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We propose a model for CP-violating oscillations of neutral, heavy-flavor baryons into antibaryons at
rates which are within a few orders of magnitude of their lifetimes. The flavor structure of the baryon
violation suppresses neutron oscillations and baryon-number-violating nuclear decays to experimentally
allowed rates. We also propose a scenario for producing such baryons in the early Universe via the out-of-
equilibrium decays of a neutral particle, after hadronization but before nucleosynthesis. We find parameters
where CP-violating baryon oscillations at a temperature of a few MeV could result in the observed
asymmetry between baryons and antibaryons. Furthermore, part of the relevant parameter space for
baryogenesis is potentially testable at Belle II via decays of heavy-flavor baryons into an exotic neutral
fermion. The model introduces four new particles: three light Majorana fermions and a colored scalar. The
lightest of these fermions is typically long lived on collider time scales and may be produced in decays of
bottom and possibly charmed hadrons.
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I. INTRODUCTION

The puzzle of baryogenesis, how the Universe came to
be composed primarily of matter rather than equal amounts
of matter and antimatter, has led to numerous theories about
physics beyond the standard model (SM), beginning with
the pioneering work of Sakharov [1]. Three ingredients are
present in one form or another in any baryogenesis theory:
baryon-number violation, C and CP violation, and depar-
ture from thermal equilibrium. Because baryon-number
violation is required, initially baryogenesis was thought to
involve new baryon-number-violating processes which are
only important at very high energies, although it was later
realized that anomalous electroweak processes could do the
job at temperatures as low as the weak phase transition [2].
Most baryogenesis models require the Universe to reheat

after inflation to a high temperature, typically well above
the weak scale. However, many theories of physics beyond
the SM are inconsistent with a high inflation scale or are
inconsistent with a high postinflation reheat scale. Axion
dark matter, if the axion is present during inflation, requires
a low inflation scale in order to avoid excessive isocurva-
ture perturbations [3]. Supersymmetry requires a low reheat
scale in order to avoid overproduction of the gravitino [4].
The relaxion solution to the hierarchy problem requires a

low inflation scale so that the Hubble temperature during
inflation does not suppress instantons [5]. In addition,
avoiding the need for a high reheat temperature or
production of heavy particles during reheating means a
low baryogenesis scale is consistent with a wider variety of
inflationary models [6].
Lower reheat temperatures are possible provided the

inflaton decays produce heavy particles which decay out of
thermal equilibrium in a baryon-number-violating and CP-
violating manner [7]. In Ref. [7] baryogenesis occurs due to
the baryon-number-violating decays of TeV mass squarks
in an R-parity-violating supersymmetric model, in which
the reheat temperature could be as low as an MeV, provided
that the heavy squarks can be produced out of equilibrium
at the end of inflation. Such squark mediated baryon-
number violation is consistent with the observed lifetime of
the proton, due to the conservation of lepton number, and,
depending on the flavor structure of the baryon-number-
violating operators, can be consistent with the stability of
heavy nuclei as well. A similar model involving the decays
of Majorana fermions was considered in Ref. [8]. In
Ref. [9] it was pointed out that heavy-flavor baryon-number
violation could lead to oscillations of the Ξ0

b baryon at a rate
comparable to its lifetime, while being consistent with the
lifetime of heavy nuclei. Enhanced baryon-number viola-
tion involving heavy flavors was also studied in Ref. [10].
Here we present a baryogenesis model which is con-

sistent with a reheat temperature as low as a few MeV, and
which requires no postinflationary production of any
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particle heavier than about 6–10 GeV. The required baryon-
number violation is conceivably observable via the oscil-
lations of heavy-flavor neutral baryons, and the required
CP violation is potentially ofOð1Þ in such oscillations. The
processes that produce the baryon asymmetry in the early
Universe involve particles and phenomena which can be
directly studied in the laboratory—a unique feature of our
theory. Our proposal is that certain neutral heavy-flavor
baryons undergo CP- and baryon-number-violating oscil-
lations and decays, and are produced in the early Universe
via the out-of-equilibrium decays of a weakly coupled
neutral particle whose lifetime is of order 0.1 s, a time
when the temperature is of order a few MeV. The basic
scenario was outlined in Ref. [11], and the model we study
has the same field content and couplings as Ref. [12]. The
basic formalism for analyzing CP violation in fermion-
antifermion oscillations was worked out in Ref. [13].
The outline of the paper is as follows. In Sec. II the

model is introduced, and the effective operator responsible
for baryon oscillations is constructed. In Sec. III, general
ΔB ¼ 2, six-quark effective operators are analyzed for their
contribution to dinucleon decay, that is, the decay of two
nucleons into mesons. Currently, dinucleon decay places
similar or stronger constraints on all such operators than
does neutron oscillations. For operators that cannot con-
tribute to dinucleon decay at tree level, electroweak
corrections to the six-quark operators are examined. In
Sec. IV, the general formalism for CP-violating oscillations
of fermions is reviewed, and the oscillation parameters are
calculated for the model introduced in Sec. II. In Secs. V
and VI, direct constraints on the masses and couplings of
the new ϕ and χ particles from collider searches and
indirect constraints from rare decays of mesons and
baryons are derived, respectively. Section VII contains
our analysis of how in this model the baryon asymmetry of
the Universe (BAU) is produced. Finally, in Sec. VIII we
conclude and point out possible directions for future work.

II. MODEL

We wish to find a theory which allows for sufficiently
large baryon-number and CP violation to explain baryo-
genesis at relatively low energy. In order to ensure
sufficient stability of the proton, we assume lepton number
is not violated, other than perhaps via the tiny ΔL ¼ 2
terms that could account for Majorana neutrino masses.
The lowest dimension terms which violate baryon number
and not lepton number are dimension-nine, six-quark
ΔB ¼ 2 operators. Such operators can lead to neutral
baryon oscillations and conceivably CP violation [11],
and can arise as an effective field theory description of
physics at some higher energy scale. A minimal renorma-
lizable model for generating such terms involves a new
charge −1=3 color triplet scalar and two Majorana fer-
mions, as described in Ref. [12]. A third Majorana fermion,

which decays out of thermal equilibrium, allows for the
fulfillment of the out-of-equilibrium Sakharov condition.
We note that this model for baryon-number violation can

easily be embedded in an R-parity-violating supersymmet-
ric (RPV SUSY) theory. In such theories, the neutralinos
play the role of the Majorana fermions and a down-type
SU(2) singlet squark can be the colored scalar. For
simplicity, we do not explore this embedding in a SUSY
framework in this paper and we stick to the minimal version
of the model.
Our model thus adds four new particles: three Majorana

fermions, χ1;2;3, and a single color triplet scalar, ϕ. The
interactions involving the new particles and weak SU(2)
singlet SM quarks are given by

Lint ⊃ −g�udϕ�ūRdcR − yidϕχ̄idcR þ H:c:; ð1Þ
along with terms involving other generations, d → s; b and
u → c; t. By convention we take all two-component fields
to transform in the left-handed representation under
Lorentz transformations. dcR stands for the charge conjugate
of the right-handed down quark field, which is in the left-
handed Lorentz representation. In this expression and
throughout the paper, we work in the mass basis, which
is unambiguous for SU(2) singlet quarks.
The required new particles and their interactions

are motivated as follows. A natural way to construct the
ΔB ¼ 2 six-quark operator that we require for baryon
oscillations is from two ΔB ¼ 1 four-fermion interactions
connected by an exotic neutral Majorana fermion. Thus we
introduce an exotic, electrically neutral, colorless,
Majorana fermion, χ1, which couples to other fermions
via a four-fermion interaction of the form uRdRd0Rχ1 (using
u and d here to represent any up- or down-type quark).1

Since such a four-fermion interaction is itself nonrenor-
malizable, we also introduce a complex, color triplet, scalar
particle (diquark) ϕ to mediate the ΔB ¼ 1 interactions.
Note that if χ1 is heavier than the difference in mass
between the proton and electron,mp −me ¼ 937.76 MeV,
this interaction does not give rise to proton decay.2 In the
presence of only χ1, there is no physical CP violation, as
there is enough reparametrization freedom to remove the
phases in the couplings. We introduce a second fermion, χ2
(with mχ2 > mχ1), in order to give rise to CP violation.
Finally, for baryogenesis, the oscillating baryons must be
produced out of thermal equilibrium. As described in
Sec. VII, this is most simply accomplished by introducing
a third Majorana fermion, χ3, which decays out of
equilibrium to produce the baryons whose oscillations
result in baryogenesis.

1Models of baryogenesis that generate four-fermion inter-
actions of this form and identify χi with right-handed neutrinos
can be found in Ref. [14].

2The stability of 9Be leads to a marginally stronger lower
bound of mχ1 > 937.9 MeV [11].
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Note that we only consider operators constructed out of
right-handed quarks, for two reasons. Our phenomenologi-
cal reason is that, as we will show in Sec. III, right-handed
quark operators are less constrained by dinucleon decay
due to the requirement of light quark mass insertions in
flavor-changing loops. Our top down theoretical reason is
that, as mentioned, the interactions in Eq. (1) occur in RPV
SUSY models, suggesting a possible embedding of our
model into a more complete theory.
Figure 1 shows the ΔB ¼ 2 six-quark operators that are

generated by the interactions in Eq. (1). Such operators,
which can mediate the transition of a baryon B to an
antibaryon B̄0, can be written as

OBB0 ¼ ϵabcϵdef

× ½ðqRÞiaðqRÞi;bðqRÞjcðq0RÞj;dðq0RÞkeðq0RÞk;f þ � � ��;
ð2Þ

where a;…; f are color indices; i, j, k spinor indices; and
q ¼ u, d, s, c, b any of the quark flavors (because of its
short lifetime, the top quark does not hadronize and is not
important in the low-energy effective theory) which are all
right-chiral. The ellipsis represents other possible permu-
tations of color or spinor indices. Here, B denotes an
arbitrary standard model baryon with the quark content qqq
while B0 contains q0q0q0. [Wewill use both the baryon name
B and the quark content ðqqqÞ to label the operators in
question throughout this paper.] The precise index structure
of OBB0 is not important for the purposes of this paper.
Therefore, in what follows, we will suppress the indices on
OBB0 and generically denote the operators we are interested
in that appear in the effective Lagrangian via the shorthand

Leff ⊃ CBB0 ðqqqÞðq0q0q0Þ≡ CBB0OBB0 ; ð3Þ

keeping in mind that the leading operators that are
generated involve only right-chiral quarks.
Matching the interactions generated by Eq. (1) to the

effective theory at tree level gives the coefficient of the
operator that generates oscillations between a neutral
baryon and its antiparticle, B ↔ B̄,

CBB ∼
X
i

mχ i

m2
B −mχ

2
i

�
g�udyid0 þ g�ud0yid

m2
ϕ

�
2

; ð4Þ

with u, d, and d0 labeling the quarks comprising B. For
example, the operator ðddcÞ2 would allow the processes
Σ̄c ↔ Σc. Given this operator, wewill find it useful to relate
the coefficient to the (dispersive) transition amplitude,
defined by δBB ≡ hB̄jCBBOBBjBi, with

δBB ¼ κ2CBB; ð5Þ

where κ ∼ 10−2 GeV3 [15]. In analogy with meson oscil-
lations, when the two-state system in question is unam-
biguous, δBB can also be referred to as M12.
Operators which involve different baryons of the form

OBB0 would allow for a common decay product between B
and B̄ and could also give rise to oscillations. For example,
ðussÞðudsÞ would allow for Ξ0 and Ξ̄0 to have a common
decay product, through Ξ0 → Λ0 and Ξ̄0 → Λ0 (ignoring
any neutral meson products). However, we will find such
processes are suppressed relative to their direct oscillation
cousins, so we will ignore them in our analysis. There are
also baryon-number-preserving operators that contribute to
the masses and mixings of SM baryons. These are greatly
suppressed relative to those that occur in the SM and we do
not consider them further either. Therefore, in what follows,
we focus on operators OBB with coefficients of the form
of Eq. (4).

III. DINUCLEON DECAY CONSTRAINTS

As described in the preceding section, we would like our
six-quark operators to allow for the oscillation of heavy
baryons in order to produce the Universe’s observed baryon
asymmetry. In Sec. VII, we will show that the ideal width
for such an oscillation, which is dependent upon the value
of CBB in Eq. (4), is a few orders of magnitude smaller than
B’s decay width. However, models with B violation by two
units are certainly not a new idea, and so significant
experimental effort has been put forth into constraining
the ΔB ¼ 2 processes. The most immediate constraint on
our six-quark operators is the lack of observed dinucleon
decay, which we quantify in this section. The analysis we
perform here applies to six-quark operators in general and
is independent of the origin of the new physics introduced
in Sec. II.
Dinucleon constraints come from underground detectors

whose primary purpose is the detection of proton decay and
neutrino oscillations. For example, in a nucleus, an n → n̄
transition will be shortly followed by the annihilation of the
n̄with one of the other nucleons, leading to the decay of the
nucleus of mass number A to a nucleus with A0 ¼ A − 2
plus mesons. The lack of observation of such decays can
therefore bound the transition amplitude δnn [16] which is
related to the coefficient of the ðuddÞ2 operator, Cnn

FIG. 1. The basic six-quark ΔB ¼ 2 operator generated by ϕ
and χ exchange. u and d here represent any of the up- or down-
type quark flavors. The quarks involved are all weak SU(2)
singlets, as emphasized by the R subscripts.
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[cf. Eqs. (4) and (5)]. Currently, the lower bound on the 16O
lifetime (in decays to pions) of 1.9 × 1032 years from the
Super-Kamiokande Collaboration [17] places the strongest
limit, δnn < 1.9 × 10−33 GeV.
Operators that also violate strangeness do not directly

induce n → n̄ transitions in a nucleus. However, they can
also lead to dinucleon decays, A → ðA − 2Þ þmesons,
through the reactionNN → kaonsþ XwhereN is a nucleon.
For example, the diagram on the left of Fig. 2 shows how the
operator ðudsÞ2 can lead to dinucleon decay to a pair of
kaons. The Super-Kamiokande Collaboration [18] has
searched for such decays and has placed an upper bound
on the pp → KþKþ decay rate by limiting the lifetime for
16O → 14CKþKþ to more than 1.7 × 1032 years.
To make use of this limit, we start with the effective

operator OBB. The dinucleon decay rate through direct
nucleon annihilation can then be roughly approximated by
considering the decay rate to a meson pair [19],

ΓNN→X ∼
9

32π

jCBBj2
m2

N
jh2 mesonsjOBBjNNij2ρN; ð6Þ

where mN is the nucleon mass, ρN ≃ 0.25 fm−3 is the
nucleon density, and we have ignored the masses of the
final state particles. In the case of operators that can
contribute at tree level, the matrix element can be estimated
as roughly h2 mesonsjOBBjNNi ∼ Λ5

QCD ≃ ð200 MeVÞ5.
Using this and Eq. (5), the limit on the rate for NN →
KK from Super Kamiokande translates to a limit on the
transition amplitude of

δðudsÞ2 ≲ 10−30 GeV: ð7Þ

In what follows, we also take operators that change
strangeness by one or three units to have roughly the same
bound as this.
Kinematic constraints protect certain operators from

contributing to dinucleon decay at leading order.
Operators such as ðussÞ2 that change strangeness by four
units (i.e. ΔS ¼ 4) are kinematically forbidden from con-
tributing to dinucleon decay at tree level since 2mN < 4mK .
Similarly, those that involve charm3 or bottom quarks also do
not lead to dinucleon decay at leading order. However, when
combined with flavor-violating weak interactions, these
operators involving heavy quarks can lead to dinucleon
decay. An illustration of this is shown on the right in Fig. 2.

To properly estimate the rate for dinucleon decay from
ΔB ¼ 2 operators (involving heavy flavors), we must
match the UV theory involving quarks to a low energy
effective theory involving baryons valid at momentum
transfers below 4πfπ ∼ 1 GeV where fπ ¼ 93 MeV.
This consists of writing down an operator in the UV theory
and treating the coefficient of this operator as a spurion that
transforms in a particular way under the global chiral quark
flavor symmetry SUð3ÞL × SUð3ÞR so as to make the
operator invariant. This operator is then matched onto an
operator in the effective theory that transforms in the same
way under the chiral symmetry with the same spurion
coefficient. In the UV, the light quarks qL;R transform as
triplets under SUð3ÞL;R. In the low energy theory, the
meson octet, Π, is described by a field Σ ¼ exp ð2iΠ=fπÞ
which transforms under the chiral symmetry as Σ → LΣR†

where L, R are SUð3ÞL;R transformations, respectively.
Incorporating the baryon octet (see, e.g., Ref. [20]) can be
done by defining a field ξ ¼ exp ðiΠ=fπÞ which transforms
as ξ → LξU†, ξ → UξR† under SUð3ÞL;R. U is an SU(3)
matrix that depends nonlinearly on the meson fields. The
baryon octet B is defined to transform as B → UBU†.
Operators in the effective theory are then constructed out of
Σ, B, and ξ along with spurions from the UV theory to be
invariant under the flavor symmetry. Since the chiral
symmetry is dynamically broken by the strong coupling
of QCD around 4πfπ, one can use naive dimensional
analysis to properly account for factors of 4π (that come
from the strong coupling) and the cutoff, 4πfπ , that appear
in this matching procedure, as described in, e.g., Ref. [21].
We will first illustrate this matching procedure in our

theory with interactions given by Eq. (1), assuming for now
that only the light quarks u, d, and s are involved. We will
deal with heavy quarks c and b below. Since distinction
between chiralities is necessary, we will temporarily denote

FIG. 2. Left: Dinucleon decay via the ΔB ¼ ΔS ¼ 2 ðudsÞ2
operator that mediates Λ0 ↔ Λ̄0 oscillations. Right: Dinucleon
decay mediated by the ΔB ¼ 2, ΔS ¼ 4 ðussÞ2 operator that
becomes the ΔS ¼ 3 ðudsÞðussÞ operator in the presence of
flavor-changing weak interactions. Because the short-distance
ΔB ¼ 2 operators we consider involve weak isosinglets, this
operator requires light quark chirality flips, indicated by crosses.
See text for a discussion of the matching of the short distance
theory onto the (chiral-symmetry-violating) long distance theory.

3Depending on the nucleon binding energy, nn → Dγ through
a ΔC ¼ 1 operator is kinematically allowed for some nuclei, but
due to the dependence of the amplitude on the photon momentum
and coupling and phase space suppression the rate is proportional
to ðα=4πÞðkγ=mNÞ3 ∼ 10−9, where kγ is the photon energy,
suppressing the rate below other decays with less constrained
phase space.
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them explicitly. After integrating out the scalar, ϕ, and the
Majorana fermions, χi, we are left with a ΔB ¼ 2 operator
involving only (light) right-chiral quarks, CBBðqRqRqRÞ2.
This operator must be matched onto an operator valid at
long distances involving baryons at the scale of chiral
symmetry breaking. The coefficient CBB can be treated as a
spurion that transforms under SUð3ÞR in a representation
that appears in the tensor decomposition of six triplets. For
definiteness, take it to transform as an SUð3ÞR octet. Then
the object ~CBB ≡ ξCBBξ

† transforms as ~CBB → U ~CBBU†

and the operator matching is

CBBðqRqRqRÞ2 → ð4πf3πÞ2trB ~CBBBþ � � � ; ð8Þ

where the ellipsis represents other possible orderings of the
baryon octets and the spurion. Note that this gives an
understanding of the size of κ ∼ 4πf3π ≃ 10−2 GeV3 in
Eq. (5). Adjusting this analysis if CBB transforms under a
different representation of SUð3ÞR is straightforward; one
inserts the required numbers of ξ and ξ† into the definition
of ~CBB so that it transforms in such a way as to leave
trB ~CBBB invariant. For example, if CBB is a singlet then
one simply takes ~CBB ≡ CBB.
Four-quark weak operators involving light quarks can be

matched onto the low energy effective theory in much the
same way. The coefficient of the operator ūLγμq

j
Lq̄LiγμuL

can be viewed as a spurion that transforms as an octet under
SUð3ÞL and the strangeness changing (ΔS ¼ 1) coefficient
takes a value ∝ GFVusV�

udh with hij ¼ δi2δ
3
j . Then ξ†hξ →

Uξ†hξU† and the matching is

GFffiffiffi
2

p VusV�
udūγ

μð1 − γ5Þsd̄γμð1 − γ5Þu

→
GFffiffiffi
2

p VusV�
udð4πf3πÞtrB̄ξ†hξBþ � � � ; ð9Þ

where again the ellipsis represents other possible orderings
of B, B̄, and ξ†hξ.
Now we can combine a ΔB ¼ 2 operator that also

changes strangeness by n units with the weak ΔS ¼ 1
operator to form a ΔB ¼ 2, ΔS ¼ n − 1 operator that is
given by

GFffiffiffi
2

p VusV�
udf

2
πð4πf3πÞ2trB̄ ~CBBξ

†hξBþ � � � : ð10Þ

In other words, if the leadingΔB ¼ 2 operator has ΔS ¼ n,
the ΔB ¼ 2, ΔS ¼ n − 1 operator that is generated due to
weak interactions is suppressed relative to it by the factor

GFffiffiffi
2

p VusV�
udf

2
π ∼ 10−8: ð11Þ

Thus, for example, the bound on a leadingΔS ¼ 4 operator
ðuRsRsRÞ2 from the lack of dinucleon decay is around eight

orders of magnitude weaker than that on the ΔS ¼ 3
operator ðudsÞðussÞ [which we take to be comparable to
that on the ΔS ¼ 2 operator ðudsÞ2]:

δðussÞ2 ≲ 10−22 GeV: ð12Þ

Now, we consider the case where the leading ΔB ¼ 2
operators contain heavy quarks. Consider, for example, if
after integrating out the heavy scalar ϕ and Majorana
fermions χi, that the leading operator we generate is
CðudbÞ2ðuRdRbRÞ2. Before matching onto the theory valid
after chiral symmetry breaking we must first integrate out
the b quarks. In the presence of weak interactions, as shown
in Fig. 3, doing so will lead to a ten-quark operator,

CðudbÞ2ðuRdRbRÞ2 →
�
GFffiffiffi
2

p VubV�
ud

1

mb

�
2

× CðudbÞ2ðuRdRdLūLuLÞ2: ð13Þ

After chiral symmetry breaking, ūLuR can be replaced by
the quark condensate which is roughly 4πf3π. This means
that the induced ΔB ¼ 2 operator ðuLdRdLÞ2 is suppressed
relative to ðuRdRbRÞ2 by the factor

�
GFffiffiffi
2

p VubV�
ud
4πf3π
mb

�
2

∼ 10−20: ð14Þ

Additionally in the case of a leading operator containing a b
and c quark, e.g. ðdRcRbRÞ2, there are perturbative loops
that generate dimension-nine operators involving light
quarks above the chiral symmetry breaking scale. In the
case of the operator ðdRcRbRÞ2, two such loops can be used
to generate the operator ðuLdLdRÞ2 with a coefficient
suppressed relative to the leading one by

FIG. 3. The ten-quark ΔB ¼ 2 operator that results from the
leading ðuRdRbRÞ2 operator after integrating out the b quarks.
The crosses represent chirality-flipping b quark mass insertions.
We use hūLuRi to indicate the pairs of light quark fields that can
be replaced by the chiral condensate when matching onto the long
distance theory relevant for dinucleon decay.
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�
GFffiffiffi
2

p VubV�
cd
mbmc

4π2
log

m2
W

m2
b

�
2

∼ 10−16: ð15Þ

In Table I, we list operators that can mediate B ↔ B̄
transitions along with the number of loops required for each
operator to mediate (ΔS ¼ 0, 1, 2, 3) dinucleon decay. We
show the resulting limits on the transition amplitudes δBB ¼
jM12j ¼ κ2CBB of each operator from the lack of obser-
vation of dinucleon decay, accounting for the appropriate
suppression factors. In general we find that only operators
which require two or more weak interactions to contribute
to dinucleon decay can give baryon oscillations at a rate
which is large enough to be relevant for either experimental
searches or baryogenesis. The last column of the table gives
the limit on the size of the operator that can be produced in
our specific model when collider constraints on new
particles are considered, which will be discussed in Sec. V.

IV. CP VIOLATION IN HEAVY
BARYON OSCILLATIONS

The evolution of the ðB; B̄Þ system in vacuum, assuming
CPT conservation, can be described [11] by a 2 × 2
Hamiltonian,

H ¼ M −
i
2
Γ ¼

�
MB − i

2
ΓB M12 − i

2
Γ12

M�
12 − i

2
Γ�
12 MB − i

2
ΓB

�
: ð16Þ

M and Γ are both Hermitian matrices that describe the
dispersive and absorptive parts of the B; B̄ → B; B̄

amplitude, respectively. This system is entirely analogous
to the very well-known case of neutral mesons and
antimesons. Because of the off-diagonal terms in H, the
mass eigenstates jBL;Hi with masses mL;H are linear
combinations of the flavor eigenstates jBi and jB̄i,

jBL;Hi ¼ pjBi � qjB̄i: ð17Þ

The mass difference is Δm ¼ mH −mL > 0 and the width
difference between the states is ΔΓ ¼ ΓH − ΓL and can be
of either sign. The flavor admixtures can be determined by�

q
p

�
2

¼ M�
12 − ði=2ÞΓ�

12

M12 − ði=2ÞΓ12

: ð18Þ

A state that begins at t ¼ 0 as a jBi or jB̄i is at time t

jBðtÞi ¼ gþðtÞjBi −
q
p
g−ðtÞjB̄i;

jB̄ðtÞi ¼ gþðtÞjB̄i −
p
q
g−ðtÞjBi ð19Þ

with

g�ðtÞ ¼
1

2
ðe−imHt−1

2
ΓHt � e−imLt−1

2
ΓLtÞ: ð20Þ

A particularly useful quantity that measures the level of CP
and baryon-number violation is the quantity

AB ¼ PB→B − PB→B̄ þ PB̄→B − PB̄→B̄

PB→B þ PB→B̄ þ PB̄→B þ PB̄→B̄
; ð21Þ

TABLE I. Operators that mediate B ↔ B̄ oscillations and the number of weak interaction insertions required for
each of these to contribute to dinucleon decay. The resulting limit from dinucleon decay on the transition amplitude,
defined in Eq. (5), for each operator is shown. An � indicates a baryon that has not yet been observed and which has
a strong decay channel open. A † (‡) indicates an unobserved baryon which primarily decays through a weak
interaction of a c (b) quark.

Weak insertions Measured Limits on δBB ¼ M12 (GeV)

Operator B required Γ (GeV) [22] Dinucleon decay Collider

ðuddÞ2 n None ð7.477� 0.009Þ × 10−28 10−33 10−17

ðudsÞ2 Λ None ð2.501� 0.019Þ × 10−15 10−30 10−17

ðudsÞ2 Σ0 None ð8.9� 0.8Þ × 10−6 10−30 10−17

ðussÞ2 Ξ0 One ð2.27� 0.07Þ × 10−15 10−22 10−17

ðddcÞ2 Σ0
c Two ð1.83þ0.11

−0.19 Þ × 10−3 10−17 10−16

ðdscÞ2 Ξ0
c Two ð5.87þ0.58

−0.61 Þ × 10−12 10−16 10−15

ðsscÞ2 Ω0
c Two ð9.5� 1.2Þ × 10−12 10−14 10−15

ðudbÞ2 Λ0
b Two ð4.490� 0.031Þ × 10−13 10−13 10−17

ðudbÞ2 Σ0
b
� Two ∼10−3� 10−13 10−17

ðusbÞ2 Ξ0
b Two ð4.496� 0.095Þ × 10−13 10−10 10−17

ðdcbÞ2 Ξ0
cb

† Two ∼10−12† 10−17 10−15

ðscbÞ2 Ω0
cb

† Two ∼10−12† 10−14 10−15

ðubbÞ2 Ξ0
bb

‡ Four ∼10−13‡ >1 10−17

ðcbbÞ2 Ω0
cbb

† Four ∼10−12† >1 10−15
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where, e.g., PB→B̄ is the time integrated probability for an
initial B state to oscillate into a B̄ and the other terms are
defined analogously. In terms of the elements ofH, this can
be concisely expressed:

AB ¼ 2ImðM�
12Γ12Þ

Γ2
B þ 4jM12j2

: ð22Þ

This expresses the familiar fact that CP violation requires a
phase difference between the absorptive and dispersive
parts of the transition amplitudes.
The dispersive part of the transition amplitude, M12, is

dominantly given by off-shell χi exchange in our model, as
seen in Fig. 1. We have already written down what we need
to estimate this in Eqs. (4) and (5), resulting in

M12 ∼ κ2
X
i

mχ i

m2
B −mχ

2
i

�
g�udyid0
m2

ϕ

�
2

: ð23Þ

Here, u, d, and d0 refer to the flavors that comprise B and
we have assumed, if d ≠ d0, that g�udyid0 ≫ g�ud0yid. If we
concentrate on the contribution due to a particular χi and
express it in terms of its mass difference from the baryon,
ΔmBi ¼ mB −mχi , we have

jM12ji ∼
κ2

2ΔmBi

���� g�udyid0 þ g�ud0yid
m2

ϕ

����2

≃ 8 × 10−16 GeV

�
500 MeV
ΔmBi

�

×

�
600 GeV

mϕ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijg�udyid0 þ g�ud0yidj

p �
4

: ð24Þ

The absorptive part of the transition amplitude requires
an on-shell state into which both B and B̄ can decay. This
requires at least χ1 to be light enough for either baryon or
antibaryon to decay into it. CP violation will be largest
when the mass splitting between χ1 and B is not too large.
In this case the most important states for Γ12 are decays
of B to χ1 plus a meson. The contribution from χ1π

0, for
instance, can be estimated using the effective Lagrangian,

Leff ⊃ −yiBπ0B̄iγ5χi þ H:c:; ð25Þ

where

yiB ∼
4πκ

mB

g�udyid0
m2

ϕ

: ð26Þ

The factor of 4π in this expression accounts for the
nonperturbative nature of the interaction, which is similar
to the pion-nucleon vertex. This interaction gives a con-
tribution to Γ12 of

Γ12 ∼
X
i

y2iBmχi

32π
ð1þ rχi − rπ0Þλ1=2ð1; rχi ; rπ0Þ; ð27Þ

where rχi;π0 ¼ m2
χi;π0

=m2
B and λða; b; cÞ ¼ a2 þ b2 þ c2−

2ab − 2ac − 2bc. The magnitude of the contribution to Γ12

from a particular χi is roughly

jΓ12ji ∼
y2iB
8π

ΔmBi ∼
2πκ2

m2
B

���� g�udyid0m2
ϕ

����2ΔmBi

≃ 1 × 10−16 GeV

�
ΔmBi

500 MeV

�

×

�
5 GeV
mB

�
2
�

600 GeV

mϕ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijg�udyid0 j

p �
4

: ð28Þ

We now see the reason we need at least two Majorana
fermions. If there were only a single Majorana fermion, χ1,
that contributed to M12 and Γ12, they would have the same
phase and AB in Eq. (22) would vanish. Thus, we use
contributions from χ1 and χ2 exchange to obtain a physical,
CP-violating phase difference between M12 and Γ12.
The ratio of the single meson contribution to Γ12 from χ1

to its contribution to M12 is

���� Γ12

M12

����
1

∼ 4π

�
ΔmB1

mB

�
2

≃ 0.1

�
ΔmB1

500 MeV

�
2
�
5 GeV
mB

�
2

: ð29Þ

The CP-violating quantity AB in Eq. (22) linearly depends
on jΓ12j. Without finely tuning the contributions due to χ1
and χ2 against each other, this value of the ratio due to χ1
alone is roughly as large as the total ratio jΓ12=M12j can get.

V. COLLIDER CONSTRAINTS

To obtain a large amount of CP violation in heavy
baryon oscillation, it will be clear that the lightest two
Majorana fermions must have masses on the order of a few
GeV along with couplings to quarks that are not too small.
In this discussion, we consider the two lightest Majorana
fermions. The third, χ3, must be weakly coupled in the
minimal version of the model, due to cosmological con-
siderations, as we will see in Sec. VII.
The constraints that we will discuss in this section require

thatϕ have amass of at least a few hundred GeV. In this case,
χi decays can be analyzed by integrating out the scalar in
Eq. (1), resulting in four-fermion interactions,

−
gudyid0

m2
ϕ

χ̄iūRdcRd
0c
R þ H:c: ð30Þ
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(For d ≠ d0, we have again assumed that gudyid0 ≫ gud0yid.)
Both the interactions responsible for the decay of the
Majorana fermions and those that source CP-violating
baryon oscillations are of the same form. The quarks
involved in the decay operator must be lighter than those
responsible for baryon oscillations and the couplings respon-
sible for decay must be relatively smaller, to avoid stronger
dinucleon decay limits from ΔB ¼ 2 quarks involving light
quarks.
The interaction in Eq. (30) allows for the decay

χi → udd0, where u, d, and d0 are up- and down-type
quarks light enough for this to be kinematically allowed. It is
reasonable to assume that one mode dominates their allowed
branchings and in this case, their lifetimes are

τχi ∼
2ð8πÞ3
m5

χ1;2

���� m2
ϕ

gudyid0

����2

≃ 10−6 s

�
5 GeV
mχi

�
5
�
mϕ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gudyid0

p
20 TeV

�
4

: ð31Þ

For mχi ¼ 5 GeV, with couplings gudyid0 ≲ ðmϕ=20 TeVÞ2
the ΔB ¼ 2 transition amplitude in the udd0 system is less
than 10−22 GeV, avoiding conflict with constraints from
dinucleon decay (see Table I). Furthermore, ifmχi ¼ 5 GeV,
as long as gudyid0 ≳ ðmϕ=350 TeVÞ2, τχi ≲ 0.1 s which is a
short enough lifetime to avoid spoiling successful Big Bang
nucleosynthesis (BBN) (see, e.g., [23]).
We might ask whether instead of ensuring that χ1;2 decay

fast enough to avoid spoiling BBN, the lightest fermion χ1
could instead be long enough lived to serve as dark matter.
First we note that the range allowed for the kinematic
stability of both the proton and χ1 is extremely fine-tuned,
with the χ1 mass between mp −me and mp þme. If we
assume all the χ’s participate in a viable heavy-flavor
baryogenesis mechanism, we will see that we must require
the χ1;2 masses to be around 3–5 GeV, and we also need
sufficiently large four-fermion interactions involving χ1;2
and heavy-flavor quarks, suppressed by a scale
Λheavy ≡mϕ=

ffiffiffiffiffi
gy

p ∼ 600 GeV. Here g and y label cou-
plings with the relevant flavor structure. Based on our
discussion in Sec. III, at the one loop level we must
generate four-fermion operators involving light quarks
(into which χ1;2 can decay), which are generated with a
scale Λlight ≳ 104Λheavy ∼ 106 GeV. This provides a lower
bound on the strength of the light quark four-fermion
operator which gives an upper bound on the χ1;2 lifetime of
τχ1;2 ≲ 1000 s in the absence of fine-tuning against some
other source of this operator. There is also an unavoidable
decay channel that comes from the mixing of χ1;2 with the
heavy-flavor baryon, B, whose oscillations are responsible
for the BAU, with a mixing angle θ ∼ jM12j=ΔmwhereΔm
is the mass splitting between the Majorana fermions and B.
This mixing leads to the decay of χ1;2 into B’s decay

channels with a partial width proportional to θ2ΓB, which is
much shorter than the lifetime of the Universe.
We see that the Majorana fermions are generically

unstable but long lived on the scale of collider experiments
and appear as missing energy. Decay lengths on the order of
102 to 107 m are expected, potentially relevant for the
recently proposed MATHUSLA detector [24] which is
optimized to search for long-lived particles. In what
follows, to analyze collider constraints on the new scalar
ϕ we will assume that any χi produced at a collider is
invisible and defer discussion of the displaced decay
signatures at, e.g., MATHUSLA.
Now that we know that the χi’s are invisible at colliders,

we can understand how the scalars appear when produced
in hadron collisions. Because ϕ is a color fundamental, if it
is kinematically accessible, ϕϕ� pairs are easily produced
in proton-(anti)proton collisions, and the signatures are
essentially those of squarks in RPV SUSY. In addition to
QCD production, (single) scalars can be resonantly pro-
duced in the presence of some nonzero gud. Once produced,
the scalar decays through one of the interactions in Eq. (1),
either to quark pairs with a rate

Γϕ→ū d̄ ≃
X
i;j

jguidj j2
16π

mϕ; ð32Þ

or to χi plus a quark,

Γϕ→χd ≃
X
i;j

jyidj j2
16π

mϕ; ð33Þ

where we have assumed that mϕ is much larger than the
mass of any decay product. Therefore, these scalars can
appear in searches for dijet resonances (either singly or pair
produced) and (mono)jets and missing energy. Which
search is most sensitive depends on mϕ and the branching
fractions for ϕ → ū d̄ and ϕ → χd.
Taken together, LHC searches for pair produced dijet

resonances, both with [25] and without [26] heavy flavor in
the final states, as well as standard SUSY searches for
(b-tagged [27,28] or not [28,29]) jets plus missing energy
rule out ϕ masses below about 400 GeV. Above this mass,
limits from pair produced dijet resonances are no longer
constraining while resonant production of a single ϕ with a
rate proportional to jgudj2 for some u, d is important [30].
We use the limits from resonant dijet production from [30]
and recast searches for jets and missing energy [27–29] as
well as monojets [31] to find limits on the couplings gud
and yid0 as functions of mϕ. We find this limit for every
flavor u, d, and d0, assuming that only gud and yid0 are
relevant. Given these limits, the maximum value of the
product of couplings gudyid0 at each mϕ can be found. This
can be turned into an upper limit on the transition amplitude
δudd0 ¼ M12 in the udd0 system, once a value of the mass
splitting between χi and the udd0 baryon has been
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specified.4 We show the upper limit onM12 as a function of
mϕ for each pattern of flavors u, d, and d0, assuming the
dominance of one particular pair of couplings gud, yid0 and a
mass splitting between mχi and the udd0 baryon of
200 MeV in Fig. 4. We also show the largest value of
M12 allowed from collider searches in each neutral baryon
system in Table I.
Lastly, we note that the six-quark ΔB ¼ 2 operators

themselves can lead to interesting signatures at the LHC.
These were studied in Ref. [32].

VI. HADRON PHENOMENOLOGY

A. Hadron decays

After integrating out the heavy colored scalars, four-
fermion interactions between the Majorana fermions and

quarks are generated as in Eq. (30). These can lead to new
decays of hadrons to final states that differ in baryon
number by one unit along with any kinematically acces-
sible χi, e.g.,

meson → baryonþ χi½þmesonðsÞ�;
baryon → mesonðsÞ þ χi: ð34Þ

As we showed in Sec. V, on the scale of particle physics
experiments, χi appear as missing energy.
For definiteness, let us focus now on four-fermion

interactions that involve the b quark and the lightest
Majorana fermion. This is potentially relevant to the case
where baryons containing b quarks undergo CP-violating
oscillations in the early Universe, producing the BAU;
operators involving heavy quarks are less constrained by
dinucleon decay and are therefore more promising candi-
dates, cf. Table I. Similar considerations apply for operators
involving lighter quarks.
Consider, as a definite example, b decays through the

operator

−
guby1d
m2

ϕ

χ1uRdRbR; ð35Þ

where u and d here are the actual up and down quarks. (We
have omitted the contribution to this operator from gudy1b
which is more constrained by collider searches.) The rate
for the b quark to decay through such an interaction is

Γb→χ1ū d̄ ∼
mbΔm4

60ð2πÞ3
�
guby1d
m2

ϕ

�
2

þO
�
Δm5

m5
b

�

≃ 2 × 10−15 GeV

�
Δm

2 GeV

�
4
�

1.2 TeV
mϕ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
guby1d

p
�

4

:

ð36Þ

In this expression Δm is the mass splitting between χ1 and
the bottom quark (we have ignored masses in the final state
besides mχ1). We have chosen to normalize this expression
on values of the mass splitting and mϕ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
guby1d

p
that result

in a transition amplitude of jM12j ∼ 10−17 GeV in the Λ0
b ¼

ðudbÞ baryon system, which is the rough collider limit.
Given this mass splitting, this can lead to decays of Bþ
mesons to a nucleon and χ1 with a branching ratio of

BrB�→Nχ1þX ∼ 6 × 10−3
�

Δm
2 GeV

�
4

×

�
1.2 TeV

mϕ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
guby1d

p
�

4

; ð37Þ

where X represents possible additional pions. This is not a
small branching fraction, although final states of this form
have not yet been searched for in B meson decays.

FIG. 4. Upper limits on M12 as functions of mϕ that result
from collider searches for dijet resonances and jets plus
missing energy, assuming the dominance of the product of
couplings gudyid0 indicated, where u and dð0Þ label generic up-
and down-type quarks, respectively. We have taken ΔmB ¼ mB−
mχ ¼ 200 MeV. Top: The limits when yid or yis are dominant.
Bottom: The limits when yib is dominant. Solid curves show the
limits in the case where the charge 2=3 quark involved is u while
dashed lines show the limit in the case of the c quark.

4Note that we perform this scan for a single Majorana fermion.
Including a second, as we must to obtain CP violation, does not
change the allowed values by more than an Oð1Þ factor which,
given our level of precision, is unimportant. The third, χ3, must be
more weakly coupled than χ1;2 and can be even more safely
neglected here.
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However, the requirement that the final state hadrons carry
baryon number means that this decay is kinematically
forbidden if mχ1 > mB� −mp ¼ 4.34 GeV. Decays of
bottom baryons would be allowed to proceed for splittings
down to mπ , and one could expect branching ratios on the
order of 10−3 for the parameters in Eq. (37).5

We also expect “wrong sign” decays of heavy baryons in
this model, following a B → B̄ oscillation, with a branching
fraction that is roughly

1

2

jM12j2
Γ2
B

: ð38Þ

Consider, e.g., the Ω0
c. Given the constraints that appear in

Table I, this branching could potentially be as large as 10−7.
The Belle II experiment hopes to collect ∼50 ab−1 of eþe−

data at
ffiffiffi
s

p ¼ 10.56 GeV, collecting about 50 × 109 B
meson pairs. If Ω0

c baryons are produced in 2% of B
meson decays (comparable to the measured production of
Λc baryons), then there would be a sample of about 109

Ω0
c’s and Ω̄0

c’s. Thus, there could be a few hundred wrong
sign decays in the data sample. While this would be a
challenging measurement, it is interesting that it is in
principle observable at the next generation B-factory given
current experimental limits.
We mention here that baryon-number-violating decays

of baryons along these lines have been searched for by the
CLAS Collaboration [33]. The branching fraction for Λ →
K0

S þ inv is limited to less than 2 × 10−5 while that for
Λ → p̄πþ must be less than 9 × 10−7. These decay modes
are sensitive to the operator ðudsÞ2. While interesting, these
limit δðudsÞ2 ¼ jM12j to less than about 10−18 GeV, which is
less strong than the limit on this operator from null searches
for dinucleon decay. In light of the less stringent limits from
dinucleon decay on operators involving heavy flavor, it
would be highly desirable for searches for ΔB ¼ 2 decays
of baryons with heavy quarks to be performed.

B. Meson oscillations

In addition to the decays described above, the new
interactions could lead to flavor-changing oscillations of
neutral mesons. The limits from these processes on this
model were considered in Ref. [12]; we refer the reader to
[12] and references therein for further details.
Avoiding these constraints requires a suppression of

particular combinations of flavor-violating couplings.
For example, considering kaon oscillations, given mϕ≳
400 GeV, ys1 and ys2 could be Oð1Þ provided yd1; yd2≲
10−2. Similar considerations apply for flavor-violating
combinations of the couplings gus and gud. The constraints

on charm and bottom couplings from D and B oscillations
are less severe.
From the model building point of view, flavor-changing

meson oscillations can be naturally avoided, e.g. charging
the scalar under a symmetry so that F1 − F2 is conserved,
where F1;2 label flavor quantum numbers.

VII. COSMOLOGICAL PRODUCTION
OF THE BARYON ASYMMETRY

We now answer in detail the question of how the baryon
asymmetry of the Universe is produced in this model. In
addition to the CP and baryon-number violation described
above, a nonzero asymmetry requires a departure from
thermal equilibrium. The simplest possibility for this is to
assume that χ3 is very weakly coupled. It is therefore long
lived and decays out of equilibrium, producing the baryons
that undergo CP- and B-violating oscillations.
At temperatures below mχ3, the equations that determine

the radiation and χ3 energy densities are

dρrad
dt

þ 4Hρrad ¼ Γχ3ρχ3 ; ð39Þ

dρχ3
dt

þ 3Hρχ3 ¼ −Γχ3ρχ3 : ð40Þ

H is the Hubble parameter which is related to the total
energy density,

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3

ρ

M2
Pl

s
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3

ρrad þ ρχ3
M2

Pl

s
; ð41Þ

where MPl ¼ 1.22 × 1019 GeV is the Planck mass. In the
absence of χ3 decays, ρrad and ρχ3 simply redshift like
radiation and matter energy densities, respectively. The
right-hand sides of these equations describe how χ3 decays
cause the energy density in matter to decrease while
dumping energy into the plasma.
In addition to depositing energy in the plasma, some of

the χ3 decays produce baryons and antibaryons, B and B̄,
that can oscillate and decay, violating CP and B. For this to
occur, the temperature of the Universe needs to be below
the QCD confinement temperature, TQCD ≃ 200 MeV. On
the time scale of the expansion of the Universe, H−1, the
(anti)baryons produced this way rapidly oscillate and
decay, producing a net B asymmetry. However, because
of the presence of the plasma, with which they can interact,
as well as their large annihilation cross section, B ↔ B̄ can
decohere in this environment, suppressing the asymmetry
that is generated. Properly accounting for this requires a
density matrix treatment, which has been used in a
cosmological context for neutrino oscillations and
oscillating asymmetric dark matter [34,35]. Following
Ref. [35] (see [36] for a similar analysis in the context

5The calculation of the baryon decay rate to χ1 and a single
meson is essentially the same as that of Γ12 in Sec. IV, modulo a
factor of mb=mχ1 ∼Oð1Þ.
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of baryogenesis-related oscillations), we can write the
Boltzmann equations that govern the evolution of the
number density of the B-B̄ system,

dn
dt

þ 3Hn ¼ −iðHn − nH†Þ − Γ�
2

½O�; ½O�; n��

− hσvi�
�
1

2
fn;O�n̄O�g − n2eq

�

þ 1

2

Γχ3ρχ3
mχ3

Brχ3→BOþ; ð42Þ

where the last term describes B and B̄ production through
χ3 decay. Brχ3→B is the branching ratio for χ3 to decay to B
or B̄. In this equation n and n̄ are density matrices,

n ¼
�
nBB nBB̄
nB̄B nB̄ B̄

�
; n̄ ¼

�
nB̄ B̄ nBB̄
nB̄B nBB

�
; ð43Þ

and neq is the equilibrium density of baryons plus anti-
baryons. H is the Hamiltonian seen in Eq. (16). hσvi� and
Γ� are thermally averaged annihilation cross sections and
scattering rates on the plasma, respectively. O� is a matrix

O� ¼
�
1 0

0 �1

�
: ð44Þ

The subscripts of hσvi� and Γ�, i.e. whether they appear
with Oþ or O− in Eq. (42), are determined by the behavior
of the effective Lagrangian that gives rise to these inter-
actions under charge conjugation of only the heavy
baryons, B ↔ B̄, Leff ↔ �Leff . Interactions that do not
change sign are said to be flavor blind while those that do
are flavor sensitive. For example, B and B̄ can scatter on
light charged particles in the plasma through their magnetic
moment, μ, which corresponds to a term in the effective
Lagrangian of

iμ
4
B̄½γν; γρ�BFνρ: ð45Þ

Under B ↔ B̄ this term changes sign, so the rate for
scattering via the magnetic moment appears with O− in the
Boltzmann equation.
It is useful to work in terms of the quantities

Σ≡ nBB þ nB̄ B̄; Δ≡ nBB − nB̄ B̄;

Ξ≡ nBB̄ − nB̄B; Π≡ nBB̄ þ nB̄B: ð46Þ

In this basis the Boltzmann equations are

�
d
dt

þ 3H

�
Σ ¼ Γχ3ρχ3

mχ3

Brχ3→B − ΓBΣ − ðReΓ12ÞΠþ iðImΓ12ÞΞ

−
1

2
½ðhσviþ þ hσvi−ÞðΣ2 − Δ2 − 4n2eqÞ þ ðhσviþ − hσvi−ÞðΠ2 − Ξ2Þ�;�

d
dt

þ 3H

�
Δ ¼ −ΓBΔþ 2iðReM12ÞΞþ 2ðImM12ÞΠ;�

d
dt

þ 3H

�
Ξ ¼ −ðΓB þ 2Γ− þ hσviþΣÞΞþ 2iðReM12ÞΔ − iðImΓ12ÞΣ;�

d
dt

þ 3H

�
Π ¼ −ðΓB þ 2Γ− þ hσviþΣÞΠ − 2ðImM12ÞΔ − ðReΓ12ÞΣ: ð47Þ

Coherent oscillations from a flavor-symmetric state to an
asymmetric state proceed through Σ → Ξ; Π → Δ. Flavor-
sensitive scattering and flavor-blind annihilation suppress Ξ
and Π and therefore lead to decoherence.
When they decay, B and B̄ create states that carry baryon

number. The flavor-asymmetric configuration contributes
to the difference between the baryon and antibaryon
number densities,

�
d
dt

þ 3H

�
ðnB − nB̄Þ ¼ ΓBΔ: ð48Þ

The dominant interaction of B and B̄ with the plasma is
scattering on charged particles (mostly electrons at
T ≲ 100 MeV) via the magnetic moment term in Eq. (45).
The cross section for this at temperatures well below mB is

dσsc
dΩ

¼ α2μ2
�
1þ sin2 θ=2
sin2 θ=2

�
ð49Þ

which diverges at small scattering angle, θ → 0. This
divergence is cut off at finite temperature by the inverse
photon screening length, mγ . Using this, the total cross
section can be estimated as
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σsc ∼ 4πα2μ2 log

�
4E2

m2
γ

�
ð50Þ

where E is the electron energy. Taking E ∼ T, mγ ∼ eT=3
[37] and μ ∼ 1=ð2mBÞ, this gives

σsc ∼
πα2

m2
B

log

�
9

πα

�
: ð51Þ

The (flavor-sensitive) scattering rate is therefore

Γ− ¼ Γsc ∼ σscðne− þ neþÞ

∼
πα2

m2
B

log

�
9

πα

�
×
3ζð3Þ
π2

T3

∼ 10−11 GeV

�
5 GeV
mB

�
2
�

T
10 MeV

�
3

: ð52Þ

At temperatures above a fewMeV, as is needed for BBN, this
rate is larger than a typical heavy baryon width and therefore
strongly affects the B-B̄ oscillations.
When solving the Boltzmann equations, we take an

annihilation cross section that is similar to that for pp̄
annihilation at low energies,

hσviþ þ hσvi− ¼ 400 mb: ð53Þ

We will find that only the total annihilation cross section
and not whether it is flavor blind or flavor sensitive is
important, since Σ ≫ Δ;Ξ;Π. Furthermore the annihilation
rate is always much smaller than the scattering rate at
temperatures we are interested in, so its effect on the final
asymmetry is subdominant and can generally be ignored.

A. Sudden decay approximation

Having removed the heavy baryons from the problem
due to the short time scales in their system, the evolution
equations are Eqs. (39), (40), and (59). These involve only
the radiation energy density, χ3 density, and the baryon
asymmetry. They can be simply studied using a sudden
decay approximation to gain a rough estimate of the baryon
asymmetry. We outline this estimate below.
At some high temperature above mχ3 , we assume that χ3

was in thermal equilibrium with the plasma, fixing its
number density for T ≲mχ3 to roughly

nχ3 ≃
3

4

ζð3Þ
π2

T3: ð54Þ

As the Universe cools, the energy density in χ3 and
radiation are equal. This occurs at the temperature

Teq ¼
45ζð3Þ

2π4g�ðT0Þ
mχ3 : ð55Þ

g� is the effective number of relativistic degrees of freedom
and here it is evaluated at T0 ≳mχ3 . This corresponds to
the time

teq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

45

16π3g�ðTeqÞ

s
MPl

T2
eq

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5πg�ðTeqÞ

p π7g�ðT0Þ2
135ζð3Þ2

MPl

m2
χ3

: ð56Þ

After this the Universe is matter dominated and the energy
density in radiation and χ3 redshift as

ρrad ¼
1

2
ρeq

�
teq
t

�
8=3

; ρχ3 ¼
1

2
ρeq

�
teq
t

�
2

: ð57Þ

We then assume that all of the χ3’s decay at the time
tdec ¼ 1=Γχ3 . The ratio of the energy densities just before
decay is

ξ≡ ρχ3ðt−decÞ
ρradðt−decÞ

¼ ðteqΓχ3Þ−2=3

¼ 15

�
g�ðTeqÞ
g�ðT0Þ

�
1=3

�
50

g�ðT0Þ
�

×

�
mχ3

10 GeV

�
4=3

�
10−22 GeV

Γχ3

�
2=3

: ð58Þ

We use t−dec here to indicate the time infinitesimally before
decay.
The dominance of the scattering rate over other scales in

the problem allows us to make some simplifications of the
evolution equations that are useful here. In this limit we can
ignore the Hubble rate as well as annihilation and the
equations governing B and B̄ in (47) can be integrated. This
results in the evolution equation for the difference between
baryon and antibaryon densities, Eq. (48), becoming�
d
dt

þ 3H

�
ðnB − nB̄Þ ¼

Γχ3ρχ3
mχ3

×
2ImðM�

12Γ12ÞBrχ3→B

ΓBðΓB þ 2Γ−Þ þ 4jM12j2

≃ Γχ3ρχ3
mχ3

ΓB

2Γ−
ϵ; ð59Þ

which is valid for the cases we consider with
jM12j ≪ ΓB ≪ Γ−. We have defined

ϵ≡ 2ImðM�
12Γ12Þ

Γ2
B

Brχ3→B ≃ ABBrχ3→B; ð60Þ

with AB from Eq. (22).
Using ϵ, we can then relate the baryon asymmetry to the

χ3 number density at decay,
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ηB ¼ nB − nB̄
sðtþdecÞ

¼ nχ3ðt−decÞ
sðt−decÞ

�
Tðt−decÞ
TðtþdecÞ

�
3 ΓB

2Γ−
ϵ

¼ 3

4

Tðt−decÞ
mχ3

ξ

�
Tðt−decÞ
TðtþdecÞ

�
3 ΓB

2Γ−
ϵ: ð61Þ

Here, tþdec is the time just after decay. The ratio of the
temperatures just before and after decay is determined by
ρradðtþdecÞ ¼ ð1þ ξÞρradðt−decÞ so that

Tðt−decÞ
TðtþdecÞ

¼ ð1þ ξÞ−1=4 ≃ ξ−1=4; ð62Þ

and

ηB ≃ 3

4

ξ1=4Tðt−decÞ
mχ3

ΓB

2Γ−
ϵ: ð63Þ

The temperature just before decay can be arrived at by
evolving the radiation energy density, resulting in

ηB ≃ 3

8

ffiffiffi
3

π

r �
5

2πg�ðTdecÞ
�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MPlΓχ3

p
mχ3

ΓB

2Γ−
ϵ: ð64Þ

Using the expression for the scattering rate in Eq. (52)
evaluated at TðtþdecÞ,

ηB ≃ π3

3ζð3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πg�ðTdecÞ

10

r
ΓBϵ

σscmχ3Γχ3MPl

≈ 9 × 10−11
�
g�ðTdecÞ

50

�
1=2

�
mB

5 GeV

�
2
�

ΓB

10−13 GeV

�

×

�
8 GeV
mχ3

��
10−22 GeV

Γχ3

��
ϵ

10−5

�
: ð65Þ

Therefore we see that a baryon asymmetry of the required
size is possible for a heavy baryon system with ϵ ∼ 10−5,
which requires jM12j=ΓB ∼ 10−2 with jM12j=jΓ12j not small.

B. Full solution of the Boltzmann equations

To get a more precise estimate of the baryon asymmetry,
we numerically solve the system in Eqs. (39), (40), and
(47). As mentioned above, we need jM12j=ΓB to not be
much smaller than around 10−2. Looking at Table I, one
potential candidate is the Ω0

cb where the dominant coupling
involves the operator ðdcbÞ2. In Fig. 5 we show the
value of ηB as a function of temperature in the case of
the asymmetry being sourced by the Ω0

cb − Ω̄0
cb system,

taking mB ¼ 7 GeV, ΓB ¼ 3 × 10−12 GeV [38], jM12j¼
3×10−15GeV, jΓ12=M12j ¼ 0.3, argðM�

12Γ12Þ ¼ π=2,
mχ3¼7.5GeV, Γχ3 ¼ 3×10−23 GeV, and Brχ3→B ¼ 0.35.
We have used an annihilation cross section of 400 mb (the
results do not depend on whether it is flavor blind or flavor
sensitive) and the scattering rate given in Eq. (52).

In addition, the temperature dependence of the scattering
and annihilation rates is compared to the expansion rate of
the Universe as well as to the rates governing the baryon-
antibaryon system in Fig. 6. As mentioned before, the
(decohering) scattering is the dominant process above
temperatures of about 1 MeV and, in particular, is always
much larger than the annihilation rate.
At high temperatures, the heavy baryon density tracks its

equilibrium value and it begins to deviate from its equilib-
rium value when χ3’s begin to decay. Although not directly
evident from the plots (except through the change in the
temperature vs time), the out-of-equilibrium χ3 particles
actually come to dominate the energy density of theUniverse
prior to their decay. After the χ3 decays, which we assume
happens in less than ∼0.1s, the Universe undergoes a
transition from being matter dominated to radiation domi-
nated, reheating to a temperature above a few MeV.
We have numerically confirmed the rough accuracy of

the sudden decay approximation prediction for ηB over
much of the parameter space. Maximal CP violation, and
thus more baryon asymmetry per oscillation, occurs for
arg ðM�

12Γ12Þ ¼ π=2 and larger values of jM12j and jΓ12j. A
larger branching ratio, Brχ3→B, would produce more oscil-
lating baryons per Majorana decay. The value of ηB that is

FIG. 5. ηB ¼ ðnB − nB̄Þ=s (solid, black) as a function of the
temperature or time from a numerical solution of Eqs. (39), (40),
and (47) for parameters relevant to the Ω0

cb − Ω̄0
cb system:

mB ¼ 7 GeV, ΓB ¼ 3 × 10−12 GeV, jM12j ¼ 3 × 10−15 GeV,
jΓ12=M12j ¼ 0.3, argðM�

12Γ12Þ ¼ π=2, mχ3 ¼ 7.5 GeV,
Γχ3 ¼ 3 × 10−23 GeV, and Brχ3→B ¼ 0.35. We have taken the
rate for heavy baryon scattering on the plasma from Eq. (52) and
the annihilation cross section to be 400 mb. This can be compared
against the value of ηB (solid, gray) from a solution of Eqs. (39),
(40), and (59) as well as using the sudden decay approximation
(dashed, gray) in Eq. (65). Also shown are the ratio of the number
density of χ3 to the entropy density (multiplied by 10−4, solid,
orange) and the ratio of theB plus B̄ number densities to the entropy
density (solid, purple). The dashed purple line shows the equilib-
rium B and B̄ density (in units of the entropy density). The
measured value of ηB ¼ 8.8 × 10−11 is given by the solid red line.
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generated is maximized if χ3 decays when the Universe’s
temperature is about 10 MeV, i.e. τχ3 ¼ 1=Γχ3 ∼ 10−2s. If it
decays earlier than this, heavy baryon scattering on the
plasma leads to decoherence, suppressing the asymmetry. If
if decays later, the Universe does not have a sufficient
baryon asymmetry at the time the neutrinos begin to
decouple, when the Universe is around 3 MeV.
Given the constraints on the transition amplitudes in

Table I, the most promising baryon that could allow for a
large enough transition amplitude to source the BAU is the
as-yet-unobserved Ω0

cb. A relatively large value for jM12j is
needed in this case, not far from the collider limit, unless
Brχ3→Ω0

cb
were rather large. It should be noted that the

collider limits discussed in Sec. V which appear in Table I
depend on the specific model that we considered. It is
conceivable that the model could be extended in a way that
makes the standard collider searches that we considered
less constraining. For example, one could imagine making
the ϕ decay to a large number of relatively soft jets by
coupling to a heavy vectorlike quark and a singlet which
decay to a large number of colored objects. Relaxing these
limits could allow for other heavy-flavor baryons to source
the BAU, potentially even observed baryons like the Ω0

c,
Λ0
b, and Ξ0

b. On the other hand, since they involve low-
energy effective operators, the dinucleon decay constraints
are less model dependent. Weakening them would require
significant tuning of tree-level operators against those
induced by weak interactions.

VIII. SUMMARY AND OUTLOOK

We have presented a model for producing the observed
baryon asymmetry of the Universe which avoids high

reheat temperatures. The asymmetry is generated through
CP- and B-violating oscillations of baryons occurring late
in the hadronization era. Our model minimally introduces
three neutral Majorana fermions and a single colored scalar,
and could potentially be embedded into RPV SUSY.
The Ωcb ∼ ðscbÞ baryon emerges as our most promising

candidate when constraints due to collider data and
dinucleon decay are taken into account. Note that the
constraints from colliders are more model dependent than
those from the absence of dinucleon decay. Considering
only the constraints from dinucleon decay, additional
baryons, e.g., Ω0

c ∼ ðsscÞ, Λ0
b ∼ ðudbÞ, and Ξ0

b ∼ ðusbÞ,
become viable candidates for baryogenesis via their oscil-
lation. An interesting avenue for future work would be
constructing models that are less constrained by collider
experiments while preserving a large baryon oscillation rate.
Interesting signatures of this scenario could be present in

the large data set of the upcoming Belle II experiment. If
the lightest Majorana fermion is sufficiently light, one
possible signature would be decays of heavy-flavor hadrons
that violate baryon number and involve missing energy.
Additionally there could be heavy-flavor baryons that
oscillate into their antiparticles at potentially measurable
rates. Exploring the experimental prospects of this model at
high luminosity, lower energy colliders in more detail will
be left for future work.
Constraints from the LHC and the lack of dinucleon decay

observation are quite important, suggesting the possibility of
thedetectionofasignal inoneorbothareas.Dinucleondecays
are a more model independent consequence of this scenario,
and because of the requirement of baryon-number violation
involving heavy flavors, it is likely that dinucleon decays to
kaonswould be dominant. In the case of theLHC, a particular
combination of signals in dijet resonances (singly and pair
produced) along with an excess in jets plus missing energy
should be expected. We should mention in this case that a
long-lived neutral particle, χ1, that decays hadronically is a
genericpredictionof thismodel.The typicalχ1 decay length is
in the range of 102–7 m, which could be well probed by the
MATHUSLAdetector that was recently proposed. The signal
of a long-lived but unstable particle at this experiment could
helpdisentangle this scenario fromothers that lead to excesses
in jets plus missing energy.
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FIG. 6. The temperature dependence of the rates involved in the
numerical solution of Eqs. (39), (40), and (47). The parameters
are the same as in Fig. 5. In orange, from top to bottom are the
scattering, annihilation, and Hubble rates. The purple lines
indicate the rates relevant to the B-B̄ system itself, ΓB, jM12j,
and jΓ12j, from top to bottom, respectively.
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