
Higgsploding universe

Valentin V. Khoze* and Michael Spannowsky†

Institute for Particle Physics Phenomenology, Department of Physics, Durham University,
Durham DH1 3LE, United Kingdom

(Received 15 July 2017; published 30 October 2017)

Higgsplosion is a dynamical mechanism that introduces an exponential suppression of quantum
fluctuations beyond the Higgsplosion energy scale E� and further guarantees perturbative unitarity in multi-
Higgs production processes. By calculating the Higgsplosion scale for spin 0, 1=2, 1 and 2 particles at
leading order, we argue that Higgsplosion regulates all n-point functions, thereby embedding the standard
model of particle physics and its extensions into an asymptotically safe theory. There are no Landau poles
and the Higgs self-coupling stays positive. Asymptotic safety is of particular interest for theories of particle
physics that include quantum gravity. We argue that in a Hippsloding theory one cannot probe shorter and
shorter length scales by increasing the energy of the collision beyond the Higgsplosion energy and there is a
minimal length set by r� ∼ 1=E� that can be probed. We further show that Higgsplosion is consistent and
not in conflict with models of inflation and the existence of axions. There is also a possibility of testing
Higgsplosion experimentally at future high energy experiments.
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I. INTRODUCTION

Higgsplosion and Higgspersion [1] are two intertwined
mechanisms which aim to explain why physical scattering
processes involving many scalars are not bound to violate
unitarity, while solving at the same time the hierarchy
problem of the Higgs boson.
It was shown in several independent calculations at

leading order [2–6], one-loop resummed [5,7,8] or using a
semiclassical approach [9–11], that the rate for a transition
h� → n × h grows factorially with n. Based on these results
it was expected that either the cross section of physical
processes, e.g. in proton collisions of pp → n × h, has to
grow as well, thereby violating perturbative unitarity in
tree-level processes above certain critical values of collision
energy and multiplicity and pointing to a validity limit of
the standard model of particle physics, or that a nontrivial
energy-dependent form factor had to emerge in a strongly
coupled perturbation theory or even nonperturbatively. A
second shortcoming of the standard model, identified early
on, is that the Higgs boson is known to receive quadratic
contributions from quantum correctionsm2

h ≃m2
0 þ δm2

new.
Thus, in order to obtain the physical mass mh ≃ 125 GeV,
the bare parameter of the theory m0 has to be increasingly
precisely tuned, depending on the hierarchy between the
electroweak and new physics scale. With the discovery of
an elementary scalar particle [12,13], both of these prob-
lems cannot be ignored if the standard model is not to be
fundamentally modified at energy scales of Oð100Þ TeV,
i.e., energy scales possibly within reach of a future hadron
collider [14].

In [1] we argued that the factorial growth of the
amplitude h� → n × h or X → n × h beyond a
Higgsplosion scale E� can be directly related to the
exponential growth of the imaginary part of the of the
width of h and X using the optical theorem, thus avoiding
violation of perturbative unitarity in the production of many
Higgs bosons and suppressing high-scale contributions of
X to the mass of the Higgs boson. Hence, the Higgs boson
can provide a self-consistent solutions to the problems it
introduced to the standard model.
Assuming Higgsplosion and Higgspersion were realized

in nature, the question this paper aims to address is what are
their phenomenological consequences and in how far is it
possible to address and solve other fundamental questions in
high-energy physics, beyond providing a solution [1] to the
hierarchy or fine-tuning problem of the Higgs boson in the
standard model. Wewill describe the scope of Higgsplosion,
pointing out that not only the Higgs boson and heavy
resonances that can decay into many Higgs bosons higgs-
plode at a scaleE�, but the same fate can affect all particles, in
particular all standard model particles. We further show that
Higgsplosion can provide a self-consistent picture of nature
up to very high energy scales and a rich phenomenologywith
direct implications to high-scale physics.
We will discuss the quantum field theoretical conse-

quences of Higgsplosion and Higgspersion in Sec. II. By
explicitly calculating the effect of Higgsplosion based on
leading-order amplitudes for the Higgs boson (spin-0), the
top quark (spin-1=2), a vector boson (spin-1) and the
graviton (spin-2) we show that all standard model particles
higgsplode and when this happens, all n-point functions are
rendered finite. Further, not only high loop momenta are
suppressed but in general all processes with propagators
with high p2, leaving in collisions at very high energies

*valya.khoze@durham.ac.uk
†michael.spannowsky@durham.ac.uk

PHYSICAL REVIEW D 96, 075042 (2017)

2470-0010=2017=96(7)=075042(16) 075042-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.075042
https://doi.org/10.1103/PhysRevD.96.075042
https://doi.org/10.1103/PhysRevD.96.075042
https://doi.org/10.1103/PhysRevD.96.075042


only t-channel processes while rendering s-channel proc-
esses negligible. We also argue that in the higgsploding
theories one cannot probe distances shorter than a certain
minimal scale r� that is set by the inverse energy of
Higgsplosion E�. Above this energy, the theory screens
the processes that attempt to probe shorter length scales.
This is the effect of Higgspersion. In parallel we argue that
higgsploding theories are asymptotically safe: all coupling
constants reach finite values in the UV regime above E�,
there are no Landau poles and the Higgs self-coupling λ
remains positive. In Sec. III we outline the consequences
of Sec. II on some aspects of particle phenomenology.
We discuss the running of the coupling constants and show
that Higgsplosion can provide an embedding of the standard
model into an asymptotically-safe framework. We also
explain that Higgsplosion is consistent and not in conflict
neither with inflation nor with the existence of axions.
In Sec. IV we offer a brief summary and conclusions.

II. QUANTUM FIELD THEORY IN PRESENCE
OF HIGGSPLOSION

A. The interplay between Higgsplosion
and Higgspersion in physical processes

Higgsplosion [1] denotes the rapid decay of a heavy or
highly energetic resonance X into multiple Higgs bosons.
The initial state X can in the simplest case be the Higgs
boson itself, which we denote as h� to emphasise that it is
a highly virtual state with the momentum p2 ≫ M2

h, or
equivalently it can be another standard model degree
of freedom with the energy sufficiently high,

ffiffiffiffiffi
p2

p
¼ffiffiffi

s
p

> nMh, so that its decay into final states involving a
large number n≳ 100 of Higgs bosons is kinematically
possible. Importantly, the state X can also represent a
very heavy new physics state with the mass MX ≫ nMh,
which can then decay into multiple Higgs bosons already at
momentum scales

ffiffiffiffiffi
p2

p
¼ ffiffiffi

s
p

> nMh that are below its
mass shell ≪MX. The latter case would correspond to a
heavy state which potentially decays much before it can be
realized as an on-shell particle state, and this setup is
important for addressing the hierarchy problem by taming
the radiative corrections from the virtual loops of X
contributing to the Higgs mass parameter, see Ref. [1]
and Sec. II C below.
In several independent calculations at leading order

[2–6], one-loop resummed [5,7,8] or using a semiclassical
approach [9–11], it was shown that the rate for a transition
h� → n × h grows factorially with n, where the state’s total
and partial widths are respectively given by

Γðp2Þ ¼
X∞
n¼2

Γnðp2Þ;

Γnðp2Þ ¼ 1

2Mh

Z
1

n!
dΠnjMðh� → n × hÞj2 ð2:1Þ

with jMj2 being the scattering amplitude squared which
is integrated over the n-particle phase space dΠn including
the bosonic symmetry factor 1

n!, and M is the mass. With
the recent calculation of [11] the parametric dependence
of the Higgs boson’s partial width on the number of
final state Higgs bosons n, their average kinetic energy
ε ¼ ð

ffiffiffiffiffi
p2

p
− nMhÞ=ðnMhÞ and the Higgs self coupling λ

can be expressed by

Γnðp2Þ ∝ Rðλ; n; εÞ

¼ exp

�
λn
λ

�
log

λn
4
þ 3.02

ffiffiffiffiffiffi
λn
4π

r
− 1

þ 3

2

�
log

ε

3π
þ 1

�
−
25

12
ε

��
: ð2:2Þ

Here we defined the dimensionless variable Rðλ; n; εÞ or
for brevity Rn which is the rescaled n-particle decay
rate Rnðp2Þ ¼ Γnðp2Þ=Mh ¼ −ImΣðp2Þ=M2

h.
The expression (2.2) was derived in the combined weak-

coupling–large multiplicity limit, λ → 0, n → ∞, in the
regime where the final state particles are assumed to be
nonrelativistic, ε ≪ 1, and the effective coupling parameter
λn is large, λn ≫ 1. The characteristic exponential factor in
(2.2) has a semiclassical origin and it was argued in [5,9]
that it is not affected by the choice of X in the initial state in
so far as X is coupled to Higgs bosons.
Using the optical theorem, the decay width of X can be

directly related to the imaginary part of its self-energy,
which results in a rapidly growing imaginary part of the
denominator of its dressed propagator

ΔXðpÞ ¼
i

p2 −M2
X − iImΣðp2Þ ¼

i
p2 −M2

X þ iMXΓðp2Þ :

ð2:3Þ

Due to the Higgsplosion effect it was believed for a long
time that the cross-section of the physical processes, such
as the gluon fusion gg → n × h going through an inter-
mediate virtual Higgs boson(s) produced in the s-channel,
gg → h� → n × h, was bound to grow factorially with n
and would violate perturbative unitarity at energy scales of
Oð100Þ TeV for nλ ≫ 1 (unless large quantum corrections
at strong effective coupling nλ ≫ 1 or nonperturbative
physics would introduce a nontrivial suppression factor).
However, including the dressed propagators for inter-

mediate h� in this process results in Higgspersion, i.e. a
well-behaved cross section for arbitrary n up to very high
energies [1]

σΔgg→n×h ∼ y2t m2
t log4

�
mtffiffiffiffiffi
p2

p
�
×

1

p4 þM4
hR

2
×Rn; ð2:4Þ

and thus
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σgg→n×h ∼
�
R∶ for R≲ 1

1=R → 0∶ for R ≫ 1 at p2 → ∞:

ð2:5Þ

Hence, by avoiding a breakdown of perturbative unitarity in
multiboson production, the theory can retain consistency
and predictivity to much higher, technically even unlimited,
energy scales.
Let us summarize what we mean by Higgsplosion:
(1) Higgsplosion is triggered by the rapid exponential

growth of the n-particle decay rate Γn ∝ Rn → ∞
with n and

ffiffiffi
s

p
∼ n, as in (2.2). The Higgsplosion

energy E� is where the rate changes fromRn ≪ 1 to
Rn ≫ 1. It is a new dynamically generated non-
perturbative scale in the theory, E� ¼ const�M=λ,
whereMh and λ are the mass and the coupling of the
elementary scalars—the Higgs bosons produced in
the final state, and const� is the calculable constant
factor which is typically ≫1.

(2) The initial building blocks of Higgsplosion are the
Dyson-resummed propagaotrs for all degrees of
freedom X in the theory, given by (2.3). They are
obtained by summing up the geometric progression
for 2-point functions over all self-energy insertions.
The self-energy ΣXðp2Þ is a function of the mo-
mentum of the propagator and it is represented by its
large imaginary part due to Higgsplosion.1 Because
of the rapid increase of ImΣXðp2Þ the propagators in
(2.3) vanish for momenta exceeding the scale
p2 > E2�. This is the result of highly energetic modes
becoming unstable against the multiparticle decays,
and these modes at momentum scales above E�
loose their particle interpretation. The correct inter-
pretation of the vanishing propagators is that the
highly energetic field theoretical degrees of freedom
become composite states made out of large numbers
of relatively soft Higgs bosons and are no longer
described by an individually propagating particle
degree of freedom. The dynamical scale of com-
positeness or classicalization, here an interaction and
virtuality dependent experimentally unresolvable
minimal length scale, is for each particle i set by
Ei� ∼ 1=ri.

(3) Technically, ImΣXðp2Þ entering the expressions for
Dyson-resummed propagators (2.3), is obtained
from the decay rates Γn using the optical theorem,
and hence is determined in the physical domain
p2 ¼ s > 0. However the underlying concept of
compositeness should not depend on whether the
momentum scale at which we probe the particle is

time-like or space-like. If this is true that a given
degree of freedom becomes composite in the physi-
cal domain of positive p2 > E2�, the same should
equally apply at space-like momenta, and only
jp2j > E2� matters. Hence in constructing the for-
malism for computing quantum (loop) corrections in
higgsploding theories we will describe the non-
perturbative effect of compositeness caused by
Higgsplosion in terms of the propagators

ΔXðpÞ ¼
i

p2 −M2
X
Kðp2=E2�Þ; ð2:6Þ

where KðxÞ is the nonperturbative Higgsplosion (or
more precisely Higgspersion) formactor,

KðxÞ ¼
�
1∶ for x < 1

0∶ for x > 1:
ð2:7Þ

In the physical domain and for 0 < p2 ≤ E2� there is
little difference between the propagators (2.3) and
(2.7). Due to the sharp exponential rise of the decay
rate R with energy in (2.2), both propagators are
sharply cut off at or just above p2 ¼ E2� and are
vanishing above this value. At p2 < E2�, the multi-
particle contribution to the decay rate is exponen-
tially suppressed, to a very high accuracy it is zero,
and both expressions are correctly described by the
bare propagators. (One can always add the addi-
tional non-higgsploding width effects to the denom-
inators of both expressions if required.)

(4) The dressed propagators (2.6) are then used as the
input into the computation of n-point functions with
n ≥ 3. All quantum contributions to the n-point
vertices are obtained in our formalism by computing
loop effects that involve these dressed propagators
and ordinary renormalized vertices. This is done
order by order in the loop expansion, where the
internal lines in the loops are given by the dressed
propagators in the form (2.6) treated as the input.
Integrations over the loop momenta can now also be
carried out in Euclidean space if desired.

(5) It then follows from this formalism that the theory is
made UV-finite by Higgsplosion and the couplings
are asymptotically safe, as will be explained in
section II.D. There are no Landau poles and the
Higgs self-coupling cannot not become negative and
hence the electroweak vacuum is stable.

(6) Finally it is also easy to check [1], using the same
method, that the real part of the self-energy is also
UV-finite and that even the finite fine-tuning of the
quantum corrections to Higgs mass parameter from
integrating out a very heavy X state, MX ≫ E�, is
reduced by many orders of magnitude from δM2

h ∼
M2

X to δM2
h ∼ E4�=M2

X. This solves the hierarchy
problem.

1Below, in Sec. II B we will explain the rational why ImΣXðp2Þ
is expected to higgsplode, based on perturbative calculations at
leading order.
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B. Higgsplosion of the self-energy

The Higgsplosion effect becomes operative when the
imaginary part of the self-energy ΣXðp2Þ for a given field
theoretical degree of freedom X becomes exponentially
large, i.e. when the external momentum p approaches the
critical energy scale E� of Higgsplosion. Specifically,

ImΣXðp2Þ ∼RX; where

�
RX ≪ 1∶ for p2 < E2�
RX ≫ 1∶ for p2 ≳ E2�:

ð2:8Þ

The value of the Higgsplosion scale E� for X in general
depends on the nature and strength of interactions between
X and the Higgs bosons.
To study the implications and extend of Higgsplosion,

we will now consider different choices for X, first by taking
it to be the Higgs boson itself; second another light degree
of freedom (for example the top quark (spin-1=2), a vector
boson (spin-1) or a graviton (spin-2)); and finally a heavy
degree of freedom with the mass much greater than the
electro-weak scale and possibly unstable to decay into
multiple Higgses.

1. Higgsplosion in the self-energy of the Higgs boson

We first take X to be the Higgs field itself and recall the
rational for the Higgsplosion of ImΣhðp2Þ at p2 ¼ E2�.
The main point we want to emphasise here is that the
dominant contribution to the higgsploding self-energy, or
equivalently, the multiparticle decay rate Γn, comes from
summing over the interference terms between different
diagrammatic contributions to the amplitudes. In particular,
each amplitude with n Higgs bosons in the final state

contains of the order of n! terms. The decay rate or the
imaginary part of Σ arises from squaring the amplitude,
then dividing by the symmetry factor of n! and integrating
over the phase space. This implies that there are ∼n! ×
n! × 1

n! terms. This results in Γn ∼ n!. Clearly, this factorial
growth of the rate is entirely due to the interference terms
(i.e. all the cross terms) in the product of two amplitudes.
If, on the other hand, one would decide to neglect all the
cross terms in the product of two amplitudes, each of which
contains n! terms,An ∼ n!, one would get the total of only a
single factor of n! which is then cancelled by the 1=n!
symmetry factor. In other words, schematically we have,

ImΣn ∼
1

n!
ðAnÞ2

∼
� 1

n! × n! × n! ∼ n!∶ all terms included
1
n! × n! ∼ 1∶ no interference terms:

ð2:9Þ

We thus are led to a retrospectively obvious conclusion that
Higgsplosion is a result of taking into account all inter-
ference effects between individual diagrams. These dia-
grams are sketched in Fig. 1 and correspond to the sum of
all possible combinations of n1, n2, ~n1 and ~n2, where
n1 þ n2 ¼ ~n1 þ ~n2 ¼ n. This is to be compared with the
diagrams depicted in Fig. 2, where the cross terms between
the An1 and An2 subamplitudes on the left and on the right
of the cut were not included. As a result, the diagrams in
Fig. 2 are subleading relative to those in Fig. 1, and do not
lead to Higgsplosion.
What does lead to Higgsplosion is the correct accounting

of the interference effects in the product of the two

h(p) h(p)

p p

h(p) h(p)

n n

n n

1

2

1

2

~

~

FIG. 1. Dominant contributions to the self-energy of the Higgs boson from interference terms between subamplitudes for all possible
combinations of n1, n2, ~n1 and ~n2, where n1 þ n2 ¼ ~n1 þ ~n2 ¼ n. Such diagrams contain only multiparticle cuts in the “t-channel.”

h(p) h(p)

p p

h(p) h(p)

n n

n n

1

2

1

2

FIG. 2. Subleading contributions to Σhðp2Þwith no interference between the sub-amplitudes. These non-interference diagrams can be
cleanly separated into mutually independent dressed propagators in the loop. These diagrams are 2-particle reducible in the “t-channel.”
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amplitudes. For reader’s convenience and for future refer-
ence we will now also present a more technical rendering of
the above n!-counting argument for Higgsplosion from
interference, based on the technique of generating n-point
amplitudes from classical solutions. (Readers already
familiar with this argument can directly skip to the next
section II B 2.)

A more technical argument: Ah�→n×h from classical
solutions.—At tree-level, all n-point scattering amplitudes
for an off-shell field h� to produce n Higgs particles,

h� → n × h; ð2:10Þ

can be obtained from solving the Euler-Lagrange equations
and following the generating functions formalism of
Brown [2]. For simplicity, as in Ref. [1], we will assume
a simplified model description of the Higgs boson in terms
of a single real scalar field h with the VEV v and the self-
coupling λ,

L ¼ 1

2
∂μh∂μh −

λ

4
ðh2 − v2Þ2: ð2:11Þ

According to [2], since the final state in (2.10) contains
only the outgoing particles, the solution hclðxÞ relevant to
the problem at hand should contain only the positive
frequency modes, eþinMht where Mh ¼

ffiffiffiffiffi
2λ

p
v is the

Higgs boson mass. This specifies the initial conditions,
or equivalently the analytic structure of the solution—its
time-dependence is described by the complex variable z,

zðtÞ ¼ z0eiMht; Mh ¼
ffiffiffiffiffi
2λ

p
v ð2:12Þ

on which the configuration hcl depends holomorphically, so
that there is no dependence on the complex-conjugate
variable z�,

hclðx⃗; tÞ ¼ vþ
X∞
n¼1

dnðx⃗ÞzðtÞn; ð2:13Þ

and dnðx⃗Þ are the coefficients of the Taylor expansion in
powers of z. Next we consider the simplest kinematical
configuration, where all the final state particles are pro-
duced at their mass threshold (i.e. with vanishing spacial
momenta). In this case, the classical solution in question,
hcl, is uniform in space and the Euler-Lagrange equation
becomes an ordinary differential equation,

d2t h ¼ −λh3 þ λv2h; ð2:14Þ

with the initial conditions, hcl ¼ vþ zþOðz2Þ. The coef-
ficients dn of the Taylor expansion of the classical solution
now become space-independent with d1 ¼ 1 and the

solution is uniquely specified. Its analytic form is remark-
ably simple [2],

hclðtÞ ¼ v
1þ zðtÞ

2v

1 − zðtÞ
2v

; ð2:15Þ

and its Taylor expansion reads,

hclðtÞ ¼ vþ zþ
X∞
n¼2

dnzn;

with dn ¼ ð2vÞ1−n;
for n ¼ 1;…∞: ð2:16Þ

The presence of the singularity of (2.15) at z ¼ 2v is the
consequence of the finite radius of convergence of the
Taylor expansion (2.15). The classical solution hcl defines
the generating functional for the tree-level scattering
amplitudes. All n-point tree-level amplitudes at threshold
are found by differentiating hcl with respect to z, [2]

Ah�→n×h ¼
� ∂
∂z

�
n
hcl

����
z¼0

¼ n!dn ¼ n!ð2vÞ1−n: ð2:17Þ

The expression (2.17) is an exact result and it makes it
clear that the 1� → n-point amplitudes evaluated on the
n-particle mass thresholds grow factorially with the number
of particles in the final state. The n! behavior is the
consequence of coherently adding contributions from the
order-n! of Feynman diagrams contributing to these
amplitudes.
A remarkable fact that plays an important role in

Higgsplosion is that the n! growth of the n-point amplitudes
)2.17 ) continues to persist in the more general kinematics

when the external lines are taken off the mass threshold,
and furthermore when the leading order quantum correc-
tions from the resummed loops are taken into account.
For the model (2.11) the result is

Ah�→n×hðp1…pnÞ ¼ n!ð2vÞ1−n exp
�
−
7

6
nεþ

ffiffiffi
3

p

8π
nλn

�
:

ð2:18Þ

The above expression is derived in the nonrelativistic limit,
where ε denotes the kinetic energy per particle per mass in
the final state, ε ¼ ðE − nMhÞ=ðnMhÞ, and is taken to be
small, ε ≪ 1. Hence the first term in the exponent,

−
7

6
nεðp1…pnÞ ¼ −

7

6

1

2

1

M2
h

Xn
i¼1

p⃗i
2; ð2:19Þ

describes the amplitude dependence on the momenta of
nonrelativistic particles in the final state; and the second
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term is the resummed leading-order loop-level correction.
The expression in the exponent (over n) would also contain
higher-order corrections in ε and in higher powers of λn
which we have neglected. The details of the derivation of
(2.18) and an overview can be found in Ref. [6] and a
selection of the earlier fundamental papers on n-point
amplitudes in a scalar QFT is [2–5,7–9,15,16].
One can now proceed to square the amplitudes (2.18)

and integrate them over the n-particle phase space in the
non-relativistic approximation, as was done in e.g. [6,9],
ultimately providing the foundation of the Higgsplosion
phenomenon, as explained in Ref. [1] and analysed further
in [11]. The main point for us here is that Higgsplosion is
driven by the total of n! interference terms in the product of
the amplitudes, as signified by the upper line in (2.9).
These considerations imply that the effect of Higgsplosion

does not arise from the diagrams with cleanly separated
(i.e. mutually independent) dressed propagators in the loop.
These are precisely the diagrams in Fig. 2 which neglect all
the interference effects between the upper and the lower half.
The Higgsplosion effect cannot be derived from diagrams
containing only the dressed propagators connected by bare
vertices, i.e. by working order by order in the loop expanded
perturbation theory.What does generate theHiggsplosion are
the fully interacting diagrams in Fig. 1, with no easily
separable dressed propagators and the entire interaction
represented by the left diagram in Fig. 1.

2. Higgsplosion in the self-energy of other light
degrees of freedom

Let us now consider the self-energy of other standard
model degrees of freedom. More generally, we assume that
the field X has a mass much smaller than the Higgsplosion
scale, it can for example be of the order of the electroweak
scale, or even lighter, and that it interacts with the Higgs
sector. Does the imaginary part of ΣXðp2Þ become large
and higgsplodes at some high critical energy scale E�?
For concreteness we first consider here the case of the

top quark, X ¼ t, but the same qualitative conclusion can
immediately be drawn for all standard model particle (such
as the electroweak vector bosons, gluons and fermions) as

well as other not-too-heavy BSM degrees of freedom
coupled to the Higgs boson.

Higgsplosion in the self-energy of the top.—For the case of
the t quark we concentrate on its self-energy Σtðp2Þ and
consider the Yukawa interactions, ytt̄th as well as the Higgs
self-interactions. A priory it may be tempting to organise
perturbative contributions to Σtðp2Þ in terms of a loop
assembled two or more mutually independent dressed
propagators of the Higgs field and of the top quark,
connected by bare vertices. The leading-order one-loop
contribution involving the Higgs and the top dressed
propagators is shown on the left in Fig. 3. This amplitude
receives a contribution ∼Rn from Higgsplosion and two
contributions ∼1=Rn due to Higgspersion and is thus
negligible for p2 > E2�.
However, following the discussion above, we know that

such diagrams ignore the interference terms between the
sub-amplitudes of the top and the bottom parts of the
diagram. To achieve the Higgsplosion effect one should
instead consider the more general diagram shown in Fig. 3
on the right, which accounts for the contributions of all
cross-terms in the product of individual sub-amplitudes; in
this sense they are similar to the Higgs self-energy con-
tributions on Fig 1. Pictorially there is certainly not much
difference between the multiple Higgs emissions from the
top quark internal line and the Higgs internal line, as Fig. 4
indicates. Hence it is entirely likely (and expected) that the
imaginary part of the top quark self energy will also
higgsplode in analogy with the pure Higgs case.
To demonstrate the connection between Higgsplosion for

the top quark self-energy and the original Higgs field
Higgsplosion, let us compute the tree-level amplitude
At�→n×hþt for the top-quark-initiated process depicted in
the plot on the right in Fig. 4. We will first compute the
generating functional of all such amplitudes on the multi-
particle mass-threshold by solving the classical equation for
the top quark field ψ clðtÞ

�
iγ0d0 −

mt

v
hcl

�
ψ cl ¼ 0; ð2:20Þ

t(p) t(p)

p p

Rn
Rn

1

Rn

1

t(p) t(p)

p p

FIG. 3. Contributions to Σtðp2Þ from mutually independent dressed propagators in the loop. These sub-processes do not contribute to
Higgsplosion and correspond to 2-particle reducible diagrams in the t-channel. On the right, dominant contributions to the self-energy of
the top quark come from the interference terms between the sub-amplitudes. Such diagrams contain only multi-particle cuts in the
t-channel.
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in the background Higgs field hclðtÞ given by the Brown’s
solution (2.15) that follows from the scalar field
Lagrangian, ignoring the backreaction from the tt̄ pairs
ψ and ψ̄ in

L ¼ 1

2
∂μh∂μh −

λ

4
ðh2 − v2Þ2 þ ψ̄

�
iγμdμ −

mt

v
h

�
ψ :

ð2:21Þ

The general procedure is to solve the coupled Euler-
Lagrange equations for the Higgs field hclðtÞ and for the
top quark field ψ clðtÞ, both represented in the form of the
double Taylor expansion in terms of the complex variables
z and ξ2,

hclðtÞ ¼ vþ
X∞
n¼0

X∞
k¼0

dn;2kznξ2k;

with d0;0 ¼ 0; d1;0 ¼ 1; ð2:22Þ

ψ clðtÞ ¼ ξ
X∞
n¼0

X∞
k¼0

bn;2kznξ2k; with b0;0 ¼ 1; ð2:23Þ

where

zðtÞ ¼ z0eiMht; and ξðtÞ ¼ ξ0eimtt: ð2:24Þ
mt is the top mass and the factors of ξ account for the
production of top quarks. For example, in the fermionic
generating function (2.23) the factors of ξξ2k correspond to
a single top plus k additional tt̄ pairs in the final state
produced from the virtual incoming top quark. The ampli-
tudes initiated by the virtual Higgs or by the virtual top are
obtained by differentiating respectively hclðz; ξÞ or ψ clðz; ξÞ
with respect to the variables z and ξ. The same idea was
used previously in the gauge-Higgs system in Refs. [6,17]
for computations of amplitudes containing Higgses and
vector bosons in the final state. Here we are doing the same
for the Higgs-tt̄ system (2.21).
However for our present purpose, which is to account for

the amplitudes with a single top plus multiple Higgses in
the final state, cf. the plot on the right in Fig. 4, we can

neglect the effects of the additional tt̄ pair production, by
setting k ¼ 0 in the sums in (2.22)–(2.23). Hence, as stated
earlier, it is sufficient to solve the Dirac equation (2.20) in
the background of the already determined Higgs solution
(2.15) or (2.16),

hcl ¼ vð1þ 2
X∞
n¼1

ð2vÞ−nznÞ; ð2:25Þ

and search for the top-quark solution in the form,

ψ cl ¼ ξ

�
1þ

X∞
n¼1

bnzn
�
: ð2:26Þ

The more general procedure of solving the coupled system
in (2.22)–(2.23) can also be carried out, as in [17], but we
will not pursue it further here.
We can now solve the classical equation (2.20) for the

fermionic generating functional ψ cl recursively and deter-
mine the Taylor expansion coefficients bn in (2.26). To this
end we first act on the equation (2.20) from the left by the
operator ðiγ0d0 þ mt

v hclÞ to obtain,

�
−d2t −

�
mt

v
hcl

�
2

− iγ0
mt

v
ðdthclÞ

�
ψ cl ¼ 0: ð2:27Þ

Finally rewriting the last term in the brackets in the
equation above with the help of the original equation (2.20),
we obtain the equation for ψ cl which contains no γ matrices

�
−d2t −

�
mt

v
hcl

�
2

þ ðdthclÞ
hcl

dt

�
ψ cl ¼ 0: ð2:28Þ

We now define the mass ratio parameter

ρ ≔ mt=Mh ≃ 1.38; ð2:29Þ
and introduce the rescaled dimensionless variable t ¼ Mht,
so that z ¼ z0eit and ξ ¼ ξ0eiρt, and the dimensionless field
variable ϕclðzÞ,

hcl ¼ vð1þ 2ϕclÞ; where ϕclðzÞ ¼
X∞
n¼1

�
z
2v

�
n
: ð2:30Þ

h(p)

p

h

h

h

h

h

h

t(p)

p

h

h

h

h

h

t

FIG. 4. Not much difference pictorially between emitting multiple Higgses from the top or from the Higgs internal line
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While the Taylor coefficients of the scalar field ϕclðzÞ are already fixed ¼ 1=ð2vÞn by the known Higgs solution in (2.30),
the coefficients bn defining the fermionic function ψ clðzÞ in (2.26) are still to be determined by solving the Eq. (2.28) which
takes the form,

�
−d2t − ρ2ð1þ 2ϕclÞ2 þ

ð2dtϕclÞ
1þ 2ϕcl

dt

�X∞
n¼0

bneiðρþnÞt ¼ 0: ð2:31Þ

We solved this equation by iterations using Mathematica, first setting b0 ¼ 1 and determining all bn>1. For the first 50

coefficients bn ≔ ~bn=ð2vÞn [using the numerical value of the mass ratio given in (2.29)] we have:

~bn ¼ f1; 2.75; 5.17; 8.19; 11.8; 15.9; 20.6; 25.7; 31.3; 37.4; 44:; 51:; 58.5; 66.4; 74.7; 83.4; 92.6; 102:; 112:; 122:; 133:;
144:; 156:; 168:; 180:; 192:; 205:; 219:; 232:; 247:; 261:; 276:; 291:; 306:; 322:; 338:; 355:; 371:; 389:; 406:; 424:;

442:; 460:; 479:; 498:; 518:; 538:; 558:; 578:; 599:; 620:; 641:;…g ð2:32Þ

The tree-level scattering amplitudes (or more precisely,
the currents) for the process t� → n × hþ t are then
given by

At�→n×hþt ¼
∂
∂ξ

� ∂
∂z

�
n
ψ cl

����
z¼0

¼ n!bn ¼ n! ~bn=ð2vÞn;

ð2:33Þ

with the coefficients ~bn given in (2.32). Restoring the
kinematic dependence due to n nonrelativists momenta of
the Higgs bosons in the final state, as in (2.18), we have

At�→n×hþtðp1;…; pnþ1Þ ¼ n! ~bnð2vÞ−ne−ð7=6Þnε: ð2:34Þ

This amplitude retains the factorial growth with the number
of the Higgs bosons in the final state and in view of the
coefficient values in (2.18) with ~bn > 1, the amplitude
initiated by the top-quark line is not inferior to the n-point
amplitude for the pure Higgs production process in (2.18),

Ah�→n×hðp1;…; pnÞ ¼ n!ð2vÞ1−ne−ð7=6Þnε: ð2:35Þ

Based on these tree-level considerations, and admittedly
not having attempted to add and re-sum higher order
quantum corrections involving top quark loops, we con-
clude that the Higgsplosion of the top quark self-energy
ImΣtðp2Þ is as likely as the Higgsplosion of the Higgs
boson ImΣhðp2Þ at p2 ¼ E2�.

Higgsplosion in the self-energy of vector bosons.—As
another example of higgsploding the SM degrees of free-
dom, one can consider the amplitudes involving the Higgs
as well as the weak-sector massive vector bosons. Tree-
level amplitudes for multiple Higgs bosons and longi-
tudinal components of W ’s and Z’s were already consid-
ered in Refs. [6,17] on and off the multiparticle thresholds.
The formalism is very similar and involves solving the

time-dependent classical equations for the gauge-Higgs
system,

−d2t h ¼ λh3 − λv2hþ g2

4
ðAa

LÞ2h; ð2:36Þ

− d2t Aa
L ¼ g2

4
h2Aa

L: ð2:37Þ

The classical solutions for the Higgs field, hcl, and for the
longitudinal components of the vector boson fields Aa

Lcl are
represented as double Taylor expansions in terms of the z
and the wa variables,

zðtÞ ¼ z0eiMht; and waðtÞ ¼ wa
0e

iMVt; ð2:38Þ

where MV is the vector bosons mass.

hclðz; waÞ ¼ vþ 2v
X∞
n¼0

X∞
k¼0

dn;2k

�
z
2v

�
n
�
wawa

ð2vÞ2
�

k
;

ð2:39Þ

Aa
Lclðz; waÞ ¼ wa

X∞
n¼0

X∞
k¼0

an;2k

�
z
2v

�
n
�
wawa

ð2vÞ2
�

k
; ð2:40Þ

with the lowest-order Taylor coefficients d0;0 ¼ 0 and
a0;0 ¼ 1.
The amplitudes involving vector bosons and Higgs

bosons in the final state on the multiparticle thresholds
are given by the following expressions in terms of the
Taylor expansion coefficients dn;2k and an;2k,

Ah�→n×hþm×ZL
¼ ð2vÞ1−n−mn!m!dn;m; ð2:41Þ

and for the longitudinal Z decaying into n Higgses and
mþ 1 vector bosons we have,
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AZ�
L→n×hþðmþ1Þ×ZL

¼ 1

ð2vÞnþm n!ðmþ 1Þ!an;m; ð2:42Þ

and obtained by differentiating the classical generating
functions in (2.39) and (2.40) with respect to the variables z
and wa where a ¼ 1, 2, 3 is the isospin index.
The coefficients dn;m and an;m were computed in

Ref. [17] by solving the classical equations above
for the given ratio of the vector to the Higgs boson
masses,

κ ≔
g

2
ffiffiffiffiffi
2λ

p ¼ MV

Mh
≃ 0.64: ð2:43Þ

In particular, for the simplest case of m ¼ 0 of no vector
boson pairs present in the final state, the amplitudes for the
Z�
L → n × hþ ZL process are given by

AZ�
L→n×hþ×ZL

¼ 1

ð2vÞn n!ane
−ð7=6Þn; ð2:44Þ

with the first 50+ coefficients an ¼ an;0 given by

an ¼ f1; 0.718; 0.678; 0.652; 0.633; 0.617; 0.605; 0.594; 0.585; 0.577; 0.57; 0.564; 0.558; 0.553; 0.548; 0.543; 0.539;
0.535; 0.531; 0.528; 0.524; 0.521; 0.518; 0.516; 0.513; 0.51; 0.508; 0.505; 0.503; 0.501; 0.499; 0.497; 0.495;

0.493; 0.491; 0.489; 0.488; 0.486; 0.484; 0.483; 0.48; 0.479; 0.477; 0.476; 0.474; 0.481; 0.48; 0.479; 0.477;

0.476; 0.474; 0.473; 0.472; 0.471; 0.469; 0.468; 0.467; 0.466; 0.465; 0.464; 0.463;…g ð2:45Þ

Given the ∼1 values of the coefficients in (2.45), the
amplitudes (2.44) with a single vector boson line are
numerically very similar to the pure Higss amplitudes in
(2.35). These considerations imply that the Higgsplosion
should also occur in the self-energy of the vector boson
propagator with the Higgsplosion scale of the same (or
similar) magnitude as E� in the pure Higgs case.
While the calculation of higher order quantum correc-

tions to the tree-level amplitudes involving interactions
with the top quark and the vector bosons have not been
carried out so far, which could certainly change the scale
where Higgsplosion occurs quantitatively, it is nevertheless
a self-consistent assumption to conjecture that the self-
energy will higgsplode for all light degrees of freedom
coupled to the Higgs boson.

Higgsplosion in the self-energy of the graviton.—We start
with the Lagrangian

ffiffiffiffiffiffi
−g

p
L ¼ ffiffiffiffiffiffi

−g
p �

−
M2

Pl

2
Rþ Lmatter þ LGF

�
; ð2:46Þ

where he first term is the Einstein-Hilbert Lagrangian of
gravity, the second term is the coupling of gravity to the
Higgs field h, and the final term is the gauge-fixing term for
gravity. R is the scalar curvature and MPl is the reduced
Planck mass, which is often re-written as MPl ¼ 2=κ,
where κ2 ¼ 32πG and G is the Newton’s constant
G ¼ ð1.22 × 1019 GeVÞ−1. The graviton field gμν is
defined as the fluctuation of the metric tensor around the
Minkowski space metric, gμνðxÞ ¼ ημν þ κχμνðxÞ and we
use the convention ημν ¼ ðþ1;−1;−1;−1Þ. We can now
simplify this Lagrangian by retaining only the terms linear
and quadratic in the graviton field χμν, which takes the form
(cf. e.g. the lecture notes [18]),

L ¼ 1

2
χμνPμναβ∂2χαβ −

κ

2
χμνTμν: ð2:47Þ

Here

Pμναβ ¼ 1

2
ðημαηνβ þ ημβηνα − ημνηαβÞ; ð2:48Þ

and Tμν is the energy-momentum tensor of the Higgs field,

Tμν ¼ ∂μh∂νh − ημνLðhÞ ð2:49Þ

where LðhÞ is our scalar-field Lagrangian (2.11). To
describe the tree-level process where the incoming graviton
decays into a multiparticle final state made entirely out of
Higgs bosons (and no additional gravitons), χμν → n × h, it
is sufficient to solve the linearized equation for the graviton
field in the background of the classical Higgs solution.
The graviton equation reads [18],

∂2Pμναβχαβ ¼
κ

2
TμνðhclÞ: ð2:50Þ

Furthermore, when we restrict the particles in the final state
to be on the multiparticle threshold, the equation becomes
an ordinary differential equation with respect to time,
∂2 → d2t , and for the background Higgs field we can as
before use the already known analytic expression (2.15).
There is an additional simplification, namely it is easy to

check that when evaluated on the classical Higgs configu-
ration (2.15), the energy-momentum tensor becomes,

T00 ¼ HðhclÞ ¼
1

2
ðdthclÞ2 þ

λ

4
ðh2cl − v2Þ2 ¼ 0; ð2:51Þ

Tij ¼ δijLðhclÞ ¼ −δij
λ

2
ðh2cl − v2Þ2: ð2:52Þ
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Hence we search for the solution of

d2t ~χcl ¼ −
κλ

4
ðh2cl − v2Þ2 ð2:53Þ

where ~χcl ≔ ðPχclÞiiðtÞ with no sum over i. We are looking
for the solution of the form of the Taylor expansion in the
variable z ¼ z0eiMht,

~χclðzÞ ¼
v2

MPl

X∞
n¼2

gn

�
z
v

�
n
; ð2:54Þ

and the Taylor coefficients gn can be determined analyti-
cally by solving (2.53) by iterations. Working in units of
v ¼ 1 we find,

gn ¼
1

n2
ðh2cl − 1Þ2

����
zn
¼ 8

3

n2 − 1

2nn
: ð2:55Þ

In summary, we have for the generating function of all
graviton decay amplitudes into n Higgs bosons the follow-
ing expression,

~χclðzÞ ¼
8

3

v2

MPl

X∞
n¼2

n2 − 1

n

�
z
2v

�
n
: ð2:56Þ

This is to be compared with the pure Higgs solution in
(2.16). In terms of the hcl Taylor coefficients dn ¼ ð2vÞ1−n
we now have the graviton Taylor coefficients (including
now all dimensionful factors),

gn ¼
v

MPl

4

3

n2 − 1

n
dn: ð2:57Þ

As the n-point amplitude is given by

Agraviton→n×h ¼ n!gn ð2:58Þ

we see that the graviton decay rate Rn will be suppressed
by a relative constant factor of v

MPl
times n2. This suppres-

sion is by a constant, i.e. energy and n-independent factor,
so it will not prevent Higgsplosion, but will result in the
considerably higher Higgsplosion scale E� for the graviton
relative to Higgses.

3. Heavy degrees of freedom

The behavior of the self-energy of the degrees of
freedom with masses MX ≫ E� will depend on whether
the field under consideration is stable or not, in other words
whether the heavy X can decay into light degrees for
freedom X → Lightþ nh, or if it is required that
X → X þ nh. One can consider the following possibilities:
(1) For a heavy scalar field X which can decay into

multiple Higgs bosons alone, X → nh, the discus-
sion follows Sec. 5 of [1]. The main point is that

there is no difference between X or h on the external
lines of the self-energy. The result is that ImΣXðp2Þ
higgsplodes.2

(2) For a bosonic or fermionic X which decays as X →
Lightþ nh the situation is very similar to the top
quark self-energy. Here X can for example be a very
heavy 1011–13 GeV sterile neutrino which first de-
cays into a light neutrino and the Higgs, and
subsequently into many Higgses. The self-energy
of such X is also expected to higgsplode in direct
analogy to the top quark (or other SM fermions).

(3) For stable heavy degrees of freedom X the story is
different because the remaining X in the decay
process X → X þ nhwill carry away the momentum
of the order of the mass of X, thus depleting the
energy left for the Higgsplosion into multiple Higgs
bosons. Thus Higgsposion could occur only at
energies EX� ≃MX þ Enh� . If MX ≫ Enh� such states
will reintroduce a hierarchy problem for the Higgs
boson, and hence should be avoided in model
building.

C. Solving the hierarchy problem

Here we are interested in assessing the contributions to
the Higgs self-energy Σhðp2Þ at low energy scales, of the
order of the measured Higgs mass and much below the
Higgsplosion scale, p2 ∼M2

h ≪ E�. Clearly the multi-
particle Higgs production relevant for Higgsplosion is
impossible at such low scales and hence the imaginary
part of Σhðp2Þ plays no role, we are interested predomi-
nantly in how big or small its real part is after the
integration over the loop momenta.
The whole point and the origin of the hierarchy problem

for the Higgs mass for such low values of the external
momenta p2 ∼M2

h of the ReΣhðp2Þ is that the super-heavy
degrees of freedom propagating in the loops contributing to
Σhðp2Þ, do not decouple because of the UV divergencies in
the integration over the loop momenta. Thus to address the
hierarchy problem it is sufficient to concentrate only on the
UV-divergent and/orMX-sensitive contributions to the self-
energy of the Higgs.
The UV-sensitive diagrams contributing to the self-

energy at small external momenta are conceptually differ-
ent from the higgsploding contributions which were
UV-finite at tree level and computed at p2 ¼ E2� ≫ Mh.
In the case at hand one needs to address the cases with the
smallest numbers of propagators (and hence the vertices) in
the loops—after all we are only after the UV-divergent
contributions. In this case the correct procedure is the
expansion of the self-energy in the number of loops, each
with the minimal number of internal propagators. The new

2In fact, the exponential factor in (2.2) is the same for the
incoming X in the process X → nh and for the virtual Higgs h� in
the process h� → nh.
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input from the Higgsplosion is that the internal propagators
ΔXðpÞ are the dressed propagators (2.6). It then immedi-
ately follows that all the UV divergencies and even the
finite terms are cut-off by the values of the loop momenta
approaching the Higgsplosion scales of the relevant self-
energy factors in the dressed propagators. For example,
following [1] for the case of the heavy scalar X interacting
with the Higgs sector via

LX ¼ 1

2
∂μX∂μX −

1

2
M2

XX
2 −

λP
4
X2h2 − μXh2; ð2:59Þ

the 1-loop radiative correction to the Higgs mass parameter
is UV-finite and ≪ M2

X,

ΔM2
h ∼ λP

Z
d4p
16π4

1

M2
X − p2 þ iImΣXðp2Þ

∝ λP
E2⋆
M2

X
E2⋆ ≪ λPM2

X: ð2:60Þ

In general the computation of the real part of Σhðp2Þ at
p2 ≃M2

h proceeds as explained in Sec. 5 of our original
Higgsplosion paper [1]. We note that the diagrammatic
technique employed now involves dressed propagators and
bare vertices and is conceptually different to the diagrams
in Fig. 2 that contributed to the Higgsplosion of the self-
energy discussed in the preceding sections. However, there
is no contradiction. In addressing the Hierarchy we are
working in a different regime, where the external momenta
are much smaller than the Higgsplosion scale and we are
tracing what used to be the UV-divergent contributions that
arose from integrations over the loop momenta. Such
diagrams are correctly accounted by the loop diagrams
with the minimal numbers of dressed propagators in the
loops, and in presence of Higgsplosion, the loop momenta
are dynamically cut off at E�. Hence there are no con-
tributions to M2

h proportional to neither the Λ2
UV nor the

∼M2
X factors. The radiative corrections to the Higgs mass

squared are cut off at the much lower scales set by E�, as
indicated in (2.60), thus solving the hierarchy problem.

D. UV finiteness of n-point functions and
asymptotic safety

As we already noted in Sec. II A Higgsplosion is
triggered in a given QFT if and when the multi-particle
decay widths Γn of all degrees of freedom become
exponentially large above a certain dynamically generated
nonperturbative scale E�, and exhibit the behavior
described by (2.8).
While a fully nonperturbative self-consistent formalism

is currently lacking, in this paper we would like to advocate
a simple diagrammatic approach for computing quantum
effects in a higgsploding QFT based on a resummed
perturbation theory. The two building blocks are (I) the

dressed propagators (2.6) that include the Higgspersion
formfactor for all field theoretic degrees of freedom present
in the problem, and (II) the bare vertices that are read
directly from the microscopic Lagrangian. The renormal-
ized vertices which depend on the RG scale μ are then
obtained in the standard way from computing the n-point
one-particle irreducible LSZ-amputated Green functions
Gn. These computations are performed order by order in
the loop expansion, with the only difference from the usual
approach that one is required to use the dressed propagators
(2.6) on all internal lines. The leading order one-loop
contributions to the 3-point and the n-point vertices are
shown in Fig. 5.
This way of computing quantum effects in a higgsplod-

ing QFT leads to a powerful conclusion that all momenta of
virtual particles propagating in the loops are effectively cut
off at the Higgsplosion scale E�. Integrations over the loop
momenta are convergent, all the contributions to the
n-point functions are UV finite and quantum fluctuations
are damped above E�.
There is an interesting parallel between this approach

and Polchinski’s implementation of the Wilson approach to
renormalization [19,20] presented in Ref. [21] for a massive
ϕ4 theory. In the construction of [21] the UV cutoff is
implemented by multiplying the propagators by a form-
factor Kðp2=Λ2

0Þ which is equal to 1 for momenta p2 ≤ Λ2
0

and rapidly vanishes for p2 > Λ2
0. What defines the theory

with the (large) UV cutoff Λ0 is the Lagrangian with the
modified propagator and bare vertices. When the cutoff is
lowered from Λ0 to ΛR, one is required to integrate out the
high momentum components of the field. This is imple-
mented by changing the form factor in the propagator to
Kðp2=Λ2

RÞ and integrating out the modes with p2 > Λ2
R.

This generates new effective interactions and expresses
them in terms of the couplings at the scale ΛR. The analogy
of our method for computing the n-point functions with the
approach of [21] is that the theory with a large UV cutoff is
defined by the modified propagators and bare vertices. The
momentum modes above the cutoff are switched off in both
cases simply by the fact that the modified propagators
vanish. In the case of Higgsplosion, what we referred to as

...

FIG. 5. One loop contributions to the three-point (left) and
n-point (right) Green functions. The grey blobs represent dressed
propagators and the black dots are the microscopic 3- and 4-point
interaction vertices.
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the large UV cutoff is the dynamically generated
Higgsplosion scale E�, and the original propagators are
modified by the self-energy Σðp2Þ contributions (2.3). The
theory with momenta above the Higgsplosion scale is the
theory above the UV cutoff; its propagators vanish so it has
no propagating degrees of freedom left, but its vertices are
the usual bare vertices fixed at the scale E�. There are no
quantum fluctuations and no running above the scale E�.
The coupling constants in a higgsploding theory receive

no quantum corrections from the modes above E�. Hence
the running couplings become flat for the values of the RG
scale μ > E�. Below the Higgsplosion scale, μ < E�, the
couplings exhibit the usual logarithmic running with μ, but
above E�, their beta functions vanish and the couplings stay
constant with the values determined at E�. This amounts to
the asymptotically safe theory.

E. High-energy scattering with Higgspersion

Before concluding this section, let us pose the following
question: is it true that due to Higgsplosion and
Higgspersion, all scattering processes beyond the
Higgsplosion scale become non-interacting? The couplings
stay constant, while all scatterings cross-sections never-
theless vanish exponentially as dictated by (2.5). Is this a
consistent picture?
The main point is whether or not the internal propagators

appearing in the diagrams contributing to the high-energy
scattering process involve momenta that can exceed the
Higgsplosion scale E�. For the high-energy processes
dominated by the s-channel exchanges, such as the diagram
on the left of Fig. 6, the presence of at least one propagator
with p2 ≥ E2� is unavoidable when the total

ffiffiffi
s

p
≥ E�.

These are the processess we are considering in this paper
and they indeed shut down beyond the Higgsplosion scale
due to the Higgspersion of the dressed s-channel propa-
gator, where Δðp2Þ ∼ 1=Rðp2Þ → 0. A physically intuitive
meaning of this effect is that the propagating degree of
freedom simply disappears from the spectrum, it is no
longer an individual particle but a manifestation of multi-
Higgs radiation.
On the other hand, not all of the contributing diagrams to

high energy
ffiffiffi
s

p
≥ E� scattering are of this form. The

diagram on the right of Fig. 6 represents a t-channel
process. The transverse momentum is not required to be

large or anywhere near the scaleE�. Hence theHiggsplosion/
Higgspersion effects will be absent in such processes, and
their contributions to the scattering processes will survive
even at high energies.
In summary, Higgspersion shuts down the processes

which probe shorter and shorter distances at higher and
higher energy. This is not happening because the couplings
vanish but because the internal propagators with momenta
above E� in fact turn off and disappear. The dynamically
generated Higgsplosion scale sets the minimal length scale
r� ∼ 1=E� that can be probed at any arbitrary high energy.3

In this sense Higgsplosion provides a dynamical realisa-
tion of the idea of classicalization [22,23], where the role of
the classicalization radius is played by the Higgsplosion
scale r�. It also resounds the importance of multi-regge
kinematics for high-energy scatterings as introduced by
Balitsky, Fadin, Kuraev and Lipatov [24–27].

III. PHENOMENOLOGY AND THE EARLY
UNIVERSE WITH HIGGSPLOSION

Many parts of models of the early Universe are relying
on finite temperature effects and quantum fluctuations, all
of which could receive corrections from the Higgsplosion
mechanism, e.g. inflation [28–31], reheating [32], the
cosmological microwave background [33,34], black hole
formation [35–37] and the vacuum energy density during
the evolution of the Universe [38]. As these phenomena are
not entirely independent and are deserving of a detailed
investigation in their own right, a full study of the early
history of the Universe in presence of Higgsplosion is
beyond the scope of this work. However, in this section
we briefly comment on whether and how radically
Higgsplosion would change the standard big bang model
of the early Universe.

A. Higgsplosion and the running of gauge
and gravity couplings

General relativity is inherently difficult to reconcile with
the quantum field theoretical description of the standard
model. While the quantum theory of the standard model is
predictive to all orders in perturbation theory, loop correc-
tions to gravity can only be taken into account order by
order and have to be treated in the context of an effective
field theory with expansion parameter E2=M2

Pl. One way
of addressing this problem is the concept of asymptotic

...

FIG. 6. s-channel (left) and t-channel (right) interaction
diagrams.

3In the analysis of Higgsplosion for the gg → h� → n × h
processes, it is the Higgspersion effect in the first Higgs
propagator of the most energetic state h� that turns off the cross
section and restores unitarity. The effects of the Dyson resum-
mation of subsequent intermediate Higgs propagators are irrel-
evant at energies just above the Higgsplosion threshold. This is
because after each 2-point or 3-point splitting of the virtual Higgs
state h�, the energies/virtualities carried by the emerging propa-
gators are 1=2 or 1=3 of the initial energy; they fall below the
Higgsplosion scale, and their self-energy insertions are irrelevant.
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safety [39–44] which ensures that quantum field theories
remain fundamental and predictive up to highest energies.
This scenario indicates that a quantum theory of gravity can
be renormalizable on a nonperturbative level, despite being
perturbatively nonrenormalizable. In gravity asymptotic
safety aims to provide a path-integral framework where
the metric field is the carrier of the fundamental degrees of
freedom in the classical and quantum regime of the theory.
Thus, the quantum field theoretical description of gravity
can be extended to infinitely large energy scales. A
realisation of asymptotic safety requires that the beta-
functions of all couplings gi vanish at fix points g�i , i.e.
βðg�i Þ ¼ 0. The number of parameters gi defines the
dimensionality of the ultraviolet critical surface formed
by all trajectories attracted to the fixed point.
In Fig. 7 we show the impact of Higgsplosion on the

running of the Yukawa, scalar, gauge and gravity cou-
plings. For the standard model couplings we use 2-loop
running as implemented in SARAH [45,46], while for
gravity we show the classical value normalized to
ðMPl=2Þ2, as we do not want to speculate about the theory
that governs quantum gravity in the UV. The couplings can
have quantitatively different scales μ for βðgiÞ ¼ 0, depend-
ing on the masses, couplings and stability of the degrees of
freedom that drive their running. For simplicity we chose
E� ¼ 105 GeV for all couplings.
The whole SM exhibits a fix point with a finite-

dimensional critical surface, as required for an asymptoti-
cally safe theory. Further, neither are there UV Landau poles
associated with any of the gauge groups, Yukawa couplings
or scalar interactions. In particular, if the Higgsplosion scale
for all particles is below ∼106 GeV, the Higgs potential
remains stable on cosmological time scales.
While embedding the standard model into an asymp-

totically safe theory, i.e. a theory free of Landau poles
and free of a hierarchy problem due to Higgs-gravity
interactions, has been a challenge [47–49], within the

Higgsplosion framework, following arguments of Sec. II,
this is automatically realized for the minimal standard
model and for most of its proposed extensions. In the
standard model without Higgsplosion one expects gravity
to give rise to a fine-tuning problem when δM2

h ≳M2
h,

where δM2
h ∼ lGNΛ4

G with l ∼ ð4πÞ−4, i.e. around the scale
ΛG ≃ 1011 GeV. However, with the graviton Higgsplosion
scale EG� being much smaller than ΛG, as calculated in
Sec. II B 2, the gravitational contributions to the fine-tuning
of the Higgs mass is cut off at δM2

h ∼ lGNðEG� Þ4 ≪ M2
h.

Hence, in the Higgsplosion scenario, there is no introduc-
tion of a hierarchy problem due to gravity and the need to
construct a scenario that softens gravity in the UV is absent.

B. Higgsplosion during inflation

In the standard big bang cosmology inflation was
proposed to solve simultaneously the flatness, isotropy,
homogenity, horizon and relics problems [28–31]. Thus
inflation is the most popular theory of the early universe, in
full agreement with observations, including the recent data
from Planck satellite [50], which favour a simple infla-
tionary scenario with only one slow rolling scalar field.
While an exhaustive discussion of inflation is beyond the

scope of this article, we want to investigate if Higgsplosion
can be reconciled with inflation or if one or the other has to
be abandoned. We thus focus on a scenario with a non-
minimally coupled scalar singlet field S to gravity [51] (see
also [52–55]) as an example to show that Inflation can be
incorporated into the Higgsplosion framework. A non-
minimal inflaton coupling to gravity allows for a tensor-
scalar ratio of r0.05 ≳ −0.004 well in agreement with
current limits of r0.05 < 0.07 [56]. We take the relevant
Jordan frame Lagrangian to be

L ¼ ffiffiffiffiffiffi
−g

p �
−
MPl þ ξsS2

2
Rþ ∂μH†∂μH

þ ð∂μSÞ2 − VðH; SÞ
�

ð3:1Þ

with the Higgs doublet H ¼ ðϕþ; 1=
ffiffiffi
2

p ðhþ iϕ0ÞÞT . The
inflaton’s nonminimal coupling term to gravity ξsS2R=2
should have a large parameter ξs ∼ 104. The tree-level two-
field scalar potential is

VðH; SÞ ¼ −μhH†H þ λhðH†HÞ2 − 1

2
μ2SS

2

þ 1

4
λSS4 þ

1

2
λShH†HS2: ð3:2Þ

To bound the potential from below we take all λi to be
positive.
The inflaton develops a vacuum expectation value vs

during inflation. Thus, during inflation, the mass of both
the inflaton and the Higgs boson in the inflaton background
are large
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FIG. 7. Two-loop running of standard model couplings with
Higgsplosion (solid lines) and without (dashed lines). We
assumed the Higgsplosion scale to be uniformly at
E� ¼ 105 GeV.
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Mh ≃
ffiffiffiffiffiffiffi
λSh
2

r
SðxÞ≃ MPlffiffiffiffi

ξs
p : ð3:3Þ

As h is of the order of the mass of the inflation S, or even
heavier, the inflaton cannot higgsplode during inflation.
Phenomenologically, inflation within the singlet extended
standard model can remain unaffected by Higgsplosion.
The picture can change during reheating, where the

inflaton oscillates around the potential’s minimum, and
with it the Higgs mass varies. One could imagine that
reheating becomes more efficient if Higgsplosion sets in
and that the mechanism is different from standard resonant
reheating, which is associated with growing classical
instabilities. A detailed study of reheating seems warranted
but is beyond the scope of this work.

C. Axions

The strong CP problem, the discrepancy between the
theoretically allowed value of the sum of the QCD
topological angle and the quark mass phase θ ¼
θ0 þ arg detMq and its experimentally observed size of
less than Oð10−10Þ, provides a motivation to augment the
SM by an additional pseudo-Nambu-Goldstone boson a of
a spontaneously broken Uð1ÞPQ symmetry [57–63]. The
axion’s Lagrangian below the Peccei Quinn (PQ) breaking
scale can be written as

La ¼
1

2
ð∂μaÞ2 þ

a
fa

αs
8π

Gμν
~Gμν þ a

4
g0aγγFμν

~Fμν

þ ∂μa

2fa
gqq̄γμγ5q ð3:4Þ

where the axion decay constant fa is the order parameter
associated with the breaking of Uð1ÞPQ via aðxÞ → aðxÞ þ
αfa and the dual gluon field strength ~Gμν ¼ 1

2
ϵμνρσGρσ

(analogously for ~Fμν).
In the context of Higgsplosion, the QCD-axion provides

a well-defined framework to answer the question if light
degrees of freedom are allowed, or if they would lower the
Higgsplosion scale enough to render this mechanism
incompatible with the existence of very light and weakly
coupled scalars. The only free parameter that is defining the
axion’s interactions and mass is fa. At next-to-leading
order4 the axion mass and self-interaction are respectively
calculated to be [64]

ma ≃ 5.7 × 1015 eV
fa

ð3:5Þ

and

λa ≡ ∂4VðaÞ
∂a4

����
a¼0

≃ −0.346
m2

a

f2a
: ð3:6Þ

We can now estimate the Higgsplosion scale where
αs stops running due to axion contributions in the
Higgsplosion of the gluon. A crude approximation, assum-
ing λana ≳ 20 results in Higgsplosion, gives a
Higgsplosion scale E� of

EAxion� ≃ 60
f2a
ma

: ð3:7Þ

If we require the axion’s Higgsplosion5 scale to be
above the Higgs boson’s Higgsplosion scale, i.e.
EAxion� > 105 GeV, we find a limit fa ≳ 2.1 GeV, which
is easily achievable. Such a bound is far below existing
experimental limits of fa ≳ 108–1017 GeV [65–68].
Thus, the existence of QCD axions is not in conflict

with Higgsplosion and the axion’s contribution to the
Higgsplosion of SM light degrees of freedom is negligible
for sufficiently large fa.

IV. DISCUSSION AND CONCLUSIONS

The discovery of the Higgs boson has unravelled an
extraordinary building block in our understanding of
elementary particle physics: the first elementary scalar
particle. An immense effort is being devoted to determining
its precise properties and in using it as a vehicle to uncover
answers to thus far inexplicable observations in nature. Yet,
the Higgs boson’s hierarchy problem and its peculiar
contribution to h� → n × h transition amplitudes have been
puzzling for a long time and have provided motivation to
extend the standard model of particle physics by novel
degrees of freedom and interactions. In [1] we have
proposed two intertwined mechanisms, Higgsplosion and
Higgspersion, to address both of these issues. In this paper
work we have extended the discussion and interpretation of
Higgsplosion and Higgspersion and have outlined some
phenomenological, i.e. experimentally testable, conse-
quences in case these mechanisms are realised in nature.
Our findings are
(1) All particles of the standard model and its extensions

higgsplode at individually different scales. The
particle’s Higgsplosion scale depends on its inter-
action strength with the Higgs boson, its mass and
whether it is stable or not.

(2) The Higgsplosion scale establishes a radius
E� ∼ 1=r� that cannot be probed further inside by

4While it is conceptually inconsistent to use a next-to-leading
order result calculated without Higgsplosion, we do not expect a
large quantitative effects from discarding the high loop momenta
in the calculation of ma and λa.

5To avoid confusion we will refrain from calling the rapid
increase of the transition amplitude in the process g → gn × a
axionplosion, and will just refer to it as the axion’s Higgsplosion
process.
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increasing momenta. Thus, interaction processes
with propagators with p2 ≥ E2�, i.e. all s-channel
processes shut down, pronouncing the importance of
t-channel interactions, e.g. multi-Regge kineamtics,
in high-energy scatterings. E� effectively defines a
virtuality and interaction dependent compositeness
or classicalization scale.

(3) Not only tree-level interactions are higgspersed, but
n-point functions to all loop orders are cut-off as
well at p2 ¼ E2�. Hence, beyond the Higgsplosion
scale the beta functions of all couplings vanish, i.e.
βðg�i Þ ¼ 0, and the standard model becomes asymp-
totically safe and free of Landau poles.

(4) If additional scalars are in the theory that are either
heavy, have a small mass ratio to the Higgs boson, or
are feeble coupled they will not higgsplode or
provide a significant contribution to the Higgsplo-
sion of other particles. Thus, inflation and the

existence of QCD axions are not in conflict with
the Higgsplosion mechanism.

Arguably the effects of Higgsplosion and Higgspersion
open up to a radical re-examination of the standard wisdom
associated with the UV behavior in quantum field theory,
its phenomenological applications, and its probes of nature.
Many fundamental questions are as yet left unanswered and
we believe that this offers potential for exciting discoveries
and warrant further studies in this area.
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