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We analyze the interplay between leptogenesis and residual symmetry in the framework of a model with
two right-handed neutrinos. Working in the flavor basis, we show that all the leptogenesis CP asymmetries
are vanishing for the case of two residual CP transformations or a cyclic residual flavor symmetry in the
neutrino sector. If a single remnant CP transformation is preserved in the neutrino sector, the lepton mixing
matrix is determined up to a real orthogonal matrix multiplied from the right side. The R-matrix is found to
depend on only one real parameter. It can take three viable forms, and each entry is either real or purely
imaginary. The baryon asymmetry is generated entirely by the CP violating phases in the mixing matrix in
this scenario. We perform a comprehensive study for the A(6n?) flavor group and CP symmetry which are
broken into a single remnant CP transformation in the neutrino sector and an Abelian subgroup in the
charged lepton sector. The results for lepton flavor mixing and leptogenesis are presented.
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I. INTRODUCTION

A large amount of experiments with solar, atmospheric,
reactor, and accelerator neutrinos have provided compel-
ling evidence for oscillations of neutrinos caused by non-
zero neutrino masses and neutrino mixing [1-3]. Both
three-flavor neutrino and antineutrino oscillations can be
described by three lepton mixing angles 8,, 6,3, and 6,5;
one leptonic Dirac CP violating phase ; and two inde-
pendent mass-squared splittings 6m* = m3 —m} > 0 and
Am? =m3 — (m? +m3)/2, where m;,3 are the three
neutrino masses and Am?> > 0 and Am? < 0 correspond
to the normal ordering (NO) and inverted ordering (IO)
mass spectrum, respectively. All of these mixing parame-
ters except for § have been measured with good accuracy
[4-8]. The experimentally allowed regions at 3¢ confidence
level (taken from Ref. [4]) are

0.259 < sin’6,, <0.359,
1.76(1.78) x 1072 < sin*@;5 < 2.95(2.98) x 1072,
0.374(0.380) < sin’6,3 < 0.626(0.641),
6.99 x 1075 eV? < om? < 8.18 x 107> eV?,
2.23(=2.56) x 1073 eV? < Am? <2.61(=2.19) x 1073 eV?
(1.1)
for the NO (I0) neutrino mass spectrum. At present, both

T2K [9-11] and NOvA [12,13] report a weak evidence for
a nearly maximal CP violating phase § ~ —z/2, and hits of
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6~ —n/2 also show up in the global fit of neutrino
oscillation data [4-8]. Moreover, several experiments are
being planned to look for CP violation in neutrino
oscillation, including long-baseline facilities, superbeams,
and neutrino factories. The above structure of lepton
mixing, so different from the small mixing in the quark
sector, provides a great theoretical challenge. The idea of
flavor symmetry has been extensively exploited to provide
a realistic description of the lepton masses and mixing
angles. The finite discrete non-Abelian flavor symmetries
have been found to be particularly interesting as they can
naturally lead to certain mixing patterns [14]; please see
Refs. [15-17] for review.

Although the available data are not yet able to
determine the individual neutrino mass m;, the neutrino
masses are known to be of order eV from tritium end
point, neutrinoless double beta decay, and cosmological
data. The smallness of neutrino masses can be well
explained within the seesaw mechanism [18], in which
the standard model (SM) is extended by adding new
heavy states. The light neutrino masses are generically
suppressed by the large masses of the new states. In a type
I seesaw model [18], the extra states are right-handed
(RH) neutrinos which have Majorana masses much larger
than the electroweak scale, unlike the standard model
fermions which acquire mass proportional to electroweak
symmetry breaking. Apart from elegantly explaining the
tiny neutrino masses, the seesaw mechanism provides a
simple and attractive explanation for the observed baryon
asymmetry of the Universe, one of the most longstanding
cosmological puzzles. The CP violating decays of heavy
RH neutrinos can produce a lepton asymmetry in the
early Universe, which is then converted into a baryon
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asymmetry through B + L violating anomalous sphaleron
processes at the electroweak scale. This is the so-called
leptogenesis mechanism [19].

It is well known that in the paradigm of the unflavored
thermal leptogenesis, the CP phases in the neutrino
Yukawa couplings in general are not related to the low
energy leptonic CP violating parameters (i.e., Dirac and
Majorana phases) in the mixing matrix. However, the low
energy CP phases could play a crucial role in the flavored
thermal leptogenesis [20] in which the flavors of the
charged leptons produced in the heavy RH neutrino decays
are relevant. In models with flavor symmetry, the total
number of free parameters is greatly reduced; therefore the
observed baryon asymmetry could possibly be related to
other observable quantities [21]. In general, the lepto-
genesis CP asymmetries would vanish if a Klein subgroup
of the flavor symmetry group is preserved in the neutrino
sector [22].

Recent studies show that the extension of discrete flavor
symmetry to include CP symmetry is a very predictive
framework [23-35]. If the given flavor and CP symmetries
are broken to an Abelian subgroup and Z, x CP in the
charged lepton and neutrino sectors, respectively, the
resulting lepton mixing matrix would be determined in
terms of a free parameter & whose value can be fixed by the
reactor angle 6;5. Hence all the lepton mixing angles, the
Dirac CP violating phase, and the Majorana CP phases
can be predicted [35]. Moreover, other phenomena involv-
ing CP phases such as neutrinoless double beta decay and
leptogenesis are also strongly constrained in this approach
[22,33,36]. In fact, we find that the leptogenesis CP
asymmetries are exclusively due to the Dirac and
Majorana CP phases in the lepton mixing matrix, and
the R-matrix depends on only a single real parameter in this
scenario [22].

In this paper we shall extend upon the work of [22] in
which the SM is extended to introduce three RH neutrinos.
Here we shall study the interplay between residual sym-
metry and leptogenesis in the seesaw model with two RH
neutrinos. We find that all the leptogenesis CP asymmetries
would be exactly vanishing if two residual CP trans-
formations or a cyclic residual flavor symmetry were
preserved by the seesaw Lagrangian. On the other hand,
if only one remnant CP transformation is preserved in the
neutrino sector, all mixing angles and CP phases are then
fixed in terms of three real parameters @, , ; which can take
values between 0 and =z, and the R-matrix would be
constrained to depend on only one free parameter. The
total CP asymmetry €; =€, + €, + €, in leptogenesis is
predicted to be zero. Hence our discussion will be entirely
devoted to the flavored thermal leptogenesis scenario in
which the lightest RH neutrino mass is typically in the
interval of 10° GeV < M, < 10'> GeV. Our approach is
quite general and it is independent of the explicit form of
the residual symmetries and how the vacuum alignment
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achieving the residual symmetries is dynamically realized.
In order to show concrete examples, we apply this general
formalism to the flavor group A(6n?) combined with CP
symmetry, which is broken down to an Abelian subgroup in
the charged lepton sector and a remnant CP transformation
in the neutrino sector. The expressions for the lepton
mixing matrix as well as mixing parameters in each
possible case are presented. We find that for small values
of the flavor group index n, the experimental data on lepton
mixing angles can be accommodated for certain values of
the parameters 0, , 5. The corresponding predictions for the
cosmological matter-antimatter asymmetry are discussed.

The rest of the paper is organized as follows. In Sec. II
we briefly review some generic aspects of leptogenesis in
the two RH model and present some analytic approxima-
tions which will be used later. In Sec. III we study the
scenario that one residual CP transformation is preserved in
the neutrino sector. The lepton mixing matrix is determined
up to an arbitrary real orthogonal matrix multiplied from
the right-hand side. The R-matrix contains only one free
parameter, and each element is either real or purely
imaginary. The total CP asymmetry e; is vanishing;
consequently the unflavored leptogenesis is not feasible
unless subleading corrections are taken into account.
The scenario of two remnant CP transformations or a
cyclic residual flavor symmetry is discussed in Sec. I'V. All
leptogenesis CP asymmetries €, , . are found to vanish in
both cases. Leptogenesis could become potentially viable
only when higher order contributions lift the postulated
residual symmetry. In Sec. V we apply our general
formalism to the case that the single residual CP trans-
formation of the neutrino sector arises from the breaking of
the most general CP symmetry compatible with the A (6n?)
flavor group, which is broken down to an Abelian subgroup
in the charged lepton sector. The predictions for lepton
flavor mixing and baryon asymmetry are studied analyti-
cally and numerically. Finally, in Sec. VI we summarize
our main results and draw the conclusions.

II. GENERAL SETUP OF LEPTOGENESIS
IN A MODEL WITH TWO
RIGHT-HANDED NEUTRINOS

The seesaw mechanism is a popular extension of the
SM to explain the smallness of neutrino masses. In the
famous type I seesaw mechanism [18], one generally
introduces three additional right-handed neutrinos which
are singlets under the SM gauge group. Although the
seesaw mechanism describes qualitatively well the obser-
vations in neutrino oscillation experiments, it is quite
difficult to make quantitative predictions for neutrino mass
and mixing without further hypothesis for underlying
dynamics. The reason is that the seesaw mechanism
involves a large number of undetermined parameters at
high energies, whereas many fewer parameters could be
measured experimentally.
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An intriguing way out of this problem is to simply reduce
the number of right-handed neutrinos from three to two
[37-39]. The two right-handed neutrino (2RHN) model can
be regarded as a limiting case of three right-handed neutrinos
in which one of the RH neutrinos decouples from the seesaw
mechanism either because it is very heavy or because its
Yukawa couplings are very weak. Since the number of free
parameters is greatly reduced, the 2RHN model is more
predictive than the standard scenario involving three RH
neutrinos. Namely, the lightest left-handed neutrino mass
automatically vanishes, while the masses of the other two
neutrinos are fixed by ém? and Am?. Hence only two
possible mass spectra can be obtained:

NO: m; =0, my=Vém*,  my=+/Am*>+6m?/2,
10: my =\/—=6m?/2—Am?,  my, = /6m?/2 — Am?,
mz =0. (2.1)

Moreover there is only one Majorana CP violating phase
corresponding to the phase difference between these two
nonzero mass eigenvalues. The Lagrangian responsible for
lepton masses in the 2RHN model takes the following form,

_ o~ 1 _
ﬁ = _yaLaHlaR - /Il‘aNiRHi La — EMI'NiRNl?R + H.C.,
(2.2)

where L, = (Ugr, ly )T and [, indicate the lepton doublet
and singlet fields with flavor a = e, u, 7, respectively; N,z
is the RH neutrino with mass M; (i=1, 2); and H =
(H*,H®)" is the Higgs doublet with H = ic,H*. The
Yukawa couplings 4;, form an arbitrary complex 2 x 3
matrix. Here we have worked in the basis in which both the
Yukawa couplings for the charged leptons and the Majorana
mass matrix for the RH neutrinos are diagonal and real. After
electroweak symmetry breaking, the light neutrino mass
matrix is given by the famous seesaw formula

m, = —v*ATM~') = U*mU", (2.3)
where v = 175 GeV refers to the vacuum expectation
value of the Higgs field H°; M = diag(M,,M,) and
m = diag(m;, my, m3), with m; =0 for NO and m; =0
for IO; and U is the lepton mixing matrix. It is convenient
to express the Yukawa coupling A in terms of the
neutrino mass eigenvalues, mixing angles, and CP violation
phases as'

A= iM'"2Rm'?U" /v, (2.4)

'For other parametrizations of the neutrino Yukawa coupling,
see Ref. [40].
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where R is a 2 x 3 complex orthogonal matrix having the
following structure [41,42],

0 cosf .fsin@

NO: R = . - | (2.5a)
0 —sinf &cosd
0 ind 0

10: R = ( cosf  esin ) (2.5b)
—sinf &cos@ O

where @ is an arbitrary complex number and £ = +1. From
Egs. (2.5a) and (2.5b) we can check that the R-matrix
satisfies
RRT = diag(1,1),
RTR = diag(0, 1, 1),
RTR = diag(1,1,0),

for NO and 10,
for NO,

for 10. (2.6)
Leptogenesis is a natural consequence of the seesaw
mechanism, and it provides an elegant explanation for
the baryon asymmetry of the Universe [19]. For illustration,
we shall work in the typical N|-dominated scenario, and
we assume that right-handed neutrinos are hierarchical
M, > M, such that the asymmetry is dominantly produced
from the decays of the lightest RH neutrino N;. The
approach of this paper can also be applied to discuss the
resonant leptogenesis [43]. The naturalness of the electro-
weak scale restricts the heavy RH neutrino mass to be
M, < 107 GeV [44]. This bound arises from the naturalness
requirement that the RH neutrino loops do not lead to
unnaturally large radiative corrections to the Higgs mass.
However, the unknown dynamics of quantum gravity at the
Planck scale Mp would always introduce an unavoidable
naturalness problem. In addition, the theoretical criterion of
naturalness requires the presence of new physics at the TeV
scale. But no any signal of new physics has been observed at
the LHC or elsewhere. The argument for naturalness has
failed so far as a guiding principle, and nature does not much
care about our notion of naturalness. Therefore we do not
require the Vissani bound M, < 107 GeV to be fulfilled in
this paper. Actually we shall work in the two-flavored
leptogenesis regime, that is, at 10° GeV < M, < 10'> GeV.

The phenomenology of leptogenesis in the 2RHN model
has been comprehensively studied [38,39,42,45]. The
flavored CP asymmetries in the decays of N into leptons
of different flavors are of the form [46-49]

F(Nl - laH) - F(Nl - 7(11:1)
Zar(Nl g laH> + F(Nl b d 70H)
1

i )

€a

1
+ Im[(,l,ﬁ)jl/lla,lja] m} (2.7)
J
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where I'(N| — [,H) and T'(N, — [, H), with a = e, , 1,
denote the flavored decay rates of N, into lepton /, and
antilepton /,, respectively; the parameter x ; is defined as
x; = M3/M3, and the loop function g(x) is

90 = Vi ! +1—(1+x)1n<11_x>]

— X

__3 -3
\/_Jr(’)(x )

In the hierarchical limit M, > M, i.e., x, > 1, the CP
asymmetries can be written as”

for x > 1. (2.8)

2 & *

€, = _iz%d[(iﬂj)?llaﬂ/a]

lor =M, (),

_3My Qi ymamg miR R, ;UL Uy)
16ﬂ'1)2 ijlel]P '

Actually, only the j = 2 term is relevant in the first line of
Eq. (2.9), since J[(A27),;41447,] = O for the case of j = 1.
Here the summation over j allows us to straightforwardly
derive the compact expression of Eq. (2.9). We notice
that €, is invariant under the transformation & — —¢&
and @ — —6. Consequently we shall choose & =1 as an
illustration in the following numerical analysis. Inserting
the expression for the Yukawa coupling in Egs. (2.5)
and (2.5b) into Eq. (2.9), we obtain the CP asymmetry

(2.9)

3 M,
1670% my | cos O] + ms) sin 0|2
x {(m3|Us|* = m3|U o ?)Jsin®0
+ &/mans [(my 4 my)R(U%,U,s)S(sin @ cos )
+ (my = my)I(U, U 3)R (sin O cos 6)]} (2.10)

€q =

for the NO and
B M,
16720 m, | cos 02 + my,| sin )2
x {(m3|Usal?* = mi|Uoa ) 3sin?0
+&y/mymy[(my + my) R (U Ug)3(sin O cos 0)
+ (my — m))S(U%, U )R (sin & cos 0)] } (2.11)

€q

*The flavored CP asymmetry €, contains two terms: the
lepton-number-violating (LNV) piece eV o S[(27); ;41447
and the lepton-flavor-violating (LFV) piece elfV «
S[(227) 1 41as,]- Since €NV ~ O(x}l/z) and g™ ~O(x7') in
the limit x; > 1, the LFV term is suppressed with respect to
the LNV one; hence we shall neglect the LFV contribution in
this work.
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for the IO neutrino mass spectrum. If the RH neutrino mass
M, is large enough (e.g., M; > 10'> GeV), the interactions
mediated by all three charged lepton Yukawa couplings are
out of equilibrium. As a result, the one-flavor approxima-
tion rigorously holds, and the total CP asymmetry is

3M, 3(>,m?R3,
6152%2— 12 5(2_ims 112)’
167v ijj|R1j|

a

(2.12)

which is completely independent of the lepton mixing
matrix U. For the parametrization of the R-matrix in
Egs. (2.5) and (2.5b), we have

3M,  (m3 — m3)Jsin®0

NO: ¢ = — = =
! 1620% my| cos O] + ms]| sin @

(2.13a)

P

3M,  (m3 — m?)Jsin?0

1670% my | cos O + my|sin 0>

10: ¢, =— (2.13b)

We see that the total CP asymmetry €; would vanish when
the parameter 0 is real or purely imaginary up to z/2. The
total baryon asymmetry is the sum of each individual lepton
asymmetry. In the present paper we will be concerned with
the temperature window (10° < T ~ M, <10'?) GeV. In
this range only the 7 charged lepton Yukawa interaction is
in equilibrium, the e and p flavors are indistinguishable,
and the final baryon asymmetry is well approximated
by [50-53]

12 417 390
Yp=——r — L )|, (214
e Th [6211 (589 mz> +em (589 m)] (2.14)

where €, =€, +¢,, my =m, +m,, g, is the number of
relativistic degrees of freedom, and 7 is the efficiency factor
which depends on the initial abundance of N;. The washout
mass 7, parametrizes the decay rate of N into the leptons
of flavor a with

, a=-e,lur.

(2.15)

~ |/11 |21}2 1/2 . 2
m, = ;:41 = Zml/ Rlani

Plugging Egs. (2.5) and (2.5b) into the above equation, we
find that the explicit expression of the washout mass is

_ |/myU?, cos 0+ &\ /iy Ui, sind]?, for NO,
m(l = A A
|\/m Us cos @ + & /myU, sin @), for 10.
(2.16)

Then the washout parameter K defined as K = > m,/m*
with m* ~ 1073 eV takes the form
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{ ;| cos B> +ms| sin >

‘ 3

:=8.683, for NO,

3

m

e (2.17)
m, | cos B> +m,|sinf|? >
m* =

1=48.397, forlO.

El‘§

Therefore the two right-handed models are always in
the strong washout regime. As a consequence, the
initial N; abundance is almost irrelevant [54], and
the right-handed neutrinos are brought to thermal
equilibrium by inverse decays and by AL =1 scatter-
ings. To a good accuracy, the efficiency factor n(rm,) is
approximately given by [50]

() ~ my, ‘]+ 0.2x 1073 eV 11671
TMa) =1\ §25% 102 eV i, ‘

(2.18)

III. LEPTOGENESIS WITH ONE RESIDUAL
CP TRANSFORMATION

In a series of papers [23-35], it has been shown that
the residual CP symmetry of the light neutrino mass matrix
can quite efficiently predict the lepton mixing angles as
well as CP violation phases. If the residual CP symmetry is
preserved by the seesaw Lagrangian, leptogenesis would
also be strongly constrained [22,36,55]. We assume that the
flavor and CP symmetries are broken at a scale above the
leptogenesis scale. As a consequence, leptogenesis occurs
in the standard framework of the SM plus two heavy RH
neutrinos without involving any additional state in its
dynamics. Otherwise if the flavor and CP symmetries
are broken close to or below the leptogenesis scale, the
additional interactions and new particles related to flavor
and CP symmetries should be considered [56], and the
resulting scenarios would be quite different from the
standard one. In this section, we shall study the implica-
tions of residual CP for leptogenesis in the 2RHN model,
and we assume that both the neutrino Yukawa coupling and
the Majorana mass term in Eq. (A1) are invariant under one
generic residual CP transformation, defined as

cp CP & -
v —iX,yoCot, Ng—>iXyyoCNE, (3.1)
where v, = (Vor, Vyrs Ver)'s Nr = (N1g. Nog)"'; C denotes
the charge-conjugation matrix; X, is a 3 x 3 symmetric
unitary matrix to avoid degenerate neutrino masses; and X
is a 2 X 2 symmetric unitary matrix. For the symmetry to
hold, A and M have to fulfill
XX, =2, X\MXy = M- (3.2)
As we work in the basis in which the RH neutrino
mass matrix M is real and diagonal, the residual CP
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transformation X should be diagonal with elements equal
to =1, i.e.,

Xy = diag(£1, £1). (3.3)

Notice that the conclusion would not be changed even if M
is nondiagonal in a concrete flavor symmetry model [22],
and the reason is explained in Appendix A. Thus we can
find that the light neutrino mass matrix m, given by the
seesaw formula satisfies

X'm,X, = m?, (3.4)

which means (as expected) that m,, is invariant under the
residual CP transformation X,. The light neutrino mass
matrix can be diagonalized by a unitary transformation U,
with m, = Uzdiag(m,, m,, m3)Uj. Then from Eq. (3.4) we
can obtain

(UL X, U;)" diag(my, my, m3)(UX,U})

= diag(m,, m,, m3). (3.5)
Note that m; = 0 for NO and m3 = 0 for 10 in the 2RHN
model. Hence U, is subject to the following constraint from
the residual CP transformation X,

Uix,u: =X, (3.6)
with
X, = diag(e™, +£1,+1) for NO,
X, = diag(£1,£1,e@) for 10, (3.7)

where a is a real parameter in the interval between 0 and 2.
Then it is easy to check that X, is a symmetric and unitary
matrix for both the NO and IO cases. Moreover, with the
definition of the R-matrix in Eq. (2.4), we can derive that
the postulated residual symmetry leads to the following
constraint on R as

XyR*X;' =R, (3.8)
Obviously —X and —X, give rise to the same constraint on
Ras X n and )A(,,; therefore it is sufficient to only consider
the cases of Xy = diag(1, +1), X, = diag(e’®, £1,+1) for
NO and X, = diag(£1, #1, ¢/) for IO. The explicit forms
of the R-matrix for all possible values of Xy and X, are

collected in Table I. We see that there are three admissible
forms of the R-matrix summarized as follows:
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TABLE 1. The explicit form of the R-matrix for all possible
independent values of X, and X,, where 9 is a real free
parameter. The symbol X denotes that the solution for the
R-matrix does not exist since it has to fulfill the equality of
Eq. (2.6). The notation D(x,y) with x,y = +1 refers to
diag(e'®, x, y) and diag(x, y, ¢’®) for NO and IO, respectively.

A A

Xy X, R (NO) R (I0)
degl D) DO GIAERY (AR
diag(1,1)  D(1,-1) X X
diag(1,1)  D(=1,1) X X
diag(1,1)  D(-1,-1) X X
diag(1,-1) D(1,1) X X
diag(1,=1)  D(L.=1) 50 Foma)  £(s Eoons o)
diag(l.-1)  D(-L1)  +@ERITEaNS)  T(ams o o
diag(1,-1) D(-1,-1) X X
0 cosd® Esind
R= . for NO,
0 —sind E&cosd
R-1st )
cosd ¢&sind 0O
R = ) for 10,
—sind &£cosd O
0 coshd ifsinhd
R=+ ) for NO,
0 —isinhd £&coshd
R-2nd o
coshd ifsinhd 0
R=4+( . for 10,
—isinhd &coshd 0
0 isinhd —&coshd
R=+ o for NO,
0 coshd iésinhd
R-3rd .
isinhd —&coshd O
R=+ . for 10.
coshd iésinhd O
(3.9)

We would like to point out that the R-matrix is constrained
to depend on a single real parameter 9 in this setup.
Moreover, from Eq. (2.12) we can see that the total lepton
asymmetry €, is vanishing, i.e.,
e =€, +e€,+e =0. (3.10)
As a result, the net baryon asymmetry cannot be generated
in the one-flavor approximation which is realized when
the mass of the lightest right-handed neutrino M is larger
than about 10'> GeV, unless the residual CP symmetry is
further broken by subleading order corrections. This result
is quite general; it is independent of the explicit form of the
residual CP transformation and how the residual symmetry
is dynamically realized.
Next we proceed to determine the lepton mixing matrix
from the postulated remnant CP transformation. Since X,
must be a symmetric unitary matrix to avoid degenerate
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neutrino masses, by performing the Takagi factorization X,
can be written as [23,35]

X, =%, (3.11)
where ¥, is a unitary matrix and it can be expressed in
terms of the eigenvalues and eigenvectors of X, [35]. Thus

the constraint on the neutrino diagonalization matrix U, in
Eq. (3.6) can be simplified into

STUSRT = 5iUL %, (3.12)

The matrices on the two sides of this equation are unitary
and complex conjugates of each other. Therefore the

Al
combination X, U, X; is a generic real orthogonal matrix,
and consequently the unitary transformation U, takes the
form [35,55,57]

U, = %,05:%, (3.13)

where 05,3 is a three-dimensional real orthogonal matrix,
and it can be generally parametrized as

1 0 0
03,3(01,0,,05) = | 0 cos6, sin6,
0 —sinf@; cos6,
cosd, 0 sin6,
X 0 1 0
—sinf, 0 cos6,
cosf; sinf; 0
X | =sinf3 cos@; O |, (3.14)
0 0 1

where 6; (i = 1, 2, 3) are real free parameters in the range
of [0, ). In our working basis (usually called leptogenesis
basis) where the charged lepton mass matrix is diagonal,
lepton flavor mixing completely arises from the neutrino
sector, and therefore the lepton mixing matrix U coincides
with U,. Hence we conclude that the mixing matrix and
all mixing angles and CP phases would depend on three
free continuous parameters 0, , 3 if only one residual CP
transformation is preserved in the neutrino sector. In order
to facilitate the discussion of leptogenesis, we separate out
the CP parity matrices Xy and X, and define the following
three parameters,

Al Al Al
U=UX., R =X7RX,

K= (Xy)n (X i=123. (3.15)

075005-6



IMPLICATIONS OF RESIDUAL CP SYMMETRY FOR ...

We see that R’ is real and the parameter K; is equal to +1,
—1 or e™® As a consequence, the flavored CP asym-
metry €, can be expressed as

_ 3M, Sy ymim;mRy Ry UG UK )

€y = , (3.16)
1670? > mRE
and the washout mass 7, is given by
e = 3,/ R UL (3.17)

Taking into account that the lightest neutrino is massless in
the 2RHN model, we find that €, and 72, can be written into
a rather simple form:

) 3M,
NO: ¢, = ~Tenn? W N0lRo:
my = |\/ m3R/13 U;3 + \/mlele;2|2, (3.18a)
) 3M,
10: ¢, = _WWIOI?O’
filg = |/myR,U 5 + /m Ry U2, (3.18b)

with

C12€13

_ is
U= —s12003 — cia8138523€

is
§12823 = C12813C23€

where ¢;; = cos0;;, 5;; = sin6;;, and  and ¢ are the Dirac
type and Majorana type CP violating phases, respectively.
Note that there is only one Majorana CP phase ¢ in the
presence of one massless light neutrino.

Now we discuss the predictions for matter/antimatter
asymmetry for each admissible R-matrix. The explicit

TABLE II.
three viable forms of the R-matrix.

PHYSICAL REVIEW D 96, 075005 (2017)

A /m2m3R’12R’13(m3K3 — msz)

Wyo =
2 2
myR; + m3R5

bl

a _ X ! 1%
INO - ‘S( a3 (12)’
/ /
. VmmRY Ry (maKy —my K )
2 2
my Ry} + myRy;

?0:3( ;2 51)

El

(3.19)

The explicit expressions of Wyo and Wiy for the three
viable forms of the R-matrix are shown in Table II. Notice
that Wyo 1o are fixed by the light neutrino masses m, 3 and
&, which parametrize the R-matrix, and the bilinear
invariants I{g ;o depend on the low energy CP phases
contained in the mixing matrix U. As a result, if the signal
of CP violation were observed in future neutrino oscillation
experiments or neutrinoless double beta (Ovf3f) decay
experiments, we would expect a nonzero baryon asymme-
try to be generated through leptogenesis in this framework.
In the following, we shall perform a general analysis of
leptogenesis in the 2RHN model with a generic residual CP
transformation, and the lepton mixing matrix can be para-
metrized as [58]

—id

$12€13 S13€
C12C23 — 3123135236"s ci3sys | diag(l, ez, 1), (3.20)
i5
—C12823 — S12813C23¢€" C13C23

[
expressions of the CP asymmetry parameter ¢, and the
washout mass m, are given in Appendix B. The contour
regions of Y /Y9 for the three types of R matrices R-1st,
R-2nd, and R-3rd are displayed in the plane ¢ versus 9 in
Figs. 1, 2, and 3, respectively. Here both the three lepton
mixing angles and the mass-squared splittings are set to

The parametrization of the first row of R’ and the corresponding expressions of Wy and Wi for the

Mass ordering K;

(RY1, R, RY3) Wxo Wio)

R-1st NO
10
R-2nd NO
10
R-3rd NO

10

&y/myniz(m3—m,) sin 289
2(m; cos® §-+mj sin’ )
£ /s (my—m, ) sin 29
2(m cos? 9-+my sin” 9)
& /maynis(my+msy) sinh 29
2(m; cosh? 9+m; sinh® 9)
&\/myniy (my+m,) sinh 289
2(m cosh? §-+mj, sinh® 9)
£ /mayniz(my+mj3) sinh 289
2(my, sinh? 9-+m; cosh® 9)
E\/mymy (my+m;) sinh 29
2(m sinh? 9-+m, cosh? 9)

(0,cos 9, Esin 9)
(cos 9, &sind, 0)
+(0,cosh 9, —£sinh 9)
+(coshd, —&sinh 9, 0)
+(0, —sinh 9, =& cosh 9)
+(—sinh 9, =& cosh 9, 0)
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their best fit values [4] and two representative values
6 =0,-n/2 are considered. From Egs. (2.9) and (2.14)
we know that the final baryon asymmetry Y is propor-
tional to M,. We shall take M, =5 x 10'! GeV for
illustration in this work, and the conclusions would not
change qualitatively for other values of M;. The neutrino
mass spectrum is NO and IO, respectively, in the first row
and second row of these plots, and we choose 6 = 0 in the
left column and § = —z/2 in the right column. Note that
the period of 9 for R-1st is 7 and there are no phenom-
enologically viable points in the region of |9| > 0.6z for

1.0

0.5

-0.5

M

PHYSICAL REVIEW D 96, 075005 (2017)

both R-2nd and R-3rd. For R-1st, we find that the exper-
imentally measured value of the baryon asymmetry can be
accommodated in the case of NO, while Y is too small to
account for its observed value for 10. The second case R-2nd
can result in successful leptogenesis regardless of whether
the neutrino mass spectrum is NO or 10. From Fig. 3, we see
that the realistic baryon asymmetry can be generated in the
case of R-3rd plus 10, while Y is determined to be smaller
than its measured value for R-3rd plus NO.

We have chosen the representative values 6 =0 and
—n/2 for illustration in Figs. 1-3. In view of the fact that

1.0

0.5

0.5

d/n

FIG. 1. The contour plots of ¥5/Y%™ in the & — ¢ plane for the case of R-1st. Here we choose M; = 5 x 10'" GeV, so that only the tau
Yukawa couplings are in equilibrium. The first row and the second row are for the NO and IO spectra, respectively, and the Dirac CP
phase § is taken to be 0 in the left panels and —/2 in the right panels. The neutrino oscillation parameters 6,, 0,3, 0,3, 5m?, and Am?>
are fixed at their best fit values [4]. The thick green curve represents the experimentally observed values of the baryon asymmetry

Yo = 8.66 x 107! [59].
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o/n

0.0
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-0.4

06

LOF——

0.5

0.0

-0.5

_ 1ol S
206 -04 -02 00 02
o

0.4

FIG. 2. The contour plots of ¥z/Y%* in the 9 — ¢ plane for the case of R-2nd. Here we choose M| = 5 x 10! GeV, so that only the
tau Yukawa couplings are in equilibrium. The first row and the second row are for the NO and IO spectra, respectively, and the Dirac CP
phase § is taken to be 0 in the left panels and —z/2 in the right panels. The neutrino oscillation parameters 65, 6,3, 6,3, 5m?, and Am?
are fixed at their best fit values [4]. The thick green curve represents the experimentally observed values of the baryon asymmetry

Y3 = 8.66 x 10711 [59].

the Dirac CP phase ¢ is not constrained at the 3o level
at present, we display the regions in the é — ¢ plane in
Fig. 4, where successful leptogenesis (Yz/Y% = 1) can
be realized for certain values of 9. We notice that the
observed baryon asymmetry can be generated in quite large
regions of the § — ¢ plane. For the cases of I0:R-1st and
NO:R-3rd with M; = 5 x 10'" GeV, the baryon asymme-
try Yp is too small to be in accordance with experimental
data. Equations (2.9) and (2.14) imply that Yp increases
with M,. The maximal value of M, is 10'> GeV in the
flavored leptogenesis regime; accordingly we find that the

maximum of Y/Y9™ is 0.226 and 0.968 for IO:R-1st and
NO:R-3rd, respectively, when &, ¢, and 9 are treated as free
parameters. Therefore these two cases cannot lead to
successful leptogenesis in our setup even if § and M,
are not fixed to the above example values. From Fig. 4, we
can easily see whether the minimal seesaw model plus a
residual CP symmetry is capable of explaining the matter/
antimatter asymmetry or not for each possible experimental
outcome of & and ¢.

The Oupp decay process is an important probe for the
Majorana nature of neutrinos. If it were observed in the
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future, then neutrinos must be Majorana particles. The amplitude of the Ovf3f decay is proportional to the effective Majorana

neutrino mass m,,, which is defined as [58]

_ 2
Mee = ‘ E miUli
i

_ 2 2 2 2 i 2
= |myclycly + mystycle® + mastse

Je20]. (3.21)

In the 2RNH model, the lightest neutrino is massless with m; = 0 for NO and m; = 0 for IO. Consequently the expression

of m,, can be reduced to

’ Sm?styclze’ P 4/ Am? + 5m? [ 251,

’ —Am? = 6m?/2c}, ¢ty + \/—Am? + 5m? /253, cTye

mCC

where the light neutrino masses in Eq. (2.1) are used. We
see that the effective mass m,, depends on the combination
¢ + 26 for the NO and on the phase ¢ for the 1O case. From
the panels in the first row of Fig. 4, we find that the phase
¢+ 26 can take any value between —z and z when
sufficient baryon asymmetries are generated for the NO
case. Similarly the panels in the second row of Fig. 4 imply
that the phase ¢ can vary in the range of |-z, x| if the
observed baryon asymmetry is generated for 10. Thus
the effective Majorana mass m,, reaches the maximal value
when ¢ +26 =0 (¢ =0) and the minimal value when
¢ + 26 = n(¢p = x) for the NO (10) spectrum. Therefore in
the parameter space of successful leptogenesis, the effective
mass m,, varies in the interval

0.000717 eV < m,, < 0.00449 eV for NO,

0.0130 eV < m,, <0.0478 eV for IO. (3.23)

The predictions of the IO case can be tested in future Oy
decay experiments.

IV. LEPTOGENESIS WITH TWO RESIDUAL
CP TRANSFORMATIONS OR A CYCLIC
RESIDUAL FLAVOR SYMMETRY

In this section, we shall proceed to discuss the predic-
tions for leptogenesis in the case that two residual CP
transformations or a cyclic residual flavor symmetry is
preserved by the seesaw Lagrangian in the 2RHN model.

A. Two residual CP transformations preserved

Following the same method as in Sec. III, we investigate
what we could learn if the parent CP symmetry at a high
energy scale is broken down to two residual CP trans-
formations in the neutrino sectors. The lepton fields trans-
form as

CP, . _7 CPy o T
v X, 70CoY, NgiXn1yoCNp,
cp P . _
179 |—>2l'X,/270Cl_/{, NR'_ﬁiXNZYOCNfTe’ (4.1)

, for NO,
(3.22)
, for IO,

with X, # X,, and X, # Xy,. The invariance of A and M
under the action of the above CP transformations X,; and
Xy, implies

Xi,AX,, = 2,

Xl MRy, = M*,  (4.2a)

XX, =25 X§aMXy, = M*.  (4.2b)
Notice that —X,;, —X y; leads to the same constraints as X,
Xyi: hence they are identified as the same residual CP
transformation. Because the RH neutrino fields N, and
N, are assumed to be in the mass eigenstates, Xy and X N2
must be diagonal with elements +1 or —1, i.e.,
Xy, Xy = diag(#£1, £1). (4.3)

The light neutrino mass matrix m, is given by the
seesaw relation. We can straightforwardly check that the
residual CP transformations lead to the following two
constraints on m,,

XIim,X,, = m;, XLm, X, =mj.  (4.4)
This is exactly the condition that m,, is invariant under the
residual CP transformations X,; and X,,. From Eq. (4.4)
we can derive that the unitary transformation U, which
diagonalizes m, should satisfy
UiX,2Up = X0,

UiX, U =X, (4.5)

with

X,1.X,, = diag(e’®2,+1,41) for NO,

X1, X,, = diag(£1,+1,e®2) for 10, (4.6)

where
Equation

and o,
(4.5) indicates that

are arbitrary real
both

parameters.
residual CP
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0.5

0.5
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-0.6

FIG. 3. The contour plots of Y/Y$ in the § — ¢ plane for the case of R-3rd. Here we choose M| = 5 x 10'! GeV, so that only the
tau Yukawa couplings are in equilibrium. The first row and the second row are for the NO and IO spectra, respectively, and the Dirac CP
phase § is taken to be 0 in the left panels and —z/2 in the right panels. The neutrino oscillation parameters 6,5, 8,3, 653, Sm?, and Am?>
are fixed at their best fit values [4]. The thick green curve represents the experimentally observed values of the baryon asymmetry

Y3 = 8.66 x 1011 [59].

transformations X,; and X,, must be symmetric unitary
matrices. Using the symmetry properties of 4, M, and U,
shown in Egs. (4.2), (4.2b), and (4.4), we find that the R-
matrix is subject to the following constraints,

XwR*X} =R,

XuRX;! =R, (4.7)

which imply

R - }A(NIXAQR)A(DIXEZI. (48)

Because the residual CP transformations X,,, Xy, are
distinct from X,,, Xy, the combinations Xy;Xy, and
X,1 X7, should take the form’

XNIXNZ = dlag(l, —1),
X, X3 = Pdiag(e’ @) 1. -1)P].  (4.9)

>The same results for the R-matrix would be obtained in the
case of Xy Xy, = —diag(1,-1), X,,X;; = P,diag(ei(®~=), 1,
-1)PI.
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1.0F : : : ._
0.5F i
S
3 0.0F E
-0.5 E
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-1.0f, N . . .
-1.0 -0.5 0.0 0.5 1.0
o/m
1.0F E
0.5F k
R i
g 0.0
-1.0L, . . . .
-1.0 -0.5 0.0 0.5 1.0
o/m

FIG. 4. The viable regions in the 6 — ¢ plane where the cosmological matter/antimatter asymmetry can be generated for certain values
of . For the cases of IO:R-1st and NO:R-3rd, the baryon asymmetry Y is smaller than its observed value for any value of 6, ¢, and 9.

where P, is a permutation matrix with P, = Pqy3, P13
for NO and P, = Pj3, P3,; for 10. Here the six 3 x 3
permutation matrices are denoted as

RP, = diag(1, —1)RP,diag(e’ %) 1,~1).  (4.11)
Consequently the (13) and (22) elements of the matrix RP,
are vanishing. The explicit forms of the R-matrix for all
possible values of P, are summarized in Table III. It is
easy to check that all the flavored CP symmetry ¢, is
vanishing, i.e.,

~

(3]

[

|
S = =R R R
—_- 0 0O 0 o = O = O

S O = = O O = O O

~
3]
=
|
—_ 00 =~ o o O O -

(4.10)

S = O O O = = O O
S O = O = O O = O

Inserting Eq. (4.9) into Eq. (4.8) we obtain

TABLE III. The explicit form of the R-matrix for different

possible values P,, where ¢ is either +1 or —1.

Mass ordering P, 0 R

NO P123 0,71' R = (8101 :Sf)
Pa E R=GRF)

10 P231 0,77.' R = (iol j(:)fg)
P 3 R = (Ql )
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(4.12)

€, =€

=€ =0.

As a result, a net baryon asymmetry cannot be generated
at leading order in this case, and moderate high order
corrections are necessary in order to make leptogenesis
viable. We would like to emphasize that this result is quite
general and it is independent of the explicit form of the
residual CP transformations X,; and Xy;.

B. A cyclic residual flavor symmetry preserved

In this section we shall proceed to discuss the implica-
tions of the residual flavor symmetry (without residual CP)
for leptogenesis. We assume that the flavor symmetry
group is broken down to a cyclic Z, subgroup in the
neutrino sector, where the subscript n denotes the order
of the cyclic group. Under the action of the generator of
the residual flavor symmetry Z,, the neutrino fields trans-
form as

Z, Zy A
vi—>Gup, Ng—>GyNg, (4.13)
where G, is a 3 x 3 unitary matrix with G} = 13,3 and
Gy = diag(%1, +1) in our working basis. For this residual
symmetry to hold, the Yukawa coupling 4 and the RH
neutrino mass matrix M = diag(M, M) have to fulfill

A

GyAG, = A,

= GyMGy = M. (4.14)
Subsequently we can check that the light neutrino mass
matrix is invariant under the residual flavor symmetry

GIm,G, = m,. (4.15)
From this condition we find that the neutrino diagonaliza-
tion matrix U, can diagonalize the residual flavor sym-
metry transformation G, as well,

U/G,U, =G,, with
R diag(e®, +1,+1) for NO
G _{ lag(e 1) . (4.16)
diag(£1,£1,¢*) for IO

where a = 2zk/n with k coprime to n is a rational multiple
of z. Notice that the maximal invariance group of the
neutrino mass matrix is U(1) x Z, x Z,, not a Klein group
Z, X Z,, because one light neutrino mass is zero in this
case. From Egs. (4.14) and (4.16), we can determine that
the residual flavor symmetry gives rise to the following
constraint on the R-matrix,

R = GyRG,. (4.17)
The explicit forms of the R-matrix for all possible values
of Gy and GN are listed in Table IV. We see that there is

PHYSICAL REVIEW D 96, 075005 (2017)

TABLE IV. The explicit form of the R-matrix for different
possible values of Gy and G,. The notation X means that the
solution for the R-matrix does not exist, and D(x, y) with x,y =
+1 refers to diag(e™®, x,y) and diag(x, y, ™) for NO and 10,
respectively. Note that the residual flavor symmetry gives no

constraint on the R-matrix for Gy = —diag(1,1) and
G, =D(-1,-1).

Gy G, R (NO) R (10)
diag(1,-1) D(1,1) X X
diag(1, 1) D(1,-1) (0% +2) (% £z0)
diag(1,-1) D(-1,1) ©176) (0
diag(1,-1) D(-1,-1) X X
diag(—1,1) D(1,1) X X
diag(~1.1) D(1.-1) ©0517%) (£1%5°0)
diag(=1, 1) D(-1.1) 0% L) (% £20)
diag(1,1) D(-1,-1) X X
—diag(1.1) D(1.1) X X
—diag(1,1) D(1,-1) X X
—diag(1.1) D(-1,1) X X

only one nonzero element in each row of the R-matrix;
consequently all the flavored CP asymmetries are zero:

(4.18)

Hence the baryon asymmetry Yz would be generally
vanishing in the 2RHN model with a remnant Z, flavor
symmetry in the neutrino sector. In a concrete model,
one could take into account the nonleading corrections
arising from loop effects and higher dimensional
operators to explain the correct size of matter/antimatter
asymmetry [21].

V. EXAMPLES IN A(6n2) FLAVOR
SYMMETRY AND CP

In Sec. Ill, we have presented the general results for
leptogenesis in the scenario that one residual CP trans-
formation is preserved in the neutrino sector. In order to
show concrete examples, we shall study the case that the
single residual CP transformation arises from the breaking
of the generalized CP symmetry compatible with the
A(6n?) flavor group.

A(6n?) as the flavor symmetry group and the resulting
phenomenological consequence for lepton flavor mixing
have been discussed in the literature [28-30,60]. In the
present work, we shall adopt the conventions and notations
of Ref. [30] for the A(6n%) group. The A(6n?) group is
isomorphic to (Z,, x Z,)xS3, where the index 7 is a generic
integer. The A(6n?) group can be generated by four
generators, a, b, ¢, and d, which obey the following
relations [30,61]:
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a*=b>=(ab)?> =c"=d" =1, cd =dc,
aca”! = c~ld7t, ada™! = ¢, beb™!' =471,

bdb™' = 1. (5.1)

The A(6n?) group has 6n’ elements, which can be
expressed as

g=a’bPc’d,
y,0=0,1,...

a:071727 ﬂ:()’l’
(5.2)

n—1.
The group A(6n2) has one-dimensional, two-dimensional,
three-dimensional, and six-dimensional irreducible repre-
sentations [30,61]. It has been shown that A(6n?) has
2(n—1) three-dimensional irreducible representations
denoted by 3;; in which the explicit form of the four
generators can be chosen as

01 0 0 0 1
3poa=10 0 1], b= (-0 1 0|,
1 00 1 00
7 0 0 1 0 O
c=10 g4t 0], d=10 7 O),
0O 0 1 0 0 g5t

where = e?/"; k=1, 2;and [ = 1,2,...,n— 1. In the
following, without loss of generality, we shall embed
the three generations of left-handed lepton doublets into
the faithful triplet 3, ;, which is denoted by 3 for simplicity,
while the two right-handed neutrinos are assumed to trans-
form as a doublet of A(61%). As has been shown in Ref. [30],
the most general CP transformation consistent with the
A(6n?) flavor symmetry is of the same form as the flavor
symmetry transformation in the basis of Eq. (5.3), i.e.,

X, =pel9), g€ A(6r?),

(5.4)
where p,.(g) denotes the representation matrix of the element
g in the irreducible representation r of the A(6n?) group.
Moreover, we assume that the A(6r?) flavor symmetry is
broken down to an Abelian subgroup G, in the charged lepton
sector and G; is capable of distinguishing among the three
generations of the charged leptons. As a result, the charged
lepton mass matrix is invariant under the action of the
generator g; of Gy,

p_i,(gz)mfmzps(gz) = m;mlv (5.5)
where the charged lepton mass matrix m, is given in the right-
left basis. The matrix p3(g;) can be diagonalized by a unitary
transformation U/,

PHYSICAL REVIEW D 96, 075005 (2017)
di
Ulps(9))U; = p5*(9)). (5.6)

Then Eq. (5.5) implies that U, also diagonalizes the charged

lepton mass matrix mjm,. Notice that U; is uniquely
determined up to permutations and phases of their column
vectors. All possible residual subgroup G, and the corre-
sponding diagonalization matrices U,; are summarized in
Table V, where G, is assumed to be generated by a single
generator. If we further take into account the case that G, is a
product of several cyclic groups, the constraints on the
parameters s and ¢ in Table V would be removed, yet no
new additional form of U is generated [62]. In the neutrino
sector, a single remnant CP transformation X, is preserved by
the neutrino mass matrix such that the neutrino mixing matrix
U, is of the form of Eq. (3.13), as shown in Sec. III. Hence the
lepton mixing matrix is determined to be given by

- Al
U=PU 055X, (5.7)
where P; is a generic 3 x 3 permutation matrix since the
charged lepton masses cannot be predicted in this approach.
One can straightforwardly check that two pairs of subgroups
{G,,X,} and {G}, X/,} would yield the same results for the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix
[34], if they are related by a similarity transformation €2,

p3(g;) = Qp3(gl)g+’ Xi/ = QXUQTv (58)
where ¢, and ¢, denote the generator of G, and G,
respectively. Moreover generally, we denote the mixing
matrices predicted by two generic residual symmetries
{G;.X,} and {G, X} } as

at . ol
U=PU%,0:.:%° U=PUL0,.X° (59
The condition under which U and U’ essentially lead to the
same mixing pattern is found to be [34]
3T =, P YYTPTQ,, (5.10)
where T=U]Y,, ¥ =U'|%,, P, =PIP), and Q, is a
diagonal phase matrix. As stated above, we assume that the
concerned A(6n?) flavor group and CP symmetry are broken
to an Abelian subgroup in the charged lepton sector and to a

single remnant CP transformation X, in the neutrino sector.
Thus X, has to be a symmetric unitary matrix and it can be

X, = /)3(dey)’
pa(a’be™dr),

p3(bc*d™),
x,y=0,1,...

pa(abe*d™),

n—1, (5.11)

which are related to each other by a similarity transformation
as follows:
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TABLE V. The unitary transformation U; for the possible
remnant subgroup G,. Here the notation (g) denotes a group
generated by the element g. The allowed values of the parameters
sandrares,r=0,1,...,n— 1,and @ = ¢**/3 is the cube root of
the unit. Note that the identity (ac’d™*)? = a’c*d" is fulfilled;
consequently the unitary matrix U, for G; = (a*c*d") can be
obtained from the corresponding one of G; = (ac*d") through the
replacement s — ¢ and ¢ — ¢ — 5. The constraints on the param-
eters s and ¢ are to eliminate the degeneracy among the
eigenvalues of the generator of G;, and they can be completely
relaxed by extending G, to be the direct product of several cyclic
groups [62].

G, U, Constraints
(c*d') 1 00 s+1#0
010 mod (n)
0 0 1 s=2t#0
mod (n)
t—2s#0
mod (n)
<bcsdt> ! e—iﬂ% 0 e—ilr‘z—tl' s—1 ?é 0,%(,?
— 0 v2 0 mod (n
\/E _eiﬂ% 0 ein%
(ac*d") | o207 2 e=2im 4 o=2in
| e2im pe2im @le~2im;
V3
1 1 1
(a*c*d") . o=2int o2 p=2int oo p=2ink
. eZin? weZiﬂ"n;’ wZeZiﬂSn;’
V3
1 1 1
{abc*d") . P i () 1#0,4.%
_ _e—iﬂ‘g—fl" e—in% 0
V2
0 0 V2
<a2bcsd[> 1 \/E O , 0 , N #03%323_’1
. 0 em% eiﬂ‘g—”’
\/i 0 _e—in% e—iﬂ%
p3(b)pa(be*d™)p5(b) = p3(bcd™),

pa(@)p3(berd)pi(a®) = ps(abc*d™),
p(ad)py(be*d )l (ad) = py(@bd).  (5.12)

Hence it is sufficient to consider the choices of X, = p3(c*d”)
and X, = p3(bc*d™) with x,y =0,1,...,n — 1. The cor-
responding Takagi factorization matrix can be read out as

X, = p3(cxdy)’

(y—x)mi

5, = diag(eF, e, e ), (5.13)
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0 —ieT oo
X, =py(bctd™),  T,=[V2e 0 0
0 ien  en

(5.14)

Furthermore taking into account the following conjugate
relations,

b(abc*d")b™' = a*bc™'d~*,
pa(b)pa(c*d)py(b) = p3(c™d™),
p3(b)ps(betd™)pi(b) = p3(bc*d™), (5.15)

we only need to consider eight possible remnant symmetries
constituted by G, = (c*d"), (bc*d"), {(ac*d"), (abc*d") and
X, = p3(c*d”), X, = p3(bc*d™). In this section, we shall
investigate the predictions for lepton flavor mixing and
matter-antimatter asymmetry via leptogenesis for each pos-
sible case. The explicit form of the lepton mixing matrix and
the expressions of the mixing parameters and rephasing
bilinear invariants are given in Appendix C.

For the first case, the lepton mixing matrix is given
by Eq. (C1), and both Dirac and Majorana CP violation
phases are trivial. The CP asymmetries ¢, are found to be
vanishing; therefore nonzero baryon asymmetry cannot
be generated, although the experimental data on lepton
mixing angles can be accommodated. Freely varying the
parameters 0, , 3 and requiring the three mixing angles in
the experimentally preferred 3¢ ranges [4], we find that the
effective Majorana neutrino mass m,, takes values in the
following intervals,

NO: 0.000717 eV <m,, <0.00219 eV and

ee —

0.00308 eV < m,, < 0.00449 eV,
10:0.0130 eV < m,, <0.0227 eV and

ee —

0.0471 eV < m,, <0.0478 eV. (5.16)

Here the two different regimes for both NO and 10 arise
from the CP parity matrix X,. In other words, the CP
parities of the two massive light neutrinos can be identical
or opposite, and accordingly two distinct values of m,, are
obtained.

The second kind of residual symmetry gives rise to the
lepton mixing pattern of Eq. (C6). Three independent
mixing patterns can be obtained from the six row permu-
tations, yet only the mixing matrix U3 is viable.
Equation (C9) indicates that both the Dirac CP phase ¢
and the atmospheric mixing angle #,; are maximal, while
the values of 0, and 6,5 are not constrained for the mixing
matrix Uy, 5. The best fitting values (sin? 8,3)*" = 0.0234
[(sin? 0;3)°" = 0.0240] and (sin?0),)"" = 0.308 [4] for
NO (IO) can be reproduced for certain values of the

075005-15



CAI-CHANG LI and GUI-JUN DING

parameters 6,3, as shown in Table VI. Since the lepton
mixing angles in Eq. (C9) are invariant under the trans-
formations (62,93) d (7[—02,93), (62, 93) d (92, T — 93),
and (0,,0;) - (z — 0,, & — 65), four best fitting values for
0, 5 can be found. Recently T2K and NOvA have reported a
slight preference for & close to 37/2, while maximal 6,5 is

TABLE VI

PHYSICAL REVIEW D 96, 075005 (2017)

favored by T2K and disfavored by NOvA [9-13]. T2K
and NOvA are expected to be able to exclude maximal 6,5
at a 90% confidence level after their full period of data
taking. These two experiments can also contribute to the
measurement of the Dirac phase 9, if running in both the
neutrino and the antineutrino modes. They can possibly

Results of the y? analysis for some representative mixing patterns which arise from the breaking of the A(6r2) flavor

group and CP to an Abelian subgroup in the charged lepton sector and a single remnant CP transformation in the neutrino sector. The y?
function has a global minimum 2. at the best fit values 5, 65, and 65 for 6, ,, and 0;. We display the values of the mixing angles as
well as | sin 8| and | sin | at the given 68", ;. We also present the value of the effective Majorana neutrino mass m,, at the best fit points

9‘1’23. Notice that m,, can take two distinct values due to the CP parity matrix X,.

0; G?f/ﬂ Hgf/n' 9§f/ﬂ' }(fnin

Sin2 613

sin>@;, sin’0,; |sind| |sing] m,,/eV

Unrs NO 0.049 0.187
0.813
0.187

0.813

0.187
0.813
0.187
0.813

0.614
0.977
0.386
0.023

0.606
0.968
0.394
0.032

0.611
0.974
0.389
0.026

0.610
0.973
0.390
0.027

0.306 0
0.681
0.319
0.694
0.035
0.409
0.591
0.965

0.308
0.683
0.317
0.692
0.356
0.981
0.019
0.644

3.645

0.951

10 0.050

0.105
0.950

Unia NO 0322 0.155 27.205

5
I
ENS

0.678 0.845

I0 0340 0.143 2.143

0.660 0.857

NO 0.329 0.150 7.674

i~
—
I
[oE]

U111.2

0.671 0.850

I0 0331 0.149 7.281

0.669 0.851

NO 0.049 0.040

WIS

Uiz Q1 =

0.951 0.960

0.281 0.437

0.719 0.563

I0 0.050 0.028

0.950 0.972
0.334 0.443

0.666 0.557

0.0234

0.0295

0.0251

0.0278

0.0274

0.0234

0.308 0.5 1 0 0.00377 or 0.00145

0.0475 or 0.0179
0.024

0.308  0.577 0985 0.253 0.00162 or 0.00389

0.641 0983 0.789  0.0433 or 0.0263

0.308  0.398 0.984 0.829 0.00168 or 0.00381

0.393 0984 0.773  0.0434 or 0.0259

0.308  0.437 0.873 0.852 0.00377 or 0.00145

0.024 0.455 0.870 0 0.0475 or 0.0179

(Table continued)
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TABLE V1. (Continued)
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0; O n B n K m 2, sin?03 sin?@, sin’6y; |[sind| |sing) m,,/eV
Uy, 03=0,04,=% NO 0454 0.694 0.028 3.327 0.0233 0339 0433 0931 0.072 0.00210 or 0.00385
0.468 0.808
I0 0465 0.692 0.021 3.599 0.0238 0.340 0.449 0.961 0 0.0149 or 0.0475
0.476 0.809
Uy, 03=0,04=% NO 0448 0.684 0.017 0 0.0234  0.308 0.437 0.899 0.929 0.00153 or 0.00374
0.746 0.703 0.848 0.00366 or 0.00173
0.465 0.798 0.003 0.984 0.892 0.00274 or 0.00298
0.740 0.097 0.999 0.00259 or 0.00310
10 0463 0.684 0.004 0.024 0.455 0936 0.826 0.0272 or 0.0428
0.736 0.623
0.475 0.803 0.731 0.191 0.806 0.0267 or 0.0431
0.995 0.997
Uy, 05 =13 NO 0.530 0.075 0.487 0.854 0.0235 0.323 0.448 0.894 0.016 0.00355 or 0.00226
0.925
I0 0508 0.086 0496 0.349 0.0240 0.317 0.487 0.994 0 0.0170 or 0.0475
0914
Uy NO 1 0.862 0.106 18.549 0.0244 0.308 0.578 0.667 0.580 0.00228 or 0.00337
0.894
0 0.138 0.106
0.894
10 1 0.861 0.106 0.794  0.024 0.579 0.668 0.616 0.0229 or 0.0453
0.894
0 0.139 0.106
0.894
Uviro NO 1 0.861 0.106 0.537 0.0236  0.308 0.420 0.389 0.616 0.00228 or 0.00334
0.894
0 0.139 0.106
0.894
10 0 0.138 0.894 1.182 0.0242 0422 0.667 0.615 0.0229 or 0.0453
0.106
1 0.862 0.894
0.106

exclude certain ranges of 9, especially the values around
6 = +n/2, depending on 6,3 and the neutrino mass
hierarchy. Future long-baseline experiments DUNE [63],
T2HK [64], and T2HKK [65] will allow for a measurement
of the Dirac phase and atmospheric mixing angle with
significantly improved sensitivities and thus can fully test
the maximal-maximal predictions. Note that the next-
generation neutrino experiments [63,64] are capable of
testing the predictions for maximal § and 6,5. Furthermore,
we plot the numerical results of the baryon asymmetry Yp
with respect to the free parameter 9 in Fig. 5, where the
parameters 0 , 3 are set to their best fit values. Obviously
the observed matter-antimatter asymmetry in the Universe
can be obtained for particular values of J except the cases
of NO:R-3rd and IO:R-1st. This conclusion is consistent
with the general results of Sec. III. In addition, the allowed
regions of the effective Majorana mass m,, are found to be

the same as case I, and they are given in Eq. (5.16). The
reason is because m,, is independent of 6,3, as shown in
Eq. (3.22). We also present the value of m,, at the best
fitting points &Y, ; in Table VI.

For case III, three independent lepton mixing patterns
can be obtained as shown in Eq. (C16). The predictions of
the mixing parameters for mixing matrix U, ; are given in
Eq. (C17). The parameter value of ¢; =0 is always
admissible, and the resulting lepton mixing matrix is the
same as U, if the possible shifts in @, ,; are taken into
account. Consequently the lepton mixing angles in the
experimentally preferred range can be achieved for appro-
priate choices of the parameters 6,,;. However, both
Dirac phase 6 and Majorana phase ¢ would be determined
to be trivial, such that successful leptogenesis cannot be
achieved. The smallest value of the index n which is
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FIG. 5.

S/n r

Yg/Y j’}’s as a function of the parameter 9 in case II, where we choose the RH neutrino mass M; = 5 x 10'! GeV. The red solid,

green dashed-dotted, blue dotted, and black dashed lines correspond to the four best fitting points as shown in Table VI. The horizontal
red dashed line represents the experimental measured value Y. The neutrino mass spectrum is NO and IO in the first row and
the second row, respectively. The panels in the left, middle, and right columns are for the three admissible forms of the R-matrix such as

R-1st, R-2nd, and R-3rd, respectively.

capable of accommodating the experimental data and
nontrivial CP violating phases is n = 6, with ¢; = 7/6
up to the symmetry transformations shown in Eq. (C14).
Please see Table VI for the corresponding results of the y?
analysis. We notice that the atmospheric mixing angle
deviates from maximal mixing with sin®@,; = 0.577
(0.641) for NO (I0) at the best fit point where the y?
function reaches a global minimum, and the Dirac CP
phase is approximately maximal with |sind| = 0.985
(0.983). This result is consistent with the weak evidence
of maximal Dirac CP violation reported by T2K [9-11]
and NOvA [12,13] and global data fitting [4-8], and it can
be tested in forthcoming neutrino oscillation experiments
[63-65]. The numerical results of Y5 versus d for ¢ = 7/6
are shown in Fig. 6. We see that the correct value of the
baryon asymmetry can be obtained for particular values
of 9 except in the case of R-3rd with the NO spectrum and
R-1st with the IO. Moreover, we find that the effective mass
m,, varies in the intervals,

NO: 0.000723 eV < m,, <0.00449 eV,
10: 0.0223 eV < m,, <£0.0297 eV and

ee —

0.0430 eV < m,, <0.0436 V.

ee —

(5.17)

The mixing parameters for U, , are given by Eq. (C19).
As shown in Table VI, agreement with the experimental

data can be achieved for both ¢; =0 and ¢, = n/6. The
CP asymmetries fulfill ¢, = ¢, = 0 in this case; therefore
the baryon asymmetry Yp is predicted to be zero.
Regarding the third mixing pattern Uy, 3, the expressions
of mixing parameters and the rephase invariants are shown
in Egs. (C21) and (C22), respectively. For the smallest
group index n = 2, the parameter ¢, can be either O or z/2.
We find that the experimental data on lepton mixing angles
can be accommodated well for both ¢; = 0 and ¢; = #/2.
The mixing pattern U3 with ¢; = 0 is equivalent to U,
in Eq. (C1), the Dirac as well as Majorana CP phases
are trivial, and consequently a nonzero baryon asymmetry
cannot be generated. The mixing matrix U, 5 for ¢ = z/2
is related to Uy, 5 as follows:

Uniz(er = 7/2,0,.0,,03) = Uyp5(0,.65.05),  (5.18)
where 6,5 are defined through 053(6,,6),65) =
P23103><3 (91, 62, 93) Hence U111’3 with 01 = 71'/2 and
U lead to the same predictions for lepton mixing
parameters and Y. Furthermore, the new mixing pattern
can be obtained from the A(6-3%) = A(54) group for
01 = n/3. Note that ¢, = 2z/3 leads to the same mixing
matrix as ¢; = x/3 after the shift of 0, , ; is considered. As
shown in Table VI, the best fit values [4] of the three mixing
angles can be achieved for certain values of the parameters
0, » 3. The corresponding predictions for Y as a function of
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FIG. 6.

¢/ b

Y/ Y$ as a function of the parameter § for the mixing pattern U 1111 With o) = 7/6, where we choose the RH neutrino mass

M, =5 x 10'"" GeV. The red solid, green dashed-dotted, blue dotted, and black dashed lines correspond to the four best fitting points as
shown in Table V1. The horizontal red dashed line represents the experimental measured value Y. The neutrino mass spectrum is NO
and IO in the first row and the second row, respectively. The panels in the left, middle, and right columns are for the three admissible
forms of the R-matrix such as R-1st, R-2nd, and R-3rd, respectively.

& are plotted in Fig. 7. The observed matter-antimatter
asymmetry could be reproduced except for the cases of NO:
R-3rd and IO:R-1st. Furthermore, we obtain the effective
mass m,, of the Oyff decay is

NO: 0.000717 eV < m,, <£0.00219 ¢V and
0.00308 eV < m,, < 0.00449 eV,
I0: 0.0130 eV < m,, £0.0227 eV and

0.0471 eV < m,, < 0.0478 eV. (5.19)

For case 1V, the resulting lepton mixing matrix U,y is
equivalent to U;. Hence we get the same predictions for
lepton flavor mixing, Ovff decay, and leptogenesis as those
of case L.

Similarly three mixing matrices can be obtained in
case V. For the mixing matrix Uy, the results of the
mixing parameters are given by Eq. (C32), the CP
invariants I{, and I{, are shown in Eq. (C33). For the
smallest A(6n°) group with n = 2, the values of o3 and ¢4
can be 0 and z/2 in the fundamental interval. Utilizing
the equivalence condition of Eq. (5.10), we find two
independent mixing patterns with @3 =94 =0 and
03 = 0,04 = /2. Moreover, the mixing matrix Uy ; for
03 = 04 = 0 is the same as Uy, 5 if the possible shifts of
0,5 are considered. In the case of ¢3 = 0 and ¢4 = 7/2,

the results of the y? analysis are summarized in Table VI,
and the predictions for Yy are plotted in Fig. 8. The
effective Majorana neutrino mass m,, is determined to take
values in the intervals

NO: 0.00143 eV < m,, <0.00449 eV,
10: 0.0144 eV < m,, <0.0161 eV and

0.0464 eV < m,, <0.0478 eV. (5.20)
For the flavor group A(6 - 3%) = A(54), the possible values
of ¢3 and @4 are 0, z/3, and 27/3. We can obtain three
phenomenologically viable mixing patterns corresponding
to (03,04) = (0,0), (0,7/3), (0,27/3). Note that Uy, for
(03,04) = (0,27/3) is equivalent to the complex conjugate
of Uy with (3,04) = (0,7/3). The best fit values of the
three lepton mixing angles can be reproduced for particular
values of 6,5 in the case of (¢3,04) = (0,7/3), the
resulting predictions for CP violation phases are listed
in Table VI, and the variation of Y with respect to 9 is
plotted in Fig. 9. In addition, we find that the effective mass
Mg, 18

NO: 0.000717 eV < m,, <0.00449 eV,

10: 0.0264 eV < m,, < 0.0285 eV and

0.0399 eV < m,, < 0.0455 eV. (5.21)
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and brown dashed lines correspond to the eight best fitting points as shown in Table VI. The horizontal red dashed line represents the
experimental measured value Y. The neutrino mass spectrum is NO and IO in the first row and the second row, respectively. The
panels in the left, middle, and right columns are for the three admissible forms of the R-matrix such as R-1st, R-2nd, and R-3rd,
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Table VI. The horizontal red dashed line represents the experimental measured value Y$. The neutrino mass spectrum is NO and IO in
the first row and the second row, respectively. The panels in the left, middle, and right columns are for the three admissible forms of the
R-matrix such as R-1st, R-2nd, and R-3rd, respectively.
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FIG. 9.

Y/Y9 as a function of the parameter § for the mixing pattern Uy ; with g3 = 0 and ¢4 = 7/3, where we choose the RH

neutrino mass M; = 5 x 10" GeV. The red solid, green dashed-dotted, blue dotted, and black dashed lines correspond to the four best
fitting points as shown in Table VI. The horizontal red dashed line represents the experimental measured value Y$. The neutrino mass
spectrum is NO and IO in the first row and the second row, respectively. The panels in the left, middle, and right columns are for the three
admissible forms of the R-matrix such as R-1st, R-2nd, and R-3rd, respectively.

The other two mixing matrices Uy, and Uy; cannot
accommodate the experimental data on the lepton mixing
angles for n = 2, and they give rise to the same mixing
patterns as Uy ; in the case of n = 3.

The symmetry breaking pattern in case VI leads to only
one independent mixing matrix, which is given in
Eq. (C35). The predictions for the mixing parameters
and the rephasing invariants are reported in Egs. (C40)
and (C41), respectively. For the A(6-2%) xS, flavor
group, the value of ¢s is either O or /2 in the fundamental
region. Notice that Uy; for ¢s = 0 is equivalent to Uj,.
Hence the three lepton mixing angles are not subject to any
constraint, and the Dirac as well as Majorana CP phases are
trivial. The results of the y* analysis for g5 = /2 are
collected in Table VI. We display the variation of Y5 with
respect to J in Fig. 10. The observed baryon asymmetry can
be generated for certain values of 9 except in the case of
NO:R-3rd and IO:R-1st. Moreover, we find the effective
Majorana neutrino mass m,, is in the intervals

NO:0.00117 eV < m,, < 0.00449 eV,
10:0.0144 eV < m,, <0.0174 eV and
0.0458 eV < m,, < 0.0478 eV.

ee —

(5.22)

As shown in Appendix C, case VII leads to the same
predictions for lepton mixing, neutrinoless double

decay, and matter/antimatter asymmetry via leptogenesis
as case III.

At the end of this section, we proceed to discuss the last
case, case VIII. After considering all possible row permu-
tations, we can obtain three independent mixing matrices,
which are given by Eq. (C46). The mixing parameters and
CP invariants for the mixing pattern Uvyyy ; are summarized
in Egs. (C48) and (C49), respectively. Our numerical
results for this case are summarized in Table VI, and the
variation of Y as a function of § is shown in Fig. 11. From
the expressions of the CP asymmetry €, and the washout
mass m,, we can see that the final baryon asymmetry Yp
has the following symmetry properties:

YB(S’Gl =7, 92’93)
= —YB(lg,gl =T, 92,77.' - 93)
= YB(_'9191 = 0,77 - 92,93)

= —Yy(=9.0, =0, —0,,m—0;), for NO, (5.23)
YB(19,91 =T, 92,93)

= —YB(—19,91 =T, 92,71' - 93)

= YB(19,91 = 0,71'—62,63)

= —YB(—19,91 = 0,71' - 62,71' - 63), for IO. (524)
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FIG. 11. Yp/Y%* as a function of the parameter 9 for the mixing pattern Uyyy;, where we choose the RH neutrino mass
M, =5 x 10'"! GeV. The red solid, green dashed-dotted, blue dotted, and black dashed lines correspond to the four best fitting points as
shown in Table VI. The horizontal red dashed line represents the experimental measured value Y. The neutrino mass spectrum is NO
and IO in the first row and the second row, respectively. The panels in the left, middle, and right columns are for the three admissible
forms of the R-matrix such as R-1st, R-2nd, and R-3rd, respectively.
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FIG. 12.

Y5/Y$S as a function of the parameter § for the mixing pattern Uyyp,, where we choose the RH neutrino mass

M, =5 x 10'"" GeV. The red solid, green dashed-dotted, blue dotted, and black dashed lines correspond to the four best fitting points as
shown in Table V1. The horizontal red dashed line represents the experimental measured value Y. The neutrino mass spectrum is NO
and IO in the first row and the second row, respectively. The panels in the left, middle, and right columns are for the three admissible
forms of the R-matrix such as R-1st, R-2nd, and R-3rd, respectively.

Thus the coincidence of two pairs of curves in the 10 case
can be easily understood from Eq. (5.24). The second
mixing matrix Uyyy, is related to Uyyy, through the
exchange of the second and third rows. Therefore they
lead to the same reactor and solar mixing angles, while the
atmospheric angle changes from 6,5 to 7/2 — 6,3 and the
Dirac phase changes from 6 to z + 6. The corresponding
results of the y? analysis are listed in Table VI, and the
predictions for the matter-antimatter asymmetry Y are
displayed in Fig. 12. Uyyp, and Uyp, give the same
prediction for the effective mass m,, as follows:

NO: 0.000717 eV < m,, < 0.00449 eV,
10: 0.0226 eV < m,, < 0.0256 eV and

0.0417 eV < m,, <0.0475 eV. (5.25)
Lastly, the third mixing matrix Uy cannot describe the
measured values of 0,3 and 6, simultaneously because of
the sum rule shown in Eq. (C52).

The above predicted lepton mixing patterns can be tested
in various ways. The upcoming reactor neutrino oscillation
experiments such as JUNO [66] will be able to make very
precise subpercent measurements of the solar mixing
angle 8,,. The current experiments T2K and NOvA have
the potential to exclude maximal 6,; and maximal Dirac
phase 6. The next generation of long-baseline experiments

DUNE [63], T2HK [64], and T2HKK [65] will be able to
place important constraints on the parameters 6,3 and &;
in particular the sensitivity to the CP phase 6 would be
improved significantly. In short, future neutrino facilities
would be able to improve our knowledge of the mixing
parameters in a number of ways. This could allow many of
the presented mixing patterns to be excluded. Moreover,
forthcoming Ovff experiments are expected to probe the full
region of parameter space associated with the IO neutrino
mass spectrum. Thus all our models for the IO mass
spectrum can be tested independently of oscillation physics.

VI. CONCLUSIONS

The smallness of neutrino masses can be naturally
explained by the seesaw mechanism in which two or three
RH neutrinos are added in the SM. The 2RHN model can
be regarded as the limiting case of the three RH neutrino
model in which one of the RH neutrinos is very heavy. The
2RHN model is more predictive than the three RH neutrino
model because the number of parameters is greatly
reduced. One remarkable feature is that the lightest neutrino
is massless in the 2RHN model. Leptogenesis is a natural
cosmological consequence of the seesaw mechanism, and it
provides a simple explanation for the matter-antimatter
asymmetry of the Universe.

Finite discrete flavor symmetry and CP symmetry,
which are broken to distinct subgroups in the charged
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lepton and neutrino sectors, are a quite powerful approach
to explain the lepton mixing angles and CP violation
phases. Other phenomena involving CP phases, such as
neutrinoless double beta decay and leptogenesis, are also
subject to strong constraints in this approach. In the present
work, we study the interplay between residual symmetry
and leptogenesis in the 2RHN model, and we assume that
the scale of flavor symmetry breaking is above the lepto-
genesis scale. In our method, only the residual symmetry is
assumed, and we do not need to consider the possible
dynamics which realizes the residual symmetry.

Without loss of generality we work in the basis in which
both the charged lepton and RH neutrino mass matrices are
diagonal. If two residual CP transformations or a cyclic
residual flavor symmetry arising from the original flavor
and CP symmetries are preserved by the seesaw
Lagrangian, we find that each row of the R-matrix would
have only one nonzero entry, which is equal to 1. Hence
the baryon asymmetry would be zero at leading order.
Successful leptogenesis is possible only if the remnant
symmetry is appropriately broken by subleading order
contributions in concrete models [21].

If a single residual CP transformation is preserved in the
neutrino sector, then the lepton mixing matrix contains
three real free parameters 6 , 3 in the range of [0, ), the R-
matrix is found to depend on only one real parameter 9, and
it can take three viable forms as summarized in Eq. (3.9).
Each entry of the R-matrix is real or purely imaginary in
this case; consequently the total CP asymmetry e, vanishes
unless the nonleading contributions are taken into account
in a concrete model. Hence in this paper we discuss the
flavored thermal leptogenesis in which the interactions
mediated by the 7 lepton Yukawa couplings are in equi-
librium, and the lightest RH neutrino mass is typically in
the interval of 10° GeV < M, < 10'> GeV. Then the
baryon asymmetry is generated uniquely by the CP phases
in the PMNS mixing matrix in this scenario. Therefore the
observation of low energy leptonic CP violating phases
would imply the existence of a baryon asymmetry.
Moreover, we have performed a general analysis of lepto-
genesis in the 2RHN model with a residual CP trans-
formation. For illustration, the numerical results of Yp for
6 =0,—n/2 are presented, as shown in Figs. 1, 2, and 3.

We have performed a comprehensive study in which the
single remnant CP transformation originates from the CP
symmetry compatible with the A(6n?) flavor group, which
is broken to an Abelian subgroup in the charged lepton
sector. All possible residual symmetries and the resulting
predictions for lepton flavor mixing and leptogenesis are
studied. We find there are in total eight possible cases (from
case I to case VIII). Cases I and IV give rise to the same
lepton mixing pattern and the same results for leptogenesis.
Cases III and VII are also the same after the shift of the free
parameters 0 ; ; is taken into account. The PMNS matrix in
cases I and IV is real up to the CP parity of the neutrino
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states. As a consequence, although the experimental data
on mixing angles can be accommodated in these cases, all
the leptogenesis CP asymmetries are vanishing and a net
baryon asymmetry cannot be generated without correc-
tions. For the remaining cases, the observed matter/anti-
matter asymmetry could be reproduced except for R-3rd
with a NO spectrum and R-1st with an IO spectrum.
Moreover, we find that the small A(6n?) group (e.g., n = 2,
3, 4, etc.) can describe the experimentally measured values
of the mixing angles for certain choices of the parameter
values. Our approach is very general and model indepen-
dent, and the results of this paper should be helpful to
discuss the phenomenology of leptogenesis in a specific
2RHN model based on flavor and CP symmetries.
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APPENDIX A: BASIS INDEPENDENCE

In this paper, we have worked in the leptogenesis basis in
which both the charged lepton mass matrix and the RH
neutrino mass matrix are diagonal. However, the conclu-
sions of this paper do not depend on the basis. In a large
class of models, the charged lepton mass matrix is diagonal,
while the RH neutrino mass matrix is not diagonal. Then
the Lagrangian for the lepton masses is written as

LmOd = _yal_'aHlaR —_ /I?&OdNiRI:ITLa

1 _
— 5 Mi*NigNjg + He., (A1)

where M?;"d is a complex symmetric 2 x 2 matrix, and it
can be diagonalized by a unitary transformation Uy,

UyM™ U = diag(M{, M,) = M. (A2)
Similar to Sec. III, we consider the scenario that the
neutrino sector preserves one CP transformation, i.e.,
CP CP _
v —>iX,yoCot, Ng—>iXyyoCNE, (A3)
where the CP transformation matrix X is not diagonal for
nondiagonal M™°4, The invariance of A™°¢ and M™°¢ under
the above residual CP transformation implies

X}V/ImOdXU _ (/Imod)*’ vaMmodX}k\, _ (Mmod)*‘ (A4)
Inserting Eq. (A2) into Eq. (A4) we obtain
ULX Uy = diag(+1,+1) = Xy. (A5)

In the leptogenesis basis, the neutrino Yukawa coupling 4
takes the form
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A= Ul amd, (A6)
From Eqgs. (A4)-(A6) we can check that 4 and M are
subject to the following constraint,

XiMXy = M, (A7)
which exactly coincides with Eq. (3.2). Therefore the same

predictions for leptogenesis are obtained as in Sec. III, and
the results do not change with the working basis.

(i) R-lst

PHYSICAL REVIEW D 96, 075005 (2017)

APPENDIX B: GENERAL RESULTS
OF ¢, AND 7,

In this Appendix we shall present the explicit expres-
sions of the CP asymmetry parameter €, and the washout
mass 1, for the three viable forms of the R-matrix shown in
Eq. (3.9). Here we shall perform a general analysis, and the
lepton mixing matrix is parametrized in the standard
convention of Eq. (3.20).

In this case, the CP asymmetry parameter €, for the NO case is given by

3M,
€, =
16702
3M,
€, = —
H 16702
3M,
€6 =———
167v

Wnoc€13523 [512513523 sin <5 + 5) — €203 8in —} >

. ¢ ¢
5 Wroci13¢23 [S12313023 sin (5 + 5 ) T Cnsssiny,

WN0512C]3S13 sin (5 "‘%) s

2

! (B1)

where the expression of Wy has been listed in Table II. It is easy to check that the identity ¢, + €, + ¢, = 0 is
fulfilled. Notice that the CP asymmetry ¢, is closely related to the lower energy CP phases. If both the Dirac phase o
and the Majorana phase ¢ are trivially zero, all the asymmetry parameters €,, €,, and €, would be vanishing such that
a nonzero baryon asymmetry cannot be generated. The washout mass m, for NO takes the form

~ i o
i, = |\/mys5¢13€2 cos 9 + E\/mys13e ¥ sin 9 2,

my, = |/my(ciac3 — S12513523€%)e? o8 & + &/t 3553 sin 9|,

- s\ ip )
m; = |vm2(012323 + 312S13023€’§>e2 cos & — &\/msci3cp3 sind|”. (B2)
In the same manner, we find that €, for the IO spectrum is
3M, ¢
€, =— WioCir815C2, sin—,
e 1671'1)2 10¢12912¢13 )
-3M, . ¢ . ¢ . ¢
=g Wio {s13c23523 <c%2 sin <5 ) + s3,sin( 6 + 5)) - c12812(¢35 — s14533) sin .
3M, ¢ ¢ ¢
€, = Wio | $13¢23823 | €2, sin{ 6 —= | + s2,sin{ 6 += | | + ¢12812(53; — $2.¢2;) sin— B3
= Tono? IO|: 13€23 23( 12 < 7 12 7 12512(5%3 13€33) 3 (B3)
and for the washout mass m, we get
I’;’le = C%3|\/m1C12 COS(9 =+ f,/mzslze% Sil’l1.9 2,
- . s\ i . o)
m, = |v/mi (512023 + C12513523€") cos § — &v/my(cipc3 — S12813523€) ez sin 9|°,
_ ) o i L0
i, = |\/mi(s12523 — C12S13023el5) cos d — &\/my(c12823 + 512313023815)62 sin 9", (B4)

We see that both ¢, and 1, depend on the CP violating phases &, ¢ and the free parameter 9.
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(i) R-2nd
In this case, ¢, for NO is found to be

M &
€, = ——12 WN0S12C13S13 COS <5 + 5) s

167v
3M, ¢ ¢
€, = — 167[1}2 WNOCI3S23 |:C|2C23 COSE — 512513823 COS (5 + E s
M
€ = ~—3 WnoC13¢23 | €129 cos? + S12813¢03 cos| 6+ 1. (B5)
167 2 2

The washout mass m, is of the following form:

m, = |\/m2S12€13€i7¢ cosh @ — i&\/mzs 37" sinh8|2,

; ip . .
|\/m2(C12023 - S12313S23616>€’7 coshd — lf\/m3C13S23 sinh 9 2

’

m, =

r — |\/M2(C12S23 =+ S12S13C23€i5)€%¢ COSh19 + l.fs/m3C13C23 Sil’lh 19|2 (B6)

m
Similarly for the IO mass spectrum, we have

3M,
16702

W10C12S12C%3 COSE,
M
€, = L W {513023&3 <c%2 cos <5 - %) — 5%, cos (5 + %)) + c12812(c35 — s33533) cos %] \

€, = —

T e

16707 Wio [SBCBSB <c%2 cos <5 B 2) — s, cos (5 )t C12812(573633 = 533) cos .

€, =

and
2
9’

5 : 0 .
m, C%3|vm1€12 coshd — lgx/mzslze% sinh 9
” 1 . . i .

iy, = |/ ($12¢03 + €12813523€™) cosh & + i&\/my (c1p¢03 — S12513523€™)e7 sinh &

¢ = [y/mi(s12523 — c1a813¢23€”) cosh § 4 i&\/my (1253 + 512313023ei5)€% sinh 9.

2
’

m

(iii) R-3rd
In the case of NO, we find that the flavored CP asymmetry €, is

662%WN0S12C13S13COS 5+? s
1670? 2

3M p 5
= Tﬂ'vlz Wio€13523 [612623 COSE — 512513523 COS <5 + §>:| ,
o+ Qﬂ : (BY)

My, o
- NOC13€C23 | C12523 COS — §12513C»3 COS
1672 NOTI3T2 3 2 302 2

€ =
It is easy to check that the equality €, = ¢, + €, = —e, is satisfied. The washout mass m, takes the form

m, = |i\/m2s12c13ei2£ sinh 8 + &\/m3s13¢~ cosh 97,

ﬁ’lﬂ = |l.\/m2(C12C23 — 5125135'23@[6)6% sinh & + 5\/m3C13S23 COSh19|2,
ﬂ’lr = |i\/m2(c12s23 =+ S12S13C23€i5)€%¢ Sil’lhtg - 5\/M3C13C23 COSh 1.9|2 (BIO)
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For the IO case, we can read out ¢, as

3M, i
€ = 16m12 Wioc12812¢713 cos
€, = 167:1)5 Wio <S13023s23 <c%2 cos <5 - 2> — 53, cos <5 + 2>> + c1812(c3y — s33533) cos3 |,
= 167r1j2 Wio <S13623523 (C%2 cos (5 - 5) — 51, cos (5 + 5)) — c12812(833 — 513¢33) cosy |- (B11)

Furthermore the washout mass 7, for 10 turns out to be

i, = ch|iy/mici; sinh 9 + N

- . . 5\ it
i, = |iy/my(s12¢3 + c1p813503€°) sinh & — &\ /my (c1ac03 — 5125135237 €? cosh § g

1’7’!1 = |i\/m1 (S12S23 - C12S13C'23€i§) sinh § — 6\/"12(6‘125‘23 + S12S13C23€i5)€%/J cosh 19|2 (B12)

|
APPENDIX C: LEPTON MIXING PATTERNS Consequently the Dirac CP phase ¢ is either O or z.
AND LEPTOGENESIS FROM A (6n%) AND CP Moreover, we can easily check that both the rephase

invariants 15, Ify and the CP asymmetry €, in

As shown in Sec. V, it is sufficient to consider only leptogenesis are vanishing as well:

eight possible residual symmetries in the scenario that the
discrete flavor group A(6n%) and CP symmetry are broken
down to an Abelian subgroup G; in the charged lepton I{o=1{g =€, =0. (C3)
sector and to a single remnant CP transformation X, in the
neutrino sector. In the following, we shall investigate the
predictions for lepton flavor mixing and matter-antimatter
asymmetry via leptogenesis in each possible case.
D G, = (c*d"), X, = p3(c*d)
From Table V and Eq. (5.13) we find that the
lepton mixing matrix is given by

Therefore a net baryon asymmetry cannot be gen-
erated in this case, and moderate subleading correc-
tions are necessary in order to make the leptogenesis
viable.
() G, = (c*d"), X, = p3(bc*d™)
In this case, the PMNS mixing matrix is deter-
mined to be of the form

U = P 03,3(61,0,,605) X2, (C1)
. . . 0 —i 1
The permutation matrix P; can be absorbed into 1 ot
the orthogonal matrix Os,3; hence we can choose U= 7§ V2 0 0 03,3(01.6,,03)X,
P; = P53 = 15,5 without loss of generality. Thus 0 i 1
the three lepton mixing angles read 0 —i 1
. P |
i —i0, 0 ___
sin?@,, =sin’@;, sin’0;3=sin’f,, sin’6,; =sin’0, = diag(e™™, 1, ) V2 0 0
(C2) 0 i 1
X 03,3(0,6,,605)X," (C6)
and the Jarlskog invariant Jcp is vanishing,
_ up to possible permutations of rows. The diagonal
Jep =0, (C3) o i —i6 i 1
phase matrix diag(e™%', 1, ¢'“1) can be absorbed into
. the charged lepton fields. Moreover, it is easy to
where Jcp is defined as [67] check that the following identity is fulfilled:
Jep=S(UnUs3Ui3U3))
| P31 Up1(61.6,,05)
:§51n2912 sin26,3sin2603cos0;3sins.  (C4) = Uyy(=6,,0,,—0;)diag(1, -1, 1). (C7)
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Consequently the six possible row permutations lead
to three independent mixing patterns,
Ui =Up,

Ull,2:Pl32Ull7 UII.3:P213UII-

(C8)

We find that U;; ; and U/, , predict tan 3 = cos 03
and tan ;3 = sinf,3, respectively, such that the
experimental data [4] of the mixing angles 63
and 0,3 cannot be accommodated simultaneously.
For the mixing matrix Uj;;, the lepton mixing
parameters are given by

sin’0,; =sin’0,, sin’0;, =sin’@;, sin’fy; =~

1
Jep :§c0592 sin26,sin26;, |[sind|=1.
(€9)

Furthermore, we find that the rephasing bilinear
invariants take the form

1
I{o =0, o =—Iko = 5 ¢os 6, cos 0,
1
I, =0, lio=-I}, = Esinﬁz. (C10)

Upii(o) +7,6,,0,,0;) =
Uii(m = 01,01, 0,,05) = diag(—

where the parameters ¢, , 5 fulfill O5,5(6,,6;.65)

(IID)
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Hence only the muon and tau flavored asymmetries
in heavy neutrino decay contribute to the lepto-
genesis.
G = (be'd). X, = pa(c'd)

Using Table V and Eq. (5.13), we find that the
lepton mixing matrix up to possible permutations of
rows is fixed to be

| 1 0 —e
Al
Un=—72|0 v2 0 |054(6,.60,.65)X.%
V2 .
1 0 e'e
(C11)
with
t
P Gl e e ) (C12)
n
which can take the following values:
1 2 2n—1
o1(mod 27) = 0,7, =7, ... 7. (C13)
n'n n

We can easily check that the mixing matrix U;;; has
the properties

Uin(01.—0,.—6,,0;)diag(1,1,-1),
e 1, e7e\U (04, 0], 05, 05)diag(1,1,-1),

(C14)

= P3,03,3(—0,,—0,,65). As a consequence, the fundamental

interval of the parameter ¢ can be chosen to be 0 < ¢; < 7. The mixing pattern arising from the multiplication of the
permutation matrix Pj,; from the left-hand side is related to U, through shifts of the continuous parameters 6, , 3

and redefining X, as follows:

P321U111(91,‘91’ 92’93) =

Hence three mixing patterns are obtained after all six row permutations are considered:

U111.1 = Uy,

Uniro = Pi2Upny,

For the mixing matrix U/, we can extract the mixing parameters in the usual way and find

1
sin6,3 = 3 (sin6, + cos*@,cos*6, — cos 0 sin 20, cos ¢,),

sin 205(2 sin 6, cos 0, cos ¢; + sin 20 sin 6,) + 2sin’0, cos 29;

sin?0;, = sin’6; +

2
Gin20e — 2sin’6,cos’6,
23 =

2 — sin%0, — cos?6,cos26, + cos @, sin 26, cos o,

1
Jep = Rsin 6, cos 0, sin g, [4 sin 20, sin &, cos 265 + (1 + 3 cos 20, + 2sin?6; cos 26, ) sin 205,
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Ui(e, 0. —6,,65)diag(1,1,—1). (C15)
Uiz = Pa3Upg. (C16)
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which have the symmetry transformation (6, 6,,603) — (7 — 6,7 — 0,, 7 — 03). As regards the leptogenesis, the
relevant CP invariants are of the form

1
Ifo = —Ifo = ~3 (cos 0, sin O3 + sin @, sin O, cos O3) sin ¢, o =0,
1
lip = ~Iio = 5sin0, cosbysiney,  Io = 0. (C18)

One sees that the lepton asymmetry €, would be vanishing for ¢; = 0 such that the cosmological baryon asymmetry
cannot be generated. For the second mixing pattern Uy, ,, the three lepton mixing angles and Jarlskog invariant are
determined to be

sin’@,3 = = (sin?@, + cos*0,cos>0, — cos @, sin 260, cos ¢, ),

N =

sin 205 (2 sin @, cos 6, cos @; + sin 26, sin 6,) + 2sin’d, cos 263

L 2p a2
sin“f,, = sin“6; +
2 — sin%6, — cos?0,cos>0, + cos O, sin 26, cos g,

1 — sin%0,cos’, + cos 6, sin 26, cos g,

.
Sin 923 = N N s
2 — sin%0, — cos?6,cos>@, + cos @, sin 26, cos g,

1
Jop=— T sin @, cos &, sin ¢ [4 sin 26, sin &, cos 205 + (1 + 3 cos 26, + 2sin*; cos 26,) sin265].  (C19)

Regarding the CP invariants in leptogenesis, we get

1
I{o = =Ko = ) (cos @, sin @5 + sin 0 sin, cos O3) sin g, I5o =0,
1
Ifo = —I/fo = ESinﬁl COS 92 SinQ], I‘I[O = O, (CZO)

which implies 1§ + Iyo = 0 and I{, + I4; = 0. Hence the summation of the CP asymmetry in the electron and
muon flavors would vanish, i.e., €, = e + ¢, = 0. As a consequence, Yz would be predicted to be zero in the mass
window 10° GeV < M, < 10'? GeV unless the postulated residual symmetry is broken by nonleading order
corrections arising from higher dimensional operators. For the third possible PMNS mixing matrix Uy 3, the lepton
mixing parameters read as

sin’0,; = sin’0,cos’6,,

5, (cosB) cosB; —sind sinb, sinH3)?
S 912 =

’

1 — sin?6,c0s°6,

. 5 1 cosf, sin26, cos g,
Sin“6,; = - — — T
2 2 —2sin“0,cos"6,

1
Jep=— T sin 0, cos 6, sin ¢ [4 sin 20, sin 0, cos 203 + (1 + 3 cos 26, + 2sin*6; cos 26,) sin26;].  (C21)

The rephase invariants I{, and I{;, are of the following form:

1
Ko =—1% = ~3 (cos @, sin 05 + sin 6 sin @, cos 03) sin g, I{o =0,
1
Lo =-I}p = Esinel cos 0, sin gy, Iy = 0. (C22)

(IV) G, = (bc*d"), X, = p3(bc*d™)
In the same manner as previous cases, we find the lepton mixing matrix is given by

0 cosg, sing,

A__

Uy="pP| 1 0 0 | 03x3(601.0,.05)X° = P Py1303,5(0), +02.6,.05)X,

0 —sing, cosg@;

|\)|_.

(C23)
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V)

where P, is a generic 3 x 3 permutation matrix, and
the contributions of P; and P, 5 can be absorbed into
the real orthogonal matrix Os,3. The parameter ¢, is
fixed by the chosen residual symmetry as

s+t
2n

0 = T, (C24)

whose possible values are

1 2 4n —1
2r) =0, —7n,—m, ...,
0>(mod 27) =0, o 7, o 7, o

z.  (C25)

After the relabeling of P;P,;3 — P; and 6| + 0| —
0, is taken into account, the mixing matrix U, would
coincide with Uy, as shown in Eq. (C1). As a result,
the predictions for mixing parameters and lepto-
genesis are exactly the same as case I. The exper-
imentally preferred values of the lepton mixing angles
can be accommodated, the Dirac CP phase ¢ is trivial,
and the cosmic baryon asymmetry Y is predicted to
be vanishing without higher order corrections.

G, = (ac'd", X, = py(c*d?)

Combining the unitary transformations U,; for
G, = {(ac*d") shown in Table V and U, in
Eq. (5.13), we find that the PMNS mixing matrix
is of the form

ei()3 1 ei()4

o=

Uy=—72| 0?e® 1 we® |03,3(0,.0,,05)X.7,
we'® 1 @?eits

(C26)

up to permutations of rows, where ¢; and ¢, are
determined by residual symmetry,

2s=2t+2x—y =2t+x-2y
T a T eTT

03 z, (C27)
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which can independently take the values

1 2 2n—1
03,04(mod 27) =0,—n,—=x, ..., "
nn

z.  (C28)

We observe that the mixing matrix Uy has the
following properties:

Uy(03+7.04,01,0,.05)
=Uy(03,04,01,—0,,—03)diag(~1,1,1),

Uy (03,04 +7,0,,0,,03)
=Uy(03.04.—01.—0,.0)diag(1,1,-1).  (C29)

Consequently the fundamental regions of the param-
eters @3 and g4 can be taken to be [0, 7). Exchanging
the second and third rows of Uy leads to the same
mixing pattern as swapping @3 and gy, i.e.,

P13Uv(03,04,01.0,.05) = Uy(04, 03, 6,.0,.05),
(C30)

where 9’1.2.3 fulfill 03><3 (0’ s 9/2, 9%) = P321 03><3
(6,,6,,05). Hence it is enough to only consider
three out of the six possible row permutations if all
possible values of ¢3 and @4 are considered,

Uy 1=Uy, Uyy=Py3Uy, Uyz="Py3Uy.

(C31)

For the case of Uy ;, we can obtain the following
expressions for the mixing angles and the Jarlskog
invariant,

1
sin’f,3 = 3 [sin 26, (cos 6, cos(@3 — ¢4) + sin &, cos @3) + sin 20, cos>, cos g4 + 1],

sin 265 (cos 8, cos @, cos g3 — sin B cos 6, cos(@3 — @4) — c0s 20, sin 6, cos ¢4)

Sil’lzglz = Sil’l263 +

2 —sin20,(cos 0, cos(o3 — @4) + sin @, cos @3) — sin 20, cos’d, cos g4

c0s 205 (1 — sin 26, cos ¢4)

2 — sin 260, (cos 0, cos(@3 — 04) + sinB; cos g3) — sin 20,co0s>0, cos g,

2

sin 20, (cos 0; sin(e3 — @4 + £) + sin @, cos(e3 + %)) + cos?6, sin 26, cos(gq — %) — 1

sin 923 =

1
Jop=——
CP 6\/§

sin 260, (cos 6, cos(@3 — 04) + sin 8 cos ¢3) + sin 26,c0s%6, cos g4 — 2

El

[cos 20, cos 20, cos 205 + sin 26, sin 0, (1 — 3/2c0s>6,) sin 265

+ c0s 0, (sin 205 (cos*@, — sin®@,sin’d,) + sin 20, sin O, cos 263 ) [sin O, cos(g3 + 04)

— 08 0, cos(3 — 204)] + cos*@, sin 205(cos &, cos(g3 — 204) — tan 6, cos(203 — 04))]. (C32)
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Moreover, the CP invariants I{, and If, are given by
1
I{o = 3 [sin(g4 — @3)(sin @, sin 6, cos O3 + cos O, sin 63) + cos 6, cos O3 sin g4

+ sin @3(cos 0, sin O, cos O3 — sin O, sin 6],
" 1. VA ) ) . (z
Io = 5 [sin{es—es—3 (sin @, sin 6, cos 3 + cos O sin ;) + cos O, cos 6 sin 37
+ sin (93 + g) (sin @, sin 65 — cos 6, sin O, cos 63)} ,
P : . . :
Iy = 3 (sin @} cos 6, sin(@3 — 04) — cos 6 cos O, sin @3 + sin B, sin g4),

1
I’I‘O =3 <sin 0, cos 0, sin (g - 03+ Q4> + cos 0, cos 6, sin (93 + %) + sin 0, sin <% - Q4> ) ,

o = —(Ixo + INo): Ifo = =(Iip + Io)- (C33)
Then we proceed to discuss the second permutation Uy ,. We can straightforwardly extract the mixing parameters
and find

. 5 1 . /2 ) /s ) ) /2
sin“fy3 = 3 1 —sin26,| cos O, cos| 03 — 04 — 3 + sinf; cos| o3 + 3)) - sin 20,cos~6, cos| ¢4 — 3|

cos 265 (sin 26, cos (¢4 —5) + 1)
2 + sin 260, (cos 0 cos(03 — ¢4 — %) + sin &, cos(o3 + %)) + sin 20,cos?0, cos(os — %)

sin6,, = sin’0; +

sin 205 (sin 0 cos 0, cos(@3 — @4 —§) — cos 6 cos 6, cos(e3 + §) + cos 26, sin O, cos(g4 — %))

9’

2 + sin 26, (cos 0 cos(03 — @4 — ) + sin6; cos(e3 + %)) + sin 26, cos?6, cos(gy — %)
sin 26,(cos 6, cos(@s — @4) + sin @, cos @3) + sin 26,cos*0, cos g, + 1

1 29 — 3
SIPs =5 + sin 26, (cos 0; cos(e3 — ¢4 — %) + sin 6, cos(¢3 + %)) + sin 260, cos?6, cos(os — %)
1
Jep = — ﬁ [cos 20, cos 20, cos 205 + sin 20, sin O, (1 — 3/2c0s6, ) sin 265

+ c0s 0, (sin 205 (cos*@, — sin®@,sin’0,) + sin 20, sin &, cos 263 )[sin O, cos(3 + 04)
— cos 0 cos(@3 — 204)] + cos*0, sin 205(cos O, cos(o3 — 204) — tan 6, cos(203 — 04))]. (C34)

Since Uy, and Uy ; are related through the permutation of the first and second rows, the rephasing invariants /% 1o
for Uy, can be obtained from Eq. (C33) by interchanging the expressions of I{g 1 and 1’1(10710. The third mixing
matrix Uy 3 can be easily obtained by exchanging the second and third rows of Uy ,. As a consequence, Uy , and
Uy ; lead to the same reactor and solar mixing angles, while the atmospheric one changes from 6,3 to 7/2 — 0,3, i.e.,
sin® @3 is replaced by cos” 0,5 in Eq. (C34), and the Dirac phase changes from & to 7 + & such that the overall sign
of the Jarlskog invariant J-p becomes opposite. Furthermore, the CP invariants can be obtained from Eq. (C33) by
replacing I{o,10 = TRo.0 INoto = IRoor ad IR0 10 = INoo-
(VD) G, = (ac*d"), X, = p3(bc*d™)
In this case, the PMNS mixing matrix takes the following form,

N\
%
5

. ﬁ sin Qg COS Q¢ ]
UW:\/; —9\/‘5‘ cos (f—0s)  sin(E—06) |O3x3(6.6,.05)X,°
% cos (¢s +%) —sin(gs + %)
eits
=\3| ~5F cost sing 03,3(0) — 06, 01,03)X,°, (C35)
ej% cosg —sin%

075005-31



CAI-CHANG LI and GUI-JUN DING PHYSICAL REVIEW D 96, 075005 (2017)

where the discrete parameters ¢s and g depend on the choice of the residual symmetry as

—s+ 2t —3x s
05 =—""—""7, 06 =T, (C36)

n n

whose values can be

1 2 2n—1
05, 0¢(mod 27) :O,;ﬂ',—ﬁ',..., "
n

pantZ (C37)

From Eq. (C35) we can see that the parameter g is irrelevant since it can be absorbed into the free parameter 6.
Furthermore we find that Uy; has several symmetry properties,

P132Uv1(05706,91792,93) = diag(l, -1 —I)UW(Qs, =06, =0, 05, —93)diag(1, -1, 1)’

. 2w
P312Uv(05. 06,01, 65, 05) = diag(1,—1,-1)Uy, <QS’QG +—,91,92,93>,

3
P31 Uy;(0s. 06,01, 6,,03) = diag(—1, =1, 1)Uy, (QS’QG —23—ﬂ791,92»33>7 (C38)
and
Uvi(es + 7. 06.01,05.03) = Uy(0s. 06,01, =0, —03)diag(—1,1,1). (C39)

Equation (C38) implies that the six possible row permutations lead to the same mixing pattern, and Eq. (C39)
indicates that the fundamental region of ¢s is [0, 7). We can read off the mixing parameters from the mixing matrix
Uy; in Eq. (C35) as follows:

sin20;3 = = (1 + cos 20,c0s20, + V/2 cos 6, sin 26, cos 0s).

W | =

sin @, (2 sin 0, cos 2605 — sin 20 (\/2 cos 6, cos g5 — 2 cos O, sin 6,))
2 — cos 20,0820, — \/2 cos 0, sin 20, cos @s
1 — cos (20, + 7/3)cos?d, — /2 sin(0, + 7/6) sin 26, cos gs
2 — c0s 260,c0s20, — /2 cos 8, sin 26, cos 05 ’
cos 6, sin 26 sin s[4 sin 36, sin 6, cot 205 — cos 36, (cos 26, — 3) — 21/2 sin 26, cos os]

Jep = , C40
CcpP 12\/6 ( )

where the redefinition of 8; — 6, + g¢ is used. Moreover, the rephasing invariants involved in leptogenesis are found
to be of the form

sin’6,, = sin?6; +

bl

sin2923 =

2
o = —Tsin 05(cos 8 sin O3 + sin O, sin 6, cos B3),
po_ V2 . . .
Ko = 3 sines [sin(@; + 7/6) sinO; + sin(0; — /3) sin 6, cos 05]

2
Ify = 3 sin 8, cos 6, sin gs,

2
Iy = —Tsin(é’, — 1/3) cos 0, sin gs,
Ifo = —(Iﬁlo + Illifo)’lfo = _(Ifo + Iito)- (C41)

(VID) G, = (abc*d"), X, = p3(c*d”)
Similar to the previous cases, the lepton mixing matrix is given by, up to permutations of rows and unphysical
phases,
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X e -1 0
AL
Uy =—| el@ 1 0 | O03,:(0,,0,,05)X,2,
VII \ﬁ e 33(1 2 3)
0 0 V2
1 1 0 —¢@
AL
=diag(~L 1L, 1)Pix— | 0 v2 0 |[Py303(6;.6,.605)]X.7, (C42)
V2 4
1 0 e'v
with
25 —t+2x —
97:w”. (C43)

n

Comparing Eq. (C42) with Eq. (C11), we can see that this case gives rise to the same mixing pattern and the baryon
asymmetry Yp as case III if all possible row permutations are taken into account.

(VIID) G, = (abc*d"), X, = p3(bc*d™)
In this case, we find that the PMNS mixing matrix takes the form

V2  —ieies elos
1 . ) "l
Uy = 3 V2 o —ieles e'es 03,3(01.6,,63)X,°
0  iV2e s \/2ei0s

. V2 =i 1
=5 V2 o i 1 03x3<91_Q8’92763)5\(;77 (C44)
0 V2 V2
with
2s —t+3
0g = X (C45)

n

Obviously the value of gg is irrelevant since it can be absorbed into the free parameter #,. Furthermore, the six
possible row permutations lead to three independent mixing patterns, which can be chosen as

Uy = Uvin, Uyma = Pi32Uvin, Uvms = P3i2Uvmn (C46)
The reason is because Uyyy fulfills the equality
Pr13Uvm (s, 01,05, 03) = Uym(eg, 01, —0,, —03)diag(~1,1,1). (C47)

For the mixing matrix Uy ;, after the parameter 6, is shifted into 8, + ¢g, we can read off the mixing parameters as

1
sin,3 = g (3 — cos 26, — 2v/2 cos 6, sin 26,),

2(cos 265 + /2 sin @, cos 6, sin 265)
5+ ¢c0s 260, + 2v/2 cos 0, sin 20,
3 — c0s 20, + 2+/2 cos 0, sin 20,

sin?6,, = sin?6; +

SiH29 = 3
S + ¢08 26, + 2v/2 cos 0, sin 26,
1
Jop = ——=|4sin 0, sin 26, cos 205 — cos 8, (cos O, + 3 cos 36, ) sin 265]. C48
cp 32\/5[ 1 2 3 1 2 5) ] ( )
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The CP invariants I o (@ = e, y, 7) turn out to take the form

1
o = 7 [cos 0, cos 05 + V/2(sin 6, sin 63 — cos 0 sin 6, cos 05)],

1
Ko = 1 [cos B, cos O3 — V/2(sin 0, sin 63 — cos 0; sin 6, cos 03)]

1
Iy = Z(sinﬁz +V2cos 6, cosb,),

1
Iio = —(I&o + Iho) = —500592 cos 05,

1
Ly = 1 (sin@, — V2 cos 6, cos b;),

1.
Iy =—(I{y + Iip) = —Esmez. (C49)

The second mixing matrix Uy, is related to Uy through the permutation of the second and third rows. As a
consequence, the expressions for 81, and 6,5 coincide with Eq. (C48), the overall sign of Jp is reversed, and the

atmospheric mixing angle 6,3 changes into

4c0s’6,

sin?6,; =

54 cos 26, + 2v/2cos 6, sin 26,

(C50)

Moreover the rephase invariants can be obtained from Eq. (C49) by interchanging Iy 1o and I 1o Finally we
proceed to the third mixing matrix Uyy;. We can extract the following results for the mixing angles,

1 1 cos?6, cos?26 1 2cos®, sin 20
in20,; = = cos20 in20, = -+ — 273 in20,, =~ —~— 71> 772 Cs51
S0 = 5 Cos0n, 2 = 5 T T s 20, ’ SIOs =5 3—cos20, (C51)
which implies
-2 1 L, 2 1 / 2
Sin 912—5 Sitan 913, Sin 023 —5 Stan6'13 1 —tan 913. (C52)

Hence the experimental data [4] on 63 and 0y, cannot be accommodated simultaneously without higher order

corrections for this mixing matrix.
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