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We analyze possible effects of the dark matter environment on the atomic clock stability measurements.
The dark matter is assumed to exist in the form of waves of ultralight scalar fields or in the form of
topological defects (monopoles and strings). We identify dark matter signal signatures in clock Allan
deviation plots that can be used to constrain the dark matter coupling to the Standard Model fields. The
existing data on the Alþ=Hgþ clock comparison are used to put new limits on the dilaton dark matter in the
region of masses mϕ > 10−15 eV. We also estimate the sensitivities of future atomic clock experiments in
space, including the cesium microwave and strontium optical clocks aboard the International Space Station,
as well as a potential nuclear clock. These experiments are expected to put new limits on the topological
dark matter in the range of masses 10−10 eV < mϕ < 10−6 eV.
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I. INTRODUCTION

Despite an overwhelming amount of cosmological and
astrophysical data suggesting the existence of dark matter
(DM), there is no confirmed direct detection of DM
particles or fields to date; see Ref. [1] for review. One
of the main obstacles for the direct detection is an enormous
space of allowed parameters describing fundamental prop-
erties of DM. The mass of the DM field is allowed to span a
vast range of values: from the inverse sizes of dwarf
galaxies (10−24 eV, see, e.g., Ref. [2]) all the way to the
Planck mass (1028 eV) and, in certain circumstances,
beyond. The average DM energy density at one solar
distance from the center of our Galaxy is ρDM ≈
0.4 GeV=cm3 [1], while the energy density in the Solar
System itself is much less constrained: ρDM <
105 GeV=cm3 [3]. For the Milky Way, it is assumed that
the DM objects form a nonrotating isothermal spherical
halo and obey Maxwell distribution over velocities. For the
observer in the Solar System, the typical velocities of these
objects are believed to be vg ∼ 270 km=s or vg ∼ 10−3 in
natural units [4], with dispersion δv ≈ vg. However, since
the details of the DM distribution within the Solar System
are not known, this figure can be different, e.g., comparable
to the planetary velocities.
Since the local density of DM is small and, hence, the

gravitational effects are too weak to be detected directly,
the current methods rely on hypothetic interactions beyond
the Standard Model (SM) with coupling constants that can
vary by many orders of magnitude and still be consistent
with the astrophysical, cosmological, and gravitational
tests. It is constructive to split the aforementioned mass
range into two categories: sub-eV and the rest. The latter is

usually tested with high-energy and scattering experiments
[1], where typical tested masses of DM particles, the so-
called weakly interacting massive particles (WIMPs), are
above 1 GeV. The sub-eV DM, however, due to the large
Compton (or de Broglie) wavelength together with given
density, is considered as a classical field. Hypothetical
interaction of this field with ordinary matter can lead to
variationof fundamental constants and, hence, frequencies of
atomic or nuclear transitions, sizes of atoms, etc. Recently,
there has been great interest in the direct detection of such
light DM; see Ref. [5] for a review and Ref. [6] for a brief
history of ultralight scalar DM models.
In this paper, we consider the DM in the form of a scalar

field. Such choice is motivated partially by the possibility
of testing scalar field theories with atomic clocks and
partially by the abundance of new light scalar fields
predicted by nearly every theory beyond the SM (this is
due to the fact that such theories normally undergo a
spontaneous symmetry breaking at low energies, which
produces massless or nearly massless bosons).
While there have been several studies dedicated to the

DM tests with atomic clocks, all of them rely on frequency
domain analysis or transient behaviors and, hence, can only
probe DM masses smaller than the inverse sampling/
interrogation time. We propose a new approach of the
time domain analysis of atomic clock stability that is
ubiquitously used to characterize the clock performances.
An advantage of this approach will be shown to allow us to
probe much larger DM field masses (i.e., much faster
processes) due to the aliasing of high-frequency perturba-
tions, analogous to the Dick effect [7]. As an example of
such fast disturbances, we study short-wavelength DM
waves and DM topological defects interacting with the
clocks. We will also study the sensitivity of the method to
the slow processes and compare with existing limits.*tigran.kalaydzhyan@jpl.nasa.gov
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The paper is organized in the following way. We begin
with a description of the coupling between DM and
ordinary matter, classified by an integer n, and the effect
of this coupling on the atomic clock frequency. We then
derive DM signatures in Allan variance plots for various
DM objects and interactions. Both existing clock compar-
isons data and future clock experiments are analyzed and
discussed. We mostly focus on the cases n ¼ 1 and n ¼ 2,
briefly discussing the case of general n when possible.

II. ATOMIC CLOCK RESPONSE

We describe the DM by a scalar or pseudoscalar field ϕ
with mass mϕ. We begin by writing down the action (we
use the natural units ℏ ¼ c ¼ 1 here and after),

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
þ 1

2
gμν∂μϕ∂νϕ − VðϕÞ

þ LSM þ LðnÞ
int

�
; ð1Þ

where G is the Newton’s constant, R is the Ricci scalar for
the spacetime metric gμν, g≡ det gμν, VðϕÞ ¼ 1

2
m2

ϕϕ
2 þ � � �

is the scalar field potential, LSM is the SM Lagrangian, and

LðnÞ
int is the interaction Lagrangian, describing the coupling

of the ϕ field to the usual matter, which we choose in the
standard form of a sum over gauge-invariant operators of
SM fields coupled to the powers of ϕ (see, e.g., Refs. [8,9]
for particular cases)

LðnÞ
int ¼ ð�1Þnþ1ϕn

�
1

4e2Λn
γ;n

FμνFμν −
βYM

2gYMΛn
g;n

×GμνGμν−
X

f¼e;u;d

�
1

Λn
f;n

þ γmf

Λn
g;n

�
mfψ̄fψf

�
; ð2Þ

where Fμν is the standard Maxwell tensor, Gμν is the
gluonic field strength tensor, βYM is the beta function for
the running of the SU(3) gauge coupling gYM, γmf

is the
anomalous dimension of the mass operator ψ̄fψf for the
SM fermions ψf (for our energy scales, we are considering
the electron, u, and d quarks only; see also comments in
Ref. [8]). We make the� sign disappear for odd n, because
it can be absorbed in the definition of ϕ otherwise.
Parameters Λa;n are unknowns of dimension of mass
describing the strength of the coupling between the scalar
field ϕ and SM fields. If Eq. (2) is considered as an effective
Lagrangian, then Λa;n describe energy scales for the
physics beyond the SM. Parameter n is an integer and
Λn
a;n means Λa;n raised to power n. The case n ¼ 1 is

usually considered in the dilaton DM studies [8,10,11],
while n ¼ 2 is usually considered for the axion or topo-
logical DM [9,12]. The latter case is suitable for both scalar
and pseudoscalar fields, since the field contributes in a

parity-even combination ϕ2. It is also worth mentioning
that the values of the scales Λa;n become less constrained
with the growth of n, since they contribute in the power n
and the interaction terms become more suppressed.
The Lagrangian (2) is chosen in the most general form

that preserves gauge symmetry and contains a minimal
number of new parameters [13]. For other possible DM
candidates and couplings (so-called “portals”), as well as
for a general theoretical review, see Ref. [5]. In particular,
the linear Higgs coupling ghϕH†H, where H is the Higgs
doublet, will lead to Λf;1 ¼ m2

h=gh, Λγ;1 ¼ 8πm2
h=ðαghÞ

[14], Λg;1 ¼ 9m2
h=ð2ghÞ [5], where mh ¼ 125 GeV is the

Higgs mass and α is the fine structure constant. The
quadratic coupling g0hϕ

2H†H has a structure of the mass
term for ϕ and will renormalize the mass mϕ to the values
proportional to the ultraviolet cutoff, so g0h is required to be
(untestably) small in this case [14].
Coupling of ϕ to SM fields, Eq. (2), induces changes in

the values of various fundamental constants, such as [8]

δα

α
¼ ð�1Þnþ1

�
ϕ

Λγ;n

�
n
;

δmf

mf
¼ ð�1Þnþ1

�
ϕ

Λf;n

�
n
;

δΛQCD

ΛQCD
¼ ð�1Þnþ1

�
ϕ

Λg;n

�
n
; ð3Þ

where α is the fine-structure constant and ΛQCD is the QCD
scale. It is known that an atomic clock response to the
variations of the constants can be expressed as [15]

ν ¼ const · R∞ · αKα

�
mq

ΛQCD

�
KqΛ

�
me

ΛQCD

�
KeΛ

; ð4Þ

where ν is the clock frequency, R∞ is the Rydberg constant
(or any other atomic energy/frequency unit), mq ¼ ðmu þ
mdÞ=2 and exponents Ka are either known or can be
expressed through other analogous constants for existing
atomic clocks; see Refs. [10,15–17] and references therein
[18]. For the microwave clocks, all three exponents
contribute due to the dependence of the hyperfine structure
constant on the proton and electron masses, in particular,
KeΛ ¼ 1. For the most common frequency standard, 133Cs,
Kα ¼ 2.83,KqΛ ¼ 0.07. For optical clocks,KqΛ ¼KeΛ ¼ 0

andKα ≠ 0; see Table I for the values of Kα. By varying (4)
and using (3), we obtain

δν

ν
¼ ð�1Þnþ1ϕn

�
Kα

Λn
γ;n

þ KqΛ

Λn
q;n

−
KqΛ þ KeΛ

Λn
g;n

�
; ð5Þ

where, for the simplicity of the notation,

Λn
q;n ≡ Λn

u;nΛn
d;nðmu þmdÞ

muΛn
d;n þmdΛn

u;n
: ð6Þ
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Currently, there exist a number of limits on the inter-
action parameters. Limits on ðmϕ;Λa;1Þ are given in, e.g.,
Refs. [11,26,27] based on various scalar field distributions.
To interpret some of the figures existing in the literature,
one should take into account the following difference in
notations: da ¼ MPffiffiffiffi

4π
p

Λa;1
, whereMP ¼ 1.2 × 1019 GeV is the

Planck mass. For the ðmϕ;Λa;2Þ exclusion diagrams; see
Ref. [9,28]. For the sake of simplicity, we mostly focus on
Λγ;n in this article, and reproduce the relevant limits in
Figs. 1 and 2. These limits are based on the clock
comparison experiments, as well as on the studies of the
big bang nucleosynthesis (BBN) and cosmic microwave
background (CMB).
It should be emphasized that the exclusion regions

should be compared with a caution—different assumptions
on the spatial distribution of DM can lead to different
sensitivities, while having the same local average energy
density. Here we briefly list some types of DM distribution
that can be measured with atomic clocks.
(a) Dark matter waves usually appear as solutions to the

linearized field equations and can be studied with the use of
colocated clocks of different type (direct frequency com-
parison [10,11,29]), as well as spatially separated clocks
(e.g., via a two-point correlation function [30]). For
colocated clocks one exploits different atom transitions
(with different Ka) so there is a nonvanishing difference in

the fractional frequency change between two clocks. Such
difference, if induced by DM, will be periodic in time. The
wave vector k ¼ mϕvg ¼ 10−3mϕ is small enough to neglect
the spatial variation of the field on the scale of experiment.
The range of masses is usually bounded from above by the
inverse atomic clock loop time, at which the clocks are
referenced to the atomic transition, usually, τloop ∼ 1 s for
high-performance clocks, so mϕ < 2π=τloop ∼ 10−14 eV.
One can circumvent this limit by comparing a high short-
term stability atomic oscillator (such as Ca clock [31]) to a
mechanical oscillator (e.g., a stabilized Fabry-Pérot cavity).
Resonant frequencies of the mechanical oscillators also
depend on the presence of DM, since the atomic unit of
length, aBohr ¼ ℏðαmecÞ−1, and, therefore, sizes of atoms
and solid bodies vary together with the fundamental con-
stants [27,28]. One can also study modification of the
gravitational potential by the DM waves [32,33], however,
this type of measurement belongs to the domain of the
gravitational wave studies and is beyond our scope.
(b) Clumps of dark matter, in particular, topological

defects (zero-dimensional monopoles, one-dimensional
strings, two-dimensional domain walls) that can result
from, e.g., phase transitions in the early universe.
Usually, such objects are classical solutions of the field
equations with the space of vacua (minima of potential
energy density) characterized by a nontrivial homotopy

TABLE I. Examples of exponents of the fine-structure dependence (4) and short-term stabilities σ0 for the clocks mentioned in this
article. See more in Refs. [10,16,19–25].

Species 133Cs 199Hgþ 199Hg 27Alþ 87Sr 171Yb 162Dy 164Dy 229Th

States hyperfine 5d96s2 2D5
2

6s6p 3P0 3s3p 3P0 5s5p 3P0 6s2 1S0 4f95d26s 4f105d6s nuclear

hyperfine 5d106s 2S1
2

6s2 1S0 3s2 1S0 5s2 1S0 6s6p 3P0 4f105d6s 4f95d26s nuclear

Kα 2.83 −3.19 0.81 0.008 0.06 0.32 8.5 × 106 −2.6 × 106 104ð?Þ
σ0ð10−16 Hz−1=2Þ 103 28 1.8 28 3.1 0.6 4 × 107 1 × 108 10ð?Þ

FIG. 1. Existing exclusion regions and projected sensitivities in the case of linear coupling, n ¼ 1. (a) Limits for the DM waves. Solid
lines correspond to the existing limits [11,29] (the black line was obtained in this paper), dashed lines correspond to the sensitivities of
future and potential experiments; (b) Limits for the topological (monopole/string) DM. It is assumed that Λg;1;Λq;1 → ∞ for the
microwave clocks.
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group (e.g., for a string, π1ðS1Þ ¼ Z). Field ϕ itself can be a
real or complex field, or a field multiplet; see Ref. [34] for
examples. Such defects moving with galactic velocities can
be studied by a transcontinental (or space) network of
atomic clocks [12,35]. It is proposed to track consecutive
intermittent phase changes for atomic clocks separated by a
large distance, while the DM clump moves through the
network. Such approach has an advantage of measuring the
time the DM objects sweep through the network, instead
of comparing spikelike frequency changes in the frequen-
cies of colocated clocks. The sensitivity for a system of
two identical optical clocks experiencing a consecutive
interaction with a DM object can be estimated by
(SNR ¼ 1) [12]

Λγ;2 >
dl1=4ðρDMT̄eKαÞ1=2
ð2vgÞ1=4τ3=4σ1=2y ðτÞ

∝
l1=4K1=2

α

τ3=4σyðτÞ1=2
; ð7Þ

where d ∼ ℏ=ðmϕcÞ is the size of the topological defect, l is
the distance between clocks, τ is the period of comparison
measurements, σyðτÞ is the Allan deviation T̄e is an average
time interval between close encounters with the DM
objects. As an example, the sensitivity curve for a system
of two 87Sr clocks, placed on different continents with
T̄e ¼ 1 yr [12], will be right on the upper edge of the BBN
exclusion region. In the rhs of Eq. (7), we also factored out
the parameters that can be controlled in an experiment. It
immediately brings us to the conclusion that high Kα, large
distance between clocks and better clock stability lead to
better sensitivities and higher limits on the scale Λγ;2. For
instance, transition from Sr to Dy with increase in Kα by 8
orders of magnitude does not lead to a significant improve-
ment of the sensitivity due to the current poor short-term
stability of Dy clocks; see Table I. However, with the
improvement of technology and, hence, the stability in the

future, the use of Dy would be highly beneficial. In this
paper we propose an alternative method for spatially
separated clocks that is independent of distance.
(c) One can study caustics of DM created by the micro-

lensing (or focusing) of DM streams by massive bodies [36].
Such focusing can amplify the DM energy density by many
orders of magnitude. For Earth it will be a factor of 107 with
the beginning (“root”) of the caustic being located around
106 km from Earth. The thickness of the caustic depends on
the velocity dispersion for the DM momentum distribution.
If the Solar System has its own halo of DM, the root might be
much closer to the Earth center (the distance to the root is
proportional to the square of DM stream velocity). An
atomic clock sent to such caustic could experience sudden
change in frequency by many orders of magnitude, compar-
ing to the noncaustic measurement. However, uncertainty in
the position of the root (due to the uncertainty in the local
DM velocity and direction of motion) makes such mission
not very optimistic.
(d) Static distribution around celestial bodies. One can

study this case with fifth-force type experiments and search
for periodic changes in the frequencies of atomic clocks
due to the change in the distance between the clocks and the
source of DM; see, e.g., Ref. [26]. One of the examples
would be ground-based searches for seasonal variations of
the frequencies due to the changes in the distance between
Earth and Sun.
(e) Finally, one can consider a stochastic background of

DM waves and measure it by means of a network of
precision measurement tools. The first method (monochro-
matic DM wave detection) assumed the entire energy
density of DM being carried by a monochromatic wave
with a frequency fixed at mϕ=2π. However, if the total
energy density is distributed over a range of frequencies,
then the limits presented in Fig. 1(a) will be significantly
reduced. Therefore, it makes sense to put limits not only on

FIG. 2. Existing exclusion regions and projected sensitivities in the case of quadratic coupling, n ¼ 2. (a) Limits for the DM waves.
Solid lines correspond to the existing limits (the black line was obtained in this paper, the other lines correspond to the Cs/Rb, Dy, CMB
and BBN limits; see Refs. [9,11]), dashed lines correspond to the sensitivities of future and potential experiments; (b) Limits for the
topological (monopole/string) DM with T̄e ¼ 1 yr. The green region is reproduced from Ref. [28]. It is assumed that Λg;2;Λq;2 → ∞ for
the microwave clocks.
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the DM couplings, but also on the spectrum of DM
excitations [37].

III. ANOMALIES IN THE ALLAN
DEVIATION DATA

From previous discussions, it is clear there are various
kinds of DM field configuration and various atomic
responses. A specific design of experiments and data
analysis can be tailored for optimization, either in the time
domain or in the frequency domain. In this section, we
analyze the possible DM signatures in Allan variance plots.
In some cases where the DM signatures are of high
frequency, the stability analysis proves to be a more robust
detection scheme. Results of this section can be applied to
any new scalar field, not just scalar DM.
The experiments are performed by phase and frequency

comparisons between two clocks. In the case of DMwaves,
one of the clocks is assumed to have a much smaller Ka
than the other (for simplicity; otherwise one has to consider
the difference between the two Ka). In the case of
topological defects, such “reference” clock can have any
Ka, but the separation between the two clocks should be
much larger than the DM inhomogeneity scale 1=mϕ, so the
defect does not interact with the two clocks at the same
time. If the experiment is performed in space, we do not
consider noises related to the signal transfer due to the
refractive index fluctuations (in the ionosphere, troposphere
and interplanetary medium)—we expect our results to be of
qualitative rather than quantitative nature. The clock
comparison measurement is performed in several sessions,
and data from each session are used to produce the stability
diagram. This approach is useful if the experiment has long
dead times, such as the frequency comparison between
ground-based clocks and clocks on low Earth orbit.
The fractional frequency deviation between two clocks is

given by yðtÞ ¼ dxðtÞ=dt, where xðtÞ is the relative time

deviation between two clocks’ readings, xðtÞ ¼ φ1ðtÞ
2πν1

− φ2ðtÞ
2πν2

and φiðtÞ and νi being the phase and the frequency of the
clocks, respectively. The average fractional frequency
deviation is a function of time,

ȳðtÞ ¼ 1

τ

Z
t

t−τ
yðt0Þdt0; ð8Þ

and defines the Allan variance [38], σ2yðτÞ,

σ2yðτÞ ¼
1

2
lim
T→∞

1

T

Z
T

0

½ȳðtþ τÞ − ȳðtÞ�2dt; ð9Þ

where τ is the averaging time and T is the measurement
time. Square root of the Allan variance is usually called
Allan deviation. For the general properties of the Allan
deviation, see Ref. [39]. In what follows, for practical
reasons, we replace the limit by the condition T ¼ pτ ≫ τ,

p ∈ N and consider the Allan variance as a function of
time, at which it was calculated,

σ2yðt; τÞ ¼
1

2T

Z
tþT

t
½ȳðt0 þ τÞ − ȳðt0Þ�2dt0; ð10Þ

which is similar, in some sense, to the dynamic Allan
variance [40]. Large value of p (and, hence, T ≫ τ) is
needed for σyðτÞ to have a small statistical error. Periodic
variation in one of the clock’s readings leads to yðtÞ ¼
A cosð2πftþ φ0Þ and the average fractional frequency
deviation

ȳðtÞ ¼ A
πfτ

sinðπfτÞ cosðπfð2t − τÞ þ φ0Þ: ð11Þ

Substituting this to Eq. (10) and applying trigonometric
identities, we get

σ2yðt; τÞ ¼
2A2sin4ðπfτÞ

ðπfτÞ2 ·
1

T

Z
tþT

t
sin2ð2πft0 þ φ0Þdt0:

ð12Þ
In the following sections, we consider separately three

situations defined by the hierarchy of three time scales: the
continuous measurement time T for each comparison
session, the averaging time τ, and the DM interaction
timescale 1=mϕ. It is assumed that the clock is DM-
sensitive only when referenced to an atomic transition
frequency. Furthermore, we require τ ∈ ½τloop; τmax�, with
τmax ≪ T, as sufficient Allan variance statistics is needed to
extract meaningful measurement data.

A. Case τloop < 1=mϕ < τmax

In this section, we assume that the DM exists in the form
of waves with frequency f ¼ mϕ=ð2πÞ and wave number
k ¼ vgmϕ ≈ 10−3mϕ. Since one of the clocks is insensitive
to DM, the spatial profile of the wave, and hence k, play no
role, and we neglect it in the derivation. The power
spectrum density for the field can be written as SϕðfÞ ¼
S0ϕδðf −mϕ=ð2πÞÞ. Here S0ϕ can be estimated from the DM
average energy density ρDM ≈ ð0.04 eVÞ4,

ρDM ∼m2
ϕhϕ2i ¼ m2

ϕ

Z
∞

0

SϕðfÞdf ¼ m2
ϕS

0
ϕ; ð13Þ

so SϕðfÞ ¼ ρDM
m2

ϕ
δðf −mϕ=ð2πÞÞ. In order to find a DM-

induced Allan variance, we can apply Eq. (12) with A2 ¼
κ2ð1ÞS

0
ϕ and the integral being reduced to T=2 in this limit,

σ2yðt; τÞ ¼ σ2yðτÞ ¼ κ2ð1Þ
ρDM
m2

ϕ

sin4ðmϕτ=2Þ
ðmϕτ=2Þ2

: ð14Þ

This expression has an immediate consequence—if the
clock was sensitive to the scalar DM, it would have a
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primary bump at τ ≈ 2.3=mϕ in the σ − τ stability diagram.
When this additional clock instability is added to the
typical well-behaved atomic clock stability of 1=

ffiffiffi
τ

p
, we

get the stability curve as shown in Fig. 3(a). Since such a
feature was not observed, we can put limits on the DM
coupling from short-term Allan deviation σyðτÞ ¼ σ0=

ffiffiffi
τ

p
for existing clocks; see Table I for examples of σ0. We will
require that the DM-induced deviation is smaller than the
deviation observed for a given clock [41]; see Fig. 4(a).
Such requirement is justified by the fact that our goal is
to put upper limits on the DM-couplings rather than to
claim DM detection. The latter would require a proper
statistical inference and hypothesis testing, as well as a
detailed discussion of possible systematics specific to the
space atomic clocks that can mimic the DM signal. Such
discussion is out of the scope of this paper; however, we
want to mention that GPS clocks experience such periodic
variations that differ from their orbital period [42].
Considering optical clocks (or microwave clocks with

Λq;1;Λg;1 → ∞), we substitute κð1Þ ¼ Kα=Λγ;1 and obtain

Λγ;1 >
2jKαjρ1=2DM

σ0m2
ϕ

·
sin2ðmϕτ=2Þ

τ1=2
: ð15Þ

To get the limits, we choose τ ≈ 2.8=mϕ that maximizes
the right-hand side of the expression (notice slight differ-
ence from 2.3=mϕ for the position of the bump). After
substituting the numbers and performing conversion of
units [43] we finally obtain

Λγ;1 > 10−10jKαj
�
1 Hz−1=2

σ0

�
·

�
1 eV
mϕ

�
3=2

; ð16Þ

where mϕ should be chosen such that 2.8=mϕ belongs to
the allowed range of averaging times for the given clock.
To demonstrate an application of the method, we choose

the 199Hg clock [20,21] with Kα ¼ 0.81 [16] and σ0 ¼
4 × 10−15 Hz−1=2when compared to 87Sr clock (Kα ¼ 0.06).
Applying Eq. (16) atmϕ¼ 6×10−18 eV (i.e., τ¼ 2×103 s),
we obtain Λγ;1 > 1030 eV, which agrees with the current
limit obtained from Dy spectroscopy; see Ref. [29] (for
smaller masses, one has to compare with Ref. [11]). It can be
further improved by comparing 27Alþ (Kα ¼ 0.008) ion
clock with 199Hgþ (Kα ¼ −3.19) clock at the National
Institute of Standards and Technology; see Ref. [22] for
the description of the experiment and the data. Taking
σ0 ¼ 3.9 × 10−15 Hz−1=2, we obtain Λγ;1 > 6 × 1030 eV

FIG. 3. Anomalies in the Allan deviation curve (so-called, σ − τ diagram): (a) Bumps due to the periodic frequency variation
(modulating frequency, f, comparable to the inverse averaging time, f ∈ ½1=τmax; 1=τloop�); (b) Deviation from the expected slope (a
train) at short averaging times—f ≫ 1=τloop; (c) Shift of the curve up due to an additional white noise or a single phase jump;
(d) Additional linear (or quadratic) deviation changing periodically in time due to slow frequency variation (characteristic time much
larger than a single comparison measurement time).
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for the same mass, which can be translated to de < 6 × 10−4

in notations of Ref. [29], which is comparable to their limit.
In the region of larger masses (up to 10−14 eV), however,
one can establish new limits from the same clocks; see
Fig. 1(a). This combination of two clocks turns out to be ideal
for the DM studies due to the precision and almost three
orders of magnitude difference in Kα. Our method is valid
not only for a single monochromatic and coherent wave but
also for an isotropic background of waves of the same
frequency. The isotropic property is necessary for SϕðfÞ
being independent of k̂.
The ideal case scenario, as seen fromEq. (16), corresponds

to a combination of large Kα with a high stability, i.e., small
σ0. Among future candidates is a nuclear 229Th clock [25]
based on an exceptionally low excited state of the thorium
nucleus (comparing to the typical nuclear energy scales).
WithKα ∼ 104 [24] and σ0 ∼ 10−15 Hz−1=2 it can surpass the
sensitivity of a strontium optical clock by 5 orders of
magnitude. Even though such clock is under development
at the time this paper was written, we include corresponding
projected sensitivities to our plots.
In case of a single coherent monochromatic wave, one

can also produce limits for the quadratic coupling, n ¼ 2.
Assume the scalar field at the given point is given by

ϕðtÞ ¼ Φ cosðmϕtþ φ0Þ; ð17Þ

then one can exploit the power reduction formula to write

yðtÞ ¼ κð2Þϕ2ðtÞ ¼ κð2Þ

�
Φ2

2
þΦ2

2
cosð2mϕtþ 2φ0Þ

�
:

ð18Þ

The first term in the bracket is an unobservable constant
shift and can be absorbed in the definition of the clock
frequency, while � sign in κð2Þ can be absorbed in φ0.
Noting that ρDM ¼ m2

ϕhϕ2i ¼ m2
ϕΦ2=2, we get

A ¼ jκð2ÞjρDM
m2

ϕ

; f ¼ mϕ=π: ð19Þ

This can be further substituted in Eq. (12) and yields

σyðτÞ ¼
jκð2ÞjρDMsin2ðmϕτÞ

m3
ϕτ

: ð20Þ

Assuming, for simplicity, the sensitivity of the clock to the
variations of α only, as well as σyðτÞ ∝ τ−1=2, we repeat the
previous analysis to get

Λγ;2 >
jKαj1=2ρ1=2DMj sinðmϕτÞj

σ1=20 m3=2
ϕ τ1=4

; ð21Þ

and, therefore (optimal τ ≈ 1.4=mϕ),

Λγ;2 > 3.7 × 10−7jKαj1=2
�
1 Hz−1=2

σ0

�
1=2

·

�
1 eV
mϕ

�
5=4

:

ð22Þ

We plot the sensitivity curves for 133Cs (future ACES
experiment [44], σ0 ¼ 10−13 Hz−1=2) and 87Sr optical
clocks (e.g., future SOC experiment [45], σ0 ¼
10−15 Hz−1=2) aboard the International Space Station
(ISS) together with exclusions in Fig. 2(a) (we also
translated n ¼ 1 limits from existing clock comparison
experiments to n ¼ 2 case). Whenever performing a
measurement with ISS atomic clocks, we use the data
collected during the ISS flyby only, which puts limitations
on the maximal available averaging times and, therefore,
minimal testable DMmass for this method. It was explicitly
assumed that one of the clocks is much less sensitive to DM
than the other. One can consider, instead, two identical
clocks separated by a distance D ¼ jD⃗j. In the case of DM
waves with n ¼ 1, this can be shown to be equivalent to

FIG. 4. (a) Functions σyðτÞ ∝ sin2ðmϕτ=2Þ=ðm2
ϕτ=2Þ scaled to fit under fðτÞ ¼ τ−1=2; (b) Same function for mϕ ¼ 100 in log-log-

scale (black) together with fðτÞ ¼ τ−1=2 (red).
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A ¼ 2κð1Þρ
1=2
DM

mϕ
· sin

�
mϕv⃗g · D⃗

2

�
; ð23Þ

f ¼ mϕ=ð2πÞ; φ0 ¼ mϕv⃗g · D⃗=2; ð24Þ

where we simply considered the difference in the fractional
frequency variation between two clocks. The limit D → 0
makes the system insensitive to DM, since the frequency
variation happens in phase for both clocks. The best
sensitivity is achieved when D⃗ ¼ πq

v2gmϕ
v⃗g, and q are odd

numbers, i.e., when the frequency variation happens in
opposite phase. This improves the sensitivity only by a
factor of 2 compared to the case with different clocks
considered above and, taken the uncertainty in v̂g, does not
seem to be practically advantageous.

B. Case 1=mϕ < τloop
The analysis from the previous section can be applied to

the DM fields with mass much larger than the inverse of the
clock loop time. In this case one should compare the Alan
deviation curve with one of the higher-order bumps of
function (14). While the accuracy of the method discussed
in the previous section increases with the growing maximal
averaging time, in the case of large mϕ, one should instead
look at the small averaging times, where the DM influence
on the clock will manifest itself in a train with maxima
placed on τ−1 line at small τ; see Figs. 3(b) and 4(b). The
absence of such effect gives us

Λγ;1 >
2jKαjρ1=2DM

σ0m2
ϕτ

1=2
loop

; Λγ;2 >
jKαj1=2ρ1=2DM

σ1=20 m3=2
ϕ τ1=4loop

: ð25Þ

One can show that this limit can be reproduced by fitting
secondary bumps under the σyðτÞ ¼ σ0=

ffiffiffi
τ

p
curve.

Projected sensitivities are demonstrated in Figs. 1(a)
and 2(a). We also plot the exclusion region for
Alþ=Hgþ clock comparison obtained from Eq. (25). To
our knowledge, this is the first direct limit on the DMwaves
with linear coupling in this region.
MaximumDMmass (wave frequency) that can be probed

with this method is defined by the coherence time for the
wave [46]. Sincewe consider a nonrelativistic massive scalar
wave with dispersion relation ω ¼ mϕ þ k2=ð2mϕÞ, the
coherence time τc is given by

τc ¼
2π

δω
¼ 2π

ωvgδv
≈
2π × 106

ω
; ð26Þ

i.e., the wave is coherent over approximately 106 oscillation
periods. For our purposes (e.g., clock comparison during the
ISS passage), τc > 300 s translates tomϕ < 10−10 eV,which
limits mϕ from above in Figs. 1(a) and 2(a). Additionally,
11000 s data for the Hgþ=Alþ clock comparison, Ref. [22],

limits the DM masses probed by the experiment to
mϕ < 2 × 10−12 eV.
One may ask how one can observe the atomic responses

to the DM fields at time scales shorter than the clock loop
time where the clock frequency is determined by the local
oscillator. This can be understood as high-frequency alias-
ing effect. Aliasing effect in atomic clock stabilities is well
analyzed by J. Dick [7]. Only in our analysis, a sinusoidal
disturbance is assumed. In fact, if one of the clocks is
subject to a fast oscillating magnetic field, a similar feature
will be seen in the instability plot. The coefficients Ka in
this regime can be slightly different due to the additional
local oscillator response to DM [28,35]. To draw precise
conclusions, the effect of the control loop should be
analyzed for the clocks in consideration [47]. Since we
are focusing mostly on the order of magnitude estimates,
such analysis will be performed elsewhere.
In the high-frequency regime, it also makes sense to

study compact DM objects of the typical size of 1=mϕ and
average scalar field ϕ̄ inside, which interact with one of the
clocks during time tint ∼ 1=ðmϕvgÞ ≈ 103=mϕ. Such objects
can be, for example, monopoles and strings [12]—stable
topological solitons [48]. We can choose tint ≪ τloop and
treat the effect of clock interaction with such object as a
phase jump or a spike in the clock frequency. Consider a
discretized version of the Allan variance (9),

σ2yðτÞ ¼
1

2ðp − 1Þ
Xp−1
i¼1

ðȳiþ1 − ȳiÞ2: ð27Þ

If the phase jumpΔφ occurs at i ¼ k, then ȳk ¼ Δφ=ð2πν1τÞ
and the DM-induced part of the Allan variance is

σ2yðτÞ ¼
1

2ðn − 1Þ ½ðȳkþ1 − ȳkÞ2 þ ðȳk − ȳk−1Þ2�

¼ Δφ2

τðT − τÞð2πν1Þ2
: ð28Þ

If the total Allan deviation is given by σyðτÞ ¼ σ0τ
−1=2

(typical case of short-term stability), then the DM contribu-
tion to σ20 is

ðΔσ0Þ2 ¼
Δφ2

ð2πν1Þ2T
: ð29Þ

As one can see, the effect of the phase jump is equivalent to
the white noise [39] that can be expected from the Fourier
image of the delta function andwas studied before in relation
to the atomic clocks [49]. Such effect would slightly shift the
position of the σ − τ curve, without changing its slope; see
Fig. 3(c). We suggest to measure the uncertainty in the
position of the curve by performing clock comparison in
many separate sessions, assuming that the interaction with a
DM object happens at least ones in the mission lifetime, but
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not more frequent than once per several measurement
sessions. While the phase jump by itself can be caused by
various factors (their nature is still not fully understood even
for GPS Rb clocks [50]) and one would need to study a
correlation in the responses of several clocks to make sure it
was triggered by DM, our method can be used to limit the
strength of the DM couplings. If the average time between
DM object interactions is T̄e, then one needs to conduct
N ¼ T̄e=T measurement sessions to experience the inter-
action. Assuming the standard deviation for σ0 fromN mea-
surement sessions is δσ0≪σ0, we get Δσ0<ð2Nσ0δσ0Þ1=2.
The value of the phase shift will be given by
Δφ ¼ 2πν1κðnÞϕ̄ntint, tint ∼ 1=ðvgmϕÞ, where n is defined
in Eq. (2) and κðnÞ is the response coefficient from Eq. (5),
such as δν=ν ¼ κðnÞϕn. The typical mass of DM object,
Mmon, and an average distance L̄ between them can be
estimated from geometric arguments,

Mmon ∼
m2

ϕϕ̄
2

2
·
1

m3
ϕ

∼ ρDML̄3; L̄3 ¼ T̄evg
m2

ϕ

ð30Þ

wherewe omit numerical factors tomake order ofmagnitude
estimates. This gives us the average value of the scalar field
inside the DM object, ϕ̄2 ¼ T̄evgρDM=mϕ, which can be
shown to be the same for topological defects of other
dimensionality [12]. This value can be further substituted
in Eq. (29) and leads to

κðnÞ <
σ1=20 δσ1=20 mn=2þ1

ϕ

T̄e
ðn−1Þ=2vn=2−1g ρn=2DM

: ð31Þ

In order to estimate the sensitivity of the method, let us
consider a case of linear coupling, n ¼ 1, and an optical
clock, κð1Þ ¼ Kα=Λγ;1 (this can be also a microwave clock
with all scales butΛγ;1 set to infinity).We can further assume
a reasonable case δσ0 < 0.1σ0 (or even more conservative
δσ0 ∼ σ0) to get the order of magnitude limit

Λγ;1 >
jKαjρ1=2DM

σ0v
1=2
g m3=2

ϕ

: ð32Þ

As two practical examples,

ΛACES
γ;1 > 104

�
1 eV
mϕ

�
3=2

; ΛSr
γ;1 > 105

�
1 eV
mϕ

�
3=2

;

ð33Þ

see Fig. 1(b). In the case ofACESor any other future clockon
ISS, τ ≪ T ∼ 3 min. Putting several clocks in amore distant
orbit would increase T, lower minimal mϕ and allow for a
long-time common-view comparison with several ground
clocks helping to identify the DM origin of the phase jump.

Putting a precise atomic clock on a deep-space spacecraft,
such as 100 AU mission [51] and comparing the clock
frequency with a less DM-sensitive clock on ground would
allow us to study very large DM inhomogeneities and hence
very small mϕ.
As we see, for the n ¼ 1 case T̄e drops out from the

calculation, and T drops out for any n. For n > 1 one has to
introduce additional assumptions on the value of T̄e, which
makes the limit less robust. As a reference number, one can
take T̄e ¼ 1 yr, which is an approximate duration of the
mission. However, nothing prevents this number to take
any other arbitrary values. For the n ¼ 2 case, we get

Λγ;2 >
jKαj1=2T̄e

1=4ρ1=2DM

σ1=40 δσ1=40 mϕ

; ð34Þ

and, therefore (if δσ0 ∼ 0.1σ0),

ΛACES
γ;2 > 106

�
1 eV
mϕ

�
; ΛSr

γ;2 > 2 × 106
�
1 eV
mϕ

�
; ð35Þ

see Fig. 2(b). These should be understood as order
of magnitude estimates only. One can notice that our
sensitivity (34) has the same dependence on the clock
stability, mass mϕ, response coefficient Kα and density
ρDM, when compared to Eq. (7). However, it does not
depend on the averaging time τ and the distance between
clocks l, and has a weaker dependence on the time between
interactions T̄e.
Our method does not require that both clocks will

interact with the same topological defect, which is an
advantage in the case of monopoles and strings. This is also
a difference between our approach and the one imple-
mented in Ref. [28], where two colocated clocks are
sharing the same optical cavity and two readouts are
cross-correlated in order to extract the common signal
(which is some type of noise by itself) from the instru-
mental noise. In other words, instead of looking for the
similar contribution to the noise of each clock, we are
looking for the difference in two clocks’ noise levels. The
conceptual difference between our procedure and the one in
Ref. [28], naturally, leads to a different functional form of
the limit on Λγ;2.

C. Case 1=mϕ ≫ T

Assuming, again, that DM exists in the form of a wave
and noticing that the integrand in Eq. (12) can be
considered constant in this case, the DM-induced Allan
variance is

σ2yðt; τÞ ¼
2A2sin4ðmϕτ=2Þ

ðmϕτ=2Þ2
sin2ðmϕtþ φ0Þ: ð36Þ

Applying further simplifications, we get
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σ2yðt; τÞ ≈
A2

2
ðmϕτÞ2 sinðmϕtþ φ0Þ

¼
κ2ð1Þ
2

ρDMτ
2sin2ðmϕtþ φ0Þ; ð37Þ

so we see that the effect of DM interaction will manifest
itself in additional deviation growing linearly with τ
and oscillating as a function of time; see Fig. 3(d). As
discussed before, the data for this case should be collected
in several separate measurement sessions, and the stability
of the clock should be determined for each of them. This is
conceptually different from the method of the previous
two sections, since we are not searching for the “bumps”
in the σ − τ diagram but at the variation of the stability
curve at large τ as the function of time, at which the
measurement session took place. Let us estimate the
sensitivity of an optical clock (or a microwave clock
with Λq;1;Λg;1 → ∞). Taken we know the Allan variance
with uncertainty ½δσðτÞ�2 and no oscillation of σyðτÞ is
observed, we get

Λγ;1 >
jKαjρ1=2DMτ

21=2δσyðτÞ
; ð38Þ

where one can notice no dependence onmϕ. Let us choose
τ ∼ 10 s ≪ T (motivated by the ISS flyby time T∼ few
min) and δσyðτÞ ¼ 0.1σyðτÞ, then

ΛACES
γ;1 > 4 × 1028 eV; ΛSr

γ;1 > 6 × 1028 eV: ð39Þ

Even though these limits are beyond the Planck mass, they
are significantly weaker than currently existing limits
coming from the Dy spectroscopy and Rb/Cs clock
comparison; see Fig. 1(a). In order to put new limits,
one could perform comparison of two clocks with sig-
nificantly different coefficients Kα in a laboratory with
much larger τ. Because this method does not seem to have

an advantage comparing to other existing methods, we do
not consider limits on Λγ;2.

IV. TOPOLOGICAL DEFECTS WITH n > 2

In case of monopole/string DM, it is useful to consider
Eq. (31) with κðnÞ ¼ Kα=Λn

γ;n at any n; see Fig. 5(a). As one
can see, the values Λγ;n are bounded from below by a
constant

Λγ;∞ ¼ lim
n→∞

Λγ;n ¼
T̄e

1=2v1=2g ρ1=2DM

m1=2
ϕ

; ð40Þ

so the scale Λγ can not be made indefinitely small with
large n; see Fig. 5(b). The value (40) does not depend
onKα, σ0 or δσ0 and, therefore, provides us with an a priori
lower limit on the energy scale of new physics that
allows for low-dimensional configurations at low energies.
The physical meaning of this scale is evident from
Eq. (30), Λγ;∞ ¼ ϕ̄, i.e., if the field strength inside the
DM object is comparable to the typical energy scale of the
UV-completion of the theory, then the power expansion
leading to the Lagrangian Eq. (2) breaks down and the
effective theory is not valid.

V. CONCLUSIONS AND DISCUSSION

In this paper, we present the analysis of various DM
effects on the clock stability measurements. While the
stability analysis should not be considered as a general
method for DM detection with clocks, in certain cases,
it would be preferred, such as when the DM effect
resembles a certain type of noise, e.g., the white noise
due to interaction with compact DM objects. It is also
interesting that the fast periodic variations (f larger than
inverse sampling time) will manifest themselves as secon-
dary “bumps” in the σ − τ diagram, while the peak in the
power spectrum will be missed (due to Nyquist-Shannon-
Kotelnikov theorem). Indeed, as can be seen in Figs. 1(a)

FIG. 5. (a) Projected sensitivities for Λγ;n at different n in assumption T̄e ¼ 1 yr and standard deviation for σ0 less than 10%.
(b) A priori lower bounds on the energy scale of new physics allowing for the topological configurations at low energies.
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and 2(a), there are no existing limits obtained with the
spectral analysis for mϕ > 10−15 eV. As a practical matter,
most of the existing clock comparison data are presented in
the form of Allan variance plots. This makes it possible to
extract certain DM limits for the most precise clock
comparisons to date.
The main results of our investigation are summarized in

Figs. 1 and 2. The dashed lines represent sensitivities of
the future ISS experiments as well as “the best case
scenario” thorium nuclear clock. Solid lines correspond to
the limits drawn from experimental data, such as the Dy
spectroscopy [29], Cs/Rb clock comparison [11] and the
Hgþ=Alþ clock comparison (this paper). The existing
cosmological exclusion regions are also presented. The
Hgþ=Alþ clock comparison allows us to put first limits on
the DM coupling in the region mϕ > 10−15 eV, that
previously was treated as inaccessible due to the typical
clock loop time of order of one or few seconds. Regarding
the monopole/string scenario, if implemented in the
future, this will be the first such limit with the linear
coupling for 10−11 eV < mϕ < 10−6 eV for n ¼ 1 and
10−9 eV < mϕ < 10−6 eV for n ¼ 2 (the upper limit
assumes the size of the clock of order of 1 m). Our
sensitivity can be underestimated (if the error in σ0
determination is below 10%) as well as overestimated

(if the microwave/optical link with ISS introduces addi-
tional uncertainties).
Finally, we should comment that we chose the value ρDM

to represent the energy density of the scalar field to be able
to compare the sensitivity of our method to the existing or
future methods appearing in the literature. However, the
obtained limits are not intended to be understood in the
absolute sense, without taking into account all additional
assumptions on the properties of the scalar field distribution
and its dynamics. Field ϕ can be of any nature, not
necessarily the DM and, hence, can have a much larger
(or much lower) local energy density within the Solar
System. This leads us to an additional outlook—direct
detection of new light scalar fields of unknown nature with
properties different from DM.
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