=4. This signals

the existence of another solution of lower action which is

continuously connected to the straight line solution but
which breaks time translation invariance. Hence there is a
second order phase transition in the rate at this temperature.
The instability is exactly analogous to the Plateau-Rayleigh
instability in fluid dynamics [112,113], the Gregory-
Laflamme instability in black strings [114], nuclear scis-
sion [115] and an instability in vacuum bubbles at finite
temperature [72,73].
These linear fluctuations remain eigenvectors of the full

integrodifferential equations at larger values of κ. The
eigenvalue of the lowest frequency mode is then somewhat
more complicated,

λ1ðκ; ~TÞ ¼
1

2
ð2πÞ2 ~T −

2

3
π2κ ~T2 −

2πffiffiffiffiffi
πκ

p
~T

− 2π

�
1þ 1ffiffiffiffiffi

πκ
p

~T

�
e−

ffiffiffiffi
πκ

p
~T: ð75Þ

For the higher frequency modes, the eigenvalue is given by
λnðκ; ~TÞ ¼ nλ1ðκ; n ~TÞ. The term, − 2

3
π2κ ~T2, is due to the

interactions of each worldline with itself. It is the much-
discussed, electromagnetic self-force [116–118] and its
contribution destabilizes the straight worldlines, increas-
ingly so at higher temperatures. This issue has been
discussed in a similar context in Ref. [98], where it was
argued that the photon-charged particle interaction is
modified on sufficiently short scales, thus diminishing
the self-force.
Setting Eq. (75) to zero defines the boundary between

stability and instability to the lowest frequency perturba-
tion. The boundary is described by a function, ~Tλ1¼0ðκÞ,
consisting of two branches which meet at κ ≈ 3.06534. This
is shown in Fig. 6. For sufficiently small κ, the lower branch
coincides with the long wavelength instability found in the
nonrelativistic analysis and the upper branch is approx-
imately given by ~Tλ1¼0ðκÞ ≈ 3=κ. The instability above the
upper branch is due to the self-force.
Higher frequency modes are more stable to the long

wavelength instability but less stable to the self-force
instability. As n increases the self-force term grows fastest
so all sufficiently high harmonics are unstable. This
instability is present for all κ and ~T. In fact, as this
instability only depends on the shape of the worldlines
at short distances, Oð1=ðn ~TÞÞ, it is present for all smooth
worldlines (and likely for more general worldlines too).
Due to the translational symmetry in the Euclidean time
direction, the unstable harmonics of the sphaleron come in
pairs, one a sine and the other a cosine.
The self-force instability may be a sign of the breaking

down of the cluster expansion at larger values of κ. In
support of this view, the self-force does not arise for κ ≪ 1
at leading order in κ. In the cluster expansion, only a small
number of charged particle worldlines are included.
Charged particle loops of size κ=ð8πÞ have a small action,

OLIVER GOULD and ARTTU RAJANTIE PHYSICAL REVIEW D 96, 076002 (2017)

076002-14



due to cancellation between the kinetic and interaction
terms. These loops make up the bubbling sea of virtual
charged particle pairs, part of the quantum vacuum. Their
presence modifies the photon-charge interaction on scales
of order κ=ð8πÞ, an effect which is not included in the
cluster expansion. A quantitative inclusion of these effects
is beyond the scope of this paper but, as argued in Ref. [98],
photon-charge interactions should be weaker on scales of
order κ (g2=m in dimensionful units) and below. This is
interpreted as an effective spreading-out of the charge,
which prevents the self-force instability.
For small deviations below the lower branch of ~Tλ1¼0ðκÞ,

and for sufficiently small κ, the dynamics is nonrelativistic.
In this case the equations of motion can be solved, even
beyond the linearized approximation, by straightforward
integration. The first integral of the motion is the energy, ~E,

−
1

4
_r2 þUðrÞ ¼ ~E; ð76Þ

where the overdot signifies differentiation with respect to
the Euclidean time coordinate, t, and UðrÞ ¼ 2 − r − κ=
ð4πrÞ. Integrating this equation gives tðrÞ, which can be
inverted to give rðtÞ. The solutions are periodic, with
period ~βðκ; ~EÞ.
In the nonrelativistic regime the action is given by

~SNonrelðκ; ~TÞ ¼
Z

rR

rL

2UðrÞ − ~Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðrÞ − ~E

q dr; ð77Þ

where ~E is treated as a function of ~β and κ and where rL and
rR are the classical turning points on the left and right. The
nonrelativistic approximation is valid for Δ ~T ≔ ~Tλ1¼0−
~T ≪ 1; hence we expand the integral thus:

~SNonrelðκ; ~TÞ ¼ ~SStraightðκ; ~TÞ −
1

3

ffiffiffi
2

p
π7=4κ5=4Δ ~T2

−
41

54
π5=2κ3=2Δ ~T3 þOðΔ ~T4Þ: ð78Þ

Note that the nonrelativistic solution has a lower action than
the straight lines, so it dominates the rate where it exists,

~Sðκ; ~TÞ ¼
� ~SStraightðκ; ~TÞ; Δ ~T ≤ 0;

~SNonrelðκ; ~TÞ; 0 < Δ ~T ≪ 1:

Also note that the difference between the two rates arises at
second order inΔ ~T, showing that the transition between the
two solutions is a second order phase transition.
The Legendre transform of these results gives

~Σðκ; ~EÞ ¼
(

~ΣStraightðκ; ~EÞ; Δ ~E ≤ 0;

~ΣNonrelðκ; ~EÞ; 0 < Δ ~E ≪ 1:

where Δ ~E ≔ ~Ec − ~E and ~Ec ≔ 2ð1 − ffiffiffiffiffiffiffiffiffiffi
κ=4π

p Þ, the thresh-
old energy. The two functions are

~ΣStraightðκ; ~EÞ ¼ 0; ð79Þ

and

~ΣNonrelðκ; ~EÞ ¼
π3=4κ1=4ffiffiffi

2
p Δ ~E þ 3π5=4

16
ffiffiffi
2

p
κ1=4

Δ ~E2

−
5π7=4

256
ffiffiffi
2

p
κ3=4

Δ ~E3 þOðΔ ~E4Þ: ð80Þ

The inclusive rate of pair production at a fixed energy is
unsuppressed at the threshold energy. Just below the
threshold, Δ ~E ≪ 1, the suppression is given by the non-
relativistic result here. Note that the leading term in Δ ~E can
be written as Δ ~E= ~Tλ1¼0.

FIG. 6. Regions within which the straight line instanton is
stable and unstable to the lowest frequency perturbations. The
boundary is defined by setting Eq. (75) to zero and defines a
function, ~Tλ1¼0ðκÞ, with two branches.

(a) (b) (c)

FIG. 7. Examples of the three types of numerical solutions,
all with κ ¼ 0.5 and a ¼ 0.02: (a) a C instanton with ~T ¼ 0.5;
(b) a W instanton with ~T ¼ 0.66; and (c) an S instanton with
~T ¼ 0.71 ≈ ~Tλ1¼0 (lower branch).
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V. ARBITRARY TEMPERATURE AND κ

For arbitrary temperature and κ there is no symmetry and
no small parameter which can help us proceed analytically.5

We adopt a numerical approach; in particular we dis-
cretize the loop, representing it by a large number, N, of
points, xi, i ¼ 0;…; N − 1, and then write an approxima-
tion to the action where derivatives are replaced by finite
differences (see Appendix C for details). Note that this is
not a lattice regularization as the points are not constrained
to lie on a lattice but may lie anywhere in R4, up to
numerical accuracy.
The number N must be chosen such that the distance

between neighboring points, jdxij ≔ jxiþ1 − xij, is much
smaller than the smallest scale in the problem, the cutoff, a.
Note that for a continuous worldline, the global reparamet-
rization symmetry τ → τ þ c means that _x2 is constant.
Thus, to leading order in 1=N, jdxij is independent of i and
hence equal to L½x�=N, where L½x� is the length of the loop.
Further, the cutoff a must be chosen to be much smaller
than any other scale in the problem. In summary we require

L½x�
N

≪ a ≪ Minðκ; A−1½x; i�Þ; ð81Þ

where A½x; i� is the proper acceleration of the worldline at
the point i. Note that the interactions between two
disconnected worldlines do not need regularization, so
we may treat them exactly (up to discretization errors).
Computational constraints impose a maximum possible N
(∼212 in our case). This in turn imposes a minimum a and
hence a minimum κ and a maximum proper acceleration.
The equations of motion are then 4N (ignoring for the

moment the symmetries and the zero modes) coupled,
nonlinear algebraic equations which we solve numerically.
Starting with an initial guess at the solution we iteratively
solve the linearized equations until converging on a
solution of the nonlinear equations, i.e. the Newton-
Raphson method. An accuracy of better than 10−7 was
usually reached in about three iterations. Simpler gradient
methods cannot be used here as the solution is a saddle
point, having one negative mode.

A. Finite temperature results

At low temperatures we can use the zero temperature
instanton as an initial guess. Once the iterations have
converged, we can then increase the temperature slightly
and repeat the procedure using the solution from the last run
as the initial guess for the next. In this way we can find all

solutions in the ðκ; ~TÞ plane which are continuously

connected to the low temperature solutions. These all have
the topology of a circle and we refer to them as C instantons.
There are also instantons with the topology of railway

tracks: two infinitely long disconnected pieces. Over the
whole ðκ; ~TÞ plane there exist such solutions consisting of
two straight lines (see Sec. IV F) which we refer to as S
instantons. Below the lower branch of ~Tλ1¼0 (see Fig. 6),
there exists another class of solutions with this topology
and with lower action. These consist of two wavy lines and
we refer to them as W instantons. For small κ and for
temperatures just below the lower branch of ~Tλ1¼0, we can
use the nonrelativistic approximation of Sec. IV F as an
initial guess. From there we can step in κ and ~T to find all
the continuously connected solutions. As we approach the
lower branch of ~Tλ1¼0 from below, the W instantons
become straighter and merge with the S instantons.
As discussed in Sec. IV C, we must regularize the

interaction potential. This introduces a third parameter,
a, the short distance cutoff. For each point in the ðκ; ~TÞ
plane, we find the corresponding solution for a range of a
and evaluate the action, ~Sðκ; ~T; aÞ, and its Legendre trans-
form, ~Σðκ; ~T; aÞ. For small enough a we should be able to
fit these to a linear function

~Sðκ; ~T; aÞ ≈ ~Sðκ; ~TÞ þ cðκ; ~TÞa; ð82Þ

for some cðκ; ~TÞ. To find ~Sðκ; ~TÞ we then extrapolate
to a → 0, ensuring that the a dependence is linear
(see Fig. 11).

The Newton-Raphson method does not converge in the
presence of zero modes, essentially because the solution is
not unique. As described in Sec. IV, we fix the translation
zero modes by demanding that the center of mass of the
worldline be at the origin, x̄μ ¼ 0. There is also a fifth zero
mode corresponding to the remaining global symmetry of
reparametrization invariance. For worldlines with circular
topology we fix this by demanding that x30 − x3N=2−1 ¼ 0.
Given a suitable initial guess this essentially fixes the point
x0 to be at the bottom of the loop and xN=2−1 to be at the top.
In the high temperature case, where the instanton splits up
into two separate worldlines, the global part of the
reparametrization invariance must be fixed on each side
separately. We do so by demanding that there be a turning
point at x0 on the right-hand side and at xN−1 on the left-
hand side; i.e. we fix the spatial derivative to be zero there.
In all cases we use Lagrange multipliers to impose
constraints.
In the high temperature case we found that there is also a

quasizero mode associated with translating one of the
halves forward in Euclidean time and the other downwards.
The presence of this quasizero mode slows the convergence
of the Newton-Raphson method. To prevent this slowing
down we fixed x̄4L ¼ 0 and x̄4R ¼ 0, rather than simply

5Note that solutions of the equations of motion are only
instantons if their actions are positive. At zero temperature this
restricts us to κ < 4π. The same condition holds at high temper-
atures for the straight line instanton.
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ðx̄4L þ x̄4RÞ ¼ 0 (subscripts L and R refer to left- and right-
hand sides). This overconstrains the problem but the
solutions found in this way are also solutions of the
original problem. Further, from the parity symmetry we
expect solutions to satisfy this extra constraint.
In this way we can start to fill in the ðκ; ~TÞ plane with

instanton solutions, building up a contour plot of the action
and a phase diagram. The three different classes of
instantons, C, W and S, are shown in Fig. 7. Each class
has a region of existence and a region within which it has
the lowest Euclidean action (the actions denoted respec-
tively by ~SC, ~SW and ~SS). If two solutions exist at a given
point in the plane, that with lower Euclidean action
determines the rate, and hence defines the phase. Only
the regions with positive action can describe tunneling
processes. Figure 8 is a contour plot of the Euclidean action
as calculated numerically.
The phase diagram that emerges is quite interesting. The

S instantons exist over the whole ðκ; ~TÞ plane. The C andW
instantons do not. Where we have found the W instantons
to exist, they have lower action than the S instantons. It also
seems to be the case for the C instantons. It is the case at
κ ¼ 0 and we can give an argument for it at κ ¼ 4π. The
action of the C instantons goes to zero at ð4π; 0Þ whereas
that of the S instantons goes to zero at ð4π; 1=πÞ. Further, if
we can assume that ~SC and ~SS decrease with increasing
temperature (i.e. the solutions have positive energy), then,
where the C instantons exist for κ ¼ 4π and ~T > 0, they
must have lower action. We have not found numerically a
region within which both the C and W instantons exist. It
may be that they exist in disjoint regions, or it may be that
they coexist near their phase boundary where our numerical
calculations fail.
From Fig. 8 we can see the existence of two lines of phase

transitions: ~TCWðκÞ separating the C instantons from the W
instantons and ~TWSðκÞ separating the W instantons from the
S instantons. From our numerical results, within the range of
parameters explored, the line defined by ~T ¼ ~TWSðκÞ
appears to coincide with the lower branch of ~Tλ1¼0ðκÞ.
This line is a line of second order phase transitions, as
discussed in Sec. IV F. The order of the phase transitions at
~T ¼ ~TCWðκÞ is not clear, except at κ ¼ 0 where it is of
second order, as discussed in Sec. IV D 2. At κ ¼ 0 we also
have that ~TCWð0Þ ¼ 1=2. Above this we can say nothing
precise as, in the region around ~T ¼ ~TCW , we have not been
able to maintain the hierarchies of Eq. (81). However it
appears that ~TCWðκÞ ≈ 1=2, at least for κ ≤ 1.
For ðκ; ~TÞ outside the region spanned by our numerical

calculations (see Fig. 8), there is little we can say about the
formof the phase diagram.The two lines of phase transitions
may cross at some point ~TCWðκ�Þ ¼ ~TWSðκ�Þ, which we
denote by ðκ�; ~T�Þ, or even at multiple points. Alternatively
the line of phase transitions between C and W instantons

may remain forever below that of W and S instantons, i.e.
~TCWðκÞ < ~TWSðκÞ for all κ. More work is needed to better
understand the phase diagram for larger κ and ~T.
For comparison with the analytic results enumerated in

Secs. IV D, IV E and IV F, in Fig. 9 we also give a plot
comparing the action as a function of ~T, for fixed κ ¼ 0.2.

B. Fixed energy results

We also calculate the Legendre transform of these
results. To calculate the energy of a solution we use
Eq. (39). Figure 10 is a contour plot in the ðκ; ~EÞ plane
of the exponential suppression, ~Σ.
At κ ¼ 0 the relevant instanton is the lemon-shaped one

discussed in Sec. IV D 2. The corresponding suppression is
given by Eq. (66) and there is no phase transition for any

FIG. 8. Contour plot of the action, ~Sðκ; ~TÞ, as calculated
numerically. The solid red and blue lines are our numerical
results and the solid green lines are given by Eq. (73). The region
in the top right, bounded by the green dotted line, is the region
within which the S instanton is the only known solution. The
blank region between the solid red and blue lines and for small κ
is where we could not maintain the hierarchies of Eq. (81) with
N ¼ 212 points. The dashed blue lines are linear extrapolations
from the contours found numerically to the same value of the
action at κ ¼ 0 [Eq. (62)].

FIG. 9. A slice through the ðκ; ~TÞ plane at fixed κ ¼ 0.2. The
action of the W instantons (blue) is lower than that of the S
instantons (green) where they exist. The lemon-shaped instantons
are only exact solutions for κ ¼ 0. The expression for their action
is π for ~T < 1=2 and Eq. (62) for ~T > 1=2. The transition
temperature, ~TCW , lies somewhere in the grey shaded region. The
difficulty in maintaining the hierarchies of Eq. (81) has prevented
us from calculating it more accurately.
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0 < ~E < ~Ec. On the other hand for κ > 0 there is a phase
transition between the C and W instantons.
In Fig. 10 we have also plotted extrapolations from our

numerical results to the same value of ~Σ at κ ¼ 0 [Eq. (66)].
The extrapolations for both C and W instantons look good.
How these instantons match onto the lemon instantons at
κ ¼ 0, and where the phase transition between them lies, is
not clear. Note that for small, nonzero κ and small ~E the
leading terms for both C and W instantons agree [Eqs. (60)
and (66)].

C. Numerical errors

For a selection of our numerical solutions we performed
various checks. For the C and W instantons we computed
the lowest few eigenvalues of perturbations about the
solutions and always found that there was one negative
mode, as required for the solution to be interpreted as a
tunneling solution. We also computed the spectrum of
eigenvalues about some S instantons, finding one negative
eigenvalue for temperatures above the lower branch of
~Tλ1¼0 and more than one below this temperature. The
apparent absence of the self-force instability due to higher
harmonic fluctuations may be due to the cutoff, a, and due
to the discretization of the worldlines. The conservation of
_x2 was accurate to about 1 part in 104 or better. The
solutions were found to be symmetric under a rotation by π
in the 3-4 plane, to numerical accuracy.
The dominant errors in our numerical calculation are due

to the difficulty of maintaining the hierarchies of Eq. (81).
We have rejected solutions for which L½x�=ðNaÞ > 0.15 or
for which a=Minðκ; A−1½x; i�Þ > 0.2. The errors due to the
finiteness of these quantities manifest in the extrapolation
a → 0 [see Eq. (82)].

See Fig. 11. For very small a, the dependence of the
action on a is strongly nonlinear. This is due to a becoming
comparable with the distance between points, L½x�=N, and
hence the discreteness of the representation of the worldline
becomes significant. We implemented an algorithm to fit to
only the linear part of the plot. For each point in the ðκ; ~TÞ
plane we assemble the data fa; ~Sðκ; ~T; aÞg in an array,
ordered by the value of a. We then fit straight lines to all
subsets of at least four consecutive data points, ensuring
that this covers a range of a such that the maximum value is
at least twice the minimum value. For each fit we calculate
the standard error in the result. For our final result, ~Sðκ; ~TÞ,
we take that with least standard error. We also throw away
results for which the standard error due to the fit is greater
than 0.01, though in most cases it is much smaller.
For ~T ¼ 0 we have both approximate, numerical results

and an exact, analytic expression, Eq. (48). The difference
between the two is found to increase with κ up to about 0.01
at κ ¼ 1, using N ¼ 212 points. This error scales with the
number of points as 1=N2. We also have an exact, analytic
expression for large temperatures, Eq. (73). Unfortunately
though, for the corresponding instanton, the S instanton,
due to the enhanced symmetry the zero modes correspond-
ing to time translation and to reparametrization invariance
cannot be fixed as for the other instantons, preventing
convergence of the Newton-Raphson method.
As we approach the phase transition between C and W

instantons, ~TCWðκÞ, it becomesmore difficult tomaintain the
hierarchies of Eq. (81). Hence we expect errors there to be
greater.

VI. CONCLUSIONS

In this paper, we have extended previous results on
Schwinger pair production to arbitrary couplings and arbi-
trary temperatures. To achieve this we restricted ourselves to

FIG. 10. Contour plot of ~Σðκ; ~EÞ, the exponential suppression
of the inclusive rate of Schwinger pair production at fixed energy.
The blank region in the top right, bounded by the green line, is the
region within which the exponential suppression of the S
instanton is negative. The blank region between the solid red
and blue lines and for small κ is where we could not maintain the
hierarchies of Eq. (81) with N ¼ 212 points. The dashed blue
lines are linear extrapolations from the contours found numeri-
cally to the same value of ~Σ at κ ¼ 0 [Eq. (66)].

FIG. 11. Plot of extrapolation of data to remove cutoff, a → 0.
Here are plotted data points for ~Sðκ; ~T; aÞ for W instantons at
ðκ; ~TÞ ¼ ð0.2; 0.8Þ. The linear extrapolation is also plotted. The
wild behavior at very small a is expected to be due to the effect of
the discreteness scale; here L½x�=N ≈ 0.0006.
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weak, constant external fields. This restriction was shown to
result in a semiclassical approximation and within this
approximation we have calculated the leading behavior of
the logarithmof the rate.As a by-product,wewere also able to
obtain inclusive pair production rates at fixed energy.
We adopted the worldline description. In this framework

the problem reduced to one of solving the instanton
equations of motion for a self-interacting worldline, an
interesting geometric problem.
For weak couplings, like in QED, our results comple-

ment the extensive literature on the subject, providing an
alternative approach which holds at all temperatures and in
which some issues are clearer. In this case κ < ϵ and our
approach, which includes all orders in κ but just the leading
order in ϵ, does not seem necessary. However, as we have
discussed, the singular nature of the small κ perturbation
means that one ought not to simply set κ ¼ 0 from the
outset. Doing this may lead to the incorrect instanton and
hence to incorrect results at leading order in ϵ.
In this weak coupling regime, and at temperatures

~T < 1=2, our results give small corrections to the leading
order results. When expanded they capture the two-loop,
thermal correction for weak fields. We also find no thermal
correction at one loop in this temperature range. Though we
have calculated analytically the correction to the exponent
to leading and next to leading order in κ, a full calculation
of higher order loop corrections would require also the
thermal corrections to the prefactor.
At higher temperatures, ~T > 1=2, the singular nature of

the weak coupling expansion gives nontrivial corrections to
the naive κ → 0 limit. Our numerical solutions at finite κ
appear to approach the well-known lemon-shaped instanton
as κ → 0. At leading order, this solution gives a nonzero
thermal enhancement to the rate. Note however that this
enhancement is not present in the one-loop approximation,
which breaks down due to the singular nature of the weak
coupling expansion. The lemon-shaped instanton also
shows an enhanced correction to the exponential suppres-
sion of order κ logðκÞ=ϵ. This dominates over the order of
the ϵ0 correction for sufficiently small ϵ.
At intermediate and strong couplings our results open

new avenues. Using them one can make reliable estimates
for the pair production rate of strongly charged particles via
the thermal Schwinger process. In particular one could
apply these results to the pair production of magnetic
monopoles. Sufficiently light magnetic monopoles would
be produced amply in the strong magnetic fields and high
temperatures present in heavy ion collisions, in neutron
stars and in the early Universe.
In this paper we have only calculated the exponential

suppression of the rate. For direct phenomenological
application, one should also calculate the prefactor.
References [105,119,120] would be an apt place to start.
They all find similar instantons to ours, though in theories
without dynamical long-range forces.

The appearance of the self-force instability in the semi-
classical evaluation of the path integral raises some
intriguing questions that require further work. So too does
the instanton phase diagram, Fig. 8, for which further work
is needed to determine the form of the phase diagram at
larger values of κ and ~T.
The worldline description that we have developed here

could be used to calculate pair production rates for other
induced Schwinger processes at arbitrary coupling. For
example one could consider a nonconstant external field.
The numerical approach we have adopted would then
directly apply.
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APPENDIX A: QED AND SQED IN WEAK
EXTERNAL FIELDS

For sufficiently small scalar self-coupling, λ, the only
difference between QED and SQED is the spin of the
charged particles. Following the manipulations of SQED in
Eq. (6) we see that the difference for a spin 1=2 charged
particle manifests simply in replacing the trace over the
Klein-Gordon operator with a trace over the Dirac operator.
As in Refs. [65,68], we note that this difference can be
taken into account by including the spin factor in the path
integral representation of the functional trace,

Trðe−ð−i=D−imÞsÞ

¼
Z

Dxμe−S0½xμ;Aext
μ þAμ;s�Spin½xμ; Aext

μ þ Aμ; s�; ðA1Þ

where S0½xμ; Aext
μ þ Aμ; s� is given in Eq. (9) and the spin

factor is given by

Spin½xμ; Aext
μ þ Aμ; s� ≔ TrγPe

ig
R

s

0
dτΣμνðFext

μν ðxÞþFμνðxÞÞ ðA2Þ
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where Trγ signifies the trace over spinorial indices, P is the
path ordering operator and Σμν are the generators of Lorentz
transformations in the spin 1=2 representation, i.e.
Σμν ¼ ½γμ; γν�=2, where γμ are the gamma matrices. The
next step is to integrate over the gauge field Aμ. Note that
even with the inclusion of the spin factor the integration
over Aμ is Gaussian and hence can be done exactly. In the
spin 0 case, the integration takes the following form,

Z
DAμe

−1
2

R
x

R
y
AμðxÞG−1

μν ðx;yÞAνðyÞþi
R
x
AμðxÞjμ0ðxÞ; ðA3Þ

where
R
x ≔

R
d4x, and jμ0ðxÞ is given by

jμ0ðxÞ ¼ g
Z

s

0

dτ _xμðτÞδð4Þðx − xðτÞÞ: ðA4Þ

Performing the integration leads to the following
exponential,

exp

�
−
1

2

Z
x

Z
y
jμ0ðxÞGμνðx; yÞjν0ðyÞ

�
: ðA5Þ

The difference in the spin 1=2 case amounts to the
replacement

jμ0ðxÞ → jμ0ðxÞ þ ig
Z

s

0

dτΣμν∂νδ
ð4Þðx − xðτÞÞ;

≔ jμ0ðxÞ þ ξμðxÞ: ðA6Þ

Now, we scale all the dimensionful quantities as in Sec. II,
i.e. τ → τ=s, s → s=gE and xμ → xμm=gE. This reduces all
dependence on the parameters to dependence on ϵ ≔
gE=m2 ≪ 1 and κ ≔ g3E=m2. We can now write the
interaction terms in the spin 1=2 case as

exp

�
−

κ

2ϵ

Z
x

Z
y
jμ0ðxÞGμνðx; yÞjν0ðyÞ

− κ

Z
x

Z
y
ξμðxÞGμνðx; yÞjν0ðyÞ

−
κϵ

2

Z
x

Z
y
ξμðxÞGμνðx; yÞξνðyÞ

�
; ðA7Þ

where jμ, ξμ andGμν are now independent of g, E andm. In
this paper, we have allowed κ to freely vary up toOð1Þ (that
is because we only require κ ≪ g2 and we consider strong
coupling); however for the semiclassical approximation to
be valid we require ϵ ≪ 1. Hence the spin dependent
factors are subleading [as long as the dimensionless parts
are at most Oð1Þ] and we can drop all ξμ dependence.
The net result of all this is that, to leading order in ϵ, the

instanton describing pair production is the same for both
theories, as is the fluctuation prefactor about the instanton,

excluding an overall spin factor (2sþ 1). Charge renorm-
alization, which is not included to leading order in ϵ, is
different in QED and SQED. In both cases we expect the
final results to depend on the renormalized charge, as
discussed in Sec. IV C.

APPENDIX B: WORLDLINE DESCRIPTION
OF EXTENDED PARTICLES

For elementary particles the geometric worldline
description arises naturally and can be derived by standard
methods from the field theoretic description, as shown in
Sec. II. For extended field configurations, such as solitons,
no exact worldline description can exist. However, for
circumstances where the extended field configuration is
much smaller than all other scales, an effective worldline
description can suffice [10,48,104]. This is analogous to the
description of the motion of planets in the solar system in
terms of the motion of points.
In Ref. [48] just such an effective description was

explicitly derived for the ’t Hooft-Polyakov monopole
[40,41]. The worldline instanton that they found was a
circle and the effective worldline description was found to
be valid when the radius of the circle was much larger than
the size of the ’t Hooft-Polyakov monopole. We wish to
generalize this result for more general worldline curves.
The ’t Hooft-Polyakov monopole is a static solution to

the field equations for the Georgi-Glashow model, and
other similar theories. It is an extended solution and hence
it cannot be said to be at a position; however it does have a
well-defined center and core region, beyond which all but
the Abelian gauge field is exponentially damped. We can
thus assign to the center of the monopole solution a
worldline, i.e. a map from the real line to the path in
Minkowski space traced out by the center of the monopole
solution. The static solution and Lorentz transformations of
it (which are also solutions) have straight, timelike world-
lines. Static solutions of the Euclidean (Wick rotated)
theory need not be timelike.
Combinations of straight worldlines are no longer exact

solutions due to the interactions between them. However, in
the limit that the monopoles are infinitely separated these
should become exact solutions [90].6 At finite separation,
due to the long-range interaction between monopoles, the
solution is no longer exact. However, we can find an
approximate solution following [48].
We consider for example the Georgi-Glashow theory. To

find an approximate solution to the full (Euclidean) field

6In the Bogomol’nyi-Prasad-Sommerfeld limit [121], i.e. when
the scalar self-coupling is infinitesimally small and positive, such
superpositions of static, like-charged monopoles are in fact exact
solutions. That is because in this limit the attraction due to the
Higgs field is exactly canceled by the repulsion due to the gauge
field [122]. At low energies the dynamics of such multimonopole
solutions is given by the geodesic motion of the collective
coordinates on the configuration space of solutions [123–125].
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equations we first solve the equations of motion for a
pointlike monopole in a given external magnetic field, at a
certain temperature, including the self-interaction. These
are the classical worldline calculations we have carried out
in this paper. For simplicity, we restrict the worldline to the
3-4 plane. We use construct coordinates centered on the
worldline and Fermi-Walker transported along it (see for
example [126]). We denote the coordinate along the
worldline as u and the normal coordinate in the plane as
v, with ðx1; x2; vÞ ¼ ð0; 0; 0Þ on the worldline. Other than
photon excitations, which are taken into account, internal
excitations of the ’t Hooft-Polyakov monopole are gapped
and hence, for sufficiently low energies, we can assume that
these are not excited. That is, we can assume translation
invariance along the monopole worldline. In this case, the
field equations near the monopole worldline read

DiFij þ aðuÞFvj þOðaðuÞ2v2Þ ¼ ½Diϕ;ϕ�;

DiDiϕþ aðuÞDvϕþOðaðuÞ2v2Þ ¼ λ

g2
ðjϕj2 −M2

WÞϕ;

ðB1Þ

whereDa ¼ ∂a þ igAa; i, j run over ðx1; x2; vÞ; λ is the four
point self-coupling of the Higgs particle; MW is
the mass of a W boson; and aðuÞ is the magnitude of the
acceleration of the worldline. At zeroth order in the accel-
eration these equations are solved by the ’t Hooft-Polyakov
magnetic monopole, static along the worldline. Hence, at
lowest order in the acceleration the full field theoretic
calculation reduces to the geometric, worldline one which
we have pursued in this paper. This also requires the radius
of curvature of the worldline to be large compared with the
classical radius of the monopole solution. In our dimension-
less units this is κ (for the Georgi-Glashow theory) and hence
we get the constraint κ ≪ aðuÞ−1.

APPENDIX C: FINITE DIFFERENCE
FORMULATION

In this appendix we give our discrete approximation to
the action in Eq. (33) and the corresponding equations of
motion. We use a simple finite difference approximation

~S½x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
X
i

ðxμiþ1 − xμi Þ2
r

−
X
i

x3i ðx4iþ1 − x4i Þ

−
κ

2

X
i;j

ðxμiþ1 − xμi Þðxμjþ1 − xμj ÞGRðxi; xj; ~T; aÞ ðC1Þ

where i and j run over 0; 1;…; N − 1 and contractions of
Lorentz indices are implied. As discussed in Sec. IV C we
choose an exponential counterterm, rather than the simpler
length counterterm of Polyakov, so that the bare mass is
positive. Summing the infinite periodic copies of the
regularized propagator gives

X∞
n¼−∞

−1
4π2ððtþ n= ~TÞ2 þ r2 þ a2ÞÞ

¼
~T sinh ð2π ~T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p
Þ

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p
ðcos ð2π ~TtÞ − cosh ð2π ~T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p
ÞÞ ;

ðC2Þ

and likewise for the exponential counterterm

X∞
n¼−∞

ffiffiffi
π

p
4π2a2

e−ðr2þðtþn= ~TÞ2Þ=a2

¼
~Te−r

2=a2ϑ3ðπ ~Tt; e−π2a2 ~T2Þ
4πa

ðC3Þ

where t and r are the temporal and spatial differences as in
Sec. II B and ϑ3 is the Jacobi theta function of the third
kind. Due to the lack of well optimized numerical libraries
for the Jacobi theta function, we in fact make a different
choice of counterterm, which also reduces to the exponen-
tial regularization for small ~T,

GRðxi; xj; ~T; aÞ

¼
~T sinh ð2π ~T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p
Þ

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p
ðcos ð2π ~TtÞ − cosh ð2π ~T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p
ÞÞ

þ
ffiffiffi
π

p
e−r

2=a2eðcos ð2π ~TtÞ−1Þ=ð2π2a2 ~T
2Þ

4π2a2:
ðC4Þ

This regularization is smooth and periodic in 1= ~T, as well
as being relatively fast to numerically evaluate.
One further point, also mentioned in Sec. IV C, is that

there is no need to regularize the interactions between
disconnected parts of worldlines, so one may use the
unregularized propagator. This is useful as it removes
some sources of error due to the finite cut off, a. In our
calculations, we have used the unregularized propagator for
the interaction between the left- and right-hand sides of the
W instantons. It could also be used, though we did not, for
the interaction between thermal copies for the C instantons.
As discussed in Sec. V, we fix the N0 zero and quasizero

modes using Lagrange multipliers. Writing the constraint
equations as Ca½x� ¼ 0, where a runs over 1;…; N0, we
define a new action including the Lagrange multiplier
terms:

~S½x; λ� ≔ ~S½x� þ
XN0

a¼1

λaCa½x�: ðC5Þ

The λa are the Lagrange multipliers.
The equations of motion, which are simply 4N þ N0

coupled, nonlinear, algebraic equations, are found by
taking partial derivatives of (C5), with respect to xρk and λb,
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∂ ~S½x�
∂xρk ¼ 0;

Cb½x� ¼ 0: ðC6Þ

The Newton-Raphson equations derived from these, and an
initial guess, are a system of linear equations, which we
solve by LU decomposition, using the numerical library
Eigen 3 [127]. The 1 and 2 directions are trivial and
decouple, leaving 2N þ ~N0 equations, where ~N0ð< N0Þ is
the number of zero modes in the reduced space.

APPENDIX D: NUMERICAL DATA

Along with this paper, we have made available the
numerical results presented in summary form in Sec. V.
They are in Supplemental Material [128]. The first line
gives the column headings and all following lines give the
corresponding numerical data as comma-separated values.
The meanings of the headings are as follows:
pot: The nature of the interaction potential; see below.
log2N: log2ðNÞ, where N is the number of points in the
worldline.
kappa: The coupling, κ ≔ g3E=m2.
T: The temperature, ~T ≔ mT=gE.
a: The cutoff, a.
S: The action, ~S ≔ S=ϵ.
E: The energy, ~E ≔ E=m.

len: The length of the worldline.
kinetic: The gauge-fixed length of the worldline,
~L, Eq. (34).
i0: Minus the area of the worldline, − ~A, Eq. (35).
vr: The interaction, ~VR [Eq. (42)], and the finite temper-
ature generalizations.
zmax: The maximum distance between points in the x3

direction.
zmin: The minimum distance between points in the x3

direction.
tmax: The maximum distance between points in the x4

direction.
sol: The ratio of the norms of ∂ ~S½x�=∂xρk and xρk.
acc_max: The maximum acceleration along the worldline;
see below.
The first column, pot, takes three different values

depending on the nature of the interaction potential. It
takes the value 1 for zero temperature; 13 for the low
temperature, C instanton topology; and 15 for the high
temperature, W instanton topology.
The acceleration referred to in the last column is a finite

difference approximation to jẍj, defined by

N2j2xk − xkþ1 − xk−1j; ðD1Þ

where N is the number of points in the worldline.
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