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Gravitational waves from hidden QCD phase transition
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Drastic changes in the early Universe such as first-order phase transition can produce a stochastic
gravitational wave (GW) background. We investigate the testability of a scale invariant extension of the
standard model (SM) using the GW background produced by the chiral phase transition in a strongly
interacting QCD-like hidden sector, which, via a SM singlet real scalar mediator, triggers the electroweak
phase transition. Using the Nambu—Jona-Lasinio method in a mean field approximation we estimate the
GW signal and find that it can be tested by future space-based detectors.
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I. INTRODUCTION

It is a challenge for physics beyond the standard
model (SM) to answer a long-standing question—what is
the origin of mass? The same question applies to dark
matter (DM), which, if it is a particle, is absent in the
SM. Though various suggestions about how to go
beyond the SM exist, there is so far no sign for that
from the Large Hadron Collider (LHC) experiments
[1,2] and no sign from the current DM detection experi-
ments either [3,4].

In contrast to this situation, the first observation of the
gravitational wave (GW) signal at LIGO [5] has opened
up a new way to study astrophysical phenomena and
has awakened the hope in particle cosmology that phe-
nomena in the early Universe can also be probed by the
GW. It has indeed been known that phenomena in the
early Universe such as inflation [6], topological defects
[7], and first-order phase transition [8] generate a non-
localized stochastic GW background. In particular, phase
transitions in particle physics are associated with sym-
metry breaking, and therefore the GW signals produced by
these phase transitions can be an alternative approach to
investigate the structure of symmetries in the early
Universe. Unfortunately, because of not being first
order, the phase transition associated with the electroweak
(EW) symmetry breaking in the SM cannot produce the
GW background [9-11]. However, if the SM is extended,
observable GW signals associated with a symmetry break-
ing may be produced and tested in future experiments
such as LISA [12,13] and DECIGO [14-16], as discussed
in [17-33].

As lattice simulations in QCD have shown [34-36], the
chiral phase transition in QCD is, due to a relatively large
current mass of the strange quark, a crossover type. This
does not prevent the possibility that the chiral phase
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transition in a QCD-like hidden sector is of first order."
In fact, such a possibility with a critical temperature of
O(1) TeV has been recently found [42,43] in a scale
invariant extension of the SM [42—48], in which dynamical
chiral symmetry breaking (DySB) in a QCD-like hidden
sector triggers the EW symmetry breaking. In the present
paper we focus on this model. In this model, moreover, the
EW energy scale and the DM mass have the same origin. In
most of the parameter space, the DM mass is created before
the EW phase transition and, in a certain region of the
parameter space, it takes place during a strong first-order
chiral phase transition. By choosing various benchmark
points in the parameter space we study the testability of the
GW background produced by this phase transition.

The paper is organized as follows. In Sec. II we briefly
review the scale invariant extension of the SM with a
QCD-like hidden sector and describe how we use the
Nambu-Jona-Lasinio (NJL) model [49-51] as an effective
low-energy theory in a mean field approximation [52,53].
We fix the number of the hidden color 7. and flavor n; both
at 3, because we can simply rescale the values of the NJL
parameters for the real hadrons. In this way we can avoid
increasing the number of independent parameters when
going from the high-energy theory to the low-energy
effective theory. We pick up a set of four benchmark
parameters, for which the chiral phase transition in the
hidden QCD sector is of first order. For these points we
calculate the GW signals.

Note that the chiral phase transition in our model occurs
in a two-dimensional parameter space, the chiral conden-
sate and the vacuum expectation value (VEV) of the SM
singlet real scalar (which is the mediator of the energy scale
from the hidden sector to the SM sector). Furthermore, the
mean field ¢ corresponding to the chiral condensate is a

'Other possibilities of a first-order phase transition in a QCD-
like theory are the deconfinement/confinement phase transition in
the quenched QCD [35] and the chiral phase transition in QCD
with a large baryon chemical potential [37,38]. They may
produce the observable GW signal as discussed in [39-41].
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nonpropagating field at the zeroth order in the mean field
approximation: It becomes a quantum field at the one-loop
level, so that its wave function renormalization constant
is far from 1 and depends on the mean fields as well as on
the temperature. In Sec. III we discuss how to manage the
complications mentioned above to compute the rate of the
bubble nucleation that occurs during the cosmological
tunneling in the hidden QCD sector. In Sec. IV we discuss
the detectability of the GW signals produced by the chiral
phase transition for the benchmark points in the parameter
space. We summarize and conclude in Sec. V.

II. THE MODEL

We consider a classically scale invariant extension of the
SM studied in [42-46], which consists of a hidden SU(n,.)4
gauge sector coupled via a real singlet scalar field S to the
SM. The Lagrangian of the hidden sector is written as

Ly = —%Ter + Trp(ip — yS)y. (1)

where the hidden vectorlike fermions y;(i =1,...,ny)
transform as a fundamental representation of SU(n,)y.
The Lqy, s part of the total Lagrangian L1 = Lgy,s + Ly
contains the SM gauge and Yukawa interactions along with
the scalar potential

1 1
Vemis = Ag(HTH)* + 1/1354 - EAHS‘SQ(HTH)? (2)

where H” = (H*, (h + G)/+/2) is the SM Higgs doublet
field with H" and G as the would-be Nambu-Goldstone
(NG) fields. The scalar couplings at the tree level have to
satisfy the stability condition for the scalar potential

Ag >0, Ag>0 and 24/Agls—Apys>0. (3)
Here y and Ayg are assumed to be positive. This model
explains the origin of the mass of the Higgs boson and the
DM in the following sense.

(i) First, due to the DySB in the hidden sector, a
nonzero chiral condensate () forms and generates
a mass scale above the EW scale. Consequently, NG
bosons, which are mesons in the hidden sector,
appear.

(i1) At the same time of the hidden DySB, the singlet
scalar field S acquires a nonzero VEV(S) because
of the Yukawa interaction —ySyy. Note that the
Yukawa interaction breaks the chiral symmetry
explicitly, and y(S) plays the role of a current mass.
Therefore, the mass of the hidden mesons depends
crucially on y(S).

(iii) These hidden mesons (or a part of them) can become
DM candidates, because they are stable due to the
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vectorlike flavor symmetry that is left unbroken after
the DySB.

(iv) The EW symmetry breaking is triggered by the
Higgs mass term that is nothing but the scalar
coupling + 1 AysS?H"H with the nonzero (S).

In this work we consider the case with n. = n; = 3 and
assume that the singlet scalar S equally couples to the
hidden fermions. Then the hidden chiral symmetry
SU(3); x SU(3); is dynamically broken down to
SU(3)y, and thanks to this unbroken symmetry, eight
hidden pions become a DM candidate. The DM physics
and the impact of the hidden chiral phase transition to the
EW phase transition have been investigated in [42] by using
the NJL theory [49-51] in the self-consistent mean field
(SCMF) approximation [52,53]. It has been found that a
strong first-order chiral phase transition can occur if the
Yukawa coupling y is small enough, i.e., y < 0.006 [43].
Within the framework of the NJL theory we will calculate
the GW spectrum produced by the hidden chiral phase
transition later on. The same model has been analyzed
by using a linear [44] and nonlinear [45] sigma model and
also AdS/QCD approach [48]. In [54], the GW spectrum
from the hidden chiral phase transition has been calculated
within the framework of a linear sigma model.

A. Nambu—Jona-Lasinio Lagrangian
in a mean field approximation

Following [42] we approximate the high-energy
Lagrangian (1) by the NJL Lagrangian

Lo, = Trp (i@ — yS)y + 2GTrd'® + G (det ® + H.c.),

(4)
where G and Gp are dimensional parameters and
(@) =wi(l—ys)y; = l/1a'iTrl/7/1“<1 —75)¥s
2 J
(@), =w(1+ys)y; = %j’;‘liTrl/_//la<1 +¥s)y.
Here 1“(a =1,...,8) are the Gell-Mann matrices with

A% = /2/3. To deal with the NJL Lagrangian (4), which is
nonrenormalizable, we work in the SCMF approximation
[52,53]. The mean fields ¢ and ¢, are defined in the
“Bardeen-Cooper-Schrieffer” vacuum as

(®) =~ (diag(0.0,0) + i) B, (5
After splitting up the NJL Lagrangian into the sum
Lt = Lyvra + L7, where Lypa contains at most bilinear
terms of y; and £; is normal ordered with respect to
the Bardeen-Cooper-Schrieffer vacuum, we find the
Lagrangian in the SCMF approximation:
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1 8
Lira = Trp(if) = M)y = iTrjrysy — < (30—2 +2 Z ¢a¢a)
G 3
e ( —Tripgy + Z bt Ty + i6Topysy + 5 =+ 5 - Z(%) ) : (6)

where ¢ = 23:1 ¢. A%, we have suppressed ¢ here, and M
is given by

Gp
M = §— D 52 7
o+yS e (7)

Through integrating out the hidden fermions, a nontrivial
correction to the tree-level potential for o is generated, such
that the position of the potential minimum can be shifted
from zero to a finite value of . From the definition (5) we
see that this is nothing but the chiral condensate in the
SCMF approximation. By self-consistency it is meant that
the actual value of () is computed afterward at the loop
level, and then we consider the mean field Lagrangian (6)
around this mean field vacuum. At the tree level of (6), the
mean fields o and ¢, are nonpropagating classical fields.
Through integrating out the hidden fermions at the one-
loop level, their kinetic terms are also generated. At this
stage we reinterpret them as propagating quantum fields.

B. Mass spectrum

The chiral condensation in the hidden sector can be
studied by using the one-loop effective potential obtained
from the mean field Lagrangian (6):

Vet = Vsmas + Viws (8)
where
AN_ 3 o Gp 4 .
Vai(o, S Ay) = 6% 16c2° 3n.do(M; Ay),  (9)

and [, is given by

Ly(M;A) =

MZ
[A4 In (l + F)

A2
— M*In (1 +W> + AZMZ]. (10)

1672

Here we have used the four-dimensional cutoff, and A is
the corresponding cutoff parameter. The NJL parameters
for the hidden QCD are obtained by scaling up the values of
G, Gp, and A for the real hadrons. That is, we assume that
the dimensionless combinations

G'’A = 1.82,

(=Gp)'PA =229,  (11)

|

which are satisfied for the real hadrons, remain unchanged
for a higher scale of A. For a given set of the free
parameters of the model Ay, Ayg,Ag, and y, the VEV
of ¢ and S can be determined through the minimization
of the scalar potential V4 (h,S,0;Ay), where the
hidden QCD scale Ay is so chosen to satisfy
(h) =246 GeV.

The mass spectrum of the particles can be computed
from the corresponding two-point functions, which are
obtained by integrating out the hidden fermions. Note
that the CP-even scalars £, S, and ¢ mix with one another.
The flavor eigenstates ¢;(i = h, S, ) and the mass eigen-

states s;(i = 1,2,3) are related by (p,-:(fl(.j)sj. Their

masses are determined by the zeros of the two-point
functions T';;(i,j = h,S,0) at the one-loop level, i.e.,

F,-j(m%)éﬁ-k) =0, where

Cun(p?) = p* =32 (h)* + %/IHS<S>2’

Tis = Aus(h)(S),

Css(p?) = p* = 325(S)* + %ﬁHs<h>2
—y*3n.1 . (p*. M; Ay),

l—'ha - O,

Gp(o)
Fsg(pz)——y<1— 12 )3"1 (P?. M; Ay),
3 3Gp(o)
n 2 D
Fo‘a(p ) - 4G+ 8G3

(1
4
gz 31y (M: Ayy),

> 3n.l, (p%, M; Ay)

and the loop functions are defined as
d'k  Tr(f+p+ M)k + M)

)(k2 = M?)
(13)

1ol M) = | T Tt o

— _#M[M - M*In (1 +A/>[—22)] (14)
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We identify the SM Higgs with the mass eigenstate
corresponding to &;, which is supposed to be closest to
(1,0,0), and its mass is m; = m;, = 125.09 + 0.24 GeV
[55]. Similarly we use m, = mg and m3z = m,. The DM
candidate is the hidden pion ¢, and its mass is also
generated at the one-loop level. Its two-point function is

1 Gplo)
Ipm(p?) = _ﬁ+ 8DG3

G 2
+ (1 - D<">> 2n.12(p*. M; Ay)

8G?

+ g nly (M: An), (15)
where the loop function is given by

d'k Tr(f— p+ M)ys(k + M)ys
i(2n)* ((k—p)* = M?)(k> = M?)
(16)

1¢2(p2,M;A)=/A

Then we can calculate the DM mass from I'py(mdy;) = 0.

Once the set of the parameters (1, Ay, As, y) is given,
the mass spectrum of the hidden sector particles is fixed.
Figure 1 shows the Yukawa coupling y dependence of the
masses mpy; (left) and of the hidden QCD scale Ay (right)
for Ay = 0.13, Ag = 0.08 with two different values of Ay;
Ags = 0.001 (solid lines) and 0.002 (dashed lines). As
shown in Fig. 1 (left), the DM mass mpy, is proportional to
the Yukawa coupling y. This is because the Yukawa
interaction breaks the chiral symmetry explicitly. The scale
of the DySB in the hidden sector, which is the hidden QCD
scale Ay, depends on how the mediator S transfers the mass
scale to the SM sector. The larger the couplings A5 and y

£

w

Mass Spectrum [TeV]
N

-

O L L L L
0.001 0.005 0.010 0.050 0.100

y

FIG. 1.
Anss Ags = 0.001 (solid lines) and 0.002 (dashed lines)

PHYSICAL REVIEW D 96, 075045 (2017)

are, the closer to the EW scale the hidden QCD scale Ay is
located as seen in Fig. 1 (right). Moreover, the annihilation
processes of the DM also depend on the mass spectrum and
the Yukawa coupling y. Note that the one-loop effective
couplings are given by I'j,s &y and Tjye o y%. In the
small y area with mg > mpy;, the mass spectrum should
satisfy the resonance condition mg = 2mpy; to obtain a
realistic DM relic abundance and, in this parameter space,
the spin-independent cross section of DM off the nucleon
becomes so small [42] that it will be very difficult to
detect DM at direct DM detection experiments such as
XENONIT [4]. On the other hand, the GW signal might be
observed since a strong first-order chiral phase transition
can appear for a small y area [43].

C. Chiral phase transitions

The phase transition at finite temperature can be studied
using a one-loop effective potential. Since the EW phase
transition occurs well below the critical temperature of the
chiral phase transition in the hidden sector, we may assume
(h) =0 in investigating the chiral phase transition.
Accordingly, the scalar potential to be analyzed is

Verr(S.6.T) = VI (S) + V(8. 6) + Vew(S)
+ Ver(S, 0, T) + Veing (S, T), (17)

where Vgy.¢ and Vi are given, respectively, in (2)
and (9),

9 12 m$(S) m%(S)
Vew(S) = = =—5-(§* = (§)") + —="LIn| =3 ,
cw(S) 432712( (8)%) 6472 m§(<S>)
(18)
50 —

[ An=0.13, As=0.08
o Ans=0.001
E 405 ----- Ans=0.002
T
< [
o 30
8 L -~
(/)]
a |
g 20t
sl
3
_'g L
I 10:

0.0'01 0.(505 0.610 0.(550 0.1‘00

y

The masses mpy; (left) and the hidden QCD scale Ay (right) versus y for Ay = 0.13, g = 0.08 with two different values of
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T4
Ver(S,0,T) = TﬂZJB(mé(S)/TZ)

T4
- 6’%;JF(M2(S’ 0')/T2)’ (19)

Vena(5. T) = ——— [(M3(S. T))2 = (m(8))*",

127 (20)

and m3(S) = 343S% + O(y?) is the field-dependent mass
for S with its thermal mass

As  Aus
M2 = mi(S) + (Z—%> T2 (21)
The thermal function is
Jpr(r?) = /°° dxx*In(1 F e V¥H7),  (22)
0
for which we use the approximate expression:
40
Tpp(r?)=e > il (23)
n=0

D. Benchmark points

As discussed in [43], the chiral phase transition in the
hidden sector becomes first order for small y < 0.006.
We require the perturbativity and stability condition (3) of
the scalar potential for y < 0.006 to be satisfied up to the
Planck scale at the one-loop level.? We find that

0.13<2y <014,  0<dys <0.12,

402/ < A5 $0.23 (24)
should be satisfied to meet the requirements. The inequality
0 < Ayg is our assumption [see (3)], and the interval of 14
is due to the observed Higgs mass. The upper limit of Ag
comes from perturbativity, while the lower limit comes
from the stability condition with finite Ay and Ayg. Note
that there is no lower limit on Ayzg and y. We however
consider only the case for Ayg,y = 107*, which implies
that Ay < 200 TeV.’

In Fig. 2 we show the area in the mpy—Ag plane, in
which we obtain the VEV of the Higgs field (h) =246 GeV,
the correct Higgs mass m;, = 125.09 £ 0.24 GeV [55], h-S

mixing 5(11) > 0.99 [55], and the resonance condition

2According to [56], the hierarchy problem can be avoided in
this way at least at the one-loop level.

JA large Ay, which is realized by the small couplings y and
Ans, does not necessarily mean a heavy S as shown in Fig. 1.
Therefore, even if Ay is large, the correction to the Higgs mass
coming from the internal S loop can be small.
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y<S>/Ay
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Ay [TeV]
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0.00010

0.00005

0.05 0.10 0.50 1 5
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FIG. 2. The hidden QCD scale Ay against the DM mass mipy;.
In the colored region, (h) =246 GeV, m;, = 125.09 & 0.24 GeV,
&1 > 0.99 (h — S mixing), mg = 2mpy;, and the perturbativity
and stability constraint (24) are satisfied. We assumed the case for
Aus,y 2 107 The color strength indicates the value of y(S) /Ay,
which is a measure of how the chiral symmetry is explicitly

broken. The colored points are the benchmark points; the Cases A
(red), B (green), C (purple), and D (blue) are defined in Table 1.

mg = 2mpy (to realize the correct DM relic abundance).
Note that the mass of the mediator S is bounded, because A¢
is bounded as discussed above. Consequently, because of
the resonance condition mg = 2mpy;, the DM mass is
bounded, too. Similarly, Ay is bounded, because Ayg is
bounded from above (24) and from below due to our
parameter choice Agzg > 10~*. The colored points A, B, C,
and D in Fig. 2 are our benchmark points.

The chosen four benchmark points are named Case
A, B, C, and D: the set of the input parameter values
(A&, Ams, As, y), along with the output values of mpy, Ay,
and y(S)/Ay for each benchmark case, is given in Table L.
Under y <0.006 and (24), Cases A and B are located as
close to the EW scale as possible and for C and D in an
opposite Way.4 We regard the normalized current quark
mass y(S)/Ay as the characterization for the explicit chiral
symmetry breaking. Their values should be compared with
that of QCD, i.e., m, /Agcp ~ 6 X 1073 (in the NJL model).

In Fig. 3 we show the temperature dependence of (¢)/T
and (S) /T near the critical temperature for each benchmark
point. It can be seen that a first-order phase transition
appears in all the cases. We also see that ¢ and S undergo
the phase transition at the same time. Moreover, the phase

“There exists the Higgs threshold between Cases A and B,
which means the decay channel of the mediator S to two Higgs
particles is forbidden only for Case A. This might become a
benchmark point for a future collider search.
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TABLE L

Four benchmark points, Cases A-D, which are

defined by the values of (Ay,Ayg, As,y), where mpy, Ay, and
¥(S)/Ay are displayed for each case.

Mpm Ay

Case (A, Amiss As,Y) (TeV) (TeV)  y(S)/An

A (0.140,0.050,0.054, 0.117  6.84 7.30x10°¢
8.57 x 107%)

B (0.138,0.098,0.230,  0.170  4.87  3.05x 1075
3.60 x 1073)

C (0.129,0.0001,0.007,  0.906  153.1  8.73 x 10~°
1.07 x 1074)

D (0.130,0.0001,0.230, 520  152.5 290 x 1073
3.55 x 107%)

transition in Case C appears for a slightly lower temper-
ature compared with D even though A§ > AD. The reason
is that the explicit chiral symmetry breaking, whose
strength is expressed by y(S)/Ay, influences not only
the mass of DM but also the critical temperature. Since the
chiral phase transition in the hidden sector occurs in the
two-dimensional space (S,0), we need to deal with
quantum tunneling in the two-dimensional space to calcu-
late the GW spectrum.

20 T T y T T T T T T T T T
Case A 1
15+ . <o>T 4
.« <S>T ]
E 105 .
w
>
05+ ]
0.0 L L L L L 1 " H 1 L 1
0.514 0.516 0.518 0.520 0.522
T [TeV]
2.0 . ; .
Case C 1
15F . <0>T J
< <S>/T ]
=
> 10t ]
w
>
051 .
0.0 L L L L 1 L s s . T . L L L ) L T
11.510 11.515 11.520 11.525 11.530
T [TeV]
FIG. 3.
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III. BUBBLES FROM HIDDEN
QCD TUNNELING

Cosmological tunneling has been studied in [57-59].
The probability of the bubble nucleation per unit volume
per unit time is given by

' = A(1) exp [-Sg (1)), (25)
where Sg is the Euclidean action. At a high temperature, the
Euclidean action can be replaced by S; = S3/T because of
the periodicity of Sg in the Euclidean time, where S5 is the
corresponding three-dimensional Euclidean action [59].
The bubbles can percolate when the probability of the
bubble nucleation per unit volume and time is of order one.

Since the prefactor A in (25) is A(T) o T* [59], we can
translate this condition as

r S5(T, T
— ~ 12500 (L),
HY ., T, H,

(26)

where H, is the Hubble parameter at the transition temper-
ature T',.

2.0 T T T T T
Case B
15F . <0>[T ]
<S>/T
=
> 1.0fF ]
w
>
0.5+ .
0.0 n 1 " n n 1 " " L I L L L I L L L L Fi—
0.376 0.378 0.380 0.382 0.384
T [TeV]
2.0 T T T
Case D
15F - <o>T J
I + <S>IT
=
> 1.0 g
w
>
05F g
0.0 " " " " 1 s s ' ! 1 L i h ! 1 1 !
11.885 11.890 11.895 11.900 11.905
T [TeV]

The temperature dependence of (¢) /T (dark colored) and (S) /T (light colored) for each benchmark point. Cases A (top left), B

(top right), C (bottom left), and D (bottom right) are defined in Table 1.
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The bubble dynamics can be characterized by two
parameters, namely, ¢ and # at T, [18]: a expresses how
much energy the phase transition releases, while S~!
expresses how long its phase transition takes. These
parameters are essential for computing the GW signal
from the cosmological phase transition [18]. The parameter
a is defined as

€

a=

: (27)
Prad T=T,

which is the ratio of the latent heat e liberated at the
phase transition to the thermal energy density pq(7}) =
(7%/30)g,(T)T¢ in the symmetric phase. The latent heat
can be computed from the effective potential at finite
temperature as

0A VEFF (T)

e(T)=-AVge(T)+T T ,

(28)

where AVgpp(T) is the difference of the effective potential
between the true and false vacuum. The parameter f is
defined as

_dSg

dt 1=t

1dIr’

I' dt (29)

t=t,

Using H,, we can redefine a dimensionless parameter /3 as

d (S5(T)
ar\ T
In the following subsections we apply above the general

formula (26)—(30) to compute the parameters (7T, @, ﬁ) for
our concrete problem, and we estimate the corresponding
GW signal.

p=t-1, (30)

T=T,

A. Bubble nucleation and tunneling parameters

In order to discuss the bubble nucleation which stems
from the first-order chiral phase transition, we need to
calculate S;. For this purpose we use the effective
Lagrangian for the mean field 6. However, the mean field
o cannot describe tunneling at a tree level, because its
kinetic term is absent at the tree level. Hence we compute
its kinetic term from the two-point function I';, at the
one-loop level, which is given in (12). First we discuss the
zero-temperature case and define the field renormalization
constant Z, for the o field as

[,0(p?) =T, (0) + Z;'(S.0) p* + O(p*),

where

PHYSICAL REVIEW D 96, 075045 (2017)

Gp d
;I(S,U) (1_4—G2 ) 3]’1 d ) (/) (pz,M,AH)

p*=0
Thus the effective Lagrangian for the o field at zero
temperature is

Z;'(S.0)

L, = 5

0,00'6 — Ve (S, 0), (31)

where Ve (S, 0) = VE96(S) + Vi (S, 6) [Vai(S. o) is
given in (9)]. Note that the field renormalization constant
77! at the symmetric phase (S = ¢ = 0) diverges (see the
Appendix). This is expected, because the composite state o
disappears in the symmetric phase.

As mentioned in the previous section, hidden QCD
tunneling should occur in the two-dimensional field
space and could be described by the three-dimensional
Euclidean action

S5(T) = / & {M (9102

+ Veer(S, o, T)} . (32)

1 P
+§(3i5)

The field renormalization constant at finite temperature is
computed in the Appendix and found to be

3n, Gp \? A
= 87[2 (1 —Wﬁ) |:1n (1 +W

Z;1(S,0,7)

AZM?
+ (AizH + MZ)Z - 3277:2(14;7(1/{2) - BF(M2>):| s
(33)
where u = M/T, and M, Ap(u?), and Bp(u®) are given

in Egs. (7), (A5), and (A6), respectively. In Fig. 4 we show
the field dependency of the field renormalization constant
Z,(S,0,T)forS =0and T/Ay = 0, 0.01, 0.02, and 0.03,
which corresponds to the black, red, blue, and purple line,
respectively. As shown in Fig. 4, the field renormalization
constant Z,(S, o, T) vanishes in the symmetric phase. The
O(3) symmetric bounce solution can be obtained by solving
the equations of motion

@+2d0+lalnz (S,0,7) @ 2
dr*  rdr Oo dr
aVEFF(S,J,T)
=Z(S,06,T)———, 34
O (34)
d*s 2dS ~ OVgpe(S.0.T)

10Z;'(S.0.T) <d0>

2T rar T2 s as

(35)

dr
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MAYUMI AOKI, HIROMITSU GOTO, and JISUKE KUBO
G"2Ny = 1.82, (-Gp)"PAy = 2.29

0.00 0.02 0.04 0.06 0.08 0.10 0.12
alA\y

FIG. 4. The o field dependence of the field renormalization

constant Z,(S = 0,6, T) for T/Ay = 0, (black), 0.01 (red), 0.02
(blue), and 0.03 (purple).

where r = (x? 4+ x3 + x3)!/2. The boundary conditions are

@
dr

__as

=0, —_— :0, 1. :0’
» P imo(r)

r—=o0
r=0

lim S(r) =0,
(36)

where the coordinate of the symmetric minimum (false
vacuum) of the potential is chosen at the origin of the
o-S space. Note that the field renormalization constant
Z,(S,0,T) does not depend explicitly on r but also
depends on the fields.

B. Computation of multidimensional bounce solution

In the one-dimensional case we can obtain a bounce
solution by using the so-called overshooting/undershooting
method [17]. However, this is a cumbersome method in the
multidimensional case, because two initial conditions have
to be simultaneously fine-tuned. Instead, we here employ
an approach similar to the path deformation method [60].

The bounce solution is unique. That is, o(r) and S(r),
which satisfy the differential Eqs. (34) and (35) with the
boundary conditions (36), are a unique function of r.
If we assume that o(r) is an invertible function for
r € [0, ), then there exists a unique inverse of ¢, which
we denote by ¢~!. That is, 67! o & is the identity function,
or r =0"'(c(r)). Because of this assumption, S can be
regarded as a function of o, i.e., S (o’).5 Therefore, (34) and
(35) can be written as, respectively,

Z et @) =FS0)
(37)

6 2do 10InZ,(S(s),0,T) <d0>2

*We use the same symbol S for the functions of r and o.
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£ (102 _(15\ (Fo 200
do? \ dr do ) \dr* rdr

_ %W (g)z = F5(S(0).0).  (38)

where F,(S(6),0) and Fg(S(c),0) are the rhs of (34)
and (35), respectively, and we have suppressed the T
dependence of F,(S(6),0) and Fs(S(c),0). The point is
that if S(o) is given, then (37) is a one-dimensional
differential equation and hence can be solved by applying
the overshooting/undershooting method. If S(c) is the
true solution of the problem, it should satisfy (38) with
o(r) obtained from (37) as well, which means that

N(r) =0 (39)

is also satisfied, where

V0 =50 (5 0) + EOrs.an

- s, -3 (S 0) (D

ds, . 0InZ,(S,0,T)
+ o PR E e ), (40)
Since the one-dimensional differential Eq. (37) for a given
path S(o) can be simply solved, our task is to find S(c)
which satisfies (39). We do this in an iterative way. We start
with a linear function Sy(c), which connects the true and
false vacuum:

S8 — 88
So(G) :ﬂ(ﬁ—as) +SS, (41)

where (885, 655) (with §5 = 65 = 0) are the positions of
the true and false vacuum, respectively. Then we solve (37)
with the path S(¢) = Sy(o) and denote the bounce solution
by 6(r). Note that 6,(0) is no longer 6%, so that the end
point of Sy(c) on the true vacuum side is no longer S5, i.e.,
So(60(0)) # SB. Next we compute the rhs of (40) using
oo(r) and Sy(oy(r)) for ¢ and S(o), respectively, and we
denote it by Ny (r). Since Sy(oo(r)) is not the true solution
of the problem, N (r) does not vanish. Knowing Ny (r), we
have to define the next step of the iteration:

Si(o) = Sy(0) + ASy(0). (42)

To proceed we assume that not only the true solution o(r)
but also oy () is an invertible function, so that Ny(r) can be
written as a function of o, i.e.,

A

No(0) = No(r = o7 (0)). (43)
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Note that because of the o and S dependence of Z,(S,0,7T)
(partly shown in Fig. 4) and also of Vir(S,6,T), Ny(o)
vanishes at the false vacuum, i.e., at ¢ = 0 (§ also vanishes
at ¢ = 0). Further, if Ny(c) vanishes at some nonzero
values of o, the deformation ASy(o) should also vanish at
these values of ¢. This brings us to assume that AS(o) is
proportional to Ny(c). Therefore, the path S;. (o) in the
(i + Dth step can be defined as

Siy1(0) = Si(o) + kNy(o), (44)
where k is the step size, and N;(c) = N;(r = 7' (0)).
Note that S;, (o) satisfies the boundary condition
lim,_(S;,(c) = 0. To obtain o,,(r), the initial value of
6;,1(0) has to be fine-tuned in such away that
doiy,(r)/dr|,_y =0 and lim,_ 0,,,(r) = 0 are satisfied.
If do;,((r)/dr|,_y=0is satisfied, dS; (0, 1(r))/dr|,_,=0
is automatically satisfied. Since o,,(0) is different from
6;(0), the end point of S;,;(s) on the true vacuum side is
also moved to S;(c;1(0)).

Since the assumptions we made above cannot be
rigorously justified, there is no guarantee that the steps
converge to the true solution of the problem. In fact, if we
choose the wrong sign for k, steps diverge or do not
converge. We have checked our method for a number of
examples and found that once we use an appropriate
sign and size for k, the steps can converge, where we
approximate the path S;(¢) (which is obtained numerically)
with a fifth-degree polynomial in ¢ as in [28]. In Fig. 5,
we present the numerical solution S;5(o) (black solid line)
with |kN5(c)|/S15(6) < 1072 obtained from Sy(s) (black

N

-0.01 0.00 0.01 0.02 0.03
all\y

FIG. 5. Top: The contour plot of the effective potential Vggg in
(17) with T/Ag = 0.0570 for Case A, defined in Table 1. The
black dashed line stands for the initial path Sy(o) and the black
solid line is the path S)5(c) with |[kNs5(c)|/S)5(e) < 1072
Bottom: The region enclosed by the box near the false vacuum
in the top figure is zoomed.
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012 [ T T T T T T T T T T T T T T T T T ]
Case A, T/\y=0.0570 ]
— a(n/A\y
T
< — S(n/A\u
73 ]
e
c
©
T ]
s
) ]
L L L L 1 n L L I 1 L L L L 1 1 L I n 1 L
0 100 200 300 400

A\ H

FIG. 6. The bounce solution for Case A with T/Ay = 0.0570.
The red line stands for 6(r)/ Ay, and the orange one for S(r)/Ay,
which correspond to the path S;5(o) (black solid line) shown
in Fig. 5.

dashed line) in the two-dimensional field space at 7 =
0.390 TeV [below the critical temperature 7 = 0.519 TeV
as shown in Fig. 3 (top left)] for Case A.° The correspond-
ing bounce solution as a function of r is shown in Fig. 6.
The Euclidean action (32) obtained from the bounce
solution is S3(7)/T = 148.2, where the difference of
S3(T)/T between the 14th and 15th steps is less than a
few percent. Computing S3(7)/T for each temperature
as in the above method, we can find the transition temper-
ature T, from the condition (26), which is used for the

determination of tunneling parameters a and ,B given in
Egs. (27) and (30).

C. Tunneling parameters for the benchmark points

The GW spectrum produced by a first-order phase
transition can be characterized by the released energy
and its duration time, and it is known that they can be
parametrized by the set of the parameters (T, a, ). The
results for the benchmark points are given in Table II.
We see from Table II that @ and ﬁ_l for Cases A and C
are larger than those for Cases B and D. Recalling the
parameter values for the benchmark points (Table 1), we can
infer that the smaller the explicit chiral symmetry breaking
(the smaller y) is, the larger o and B_l are. This suggests
that the parameters of the model can be constrained if the
GW is measured with a certain accuracy.

IV. SIGNAL FROM THE HIDDEN SECTOR QCD

Finally we come to our main purpose: to check the
testability of the GW background produced by the first-order
phase transitions in the hidden sector. There coexist three
processes contributing to the stochastic GW background
spectrum:

®1kN,(5)|/S:(6) < 1072 is not satisfied for i < 15.
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R Qaw = h*Q, + I* Qg + B2 Qup,. (45)

where £ is the dimensionless Hubble parameter, €, stands
for the scalar field contribution from collisions of bubble
walls [61-66], Q,, for the contribution from sound waves in
plasma after the bubble collisions [67-70], and Q4 for the
contribution from magnetohydrodynamic (MHD) turbulence
in plasma [71-74]. Following [12], each contribution is
given for a given set of the parameters (T, a, ) with the
velocity of bubble wall v,, and the ,,, k,,, and K, Which are
the fraction of vacuum energy, respectively, converted into
gradient energy of scalar field, bulk motion of the fluid, and
MHD turbulence.
(i) Scalar field contribution €2,

- 2/100\ 1/3
2Q,(f) = 1.67 x 105572 (2%
h*Q,(f) 67 x 107p <1+a %

0.11v3,
X ((MZ—H)%V) S(p(f)» (46)

where the spectral shape of the peak frequency f, is

38(f/f,)**

T 11 28(f/f,) (47)

Sy(f)

with the peak frequency

. 0.62
— 16.5x 1076
fo % ﬁ<1.8—0.1vw+v3v>
Tl G+ 1/6
e ) (2 48
x (100 GeV> <100> ? (48)

(i) Sound wave contribution Qg :

~ a \2/100\ /3
R2Q.(f) = 2.65 x 10765~ [ Xe%
wlf) =265 x 107 ({52 ) (20

X Uy Ssw (f) (49)

where the spectral shape of the peak frequency f, is

7 >2>7/2 (30)

Se(f) = (f/fsw)’ <W

with the peak frequency

- T g 1/6
=19x107v;' | — 5 ) (=] Hz
Sow S ﬂ(lOO GeV> <100> ?

(51)
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(iii) MHD turbulence contribution €,:

- 3171 1/3
W2 Qu (f) = 3.35 x 107457 <M>2( OO)

l+a/ \ g.

X valurb(f)’ (52)
where the spectral shape of the peak frequency
f turb is

f/fum)?
Sun(f) = ) (53)

1+ (f/ fum)]F (1 + 82 f/h)

with the peak frequency

- T g 1/6
=27 x 1070, B —L— - H
Fuury <070/ (100 Gev> (100) “

(54)

and

T g 1/6
hy=16.5%x 1070 ———— - H
(= 16510 (100GeV><100> z (55

which is the value (redshifted to today) of the inverse
Hubble time at the GW production.

Bubbles produced by quantum tunneling grow with
velocity »,,. It is even possible for v,, to approach contin-
uously to the speed of light (runaway configuration) [75,76].
In a no-runaway case, the bubble wall velocity »,, terminates
at a certain velocity < 1. The criterion for runaway bubbles
is the value of @ compared with a,, (the minimum value of «
for runaway bubbles):

(i) ay > a: No runaway bubbles (h>Qgw = h>Q,+

hzgturb)

(i) @ <a: Runaway bubbles (h*Qgw = h*Q,+

hzgsw + hz‘Q'turb),
where a, is given by [12,77]

30 Y, c.Ami ()
= T 56
oo 2472 g*th ( )

TABLE II. The parameters (7, a, /3’) for benchmark points
defined in Table I. The transition temperature 7', the ratio of
the latent heat to the thermal energy density @, and the dimension-
less inverse duration time /~} are defined by Egs. (26), (27), and (30),
respectively.

Case T, (TeV) a Y

A 0.387 0.288 8.24 x 102
B 0.306 0.223 14.86 x 10?
C 8.731 0.310 7.15 x 102
D 9.480 0.232 13.29 x 102
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Here c, is the degree of freedom of the particle a (which
should be multiplied with 1/2 in the fermionic case in
addition), and AmZ(¢p) is the difference of its field-
dependent squared masses in two phases. For our model
with g, = 115.75 we use

= 109107 g () s ()] s

t T,
Here we have used the relation m2 = (2M)?, where the
constituent mass M is given in Eq. (7). This relation is

approximately satisfied, because we have neglected the

1073

1077

1041

Qg

10-15

0.010
Frequency [Hz]

1073

107
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10-15

1071

0.001

1074 0.010

Frequency [Hz]

0.100 1 10 100

0.100 1 10 100

PHYSICAL REVIEW D 96, 075045 (2017)

contribution from the Yukawa coupling y (which is very
small for our benchmark parameters). We have computed a,
for the benchmark points and found

Case A: 0.116 Case C : 0.125
Ago = (58)

Case B : 0.092 Case D: 0.095

Comparing « given in Table II with a, for each benchmark
point we see that the bubbles for all cases run away. With o,
given above we can then compute the fraction x of the latent
heat converted to the relevant contribution to the GW
spectrum [12]:

1073

107

10-1

H
[T
5
=
10-15
10-19 A o
104 0.001 0.010 0.100 1 10 100
Frequency [Hz]
1073

107

K
§
v'j
5

101

10-15

6 ¥y

1071

0.010 0.100 1 10 100
Frequency [Hz]

1074 0.001

FIG. 7. The GW spectrum with v,, = 1 for Case A (top left), B (top right), C (bottom left), and D (bottom right). The total GW
spectrum (solid lines) is the sum of the sound wave (dashed lines), scalar (dotted lines), and MHD turbulence (dashed-dotted lines)
contributions. The colored regions are observable regions of LISA (LISA-N2A5SMS5L6 [12]) and DECIGO (B-DECIGO, FP-DECIGO,

and Correlation [14-16]).
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a

(0199 0
Ky = 1 -—, Ky = K> Kb = €Ky,
a a
a
_ o , 59
Koo =073 + 0.083 Jag + aw (59)

where for all the benchmark cases (being all runaway) we
have assumed that the wall velocity v,, is close to the speed
of light, and ¢ = 0.05 [12] for the MHD turbulence. With
Eqgs. (46)—(55), (58), and (59) we are now in position to
compute the GW signal for the benchmark cases.

In Fig. 7 we present our results. For each benchmark case
(A-D) we show the GW spectrum with v,, = 1, where the
total GW signal, sound wave, scalar, and MHD turbulence
contributions are denoted by the solid, dashed, dotted, and
dashed-dotted lines, respectively. The colored regions show
observable regions of different configurations of LISA
[12,13] and DECIGO [14-16]. The label of “LISA-
N2AS5SMSL6” corresponds to the configuration of LISA
provided in Table 1 in [12], while the labels “B-DECIGO,”
“FP-DECIGO,” and “Correlation” are DECIGO designs
[14-16]. As we can see from Fig. 7, the sound wave
contribution is dominant for all the cases, while the MHD
turbulence contribution is negligibly small, so that the peak
frequency of the GW spectrum is basically that of the sound
wave contribution. The contribution MHD turbulence is
small because ¢ (the fraction of turbulent bulk motion) is
set to 0.05 [12]. The scalar contribution becomes non-
negligible at higher frequencies and consequently changes
the slope for this region of frequency. But since it depends
on B‘z [see Eq. (46)], the sound wave contribution being
proportional to ' is larger for smaller f. The peak
frequencies of Cases A and B are ~0.1 Hz, while those
of C and D are a few hertz. The main reason for this
difference is the different transition temperature 7' (see
Table II), which once again results from the difference of

1073

107

10~

HQew

10—15

10—19

(mpm, An) [TeV]
0.100 1 10 100
Frequency [Hz]

1074 0.001 0.010

FIG. 8. The GW spectrum with v,, = 1 for Case A (red), B
(green), C (purple), and D (blue). The numbers in the parentheses
are mpy and Ay in units of TeV (Table I). The colored regions
are observable regions of LISA (LISA-N2A5MS5L6 [12]) and
DECIGO (B-DECIGO, FP-DECIGO, and Correlation [14-16]).
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Ans (see Table I). Consequently, the GW signal is difficult
to observe at LISA [12,13]. The peak values of the GW
spectrum are 10~!2 for A and C, while those for B and D are
10713, Therefore, DECIGO sensitivities [14—16] may be
sufficient to observe the signal. Finally we summarize the
results for Cases A—D in Fig. 8 with the DM mass mpy and
the hidden QCD scale Ay. If Cases A and B, and also C
and D, could be experimentally distinguished, we could
obtain information about the magnitude of the explicit
chiral symmetry breaking in the hidden sector.

V. SUMMARY AND CONCLUSION

Mass can be created by nonperturbative effects in non-
Abelian gauge theories from nothing. By “from nothing”
we mean that the theory has no dimensional parameter
and hence is scale invariant at the classical level. Scale
invariance is broken explicitly by a scale anomaly and at the
same time dynamically by the nonperturbative effects.
Dynamical breaking of scale invariance can be used to
explain the origin of the Higgs mass as well as of the DM
mass [42-48,78-81].

Needless to say, dynamical breaking of scale invariance
is associated with a phase transition at finite temperature
[42,54,79]. If the phase transition is of first order and strong
enough in the early Universe, it can produce GW which
might be observed today as a GW background [8].

In this paper we have expanded our analysis of a
particular scale invariant extension of the SM to include
the aspect of the GW background predicted by the model.
The model contains a strongly interacting hidden sector,
described by a non-Abelian gauge theory, in which a mass
scale in the TeV region is generated through the chiral
symmetry breaking in the hidden sector. The corresponding
(pseudo) NG bosons are a realistic candidate for DM,
since their mass is finite because the chiral symmetry is
also explicitly broken by a Yukawa coupling between the
hidden sector fermions and a SM singlet real scalar field S.
The scalar field S plays the role of a mediator that transfers
the robust energy scale from the hidden sector to the SM
sector via a Higgs portal coupling.

As in [42,43] we have used the NJL method to
effectively treat the DySB. Integrating out the hidden sector
fermions in the NJL model yields an effective potential
for the chiral condensate at zero and finite temperature. In
the mean field approximation we can identify the chiral
condensate with ¢ and the NG bosons with ¢, (which are
DM). We have restricted ourselves to n, = ny = 3 for the
hidden sector QCD, because we can simply scale up the
parameters of the NJL model for the real QCD, such that
the hidden sector NJL model has the same number of
independent parameters as that of the hidden sector QCD.

As it is known, the nature of the chiral phase transition
changes depending on the strength of the explicit chiral
symmetry braking. For the hidden sector QCD it means, on
one hand, that the Yukawa coupling constant y should be
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sufficiently small to obtain a strong first-order chiral phase
transition. On the other hand, a small y implies two-stage
phase transitions: the chiral phase transitionat7 = O(1) TeV
and the EW phase transition at 7 ~ O(100) GeV. That is,
two phase transitions can be clearly distinguished.

Using the technique in the literature (see [12] and
references therein) within the framework of the NJL model
in the mean field approximation, we have analyzed the GW
background produced by the chiral phase transition in the
hidden sector of the model. In particular, depending on the
value of y and of the Higgs portal coupling 55, we have
chosen four benchmark points in the parameter space.
These points are representative points characterized by the
magnitude of the explicit chiral symmetry breaking and
the hidden sector scale Ay. We have found for these points
that the peaks of the GW signal appear at frequencies
0(0.01 — 1) Hz. Unfortunately, these frequencies are
slightly too high, so that it will be difficult for them to
be observed at LISA [12,13]. But their strength seems to be
sufficiently large for observations at DECIGO [14-16],
which will cover a higher frequency region. We emphasize
that observation of a GW background signal at frequencies
0.1 ~ few hertz with h’Qgw = 10713 may be a strong
indication for strongly interacting hidden sector models.

Finally we should admit that our results have been
obtained by using the NJL model, which is supposed to
serve as an effective theory of the hidden sector QCD. A
fair question is about the systematic uncertainties present in
this approach. At the moment we can say only that the NJL
model for the real hadrons can reproduce their basic
quantities with an uncertainty of O(10—20)% [53].
Therefore, to make more precise predictions it is certainly
inevitable to use a more reliable method such as lattice
gauge theory.
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Note added.—The recent paper [82] is certainly relevant
to us, but the paper appeared after we completed our
calculations.

APPENDIX: THERMAL FUNCTION FOR FIELD
RENORMALIZATION CONSTANT

The field renormalization can be computed as

Gp

2 d
Z;l(S,G):—<1—4—G2 ) 3” d ) (/)(pz,M;AH) s

p*=0

PHYSICAL REVIEW D 96, 075045 (2017)

where the loop function 1, (p*, M) is given in Eq. (13) and
its derivative can be written as

d
—1 M
dp? q,z(p 7 )p2:0
d*k 1 d*k 2M?
=—4 /- YY) Svinadl YY) 2\3
i(27)* (k* — M?) i(27)* (k* — M?)
= —41,(M) +4Iz(M),

where we defined two terms as I, and [I. Using the
standard calculation method at finite temperature, they can
be computed as

T &Pk 1 1 1
== S5 © " Btanh (- pk
A 2m'f£(2n)3 G <2ﬁ °>

= AQ(M; Ap) + Ap(u?), (A1)
T [ &k 2M* 1 1
=S =T Btanh (= pk
2niﬂ€(2nf(k§-aﬂ)32ﬂ an <2ﬂ °>
= By (M; Ay) + Br(u?), (A2)
where f=1/T, ky=iw,=iz(2n+1)T, u=M/T,

and the function §ptanh(}pky) has a pole at ky. The

zero-temperature components with  four-dimensional
cutoff are
d*k 1
AY(M; Ay) = / L
PR = J Gyt
11 A? A}
= In{1+-8)-—H__| (A3
“ ez () ] )
dkp  2M?
BY(M; Ay) = — -
o) == || g o
1 Ay

T T 0P 2(NY + MP)E (A4)

and those thermal effect functions can be written as

Ap(u?) /i""“dko/ Ik 2 1
u = -
r —ico+e 2mi (271')3 (ko - a))z(ko + a))2 g/}ko +1

1 e 2 1
=1z dx il

"o R

1
X_
/ x —I—u)21+cosh\/x +u?
(AS)
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1

icote dk &k aM?
Bp(u?) :/ _0/

icot+e 2mi

2u? o x? 1
=—13 dx < G +3
T 0 (vx +u ) 1+ eVx i 0

()’ ko — @) (ko + @) P + 1

2 1

x
(Vx? + u?)* 1 4 cosh VX + u?

oOd)c

o0 x2 1 1
+/ dx tanh < X%+ u2>}
0 (Vx? 4+ u?)* 1 + cos Vx> + u? 2

In this work we fitted each thermal function using the following fitting functions,

8

(A6)
1 40
Ap(u?) :—zlnu—i—e_”Zanu”, (A7)
n=0
40
Br(u) = Y b (a8)
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