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Drastic changes in the early Universe such as first-order phase transition can produce a stochastic
gravitational wave (GW) background. We investigate the testability of a scale invariant extension of the
standard model (SM) using the GW background produced by the chiral phase transition in a strongly
interacting QCD-like hidden sector, which, via a SM singlet real scalar mediator, triggers the electroweak
phase transition. Using the Nambu–Jona-Lasinio method in a mean field approximation we estimate the
GW signal and find that it can be tested by future space-based detectors.
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I. INTRODUCTION

It is a challenge for physics beyond the standard
model (SM) to answer a long-standing question—what is
the origin of mass? The same question applies to dark
matter (DM), which, if it is a particle, is absent in the
SM. Though various suggestions about how to go
beyond the SM exist, there is so far no sign for that
from the Large Hadron Collider (LHC) experiments
[1,2] and no sign from the current DM detection experi-
ments either [3,4].
In contrast to this situation, the first observation of the

gravitational wave (GW) signal at LIGO [5] has opened
up a new way to study astrophysical phenomena and
has awakened the hope in particle cosmology that phe-
nomena in the early Universe can also be probed by the
GW. It has indeed been known that phenomena in the
early Universe such as inflation [6], topological defects
[7], and first-order phase transition [8] generate a non-
localized stochastic GW background. In particular, phase
transitions in particle physics are associated with sym-
metry breaking, and therefore the GW signals produced by
these phase transitions can be an alternative approach to
investigate the structure of symmetries in the early
Universe. Unfortunately, because of not being first
order, the phase transition associated with the electroweak
(EW) symmetry breaking in the SM cannot produce the
GW background [9–11]. However, if the SM is extended,
observable GW signals associated with a symmetry break-
ing may be produced and tested in future experiments
such as LISA [12,13] and DECIGO [14–16], as discussed
in [17–33].
As lattice simulations in QCD have shown [34–36], the

chiral phase transition in QCD is, due to a relatively large
current mass of the strange quark, a crossover type. This
does not prevent the possibility that the chiral phase

transition in a QCD-like hidden sector is of first order.1

In fact, such a possibility with a critical temperature of
Oð1Þ TeV has been recently found [42,43] in a scale
invariant extension of the SM [42–48], in which dynamical
chiral symmetry breaking (DχSB) in a QCD-like hidden
sector triggers the EW symmetry breaking. In the present
paper we focus on this model. In this model, moreover, the
EWenergy scale and the DMmass have the same origin. In
most of the parameter space, the DMmass is created before
the EW phase transition and, in a certain region of the
parameter space, it takes place during a strong first-order
chiral phase transition. By choosing various benchmark
points in the parameter space we study the testability of the
GW background produced by this phase transition.
The paper is organized as follows. In Sec. II we briefly

review the scale invariant extension of the SM with a
QCD-like hidden sector and describe how we use the
Nambu–Jona-Lasinio (NJL) model [49–51] as an effective
low-energy theory in a mean field approximation [52,53].
We fix the number of the hidden color nc and flavor nf both
at 3, because we can simply rescale the values of the NJL
parameters for the real hadrons. In this way we can avoid
increasing the number of independent parameters when
going from the high-energy theory to the low-energy
effective theory. We pick up a set of four benchmark
parameters, for which the chiral phase transition in the
hidden QCD sector is of first order. For these points we
calculate the GW signals.
Note that the chiral phase transition in our model occurs

in a two-dimensional parameter space, the chiral conden-
sate and the vacuum expectation value (VEV) of the SM
singlet real scalar (which is the mediator of the energy scale
from the hidden sector to the SM sector). Furthermore, the
mean field σ corresponding to the chiral condensate is a
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1Other possibilities of a first-order phase transition in a QCD-
like theory are the deconfinement/confinement phase transition in
the quenched QCD [35] and the chiral phase transition in QCD
with a large baryon chemical potential [37,38]. They may
produce the observable GW signal as discussed in [39–41].
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nonpropagating field at the zeroth order in the mean field
approximation: It becomes a quantum field at the one-loop
level, so that its wave function renormalization constant
is far from 1 and depends on the mean fields as well as on
the temperature. In Sec. III we discuss how to manage the
complications mentioned above to compute the rate of the
bubble nucleation that occurs during the cosmological
tunneling in the hidden QCD sector. In Sec. IV we discuss
the detectability of the GW signals produced by the chiral
phase transition for the benchmark points in the parameter
space. We summarize and conclude in Sec. V.

II. THE MODEL

We consider a classically scale invariant extension of the
SM studied in [42–46], which consists of a hidden SUðncÞH
gauge sector coupled via a real singlet scalar field S to the
SM. The Lagrangian of the hidden sector is written as

LH ¼ −
1

2
TrF2 þ Trψ̄ði=D − ySÞψ ; ð1Þ

where the hidden vectorlike fermions ψ iði ¼ 1;…; nfÞ
transform as a fundamental representation of SUðncÞH.
The LSMþS part of the total Lagrangian LT ¼ LSMþS þ LH
contains the SM gauge and Yukawa interactions along with
the scalar potential

VSMþS ¼ λHðH†HÞ2 þ 1

4
λSS4 −

1

2
λHSS2ðH†HÞ; ð2Þ

where HT ¼ ðHþ; ðhþ GÞ= ffiffiffi
2

p Þ is the SM Higgs doublet
field with Hþ and G as the would-be Nambu-Goldstone
(NG) fields. The scalar couplings at the tree level have to
satisfy the stability condition for the scalar potential

λH > 0; λS > 0 and 2
ffiffiffiffiffiffiffiffiffiffi
λHλS

p
− λHS > 0: ð3Þ

Here y and λHS are assumed to be positive. This model
explains the origin of the mass of the Higgs boson and the
DM in the following sense.

(i) First, due to the DχSB in the hidden sector, a
nonzero chiral condensate hψ̄ψi forms and generates
a mass scale above the EW scale. Consequently, NG
bosons, which are mesons in the hidden sector,
appear.

(ii) At the same time of the hidden DχSB, the singlet
scalar field S acquires a nonzero VEVhSi because
of the Yukawa interaction −ySψ̄ψ . Note that the
Yukawa interaction breaks the chiral symmetry
explicitly, and yhSi plays the role of a current mass.
Therefore, the mass of the hidden mesons depends
crucially on yhSi.

(iii) These hidden mesons (or a part of them) can become
DM candidates, because they are stable due to the

vectorlike flavor symmetry that is left unbroken after
the DχSB.

(iv) The EW symmetry breaking is triggered by the
Higgs mass term that is nothing but the scalar
coupling þ 1

2
λHSS2H†H with the nonzero hSi.

In this work we consider the case with nc ¼ nf ¼ 3 and
assume that the singlet scalar S equally couples to the
hidden fermions. Then the hidden chiral symmetry
SUð3ÞL × SUð3ÞR is dynamically broken down to
SUð3ÞV , and thanks to this unbroken symmetry, eight
hidden pions become a DM candidate. The DM physics
and the impact of the hidden chiral phase transition to the
EW phase transition have been investigated in [42] by using
the NJL theory [49–51] in the self-consistent mean field
(SCMF) approximation [52,53]. It has been found that a
strong first-order chiral phase transition can occur if the
Yukawa coupling y is small enough, i.e., y≲ 0.006 [43].
Within the framework of the NJL theory we will calculate
the GW spectrum produced by the hidden chiral phase
transition later on. The same model has been analyzed
by using a linear [44] and nonlinear [45] sigma model and
also AdS/QCD approach [48]. In [54], the GW spectrum
from the hidden chiral phase transition has been calculated
within the framework of a linear sigma model.

A. Nambu–Jona-Lasinio Lagrangian
in a mean field approximation

Following [42] we approximate the high-energy
Lagrangian (1) by the NJL Lagrangian

LNJL ¼ Trψ̄ði=∂ − ySÞψ þ 2GTrΦ†Φþ GDðdetΦþ H:c:Þ;
ð4Þ

where G and GD are dimensional parameters and

ðΦÞij ¼ ψ̄ ið1 − γ5Þψ j ¼
1

2
λajiTrψ̄λ

að1 − γ5Þψ ;

ðΦ†Þij ¼ ψ̄ ið1þ γ5Þψ j ¼
1

2
λajiTrψ̄λ

að1þ γ5Þψ :

Here λaða ¼ 1;…; 8Þ are the Gell-Mann matrices with
λ0 ¼ ffiffiffiffiffiffiffiffi

2=3
p

. To deal with the NJL Lagrangian (4), which is
nonrenormalizable, we work in the SCMF approximation
[52,53]. The mean fields σ and ϕa are defined in the
“Bardeen-Cooper-Schrieffer” vacuum as

hΦi ¼ −
1

4G
ðdiagðσ; σ; σÞ þ iðλaÞTϕaÞ: ð5Þ

After splitting up the NJL Lagrangian into the sum
LNJL ¼ LMFA þ LI, where LMFA contains at most bilinear
terms of ψ i and LI is normal ordered with respect to
the Bardeen-Cooper-Schrieffer vacuum, we find the
Lagrangian in the SCMF approximation:
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LMFA ¼ Trψ̄ði=∂ −MÞψ − iTrψ̄γ5ϕψ −
1

8G

�
3σ2 þ 2

X8
a¼1

ϕaϕa

�

þ GD

8G2

�
−Trψ̄ϕ2ψ þ

X8
a¼1

ϕaϕaTrψ̄ψ þ iσTrψ̄γ5ϕψ þ σ3

2G
þ σ

2G

X8
a¼1

ðϕaÞ2
�
; ð6Þ

where ϕ ¼ P
8
a¼1 ϕaλ

a, we have suppressed ϕ0 here, andM
is given by

M ¼ σ þ yS −
GD

8G2
σ2: ð7Þ

Through integrating out the hidden fermions, a nontrivial
correction to the tree-level potential for σ is generated, such
that the position of the potential minimum can be shifted
from zero to a finite value of σ. From the definition (5) we
see that this is nothing but the chiral condensate in the
SCMF approximation. By self-consistency it is meant that
the actual value of hσi is computed afterward at the loop
level, and then we consider the mean field Lagrangian (6)
around this mean field vacuum. At the tree level of (6), the
mean fields σ and ϕa are nonpropagating classical fields.
Through integrating out the hidden fermions at the one-
loop level, their kinetic terms are also generated. At this
stage we reinterpret them as propagating quantum fields.

B. Mass spectrum

The chiral condensation in the hidden sector can be
studied by using the one-loop effective potential obtained
from the mean field Lagrangian (6):

Veff ¼ VSMþS þ VNJL; ð8Þ

where

VNJLðσ; S;ΛHÞ ¼
3

8G
σ2 −

GD

16G3
σ3 − 3ncI0ðM;ΛHÞ; ð9Þ

and I0 is given by

I0ðM;ΛÞ ¼ 1

16π2

�
Λ4 ln

�
1þM2

Λ2

�

−M4 ln
�
1þ Λ2

M2

�
þ Λ2M2

�
: ð10Þ

Here we have used the four-dimensional cutoff, and Λ is
the corresponding cutoff parameter. The NJL parameters
for the hidden QCD are obtained by scaling up the values of
G;GD, and Λ for the real hadrons. That is, we assume that
the dimensionless combinations

G1=2Λ ¼ 1.82; ð−GDÞ1=5Λ ¼ 2.29; ð11Þ

which are satisfied for the real hadrons, remain unchanged
for a higher scale of Λ. For a given set of the free
parameters of the model λH, λHS; λS, and y, the VEV
of σ and S can be determined through the minimization
of the scalar potential Veffðh; S; σ;ΛHÞ, where the
hidden QCD scale ΛH is so chosen to satisfy
hhi ¼ 246 GeV.
The mass spectrum of the particles can be computed

from the corresponding two-point functions, which are
obtained by integrating out the hidden fermions. Note
that the CP-even scalars h, S, and σ mix with one another.
The flavor eigenstates φiði ¼ h; S; σÞ and the mass eigen-

states siði ¼ 1; 2; 3Þ are related by φi ¼ ξðjÞi sj. Their
masses are determined by the zeros of the two-point
functions Γijði; j ¼ h; S; σÞ at the one-loop level, i.e.,

Γijðm2
kÞξðkÞj ¼ 0, where

Γhhðp2Þ ¼ p2 − 3λHhhi2 þ
1

2
λHShSi2;

ΓhS ¼ λHShhihSi; Γhσ ¼ 0;

ΓSSðp2Þ ¼ p2 − 3λShSi2 þ
1

2
λHShhi2

− y23ncIφ2ðp2;M;ΛHÞ;

ΓSσðp2Þ ¼ −y
�
1 −

GDhσi
4G2

�
3ncIφ2ðp2;M;ΛHÞ;

Γσσðp2Þ ¼ −
3

4G
þ 3GDhσi

8G3

−
�
1 −

GDhσi
4G2

�
2

3ncIφ2ðp2;M;ΛHÞ

þ GD

G2
3ncIVðM;ΛHÞ; ð12Þ

and the loop functions are defined as

Iφ2ðp2;M;ΛÞ ¼
Z
Λ

d4k
ið2πÞ4

Trð=kþ =pþMÞð=kþMÞ
ððkþ pÞ2 −M2Þðk2 −M2Þ ;

ð13Þ

IVðM;ΛÞ ¼
Z
Λ

d4k
ið2πÞ4

M
ðk2 −M2Þ

¼ −
1

16π2
M

�
Λ2 −M2 ln

�
1þ Λ2

M2

��
: ð14Þ
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We identify the SM Higgs with the mass eigenstate
corresponding to ξ1, which is supposed to be closest to
(1,0,0), and its mass is m1 ¼ mh ¼ 125.09� 0.24 GeV
[55]. Similarly we use m2 ¼ mS and m3 ¼ mσ. The DM
candidate is the hidden pion ϕa and its mass is also
generated at the one-loop level. Its two-point function is

ΓDMðp2Þ ¼ −
1

2G
þ GDhσi

8G3

þ
�
1 −

GDhσi
8G2

�
2

2ncIϕ2ðp2;M;ΛHÞ

þGD

G2
ncIVðM;ΛHÞ; ð15Þ

where the loop function is given by

Iϕ2ðp2;M;ΛÞ ¼
Z
Λ

d4k
ið2πÞ4

Trð=k − =pþMÞγ5ð=kþMÞγ5
ððk − pÞ2 −M2Þðk2 −M2Þ :

ð16Þ

Then we can calculate the DM mass from ΓDMðm2
DMÞ ¼ 0.

Once the set of the parameters ðλH; λHS; λS; yÞ is given,
the mass spectrum of the hidden sector particles is fixed.
Figure 1 shows the Yukawa coupling y dependence of the
masses mDM (left) and of the hidden QCD scale ΛH (right)
for λH ¼ 0.13, λS ¼ 0.08 with two different values of λHS;
λHS ¼ 0.001 (solid lines) and 0.002 (dashed lines). As
shown in Fig. 1 (left), the DM mass mDM is proportional to
the Yukawa coupling y. This is because the Yukawa
interaction breaks the chiral symmetry explicitly. The scale
of the DχSB in the hidden sector, which is the hidden QCD
scale ΛH, depends on how the mediator S transfers the mass
scale to the SM sector. The larger the couplings λHS and y

are, the closer to the EW scale the hidden QCD scale ΛH is
located as seen in Fig. 1 (right). Moreover, the annihilation
processes of the DM also depend on the mass spectrum and
the Yukawa coupling y. Note that the one-loop effective
couplings are given by ΓϕϕS ∝ y and ΓϕϕSS ∝ y2. In the
small y area with mS > mDM, the mass spectrum should
satisfy the resonance condition mS ≃ 2mDM to obtain a
realistic DM relic abundance and, in this parameter space,
the spin-independent cross section of DM off the nucleon
becomes so small [42] that it will be very difficult to
detect DM at direct DM detection experiments such as
XENON1T [4]. On the other hand, the GW signal might be
observed since a strong first-order chiral phase transition
can appear for a small y area [43].

C. Chiral phase transitions

The phase transition at finite temperature can be studied
using a one-loop effective potential. Since the EW phase
transition occurs well below the critical temperature of the
chiral phase transition in the hidden sector, we may assume
hhi ¼ 0 in investigating the chiral phase transition.
Accordingly, the scalar potential to be analyzed is

VEFFðS; σ; TÞ ¼ Vh→0
SMþSðSÞ þ VNJLðS; σÞ þ VCWðSÞ

þ VFTðS; σ; TÞ þ VRINGðS; TÞ; ð17Þ

where VSMþS and VNJL are given, respectively, in (2)
and (9),

VCWðSÞ ¼ −
9

4

λ2S
32π2

ðS4 − hSi4Þ þm4
SðSÞ
64π2

ln

�
m2

SðSÞ
m2

SðhSiÞ
�
;

ð18Þ

FIG. 1. The masses mDM (left) and the hidden QCD scale ΛH (right) versus y for λH ¼ 0.13, λS ¼ 0.08 with two different values of
λHS; λHS ¼ 0.001 (solid lines) and 0.002 (dashed lines)
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VFTðS; σ; TÞ ¼
T4

2π2
JBðm2

SðSÞ=T2Þ

− 6nc
T4

π2
JFðM2ðS; σÞ=T2Þ; ð19Þ

VRINGðS; TÞ ¼ −
T
12π

½ðM2
SðS; TÞÞ3=2 − ðm2

SðSÞÞ3=2�; ð20Þ

and m2
SðSÞ ¼ 3λSS2 þOðy2Þ is the field-dependent mass

for S with its thermal mass

M2
S ¼ m2

SðSÞ þ
�
λS
4
−
λHS

6

�
T2: ð21Þ

The thermal function is

JB;Fðr2Þ ¼
Z

∞

0

dxx2 ln ð1 ∓ e−
ffiffiffiffiffiffiffiffiffi
x2þr2

p
Þ; ð22Þ

for which we use the approximate expression:

JB;Fðr2Þ ¼ e−r
2
X40
n¼0

cB;Fn r2n: ð23Þ

D. Benchmark points

As discussed in [43], the chiral phase transition in the
hidden sector becomes first order for small y≲ 0.006.
We require the perturbativity and stability condition (3) of
the scalar potential for y≲ 0.006 to be satisfied up to the
Planck scale at the one-loop level.2 We find that

0.13≲ λH ≲ 0.14; 0 < λHS < 0.12;

4λ2HS=λH < λS ≲ 0.23 ð24Þ

should be satisfied to meet the requirements. The inequality
0 < λHS is our assumption [see (3)], and the interval of λH
is due to the observed Higgs mass. The upper limit of λS
comes from perturbativity, while the lower limit comes
from the stability condition with finite λH and λHS. Note
that there is no lower limit on λHS and y. We however
consider only the case for λHS; y≳ 10−4, which implies
that ΛH < 200 TeV.3

In Fig. 2 we show the area in the mDM−ΛH plane, in
which we obtain the VEVof the Higgs field hhi¼246GeV,
the correct Higgs massmh ¼ 125.09� 0.24 GeV [55], h-S

mixing ξð1Þ1 > 0.99 [55], and the resonance condition

mS ≃ 2mDM (to realize the correct DM relic abundance).
Note that the mass of the mediator S is bounded, because λS
is bounded as discussed above. Consequently, because of
the resonance condition mS ≃ 2mDM, the DM mass is
bounded, too. Similarly, ΛH is bounded, because λHS is
bounded from above (24) and from below due to our
parameter choice λHS > 10−4. The colored points A, B, C,
and D in Fig. 2 are our benchmark points.
The chosen four benchmark points are named Case

A, B, C, and D: the set of the input parameter values
ðλH; λHS; λS; yÞ, along with the output values of mDM, ΛH,
and yhSi=ΛH for each benchmark case, is given in Table I.
Under y≲ 0.006 and (24), Cases A and B are located as
close to the EW scale as possible and for C and D in an
opposite way.4 We regard the normalized current quark
mass yhSi=ΛH as the characterization for the explicit chiral
symmetry breaking. Their values should be compared with
that of QCD, i.e.,mu=ΛQCD ∼ 6 × 10−3 (in the NJL model).
In Fig. 3 we show the temperature dependence of hσi=T

and hSi=T near the critical temperature for each benchmark
point. It can be seen that a first-order phase transition
appears in all the cases. We also see that σ and S undergo
the phase transition at the same time. Moreover, the phase

FIG. 2. The hidden QCD scale ΛH against the DM mass mDM.
In the colored region, hhi¼246GeV, mh ¼ 125.09� 0.24 GeV,

ξð1Þ1 > 0.99 (h − S mixing), mS ≃ 2mDM, and the perturbativity
and stability constraint (24) are satisfied. We assumed the case for
λHS; y≳ 10−4. The color strength indicates the value of yhSi=ΛH,
which is a measure of how the chiral symmetry is explicitly
broken. The colored points are the benchmark points; the Cases A
(red), B (green), C (purple), and D (blue) are defined in Table I.

2According to [56], the hierarchy problem can be avoided in
this way at least at the one-loop level.

3A large ΛH, which is realized by the small couplings y and
λHS, does not necessarily mean a heavy S as shown in Fig. 1.
Therefore, even if ΛH is large, the correction to the Higgs mass
coming from the internal S loop can be small.

4There exists the Higgs threshold between Cases A and B,
which means the decay channel of the mediator S to two Higgs
particles is forbidden only for Case A. This might become a
benchmark point for a future collider search.
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transition in Case C appears for a slightly lower temper-
ature compared with D even though ΛC

H > ΛD
H. The reason

is that the explicit chiral symmetry breaking, whose
strength is expressed by yhSi=ΛH, influences not only
the mass of DM but also the critical temperature. Since the
chiral phase transition in the hidden sector occurs in the
two-dimensional space ðS; σÞ, we need to deal with
quantum tunneling in the two-dimensional space to calcu-
late the GW spectrum.

III. BUBBLES FROM HIDDEN
QCD TUNNELING

Cosmological tunneling has been studied in [57–59].
The probability of the bubble nucleation per unit volume
per unit time is given by

Γ ¼ AðtÞ exp ½−SEðtÞ�; ð25Þ

where SE is the Euclidean action. At a high temperature, the
Euclidean action can be replaced by SE ¼ S3=T because of
the periodicity of SE in the Euclidean time, where S3 is the
corresponding three-dimensional Euclidean action [59].
The bubbles can percolate when the probability of the
bubble nucleation per unit volume and time is of order one.
Since the prefactor A in (25) is AðTÞ ∝ T4 [59], we can
translate this condition as

Γ
H4

����
t¼tt

≃ 1 ⇄
S3ðT tÞ
T t

¼ 4 ln

�
T t

Ht

�
; ð26Þ

where Ht is the Hubble parameter at the transition temper-
ature T t.

TABLE I. Four benchmark points, Cases A–D, which are
defined by the values of ðλH; λHS; λS; yÞ, where mDM, ΛH, and
yhSi=ΛH are displayed for each case.

Case ðλH; λHS; λS; yÞ
mDM
(TeV)

ΛH
(TeV) yhSi=ΛH

A ð0.140; 0.050; 0.054;
8.57 × 10−4Þ

0.117 6.84 7.30 × 10−6

B ð0.138; 0.098; 0.230;
3.60 × 10−3Þ

0.170 4.87 3.05 × 10−5

C ð0.129; 0.0001; 0.007;
1.07 × 10−4Þ

0.906 153.1 8.73 × 10−6

D ð0.130; 0.0001; 0.230;
3.55 × 10−3Þ

5.20 152.5 2.90 × 10−5

FIG. 3. The temperature dependence of hσi=T (dark colored) and hSi=T (light colored) for each benchmark point. Cases A (top left), B
(top right), C (bottom left), and D (bottom right) are defined in Table I.
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The bubble dynamics can be characterized by two
parameters, namely, α and β at T t [18]: α expresses how
much energy the phase transition releases, while β−1

expresses how long its phase transition takes. These
parameters are essential for computing the GW signal
from the cosmological phase transition [18]. The parameter
α is defined as

α≡ ϵ

ρrad

����
T¼T t

; ð27Þ

which is the ratio of the latent heat ϵ liberated at the
phase transition to the thermal energy density ρradðT tÞ ¼
ðπ2=30Þg�ðT tÞT4

t in the symmetric phase. The latent heat
can be computed from the effective potential at finite
temperature as

ϵðTÞ≡ −ΔVEFFðTÞ þ T
∂ΔVEFFðTÞ

∂T ; ð28Þ

where ΔVEFFðTÞ is the difference of the effective potential
between the true and false vacuum. The parameter β is
defined as

β≡ −
dSE
dt

����
t¼tt

≃ 1

Γ
dΓ
dt

����
t¼tt

: ð29Þ

Using Ht, we can redefine a dimensionless parameter ~β as

~β≡ β

Ht
¼ T t

d
dT

�
S3ðTÞ
T

�����
T¼T t

: ð30Þ

In the following subsections we apply above the general
formula (26)–(30) to compute the parameters ðT t; α; ~βÞ for
our concrete problem, and we estimate the corresponding
GW signal.

A. Bubble nucleation and tunneling parameters

In order to discuss the bubble nucleation which stems
from the first-order chiral phase transition, we need to
calculate S3. For this purpose we use the effective
Lagrangian for the mean field σ. However, the mean field
σ cannot describe tunneling at a tree level, because its
kinetic term is absent at the tree level. Hence we compute
its kinetic term from the two-point function Γσσ at the
one-loop level, which is given in (12). First we discuss the
zero-temperature case and define the field renormalization
constant Zσ for the σ field as

Γσσðp2Þ ¼ Γσσð0Þ þ Z−1
σ ðS; σÞp2 þOðp4Þ;

where

Z−1
σ ðS; σÞ ¼ −

�
1 −

GD

4G2
σ

�
2

3nc
d

dp2
Iφ2ðp2;M;ΛHÞ

����
p2¼0

:

Thus the effective Lagrangian for the σ field at zero
temperature is

Lσ ¼
Z−1
σ ðS; σÞ

2
∂μσ∂μσ − VeffðS; σÞ; ð31Þ

where VeffðS; σÞ ¼ Vh→0
SMþSðSÞ þ VNJLðS; σÞ [VNJLðS; σÞ is

given in (9)]. Note that the field renormalization constant
Z−1
σ at the symmetric phase (S ¼ σ ¼ 0) diverges (see the

Appendix). This is expected, because the composite state σ
disappears in the symmetric phase.
As mentioned in the previous section, hidden QCD

tunneling should occur in the two-dimensional field
space and could be described by the three-dimensional
Euclidean action

S3ðTÞ ¼
Z

d3x

�
Z−1
σ ðS; σ; TÞ

2
ð∂iσÞ2 þ

1

2
ð∂iSÞ2

þ VEFFðS; σ; TÞ
�
: ð32Þ

The field renormalization constant at finite temperature is
computed in the Appendix and found to be

Z−1
σ ðS; σ; TÞ ¼ 3nc

8π2

�
1 −

GD

4G2
σ

�
2
�
ln

�
1þ Λ2

H

M2

�

þ Λ2
HM

2

ðΛ2
H þM2Þ2 − 32π2ðAFðu2Þ − BFðu2ÞÞ

�
;

ð33Þ

where u ¼ M=T, and M, AFðu2Þ, and BFðu2Þ are given
in Eqs. (7), (A5), and (A6), respectively. In Fig. 4 we show
the field dependency of the field renormalization constant
ZσðS; σ; TÞ for S ¼ 0 and T=ΛH ¼ 0, 0.01, 0.02, and 0.03,
which corresponds to the black, red, blue, and purple line,
respectively. As shown in Fig. 4, the field renormalization
constant ZσðS; σ; TÞ vanishes in the symmetric phase. The
O(3) symmetric bounce solution can be obtained by solving
the equations of motion

d2σ
dr2

þ 2

r
dσ
dr

þ 1

2

∂ lnZσðS; σ; TÞ
∂σ

�
dσ
dr

�
2

¼ ZσðS; σ; TÞ
∂VEFFðS; σ; TÞ

∂σ ; ð34Þ

d2S
dr2

þ 2

r
dS
dr

−
1

2

∂Z−1
σ ðS; σ; TÞ
∂S

�
dσ
dr

�
2

¼ ∂VEFFðS; σ; TÞ
∂S ;

ð35Þ
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where r ¼ ðx21 þ x22 þ x23Þ1=2. The boundary conditions are

dσ
dr

����
r¼0

¼0;
dS
dr

����
r¼0

¼0; lim
r→∞

σðrÞ¼0; lim
r→∞

SðrÞ¼0;

ð36Þ

where the coordinate of the symmetric minimum (false
vacuum) of the potential is chosen at the origin of the
σ-S space. Note that the field renormalization constant
ZσðS; σ; TÞ does not depend explicitly on r but also
depends on the fields.

B. Computation of multidimensional bounce solution

In the one-dimensional case we can obtain a bounce
solution by using the so-called overshooting/undershooting
method [17]. However, this is a cumbersome method in the
multidimensional case, because two initial conditions have
to be simultaneously fine-tuned. Instead, we here employ
an approach similar to the path deformation method [60].
The bounce solution is unique. That is, σðrÞ and SðrÞ,

which satisfy the differential Eqs. (34) and (35) with the
boundary conditions (36), are a unique function of r.
If we assume that σðrÞ is an invertible function for
r ∈ ½0;∞Þ, then there exists a unique inverse of σ, which
we denote by σ−1. That is, σ−1 ∘ σ is the identity function,
or r ¼ σ−1ðσðrÞÞ. Because of this assumption, S can be
regarded as a function of σ, i.e., SðσÞ.5 Therefore, (34) and
(35) can be written as, respectively,

d2σ
dr2

þ 2

r
dσ
dr

þ 1

2

∂ lnZσðSðσÞ; σ; TÞ
∂σ

�
dσ
dr

�
2

¼ FσðSðσÞ; σÞ;

ð37Þ

d2S
dσ2

�
dσ
dr

�
2

þ
�
dS
dσ

��
d2σ
dr2

þ 2

r
dσ
dr

�

−
1

2

∂Z−1
σ ðSðσÞ; σ; TÞ

∂S
�
dσ
dr

�
2

¼ FSðSðσÞ; σÞ; ð38Þ

where FσðSðσÞ; σÞ and FSðSðσÞ; σÞ are the rhs of (34)
and (35), respectively, and we have suppressed the T
dependence of FσðSðσÞ; σÞ and FSðSðσÞ; σÞ. The point is
that if SðσÞ is given, then (37) is a one-dimensional
differential equation and hence can be solved by applying
the overshooting/undershooting method. If SðσÞ is the
true solution of the problem, it should satisfy (38) with
σðrÞ obtained from (37) as well, which means that

NðrÞ ¼ 0 ð39Þ

is also satisfied, where

NðrÞ ¼ d2S
dσ2

ðrÞ
�
dσ
dr

ðrÞ
�

2

þ dS
dσ

ðrÞFσðS; σÞðrÞ

− FSðS; σÞðrÞ −
1

2

�
dσ
dr

ðrÞ
�

2
�∂Z−1

σ ðS; σ; TÞ
∂S ðrÞ

þ dS
dσ

ðrÞ ∂ lnZσðS; σ; TÞ
∂σ ðrÞ

�
: ð40Þ

Since the one-dimensional differential Eq. (37) for a given
path SðσÞ can be simply solved, our task is to find SðσÞ
which satisfies (39). We do this in an iterative way. We start
with a linear function S0ðσÞ, which connects the true and
false vacuum:

S0ðσÞ ¼
SB − SS

σB − σS
ðσ − σSÞ þ SS; ð41Þ

where ðSB;S; σB;SÞ (with SS ¼ σS ¼ 0) are the positions of
the true and false vacuum, respectively. Then we solve (37)
with the path SðσÞ ¼ S0ðσÞ and denote the bounce solution
by σ0ðrÞ. Note that σ0ð0Þ is no longer σB, so that the end
point of S0ðσÞ on the true vacuum side is no longer SB, i.e.,
S0ðσ0ð0ÞÞ ≠ SB. Next we compute the rhs of (40) using
σ0ðrÞ and S0ðσ0ðrÞÞ for σ and SðσÞ, respectively, and we
denote it by N0ðrÞ. Since S0ðσ0ðrÞÞ is not the true solution
of the problem, N0ðrÞ does not vanish. Knowing N0ðrÞ, we
have to define the next step of the iteration:

S1ðσÞ ¼ S0ðσÞ þ ΔS0ðσÞ: ð42Þ

To proceed we assume that not only the true solution σðrÞ
but also σ0ðrÞ is an invertible function, so that N0ðrÞ can be
written as a function of σ, i.e.,

N̂0ðσÞ≡ N0ðr ¼ σ−10 ðσÞÞ: ð43Þ

FIG. 4. The σ field dependence of the field renormalization
constant ZσðS ¼ 0; σ; TÞ for T=ΛH ¼ 0, (black), 0.01 (red), 0.02
(blue), and 0.03 (purple).

5We use the same symbol S for the functions of r and σ.
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Note that because of the σ and S dependence of ZσðS; σ; TÞ
(partly shown in Fig. 4) and also of VEFFðS; σ; TÞ, N̂0ðσÞ
vanishes at the false vacuum, i.e., at σ ¼ 0 (S also vanishes
at σ ¼ 0). Further, if N̂0ðσÞ vanishes at some nonzero
values of σ, the deformation ΔS0ðσÞ should also vanish at
these values of σ. This brings us to assume that ΔS0ðσÞ is
proportional to N̂0ðσÞ. Therefore, the path Siþ1ðσÞ in the
(iþ 1)th step can be defined as

Siþ1ðσÞ ¼ SiðσÞ þ kN̂iðσÞ; ð44Þ

where k is the step size, and N̂iðσÞ ¼ Niðr ¼ σ−1i ðσÞÞ.
Note that Siþ1ðσÞ satisfies the boundary condition
limσ→0Siþ1ðσÞ ¼ 0. To obtain σiþ1ðrÞ, the initial value of
σiþ1ð0Þ has to be fine-tuned in such away that
dσiþ1ðrÞ=drjr¼0 ¼ 0 and limr→∞σiþ1ðrÞ ¼ 0 are satisfied.
If dσiþ1ðrÞ=drjr¼0¼0 is satisfied, dSiþ1ðσiþ1ðrÞÞ=drjr¼0¼0
is automatically satisfied. Since σiþ1ð0Þ is different from
σið0Þ, the end point of Siþ1ðσÞ on the true vacuum side is
also moved to Siþ1ðσiþ1ð0ÞÞ.
Since the assumptions we made above cannot be

rigorously justified, there is no guarantee that the steps
converge to the true solution of the problem. In fact, if we
choose the wrong sign for k, steps diverge or do not
converge. We have checked our method for a number of
examples and found that once we use an appropriate
sign and size for k, the steps can converge, where we
approximate the path SiðσÞ (which is obtained numerically)
with a fifth-degree polynomial in σ as in [28]. In Fig. 5,
we present the numerical solution S15ðσÞ (black solid line)
with jkN̂15ðσÞj=S15ðσÞ < 10−2 obtained from S0ðσÞ (black

dashed line) in the two-dimensional field space at T ¼
0.390 TeV [below the critical temperature T ¼ 0.519 TeV
as shown in Fig. 3 (top left)] for Case A.6 The correspond-
ing bounce solution as a function of r is shown in Fig. 6.
The Euclidean action (32) obtained from the bounce
solution is S3ðTÞ=T ¼ 148.2, where the difference of
S3ðTÞ=T between the 14th and 15th steps is less than a
few percent. Computing S3ðTÞ=T for each temperature
as in the above method, we can find the transition temper-
ature T t from the condition (26), which is used for the
determination of tunneling parameters α and ~β given in
Eqs. (27) and (30).

C. Tunneling parameters for the benchmark points

The GW spectrum produced by a first-order phase
transition can be characterized by the released energy
and its duration time, and it is known that they can be
parametrized by the set of the parameters ðT t;α; ~βÞ. The
results for the benchmark points are given in Table II.
We see from Table II that α and ~β−1 for Cases A and C
are larger than those for Cases B and D. Recalling the
parameter values for the benchmark points (Table I), we can
infer that the smaller the explicit chiral symmetry breaking
(the smaller y) is, the larger α and ~β−1 are. This suggests
that the parameters of the model can be constrained if the
GW is measured with a certain accuracy.

IV. SIGNAL FROM THE HIDDEN SECTOR QCD

Finally we come to our main purpose: to check the
testability of the GW background produced by the first-order
phase transitions in the hidden sector. There coexist three
processes contributing to the stochastic GW background
spectrum:

FIG. 5. Top: The contour plot of the effective potential VEFF in
(17) with T=ΛH ¼ 0.0570 for Case A, defined in Table I. The
black dashed line stands for the initial path S0ðσÞ and the black
solid line is the path S15ðσÞ with jkN̂15ðσÞj=S15ðσÞ < 10−2.
Bottom: The region enclosed by the box near the false vacuum
in the top figure is zoomed.

FIG. 6. The bounce solution for Case A with T=ΛH ¼ 0.0570.
The red line stands for σðrÞ=ΛH, and the orange one for SðrÞ=ΛH,
which correspond to the path S15ðσÞ (black solid line) shown
in Fig. 5.

6jkN̂iðσÞj=SiðσÞ < 10−2 is not satisfied for i < 15.
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h2ΩGW ¼ h2Ωφ þ h2Ωsw þ h2Ωturb; ð45Þ

where h is the dimensionless Hubble parameter, Ωφ stands
for the scalar field contribution from collisions of bubble
walls [61–66],Ωsw for the contribution from sound waves in
plasma after the bubble collisions [67–70], and Ωturb for the
contribution frommagnetohydrodynamic (MHD) turbulence
in plasma [71–74]. Following [12], each contribution is
given for a given set of the parameters ðT t; α; ~βÞ with the
velocity of bubble wall vw and the κφ; κv, and κturb which are
the fraction of vacuum energy, respectively, converted into
gradient energy of scalar field, bulk motion of the fluid, and
MHD turbulence.

(i) Scalar field contribution Ωφ:

h2ΩφðfÞ ¼ 1.67 × 10−5 ~β−2
�

κφα

1þ α

�
2
�
100

g�

�
1=3

×

�
0.11v3w

0.42þ v2w

�
SφðfÞ; ð46Þ

where the spectral shape of the peak frequency fφ is

SφðfÞ ¼
3.8ðf=fφÞ2.8

1þ 2.8ðf=fφÞ3.8
ð47Þ

with the peak frequency

fφ ¼ 16.5 × 10−6 ~β

�
0.62

1.8 − 0.1vw þ v2w

�

×

�
T t

100 GeV

��
g�
100

�
1=6

Hz: ð48Þ

(ii) Sound wave contribution Ωsw:

h2ΩswðfÞ ¼ 2.65 × 10−6 ~β−1
�

κvα

1þ α

�
2
�
100

g�

�
1=3

× vwSswðfÞ; ð49Þ

where the spectral shape of the peak frequency fsw is

SswðfÞ ¼ ðf=fswÞ3
�

7

4þ 3ðf=fswÞ2
�

7=2
ð50Þ

with the peak frequency

fsw ¼ 1.9 × 10−5v−1w ~β

�
T t

100 GeV

��
g�
100

�
1=6

Hz:

ð51Þ

(iii) MHD turbulence contribution Ωturb:

h2ΩturbðfÞ ¼ 3.35 × 10−4 ~β−1
�
κturbα

1þ α

�3
2

�
100

g�

�
1=3

× vwSturbðfÞ; ð52Þ

where the spectral shape of the peak frequency
fturb is

SturbðfÞ ¼
ðf=fturbÞ3

½1þ ðf=fturbÞ�113 ð1þ 8πf=htÞ
ð53Þ

with the peak frequency

fturb ¼ 2.7 × 10−5v−1w ~β

�
T t

100 GeV

��
g�
100

�
1=6

Hz;

ð54Þ

and

ht ¼ 16.5 × 10−6
�

T t

100 GeV

��
g�
100

�
1=6

Hz; ð55Þ

which is the value (redshifted to today) of the inverse
Hubble time at the GW production.

Bubbles produced by quantum tunneling grow with
velocity vw. It is even possible for vw to approach contin-
uously to the speed of light (runaway configuration) [75,76].
In a no-runaway case, the bubble wall velocity vw terminates
at a certain velocity < 1. The criterion for runaway bubbles
is the value of α compared with α∞ (the minimum value of α
for runaway bubbles):

(i) α∞ > α: No runaway bubbles (h2ΩGW ≃ h2Ωswþ
h2Ωturb)

(ii) α∞ < α: Runaway bubbles (h2ΩGW ≃ h2Ωφþ
h2Ωsw þ h2Ωturb),

where α∞ is given by [12,77]

α∞ ≃ 30

24π2

P
acaΔm2

aðφÞ
g�T2

t
: ð56Þ

TABLE II. The parameters ðT t; α; ~βÞ for benchmark points
defined in Table I. The transition temperature T t, the ratio of
the latent heat to the thermal energy density α, and the dimension-
less inverse duration time ~β are defined by Eqs. (26), (27), and (30),
respectively.

Case T t (TeV) α ~β

A 0.387 0.288 8.24 × 102

B 0.306 0.223 14.86 × 102

C 8.731 0.310 7.15 × 102

D 9.480 0.232 13.29 × 102
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Here ca is the degree of freedom of the particle a (which
should be multiplied with 1=2 in the fermionic case in
addition), and Δm2

aðφÞ is the difference of its field-
dependent squared masses in two phases. For our model
with g� ¼ 115.75 we use

α∞≃1.09×10−3
�
nf

�
2MðhφiiÞ

T t

�
2

þ3λS

�hSi
T t

�
2
�
: ð57Þ

Here we have used the relation m2
σ ≃ ð2MÞ2, where the

constituent mass M is given in Eq. (7). This relation is
approximately satisfied, because we have neglected the

contribution from the Yukawa coupling y (which is very
small for our benchmark parameters).We have computed α∞
for the benchmark points and found

α∞ ¼
�
Case A∶ 0.116 Case C ∶ 0.125

Case B ∶ 0.092 Case D∶ 0.095
: ð58Þ

Comparing α given in Table II with α∞ for each benchmark
point we see that the bubbles for all cases run away. With α∞
given above we can then compute the fraction κ of the latent
heat converted to the relevant contribution to the GW
spectrum [12]:

FIG. 7. The GW spectrum with vw ¼ 1 for Case A (top left), B (top right), C (bottom left), and D (bottom right). The total GW
spectrum (solid lines) is the sum of the sound wave (dashed lines), scalar (dotted lines), and MHD turbulence (dashed-dotted lines)
contributions. The colored regions are observable regions of LISA (LISA-N2A5M5L6 [12]) and DECIGO (B-DECIGO, FP-DECIGO,
and Correlation [14–16]).
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κφ ≡ 1 −
α∞
α

; κv ≡ α∞
α

κ∞; κturb ¼ ϵκv;

κ∞ ≡ α∞
0.73þ 0.083

ffiffiffiffiffiffi
α∞

p þ α∞
; ð59Þ

where for all the benchmark cases (being all runaway) we
have assumed that the wall velocity vw is close to the speed
of light, and ϵ ¼ 0.05 [12] for the MHD turbulence. With
Eqs. (46)–(55), (58), and (59) we are now in position to
compute the GW signal for the benchmark cases.
In Fig. 7 we present our results. For each benchmark case

(A–D) we show the GW spectrum with vw ¼ 1, where the
total GW signal, sound wave, scalar, and MHD turbulence
contributions are denoted by the solid, dashed, dotted, and
dashed-dotted lines, respectively. The colored regions show
observable regions of different configurations of LISA
[12,13] and DECIGO [14–16]. The label of “LISA-
N2A5M5L6” corresponds to the configuration of LISA
provided in Table 1 in [12], while the labels “B-DECIGO,”
“FP-DECIGO,” and “Correlation” are DECIGO designs
[14–16]. As we can see from Fig. 7, the sound wave
contribution is dominant for all the cases, while the MHD
turbulence contribution is negligibly small, so that the peak
frequency of the GW spectrum is basically that of the sound
wave contribution. The contribution MHD turbulence is
small because ϵ (the fraction of turbulent bulk motion) is
set to 0.05 [12]. The scalar contribution becomes non-
negligible at higher frequencies and consequently changes
the slope for this region of frequency. But since it depends
on ~β−2 [see Eq. (46)], the sound wave contribution being
proportional to ~β−1 is larger for smaller ~β. The peak
frequencies of Cases A and B are ∼0.1 Hz, while those
of C and D are a few hertz. The main reason for this
difference is the different transition temperature T t (see
Table II), which once again results from the difference of

λHS (see Table I). Consequently, the GW signal is difficult
to observe at LISA [12,13]. The peak values of the GW
spectrum are 10−12 for A and C, while those for B and D are
10−13. Therefore, DECIGO sensitivities [14–16] may be
sufficient to observe the signal. Finally we summarize the
results for Cases A–D in Fig. 8 with the DMmassmDM and
the hidden QCD scale ΛH. If Cases A and B, and also C
and D, could be experimentally distinguished, we could
obtain information about the magnitude of the explicit
chiral symmetry breaking in the hidden sector.

V. SUMMARY AND CONCLUSION

Mass can be created by nonperturbative effects in non-
Abelian gauge theories from nothing. By “from nothing”
we mean that the theory has no dimensional parameter
and hence is scale invariant at the classical level. Scale
invariance is broken explicitly by a scale anomaly and at the
same time dynamically by the nonperturbative effects.
Dynamical breaking of scale invariance can be used to
explain the origin of the Higgs mass as well as of the DM
mass [42–48,78–81].
Needless to say, dynamical breaking of scale invariance

is associated with a phase transition at finite temperature
[42,54,79]. If the phase transition is of first order and strong
enough in the early Universe, it can produce GW which
might be observed today as a GW background [8].
In this paper we have expanded our analysis of a

particular scale invariant extension of the SM to include
the aspect of the GW background predicted by the model.
The model contains a strongly interacting hidden sector,
described by a non-Abelian gauge theory, in which a mass
scale in the TeV region is generated through the chiral
symmetry breaking in the hidden sector. The corresponding
(pseudo) NG bosons are a realistic candidate for DM,
since their mass is finite because the chiral symmetry is
also explicitly broken by a Yukawa coupling between the
hidden sector fermions and a SM singlet real scalar field S.
The scalar field S plays the role of a mediator that transfers
the robust energy scale from the hidden sector to the SM
sector via a Higgs portal coupling.
As in [42,43] we have used the NJL method to

effectively treat the DχSB. Integrating out the hidden sector
fermions in the NJL model yields an effective potential
for the chiral condensate at zero and finite temperature. In
the mean field approximation we can identify the chiral
condensate with σ and the NG bosons with ϕa (which are
DM). We have restricted ourselves to nc ¼ nf ¼ 3 for the
hidden sector QCD, because we can simply scale up the
parameters of the NJL model for the real QCD, such that
the hidden sector NJL model has the same number of
independent parameters as that of the hidden sector QCD.
As it is known, the nature of the chiral phase transition

changes depending on the strength of the explicit chiral
symmetry braking. For the hidden sector QCD it means, on
one hand, that the Yukawa coupling constant y should be

FIG. 8. The GW spectrum with vw ¼ 1 for Case A (red), B
(green), C (purple), and D (blue). The numbers in the parentheses
are mDM and ΛH in units of TeV (Table I). The colored regions
are observable regions of LISA (LISA-N2A5M5L6 [12]) and
DECIGO (B-DECIGO, FP-DECIGO, and Correlation [14–16]).
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sufficiently small to obtain a strong first-order chiral phase
transition. On the other hand, a small y implies two-stage
phase transitions: the chiral phase transitionatT ≳Oð1Þ TeV
and the EW phase transition at T ∼Oð100Þ GeV. That is,
two phase transitions can be clearly distinguished.
Using the technique in the literature (see [12] and

references therein) within the framework of the NJL model
in the mean field approximation, we have analyzed the GW
background produced by the chiral phase transition in the
hidden sector of the model. In particular, depending on the
value of y and of the Higgs portal coupling λHS, we have
chosen four benchmark points in the parameter space.
These points are representative points characterized by the
magnitude of the explicit chiral symmetry breaking and
the hidden sector scale ΛH. We have found for these points
that the peaks of the GW signal appear at frequencies
Oð0.01 − 1Þ Hz. Unfortunately, these frequencies are
slightly too high, so that it will be difficult for them to
be observed at LISA [12,13]. But their strength seems to be
sufficiently large for observations at DECIGO [14–16],
which will cover a higher frequency region. We emphasize
that observation of a GW background signal at frequencies
0.1 ∼ few hertz with h2ΩGW ≳ 10−13 may be a strong
indication for strongly interacting hidden sector models.
Finally we should admit that our results have been

obtained by using the NJL model, which is supposed to
serve as an effective theory of the hidden sector QCD. A
fair question is about the systematic uncertainties present in
this approach. At the moment we can say only that the NJL
model for the real hadrons can reproduce their basic
quantities with an uncertainty of Oð10 − 20Þ% [53].
Therefore, to make more precise predictions it is certainly
inevitable to use a more reliable method such as lattice
gauge theory.
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calculations.

APPENDIX: THERMAL FUNCTION FOR FIELD
RENORMALIZATION CONSTANT

The field renormalization can be computed as

Z−1
σ ðS; σÞ ¼ −

�
1 −

GD

4G2
σ

�
2

3nc
d

dp2
Iφ2ðp2;M;ΛHÞ

����
p2¼0

;

where the loop function Iφ2ðp2;MÞ is given in Eq. (13) and
its derivative can be written as

d
dp2

Iφ2ðp2;MÞ
����
p2¼0

¼ −4
Z

d4k
ið2πÞ4

1

ðk2 −M2Þ2 þ 4

Z
d4k

ið2πÞ4
2M2

ðk2 −M2Þ3
≡ −4IAðMÞ þ 4IBðMÞ;

where we defined two terms as IA and IB. Using the
standard calculation method at finite temperature, they can
be computed as

IA ¼ T
2πi

I
C

d3k
ð2πÞ3
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2
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where β ¼ 1=T, k0 ¼ iωn ¼ iπð2nþ 1ÞT, u ¼ M=T,
and the function 1

2
β tanhð1

2
βk0Þ has a pole at k0. The

zero-temperature components with four-dimensional
cutoff are
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and those thermal effect functions can be written as
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In this work we fitted each thermal function using the following fitting functions,

AFðu2Þ ¼
1

8π2
ln uþ e−u

X40
n¼0

anun; ðA7Þ

BFðu2Þ ¼ e−u
X40
n¼0

bnun: ðA8Þ
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