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We discuss several phenomenological implications of very special relativity (VSR). It is assumed that
there is a small violation of Lorentz invariance, and the true symmetry group of nature is a subgroup called
SIM(2). This symmetry group postulates the existence of a fundamental or preferred direction in space-
time. We study its implications by using an effective action which violates Lorentz invariance but respects
VSR. We find that the problem of finding the masses of fundamental fermions is, in general, intractable in
the presence of a VSR term. The problem can be solved only in special cases, which we pursue. We next
determine the signal of VSR in a torsion pendulum experiment as well as a clock comparison experiment.
We find that VSR predicts a signal which is different from other Lorentz violating theories, and hence a
dedicated data analysis is needed in order to impose reliable limits. Assuming that a signal is absent in the
data, we determine the limits that can be imposed on the VSR parameters. We also study the implications of
VSR in particle decay experiments taking the charged pion and kaon decay as an example. The effective
interaction between the charged pion and the final state leptons is related to the fundamental VSR mass
terms through a loop calculation. We also predict a shift in the angular dependence of the decay products
due to VSR. Specifically, we find that these no longer display azimuthal symmetry with respect to the
momentum of the pion. Furthermore, the azimuthal and polar angle distributions show time dependence
with a period of a sidereal day. This time dependence provides us with a novel method to test VSR in future
experiments.
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I. INTRODUCTION

Lorentz invariance is experimentally verified to a very
high degree of accuracy. Nevertheless, it is interesting to
consider models which postulate a small violation of this
symmetry. For example, many quantum gravity models
predict a breaking of Lorentz invariance at Planck scale
energy (MPl ≈ 1019 GeV) [1]. It is rather interesting that the
observational data already rule out most of these models,
except those based on supersymmetry [2–5]. In such
models, violation of Lorentz invariance is suppressed by

the factor M2
SUSY
M2

Pl
[4]. In these models, the effects of Lorentz

violation (LV) grow with energy and are significant only at
very high energies.
An alternative framework to implement violation of

Lorentz invariance is provided by very special relativity
(VSR) [6]. In this framework, one postulates that only a
subgroup, such as T(2), E(2), HOM(2), and SIM(2), of the
full Lorentz group remains preserved [6]. The generators of
HOM(2), for example, are T1 ¼ Kx þ Jy, T2 ¼ Ky − Jx
and Kz where J and K represent rotation and boost,
respectively, while those of SIM(2) are T1, T2, Jz, and
Kz. A theory which is invariant only under one of these
subgroups—not the full Lorentz group—necessarily breaks
the discrete symmetries P, T, and CP (or CT). However,

the dispersion relations of the particles remain unchanged.
Hence, several consequences of SR, such as the frame
invariance of the speed of light, time dilation, and velocity
addition remain preserved [6,7]. This also implies that
some of the standard high energy tests of LV are not
applicable in this case.
It is useful to define a null vector,

nμ ¼ ð1; 0; 0; 1Þ; ð1Þ

which is invariant under E(2) and T(2) transformations but
not under HOM(2) and SIM(2). In this paper, we shall
primarily be interested in small violations of Lorentz
invariance which preserve SIM(2). We shall implement
this by using an effective Lagrangian approach and con-
struct interaction terms in terms of nμ, which respect
SIM(2) but violate Lorentz invariance. The vector nμ is
given by Eq. (1) only in a particular reference frame. In
general, the form of nμ would change under Lorentz
transformations and rotations. However, it is always pos-
sible to make a HOM(2) [and SIM(2)] transformation into
the rest frame of a particle [6]. Under these transformations,
nμ changes, at most, by an overall factor which cancels out
in the calculation of decay rates. Hence, we can choose a
frame at rest with respect to the particle or to the laboratory
in which nμ takes the form given in Eq. (1). However, the
orientation of the particle momentum relative to the z axis
in this frame has to be taken into account while making
experimental predictions, as discussed below.
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There has been considerable theoretical effort devoted to
understanding the phenomenological implications of VSR
[8–20]. In this paper, we illustrate some phenomenological
implications of VSR [6] using an effective action approach.
We assume that Lorentz violating, VSR effects are small
and can be treated perturbatively. We add an effective,
gauge invariant VSR invariant mass terms for leptons and
quarks to the Standard Model (SM) action. Such a mass
term is interesting since it can potentially explain the
neutrino masses and mixings without requiring a right-
handed neutrino. However, a detailed analysis of the
resulting model has not yet appeared in the literature. As
we argue in Sec. II, the model in the general case becomes
rather intractable and leads to a mathematical structure
incompatible with quantum mechanics. Hence, we are
unable to make reliable predictions in the general case,
and we impose some constraints on the parameter space in
order make the problem solvable. We next consider limits
that can be imposed on the restricted set of VSR parameters
using torsion pendulum [21] and clock comparison experi-
ments [22]. These can impose limits on the VSR contri-
butions to the electron and nucleon masses, respectively.
The latter can be used to constrain the VSR up and down
quark masses. We determine the time dependence of the
signal that VSR produces in such experiments due to the
rotation of Earth. We find that the signal is different from
what is expected in a generic LV theory and requires a
dedicated data analysis in order to impose proper limits. We
determine the level at which the electron and nucleon
masses can be constrained in such experiments.
We also study the implications of VSR for elementary

particle decay experiments taking the charged pion and
kaon decays as an example. Using the uncertainty in the
observed decay rates, we impose a limit on the VSR
contribution to the up, down, and strange quark masses. We
also show that VSR leads to anisotropic distribution of
decay products in the pion (or kaon) rest frame.
Furthermore, it leads to azimuthal angle dependence in
the laboratory frame. The differential cross section also
picks up time dependence due to the rotation of Earth.
Similar effects are likely to arise in a wide range of decay
and scattering processes within VSR. Such effects have not
yet been studied within the framework of VSR, although
some studies have been performed in other Lorentz
violating theories [23]. As we have already mentioned,
in the latter case the effect is likely to be seen only at very
high energies, whereas the effects associated with VSR
may be observable at low energies. Charged pion decay has
been studied as a means to constrain LV in the weak sector
[24,25]. However, none of these studies have investigated
this decay process within the framework of VSR.

II. VSR INVARIANT EFFECTIVE LAGRANGIAN

We work within the framework of a generalized SM in
which the Lorentz violating terms which respect VSR are

introduced using the effective action approach. The corre-
sponding Lagrangian density can be written as

L ¼ Lg þ LY; ð2Þ

where we have split the terms into the gauge and the
Yukawa sector. The gauge terms for the case of leptons can
be written as

Lg ¼ ið ν̄i ēi ÞL
�
∂ þ i

g1
2
A − i

g
2
τ ·W

��
νi

ei

�
L

þ iēiRð∂ þ ig1AÞeiR þ LVSR; ð3Þ

where i is the family index and Aμ and Wa
μ represent the

U(1) and SU(2) gauge fields. The corresponding gauge
couplings are denoted by g1 and g, respectively. The
Lorentz violating, VSR invariant term can be expressed as

LVSR ¼ i
2
ð ν̄i ēi ÞL½ ~M2

L�ij
=n

n ·D

�
νj

ej

�
L

þ i
2
ēiR½ ~M2

R�ij
=n

n ·D
ejR; ð4Þ

where nμ is the null vector defined in Eq. (1). Here, we shall
assume that neutrinos do not acquire any mass terms other
than those arising out of VSR. The mass matrices ~M2

L and
~M2
R need not be diagonal but have to be Hermitian. We

could diagonalize them by a unitary transformation, but the
standard mass terms for charged leptons generated through
the Yukawa interactions will then necessarily be non-
diagonal. After expanding the Higgs field H around its
vacuum expectation value (VEV) v, the Yukawa terms
yield

LY ¼ −ēiLMijejR þ ð ν̄i ēi ÞLgYij ~HejR þ H:c:; ð5Þ

where the mass matrix M ¼ −gYv=
ffiffiffi
2

p
, gY is the Yukawa

coupling matrix, and ~H represents the fluctuations of the
Higgs field around its VEV.
We next diagonalize the mass matrix M by the trans-

formation

eiL → ULijejL; eiR → URijejR; ð6Þ

where UL and UR are unitary matrices. Furthermore, we
diagonalize the VSR neutrino ~M2

L by the transformation

νiL → VLijνjL: ð7Þ

The VSR charged lepton mass terms can now be written
as [9,20]
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LVSR ¼ i
2
ν̄iLM2

νij
=n

n ·D
νjL þ i

2
ēiL½M2

L�ij
=n

n ·D
ejL

þ i
2
ēiR½M2

R�ij
=n

n ·D
ejR; ð8Þ

where M2
ν is a diagonal matrix and M2

L ¼ U†
eM2

νUe and
M2

R ¼ U†
R
~M2
RUR are nondiagonal charged lepton mass

matrices. Here, Ue ¼ U†
LV is the neutrino mixing matrix.

The resulting Lagrangian nicely explains the neutrino
masses and mixings but considerably complicates the
propagation of charged leptons. The charged lepton
Dirac equation gets modified to

�
p −MD −

1

2
M2þ

=n
n · p

−
1

2
M2

−
=nγ5
n · p

�
ψ ¼ 0; ð9Þ

where MD is the diagonal Dirac mass matrix,

ψ ¼

0
B@

e

μ

τ

1
CA

is a 12 component lepton multiplet with e, μ, and τ
representing the four component Dirac spinors for these
leptons and M2

� ¼ ðM2
L �M2

RÞ=2.
The matrix M2

L is fixed by the neutrino masses and
mixings, whereas M2

R is completely unknown. Hence,
excluding some special cancellations, we expect that, in
general, both M2þ and M2

− would be nonzero and non-
diagonal. This makes Eq. (9) rather complicated and
untractable since it leads to mixing both between different
spinors and between families. Furthermore, it does not even
lead to a Hamiltonian structure. We see this by going to the
nonrelativistic limit and setting the three-momentum
p⃗ ¼ 0. In this limit, the equation can be written as

Hψ ¼ Eψ ; ð10Þ

where H is the generalized Dirac Hamiltonian

H ¼ γ0MD þM2þ
2E

ΓþM2
−

2E
Γγ5; ð11Þ

Γ ¼ 1 − γ0γ3. Let us first consider the simpler case in
which the matrices M2þ and M2

− are diagonal. In this case,
we can treat each generation of fermions independently.
Hence, we focus on a single four component spinor and set
MD, M2þ, and M2

− equal to their corresponding diagonal
entries mD, m2þ, and m2

−, respectively. However, due to the
presence of ðn · ∂Þ−1 in the original equation, the
Hamiltonian itself depends on the energy eigenvalue E,
which, in the present case, is equal to the mass of the
particle. The solution for this case is given in [9]. The
eigenvalues are found to be Eð↑Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þm2þ −m2
−

p
and

Eð↓Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þm2þ þm2
−

p
for the positive energy (elec-

tron) spinors with spin up and down, respectively. Similar
results are obtained for antiparticles which are degenerate
with particles. Here, we use the nonrelativistic limit and
focus on the particle states.
The important point is that the energy eigenvalues of the

spin up and down states are not degenerate. This means that
the Hamiltonian is different for these two states and hence
does not really get diagonalized. In other words, the
eigenvectors for spin up and down are eigenvectors of
different Hamiltonians, and hence we are unable to con-
struct a unitary operator which will diagonalize the
Hamiltonian. This means that the mathematical structure
of VSR is not consistent with the standard framework of
quantum mechanics. We are not sure how to mathemati-
cally solve this problem and do not pursue it further in full
generality. However, as discussed below, we find that there
are some limiting cases in which the problem is tractable.
The problem is obvious directly from Eq. (11). We work

in the Dirac-Pauli representation in which γ0 is diagonal.
Because of the presence of E in the last two terms in this
equation, diagonalization of H is possible only if (i) the
operatorm2þΓþm2

−Γγ5 is diagonal or (ii) all eigenvalues of
H are degenerate. The first possibility is not realized for any
choice of values of m2þ and m2

−, while the second is found
to be true ifm2

− ¼ 0. We see this directly by the eigenvalues
Eð↑Þ and Eð↓Þ given above. Hence, in this case the
problem mentioned above no longer appears and the
eigenvectors will correspond to a unique Hamiltonian.
We shall impose this condition for further analysis. In
earlier work [9], it was argued that m2

− is very strongly
constrained by observations. This may be correct, but we
have argued that it is really not possible to reliably
determine the experimental implications of the theory if
m2

− ≠ 0. Hence, it is not possible to impose reliable
constraints on this parameter.
We next consider the general case in which the mass

matrix M2þ is not diagonal. We continue to set M2
− ¼ 0,

based on the arguments presented above. In this case, the
energy eigenvalues are clearly not degenerate since differ-
ent charged leptons have different masses. Hence, the
system can be solved only if the matrix M2þ is diagonal,
which is just the limit discussed above. However, if
we assume that neutrino masses are generated entirely
by the VSRmass terms, thenM2þ ¼ U†

eM2
νUe is necessarily

nondiagonal. Based on our arguments above, this case
cannot be treated reliably and we do not pursue it further.
Only by assuming a diagonal form for the matrix M2þ can
we impose reliable limits on the VSR parameters. This, of
course, significantly reduces the interest in further pursuing
this formalism. Nevertheless, we feel that it is an interesting
theory of Lorentz violation and continue to investigate its
phenomenological consequences. Furthermore, it is pos-
sible that mathematical framework may be developed in the
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future, which may give a reliable solution to the problem in
the general case.
The situation with VSR quark masses is similar. We have

an effective Lorentz violating, VSR Lagrangian similar to
Eq. (4) with left- and right-handed terms both for up and
down type quark multiplets. This can be expressed as

Lq
VSR ¼ i

2

�
ūi d̄i

�
L
½ ~MLq

2�ij
=n

n ·D

�
uj
dj

�
L

þ i
2
ūiR½ ~M2

Ru�ij
=n

n ·D
ujR

þ i
2
d̄iR½ ~M2

Ru�ij
=n

n ·D
djR: ð12Þ

In principle, these mass matrices can be nondiagonal
[9,20]. Here, we work in the basis in which the Dirac
mass matrices are diagonal. For reasons discussed above
for the case of leptons, the Hamiltonian in this case also
admits energy eigenvalues and eigenvectors only when the
VSR mass matrices are diagonal. Hence, we impose this
restriction for further analysis. Furthermore, we set M2

− ¼
ðM2

L −M2
RÞ=2 ¼ 0 for reasons given earlier.

III. LIMITS BASED ON TORSION PENDULUM

We next consider the limits that can be imposed on the
VSRmasses based on the spin pendulum experiment. Here,
we set M2

− ¼ 0 and assume that M2þ is diagonal for both
quarks and leptons. The basic framework was developed in
[9], which can be applied to electrons. In the nonrelativisitic
limit, the relevant term in the effective Hamiltonian in the
n · A ¼ 0 gauge is given by [9]

HVSR ¼ −ϵμBðn̂ · σ⃗Þðn̂ · B⃗Þ; ð13Þ

where B⃗ is the background magnetic field, n̂ is the spatial
component of the vector nμ, μB ¼ eℏ=ð2mecÞ, ϵ ¼ m2þ=m2

e,
me is the electron mass, and m2þ is the VSR contribution to
the electron mass. By using the results of the Penning trap
experiment with a single trapped electron [26], it was found
that ϵ≲ 10−11 [9]. It may be possible to impose a more
stringent limit by using the experimental results on the
torsion pendulum [21]. However, it is not possible to directly
use the limits given in [21]. This is because those limits have
been obtained by assuming that the effect has a time period of
one sidereal day. However, Eq. (13) shows that the effect is
more complicated. Specifically, as discussed below, it shows
two oscillations in one sidereal day.
Let us denote the equatorial coordinate system by xyz

and the laboratory system by abc. We choose coordinates
such that the z axis is parallel to the rotation axis of Earth
and the x axis points towards the vernal equinox. Let
the equatorial coordinates of the vector n̂ be ðθe;ϕeÞ,
where ϕe is the right ascension and θe is the polar angle
(declination ¼ π=2 − θe). Let the unit vectors along the

axis a, b, c of the local frame be î; ĵ, and k̂, respectively. We
take the vector k̂ to point vertically upwards and vectors î
and ĵ tangential to the surface pointing towards north and
west, respectively. The two coordinate systems are related
by the formula

x̂ ¼ cosðθ þ αÞĵ − sinðθ þ αÞðcos λk̂ − sin λîÞ
ŷ ¼ sinðθ þ αÞĵþ cosðθ þ αÞðcos λk̂ − sin λîÞ
ẑ ¼ cos λîþ sin λk̂; ð14Þ

where θ ¼ Ωt, α is the right ascension of ĵ at t ¼ 0, λ is the
latitude of the observer, Ω ¼ 2π=T0, and T0 is one
sidereal day.
The spin of the torsion pendulum used in [21] is aligned

horizontally. Hence, we set the magnetic moment m⃗ of the
pendulum equal to m1îþm2ĵ. The magnetic field B⃗ ¼
B1 îþ B2ĵ also points in the same direction as m⃗, and hence
B1=B2 ¼ m1=m2. Using this, we can determine the torque
experienced by a single electron due to VSR effects. The
torque about the local normal is found to be

τb ¼ ϵn̂ · B⃗fm1 sin θe cosðθ þ α − ϕeÞ
−m2 sin θe sin λ sinðθ þ α − ϕeÞ
−m2 cos θe cos λg; ð15Þ

where

n̂ · B⃗ ¼ B1½sin λ sin θe sinðθ þ α − ϕeÞ þ cos λ

× cos θe� þ B2 sin θe cosðθ þ α − ϕeÞ: ð16Þ

The experimentalists [21] split the data into torques
generated by the north and west components of the
effective field β⃗, which couples to m⃗ such that the energy
E ∝ −β⃗ · m⃗. In our case, this corresponds to n1 and n2,
respectively, times an overall factor ϵn̂ · B⃗. The correspond-
ing torques generated by these components are given by the
terms proportional to m2 and m1, respectively, in Eq. (15).
The overall expression is different from what is assumed in
the analysis performed in [21]. Hence, we suggest that the
data should be reanalyzed in order to impose constraints on
VSR parameters. In Fig. 1 we show a representative graph
of our results setting m1=m2 ¼ 1. We clearly see that the
signal shows two oscillations within one sidereal day.
Hence, a dedicated analysis is needed in order to obtain
reliable limits on VSR parameters. Assuming that no signal
is found, the torsion pendulum experiment [21] will impose
a limit on ϵ such that ϵ≲ 10−20 eV=ðμBBÞ, which implies
that ϵ≲ 10−15.
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A. Limits on VSR nucleon mass using clock
comparison experiments

We next consider bounds that can be imposed on the
VSR contribution to nucleon mass using clock comparison
experiments [27–30] with polarized nucleons [22,31,32].
Let ~m2

n be the VSR contributions to the nucleon mass. We
assume isospin symmetry and set the proton and neutron
mass equal to one another. Furthermore, we treat the
nucleon as a Dirac particle with an effective magnetic
moment described by the g factor of a proton or neutron.
We also ignore nuclear effects, which have to be included
for a detailed fit. As argued earlier, we only allow
contributions which are proportional to =n and set the
contribution proportional to =nγ5 to zero. The VSR nucleon
mass may be related to the up and down quark VSRmasses,
denoted by ~m2

q, of up and down quarks by a form factor Gn.
Hence, we expect ~m2

n ¼ Gn ~m2
q.

We consider an experiment with polarized neutrons or
protons, with their spins oriented vertically upwards. The
VSR effect will lead to a shift in the precession frequency
of the nucleons. The effect was already considered in [9]
for the case of electrons. Essentially, we can incorporate
the effect by defining an effective magnetic field B⃗0 ¼
B⃗þ ð2=gÞϵnn̂ðn̂ · B⃗Þ, where g is the g factor of the particle,
proton, or neutron, ϵn ¼ ~m2

n=m2
n, and mn is the nucleon

mass. The magnetic field in this case points along k̂, and
hence the frequency gets shifted by the factor (1þ ξ),
where ξ ¼ ð2=gÞϵnðn̂ · k̂Þ2. We obtain

n̂ · k̂ ¼ cos θe sin λ − sin θe cos λ sinðθ þ α − ϕeÞ: ð17Þ

We plot ξ for arbitrarily chosen parameters in Fig. 2. We
again clearly see that the signal is not just a simple

sinusoidal variation with a period of a sidereal day.
Instead, we see two oscillations with varying amplitude
within one sidereal day. Hence, a dedicated search is
needed in order to constrain the VSR parameters.
Assuming that the signal is absent in the data, we can
obtain the bound ϵnμNB≲ 10−31 GeV using the experi-
mental data from [22], where μN ¼ eℏ=ð2mncÞ. This will
lead to the limit ϵn ≲ 10−11, where we use B ≈ 1.5 G. This
leads to ~m2

n ≲ 107 eV2.

IV. PION DECAY

We next consider implications of VSR for elementary
particle physics experiments. Here, we are primarily
interested in effects which arise due to the rotation of
Earth. We shall illustrate the effect by considering the decay
of a pion as an example. Similar effects are expected in
other processes. The decay amplitude within the SM can be
computed by introducing the following effective interaction
term:

Lπ;SM ¼ Vud
Gfffiffiffi
2

p fπ∂μπ
−ψ̄ lγ

μð1 − γ5Þψν þ H:c:; ð18Þ

where π−, ψ l, and ψν represent the charged pion, charged
lepton, and the neutrino fields, respectively. Here, fπ ¼
132 MeV is the pion decay constant, Vud ¼ cos θc is the
Cabibbo-Kobayashi-Maskawa matrix element and θc
the Cabibbo angle. This leads to the standard formula
for the weak differential decay rate of pions.
The basic Lorentz violating, VSR invariant terms for

quarks are given in Eq. (12). Owing to the presence of a
gauge covariant derivative, the VSR terms also lead to
Lorentz violating, VSR invariant interaction terms of
fermions with electroweak gauge bosons, as well as gluons
for the case of quarks [19,20]. As argued earlier, we require

Time (h)
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 0.4
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 1.4

0 5  10  15  20

FIG. 1. The predicted signal for the torques generated in the
torsion pendulum [21] in arbitrary units for a randomly chosen set
of parameters θe ¼ 0.6π and α − ϕe ¼ π=2. The solid and dotted
curves refer to βW and βN , using the notation of [21]. The latitude
λ has been set equal to that of the observer location. We have also
set m1=m2 ¼ B1=B2 ¼ 1.
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FIG. 2. The predicted signal for ξ, the shift in the precession
frequency of the nucleon (in arbitrary units) due to VSR effects.
Here, we have chosen the same set of parameters ðθe; α − ϕe; λÞ
as in Fig. 1.
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the resulting VSR quark mass matrices to be diagonal and,
furthermore, set M2

− ¼ 0. As we shall show below, VSR
terms in Eq. (12) lead to an effective Lagrangian density for
the coupling of pions with leptons, which can be written as

Lπ ¼ Lπ;SM þ ~g

�
nμ
n:∂ π

−
�
ψ̄ lγ

μð1 − γ5Þψν þ H:c:; ð19Þ

where nμ is given by Eq. (1). The first term gives the
standard decay amplitude for pion. The second term
respects SIM(2) but violates Lorentz invariance due to
the presence of the preferred axis nμ [8].
We next provide a justification for the Lorentz violating

effective operator in Eq. (19) using the linear sigma model
for strong interactions and the VSR modified SM
Lagrangian, which has mass terms of the form given in
Eqs. (4) and (12) for all fermions. Alternatively, we may
use a model pion wave function [33] for this calculation.
Here, we are primarily interested in demonstrating that this
loop leads to a nonzero answer, and hence our use of linear
sigma model is justified. However, a quantitatively reliable
estimate of this loop is not possible due to the standard
uncertainties in handling strong interactions. We consider
the linear sigma model at the quark level which contains the
fermion field multiplet ðudÞ and the meson multiplet
σ þ iτ · πγ5, where σ is a scalar field. The model leads
to an interaction between the pseudoscalar pion field and
the quark doublet of the form

Lσ ¼ g0ð ūi d̄i Þðσ þ iτ:πγ5Þ
�
ui
di

�
; ð20Þ

where g0 is the coupling and i is the color index. The pion
decay into a lepton pair can be represented by the diagram
shown in Fig. 3. The coupling of the pion to the up and
down quarks is given by the linear sigma model. The
Lorentz violating, VSR invariant contributions arise due to
the modification to the up and down quark propagators and

the interaction vertex of theW boson with quarks. The VSR
modified fermion propagator can be written as

lþm − ~m2

2
n
n:l

l2 −m2 − ~m2 þ iϵ
;

where m is the standard mass arising due to a Lorentz
invariant term and ~m is the VSR mass. We shall assume
that, for all fermions except the neutrinos, ~m ≪ m. The
interaction terms arise due to the gauge covariant derivative
in Eq. (12). We expand 1=n ·D in powers of the gauge
coupling and keep only the leading order term in this
coupling. The modified lepton-W boson vertex is found
to be

gffiffiffi
2

p
�
γμ þ ~m2

=nnμ

2ðn · lÞðn · ðl − qÞÞ
�
ð1 − γ5Þ:

The Feynman amplitude shown in Fig. 3 generates an
effective vertex between the pion and the leptons. We can
obtain the effective coupling by evaluating the Feynman
amplitude for the quark loop in Fig. 3, which can be
expressed as

g0
gffiffiffi
2

p
Z

d4l
ð2πÞ4 tr

�
lþmd −

~m2
q

2
n
n:l

l2 − ðm2
d þ ~m2

qÞ þ iϵ

�
γμ þ ~m2

q
=nnμ

2n:ln:ðl − qÞ
�
ð1 − γ5Þ

ð=l − qÞ þmu −
~m2
q

2
n

n:ðl−qÞ
ðl − qÞ2 − ðm2

u þ ~m2
qÞ þ iϵ

γ5
�
; ð21Þ

where ~mq ¼ ~mu ¼ ~md. We note that, for the left-handed up and down quarks, the VSR masses have to be equal by gauge
invariance. In evaluating this loop, we consider terms only up to order ~m2

q because of our assumption ~mq ≪ mu;md. It is
also important to notice that the VSR invariant, Lorentz violating terms are nonlocal.
The Lorentz violating or nonlocal part of the above expression becomes

g0
gffiffiffi
2

p ~m2
qnμ

Z
d4l
ð2πÞ4

�
4mdn · q

n:ln:ðl − qÞðl2 −m2
d þ iϵÞððl − qÞ2 −m2

u þ iϵÞ

þ 4mu

n:ðl − qÞðl2 −m2
d þ iϵÞððl − qÞ2 −m2

u þ iϵÞ −
4mu

n:lðl2 −m2
d þ iϵÞððl − qÞ2 −m2

u þ iϵÞ
�
: ð22Þ

FIG. 3. The dominant Lorentz violating term arises from quark
VSR modified propagator and quark-W boson vertex correction
in the VSR modified SM Lagrangian.
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After integrating over l, the result can only depend on the
momentum of the pion, i.e., q. Hence, the integral leads to
an overall factor of 1=n · q. This gives us an effective
interaction of the form given in Eq. (19). We next perform
this integral in the rest frame of the pion.
The presence of nonlocal term in the fermion propagator

inside the loop results in IR divergences. It is not practical
to use Feynman parametrization for evaluating the above
integral because of the presence of nonlocal terms, i.e., 1

n:l
and 1

n:ðl−qÞ. There does not exist any reliable procedure for

handling these infrared divergences in the literature. We
handle this divergence by adding a small imaginary part to
the mass of the particle. This amounts to adding a small
imaginary part to the energy of an on-shell particle. Hence,
we replace

1

n · l
→

1

n · ðlþ iϵ0Þ ; ð23Þ

where ϵ0 is a four-vector with a time component (ϵ00 > 0)
nonzero and space components zero. This prescription may
be justified by considering the action of the operator 1=n · ∂
on a charged scalar field ϕ. The Fourier decomposition of
this may be expressed as

ϕ ¼
Z

d3k
ð2πÞ32ωk

½e−ik·xaðkÞ þ eik·xb†ðkÞ�: ð24Þ

The action of the operator 1=n · ∂ on this field should result
in the factor 1=n · k. In order to explicitly implement this,
we need a prescription for 1=n · ∂, which essentially is
equivalent to an integral. We follow a prescription which is
analogous to the one used in Ref. [17]. For the positive
frequency part, we set

1

n · ∂ f
þðxÞ →

Z
xþ

−∞
dx0þfþðx0Þ; ð25Þ

whereas, for the negative frequency, we use

1

n · ∂ f
−ðxÞ → −

Z
∞

xþ
dx0þf−ðx0Þ: ð26Þ

Here, xþ ¼ ðtþ zÞ=2. Let us now apply this operator to the
positive frequency part. We obtain

1

n · ∂ ϕ
þðxÞ ¼

Z
d3k

ð2πÞ32ωk

1

−ik−
× ½e−ik−xþ − eik−∞�e−ik·xþik−xþaðkÞ; ð27Þ

where k− ¼ k0 − k3 ¼ n · k. This clearly gives us the
expected result as long as the second term in the bracket
goes to zero. This is true if k0 contains a small imaginary
part as prescribed above. Similarly, we can check to see that

the negative frequency part leads to the expected result with
our prescription.
The loop integral is evaluated by performing the integral

over l0 analytically and over the spatial components
numerically. The numerical calculations are performed
by using a small nonzero value of the infrared regulator
ϵ00 on the order of a fewMeV. We have verified that the final
result is insensitive to the precise choice of this regulator
provided it is sufficiently small. For md ¼ 4.8 MeV,
mu ¼ 2.3 MeV, and mπ ¼ 139.5 MeV, we obtain the
result −Ncg0

gffiffi
2

p ~m2
qnμ × 0.092, where Nc ¼ 3 is the number

of colors. Hence, the loop gives a nonzero result and
generates an effective vertex given in Eq. (19). As already
mentioned, we can only trust this result qualitatively and
not quantitatively due to our inability to reliably handle
strong interactions.

A. Pion decay in the rest frame

In this section, we compute the decay rate of a charged
pion [π−ðqÞ → μ−ðpÞ þ ν̄μðkÞ] in its rest frame within the
VSR framework. We consider jMj2 up to leading order in ~g
because the LV parameters are expected to be very small.
We obtain

jMj2 ¼ 4G2
ff

2
πV2

udm
2
μðp:kÞ

þ 16ffiffiffi
2

p ~gGffπVud

�ðn:pÞðq:kÞ
n:q

þ ðn:kÞðp:qÞ
n:q

−
ðn:qÞðp:kÞ

n:q

�
þOð~g2Þ: ð28Þ

This is valid in general, not just in the rest frame.
As explained above, we can always make a SIM(2)

transformation to the rest frame of a particle. Our action is
invariant under this transformation, although the vector nμ

changes by an overall constant. However, the change
cancels out in the amplitude. Here, we work in a frame
(S) in which the vector nμ is given by Eq. (1) up to an
overall constant. The LV contribution is assumed to arise
entirely from the interaction term in Eq. (19). We point out
that the VSR invariant quadratic terms do not change
the dispersion relations [8]. Hence, the kinematics of the
incoming and outgoing particles remain unchanged. The
dominant LV contribution to the differential decay rate
arises due to the SM and LV interference term. This leads to
a contribution proportional to ~gð1þ cos θÞ, where θ is the
angle between the muon three-momentum and the z axis in
the fundamental frame S.
We next impose a direct limit on ~g by assuming that the

standard observed value of the pion decay rate arises
entirely from the Standard Model and demanding that
the LV terms give a contribution less than the error in the
observed value. A more detailed limit by studying the
angular distributions of the final state can also be imposed.
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In the next section, we shall work out the theoretical
formalism required for such a study. However, a detailed
implementation can only be performed by an experimental
group and is beyond the scope of this paper. We point out
that we are only interested here in the direct experimental
limit that can be imposed on this LV parameter. Through
loop corrections, this parameter may lead to a LV
contribution to the electron propagator. However, such
contributions add to the LV parameters only in the leptonic
sector of the action, which can be adjusted to agree with
experimental limits. This might require some fine-tuning of
the parameters.
The lifetime (τ) of the charged pion is ð2.6033�

0.0005Þ × 10−8 s [34]. The uncertainty in the theoretical
calculation of the pion decay rate is approximately 0.2%.
Hence, we see that the theoretical uncertainty dominates.
This leads to the limit, ~g < g0, where g0 ¼ 2.2 × 10−11 GeV.
We can relate this to the VSR up and down quark mass
parameter ~mq through the loop shown in Fig. 3 and impose a
limit on this parameter. We fix the linear sigma model
parameter g0 by using the standard relation Mq ¼ g0fπ ,
where Mq ≈ 330 MeV [35] is the constituent quark mass
of up and down quarks.We obtain ~mu;d ≲ 3 MeV.We notice
that the limit is not very stringent and is much weaker than
that obtained by using clock comparison experiments assum-
ing that the nucleon form factor Gn is of order unity.
The relative change of differential decay rate can be

expressed as

Δ ¼
dΓ
dΩ j~g≠0 − dΓ

dΩ j~g¼0

dΓ
dΩ j~g¼0

¼ 2
ffiffiffi
2

p
~g

fπm2
πGfjVudj

½1þ cos θ�: ð29Þ

Hence, we find that, even in the rest frame of pion, the
muon distribution is not isotropic and depends on the polar
angle θ due to the LV contributions. The dependence
provides a qualitatively new test of LV theories which
respects VSR.

B. Kaon decay

The above formalism can be directly applied to the
charged kaon decay K−ðqÞ → μ−ðpÞ þ ν̄μðkÞ. We compute
the loop integral corresponding to the quark loop shown in
Fig. 3 by replacing the down quark with a strange quark. The
Lorentz violating part of the loop integral in this case is found
to be Ncg0

gffiffi
2

p ~m2
q × 2.32. Furthermore, we use Ms ¼ g0fK ,

where Ms ≈ 550 MeV [35] is the constituent mass of the
strange quark. Using the known uncertainty in the kaon
decay rate,we impose the limit ~g < 1.0 × 10−10 GeV. In this
case, the theoretical and experimental errors are comparable
to one another, and we add the two in quadratures in order to

obtain the limit on ~g. This leads to a limit ~ms ≲ 1.3 MeV on
the VSR contribution to the strange quark mass.

C. Pion decay in the laboratory frame

In this section, we determine the differential decay rate
assuming that pion has nonzero momentum in the labo-
ratory frame. It is useful to define the two frames, S and S0,
both at rest with respect to the laboratory. In frame S, nμ is
given by Eq. (1) up to an irrelevant overall constant. Let us
now consider a beam of pions moving along the z0
direction, making an angle θ with the preferred axis, as
shown in Fig. 4. Let q, p, and k denote the momenta of π−,
μ−, and ν̄, respectively. Here, xyz and x0y0z0 refer to the S
and S0 coordinate systems, respectively. We have used
rotational symmetry about the z axis in the frame S in order
to choose the x axis such that y0 is aligned with the y axis.
Hence, z0 and x0 lie in the x − z plane. The final state muon
makes an angle θ0 with respect to the beam, i.e., the z0 axis.
We find that the differential decay rate picks up a small

correction to the θ0 dependence of the decay rate due to the
LV term. Furthermore, it induces a ϕ0 dependence of the
final state muon distribution, which is absent in the SM.
The ϕ0 dependence of the decay rate can be quantified by
defining

Δ0 ¼
dΓ
dϕ0 − Γavg

Γavg
; ð30Þ

where Γavg ¼ 1
2π

R
2π
0

dΓ
dϕ0 dϕ0 is the decay rate averaged over

ϕ0. In Fig. 5 we plot Δ0 as a function of ϕ0 for the choice of

′θ

p

x

y,y′

x′

z

z′

O

θ

FIG. 4. Here, z denotes the preferred axis and x, y some chosen
coordinate axes. The beam direction is taken to be along the z0
axis, which makes an angle θ relative to the z axis. The axis x0 is
chosen to lie in the x − z plane. Hence, the y and y0 axes, pointing
into the plane of the paper, coincide with one another. The
momentum of the muon, denoted by p⃗, makes an angle θ0 relative
to the z0 axis.
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parameters, pion energy E ¼ 200 MeV, and θ ¼ π=4. We
see that the distribution peaks at ϕ0 ¼ π and is at minimum
at ϕ0 ¼ 0. From Fig. 4, we see our choice of coordinate
system is such that the beam axis, i.e., z0, lies in the x0 − z
plane. Hence, ϕ0 is the azimuthal angle in the x0, y0, z0
coordinate system, which is chosen such that z0 lies in the
x0 − z plane.

D. Daily variation

The angle between the preferred axis and the beam
direction is expected to change with time due to the rotation
of Earth. Because of this change, the contribution to the
differential decay rate arising from the LV term is expected
to show periodic variation with a period of one sidereal day.
The observables Δ and Δ0 are both expected to show time
dependence. Specifically, we expect that the peak position
of Δ0 as a function of the azimuthal angle ϕ0 in laboratory
frame will show a periodic shift with time.
Let us assume that an observer is located at the latitude λ.

We choose a local laboratory coordinate system at this
location, denoted by x00y00z00. Here, z00 is along the direction
of the beam and y00 is chosen along the local vertical. It is
also convenient to define another local frame x0y0z0 such
that z0 is along the beam direction, i.e., the same as z00,
and x0 lies in the z − z0 plane. We denote the angle
between z and z0 by θ, as shown in Fig. 4. Hence,
ẑ · ẑ0 ¼ ẑ · ẑ00 ¼ cos θ. The x0 axis lies in the same plane
as z and z0 (or z00). The x0 − y0 and x00 − y00 planes coincide
and we denote the angle between x and x0 as β. Using this,
we obtain

ẑ ¼ cos θẑ00 − sin θðcos βx̂00 þ sin βŷ00Þ: ð31Þ
The coordinates x0y0z0 at any particular time are exactly the
same as in Fig. 4. Hence, once we obtain the angle θ, which
is time dependent, we can obtain the differential decay rate
in this frame at any particular time by using the formulism

described earlier. In this frame the peak in the ϕ0 distri-
bution occurs at ϕ0 ¼ π, as shown in Fig. 5. We next need to
transform to the laboratory frame x00y00z00. This simply
amounts to a rotation about the z0 (or z00) axis by an angle
−β. Hence, in this frame the peak occurs at ϕ00 ¼ π − β.
We next determine the time dependence of the angles θ

and β due to the rotation of Earth. We use the astronomical
equatorial system as our fixed coordinate system denoted
by XYZ as shown in Fig. 6. In this case, the Z axis is
parallel to the rotation axis of Earth, and the X-Y plane is
the same as the equatorial plane. Let us assume that the
preferred axis z in this frame can be expressed as

ẑ ¼ cos θpẐ þ sin θpðcosϕpX̂ þ sinϕpŶÞ: ð32Þ

The axis y00 makes an angle ðπ=2Þ − λ with respect to the Z
axis at all times. At some initial time t ¼ 0, let the
azimuthal angle of y00 in this system be α. Hence, we
can express the laboratory frame x00y00z00 in terms of the
fixed coordinate system as

ŷ00 ¼ sin λẐ þ cos λðcos αX̂ þ sin αŶÞ
ẑ00 ¼ − cos λẐ þ sin λðcos αX̂ þ sin αŶÞ
x̂00 ¼ − sin αX̂ þ cos αŶ: ð33Þ

At a later time t, the same formulas hold with the angle α
replaced by ~α ¼ αþ δ, where δ ¼ 2πt=t0 and t0 is equal to
a sidereal day. Using this, we can directly compute the
angles θ and β at any time by using cos θ ¼ ẑ · ẑ00,
sinθcosβ¼ðẑ× ẑ00Þ · ŷ00, and sin θ sin β ¼ −ðẑ × ẑ00Þ · x̂00.
Here, 0 ≤ θ ≤ π and 0 ≤ β < 2π. The time dependences
of θ and β are shown in Fig. 7 for a particular choice of
parameters λ, θp, ϕp, and α.
The daily variation of differential decay rate provides a

very interesting way to test the LV contribution due to VSR.
We may divide each sidereal day into a chosen number of

0 1 2 3 4 5 6
φ ′

0
′ Δ

FIG. 5. The azimuthal angle ϕ0 dependence of the final state
muon distribution. The observable Δ0 is defined in Eq. (30). The
amplitude of the effect depends on the unknown VSR parameter ~g
or, equivalently, ~m2

u;d, for which we only have an upper limit.

x′′

y′′

x′βO

z′,z′′

y′
Z

FIG. 6. The laboratory coordinates x00y00z00 and the local
coordinates x0y0z0 at the position of the observer O located at
latitude λ. Here, z0 and z00 are along the beam direction. The
rotation axis of Earth, Z, is also shown. The y00 coordinate is taken
to be the local normal, pointing upwards. The x0 direction is
chosen such that it lies in the z − z0 frame, as shown Fig. 4.
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bins. The data in each bin can be accumulated over a
large number of days in order to test for the daily variation
in the peak position of the azimuthal (ϕ00) distribution.
Correspondingly, we can test the time dependence of the θ0
(or θ00) of the decay rate. Here, θ0 (or θ00) is simply the angle
of the muon momentum relative to the beam direction. In
testing the angular dependence, the main complication is
the detector response, which may not be isotropic.
However, the detector response is not expected to be time
dependent. Hence, it can be removed by subtracting out the
time independent component in the ϕ00 and θ0 distributions.

V. CONCLUSION

We have studied several phenomenological implications
of VSR starting with an effective action approach in which
we assume that the VSR term acts as a small perturbation to
the Standard Model action. The Lorentz violating, VSR
invariant terms are interesting since theymay lead to neutrino
masses and mixing without requiring a right-handed neu-
trino. Although this is possible, we have found that the
resulting model becomes intractable due to the nondiagonal
nature of the resulting charged lepton VSRmass matrix. The
problem arises since the model, in general, does not admit a
unitary evolution operator. We have then imposed some
constraints on the VSRmass parameters so that this problem

did not arise, and we have been able to reliably determine its
phenomenological implications. This requires us to set VSR
massM2

− ¼ 0 and, furthermore, assume thatM2þ is diagonal
for both quarks and leptons.
We have determined the limits that can be imposed by

the torsion pendulum experiment and the clock comparison
experiment on the VSR parameters. It is generally expected
that Lorentz violation will lead to a periodic time varying
signal in these experiments with a period of one sidereal
day. Extensive searches for such signals have lead to null
results [21,22,27–32]. We have found that VSR also
predicts a time dependent signal in such experiments;
however, the signal shows two complete oscillations with
varying amplitude over a period of one sidereal day. Hence,
it is not possible to impose reliable limits on the VSR
parameters directly from the limits obtained by assuming a
generic Lorentz violating model. A dedicated search is
required, which may pursued in future. We have deter-
mined the level at which the VSR parameters for electron
and nucleon (or up and down quarks) can be constrained by
such experiments.
Finally, we have studied the implications of VSR in

elementary particle experiments by considering the charged
pion and kaon decay processes, π−ðqÞ → μ−ðpÞ þ ν̄μðkÞ
and K−ðqÞ → μ−ðpÞ þ ν̄μðkÞ, respectively. We impose a
limit on the VSR contributions to the up, down, and strange
quark masses by using the known uncertainty in the decay
rate of these processes. A more stringent limit may be
imposed by studying the angular distribution of the decay
products. Because of the presence of a preferred direction
in VSR, we have found that final state muon distribution
acquires an azimuthal angle dependence relative to pion (or
kaon) beam. Furthermore, both the azimuthal and polar
angle distributions acquire periodic time dependence with a
period of one sidereal day. This time dependence provides
us with an effective way to test the principle of VSR at
future particle physics experiments. The phenomenon is not
limited to pion (or kaon) decay but may be observed in
many decay and scattering processes if VSR is the true
symmetry of nature. Excluding electron, up, and down
quarks, the most stringent limits on the VSR contribution to
fermion masses is expected to arise from elementary
particle physics experiments. Furthermore, the phenome-
non is different from the LV induced by quantum gravity
effects [1–5] and might be observable at energies accessible
in current or future colliders.

t/t0

θ

β

0

1

2

3

4

5

6

7

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

FIG. 7. The time dependence of θ (the solid curve) and β (the
dotted curve), 0 ≤ β < 2π, as a function of time. Here, t0 is equal
to one sidereal day. The observer is located at λ ¼ 30o and the
remaining angles (in rad) are chosen as θp ¼ 0.4π, ϕp ¼ 0.3π,
and α ¼ 0.1π. The peak position in the ϕ00 distribution occurs
at π − β.
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