
Implications of residual CP symmetry for leptogenesis in a model
with two right-handed neutrinos

Cai-Chang Li* and Gui-Jun Ding†

Interdisciplinary Center for Theoretical Study and Department of Modern Physics,
University of Science and Technology of China, Hefei, Anhui 230026, China

(Received 27 February 2017; published 5 October 2017)

We analyze the interplay between leptogenesis and residual symmetry in the framework of a model with
two right-handed neutrinos. Working in the flavor basis, we show that all the leptogenesis CP asymmetries
are vanishing for the case of two residual CP transformations or a cyclic residual flavor symmetry in the
neutrino sector. If a single remnant CP transformation is preserved in the neutrino sector, the lepton mixing
matrix is determined up to a real orthogonal matrix multiplied from the right side. The R-matrix is found to
depend on only one real parameter. It can take three viable forms, and each entry is either real or purely
imaginary. The baryon asymmetry is generated entirely by the CP violating phases in the mixing matrix in
this scenario. We perform a comprehensive study for the Δð6n2Þ flavor group and CP symmetry which are
broken into a single remnant CP transformation in the neutrino sector and an Abelian subgroup in the
charged lepton sector. The results for lepton flavor mixing and leptogenesis are presented.
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I. INTRODUCTION

A large amount of experiments with solar, atmospheric,
reactor, and accelerator neutrinos have provided compel-
ling evidence for oscillations of neutrinos caused by non-
zero neutrino masses and neutrino mixing [1–3]. Both
three-flavor neutrino and antineutrino oscillations can be
described by three lepton mixing angles θ12, θ13, and θ23;
one leptonic Dirac CP violating phase δ; and two inde-
pendent mass-squared splittings δm2 ≡m2

2 −m2
1 > 0 and

Δm2 ≡m2
3 − ðm2

1 þm2
2Þ=2, where m1;2;3 are the three

neutrino masses and Δm2 > 0 and Δm2 < 0 correspond
to the normal ordering (NO) and inverted ordering (IO)
mass spectrum, respectively. All of these mixing parame-
ters except for δ have been measured with good accuracy
[4–8]. The experimentally allowed regions at 3σ confidence
level (taken from Ref. [4]) are

0.259 ≤ sin2θ12 ≤ 0.359;

1.76ð1.78Þ× 10−2 ≤ sin3θ13 ≤ 2.95ð2.98Þ× 10−2;

0.374ð0.380Þ ≤ sin2θ23 ≤ 0.626ð0.641Þ;
6.99× 10−5 eV2 ≤ δm2 ≤ 8.18× 10−5 eV2;

2.23ð−2.56Þ× 10−3 eV2 ≤Δm2 ≤ 2.61ð−2.19Þ× 10−3 eV2

ð1:1Þ

for the NO (IO) neutrino mass spectrum. At present, both
T2K [9–11] and NOνA [12,13] report a weak evidence for
a nearly maximal CP violating phase δ ∼ −π=2, and hits of

δ ∼ −π=2 also show up in the global fit of neutrino
oscillation data [4–8]. Moreover, several experiments are
being planned to look for CP violation in neutrino
oscillation, including long-baseline facilities, superbeams,
and neutrino factories. The above structure of lepton
mixing, so different from the small mixing in the quark
sector, provides a great theoretical challenge. The idea of
flavor symmetry has been extensively exploited to provide
a realistic description of the lepton masses and mixing
angles. The finite discrete non-Abelian flavor symmetries
have been found to be particularly interesting as they can
naturally lead to certain mixing patterns [14]; please see
Refs. [15–17] for review.
Although the available data are not yet able to

determine the individual neutrino mass mi, the neutrino
masses are known to be of order eV from tritium end
point, neutrinoless double beta decay, and cosmological
data. The smallness of neutrino masses can be well
explained within the seesaw mechanism [18], in which
the standard model (SM) is extended by adding new
heavy states. The light neutrino masses are generically
suppressed by the large masses of the new states. In a type
I seesaw model [18], the extra states are right-handed
(RH) neutrinos which have Majorana masses much larger
than the electroweak scale, unlike the standard model
fermions which acquire mass proportional to electroweak
symmetry breaking. Apart from elegantly explaining the
tiny neutrino masses, the seesaw mechanism provides a
simple and attractive explanation for the observed baryon
asymmetry of the Universe, one of the most longstanding
cosmological puzzles. The CP violating decays of heavy
RH neutrinos can produce a lepton asymmetry in the
early Universe, which is then converted into a baryon
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asymmetry through Bþ L violating anomalous sphaleron
processes at the electroweak scale. This is the so-called
leptogenesis mechanism [19].
It is well known that in the paradigm of the unflavored

thermal leptogenesis, the CP phases in the neutrino
Yukawa couplings in general are not related to the low
energy leptonic CP violating parameters (i.e., Dirac and
Majorana phases) in the mixing matrix. However, the low
energy CP phases could play a crucial role in the flavored
thermal leptogenesis [20] in which the flavors of the
charged leptons produced in the heavy RH neutrino decays
are relevant. In models with flavor symmetry, the total
number of free parameters is greatly reduced; therefore the
observed baryon asymmetry could possibly be related to
other observable quantities [21]. In general, the lepto-
genesis CP asymmetries would vanish if a Klein subgroup
of the flavor symmetry group is preserved in the neutrino
sector [22].
Recent studies show that the extension of discrete flavor

symmetry to include CP symmetry is a very predictive
framework [23–35]. If the given flavor and CP symmetries
are broken to an Abelian subgroup and Z2 × CP in the
charged lepton and neutrino sectors, respectively, the
resulting lepton mixing matrix would be determined in
terms of a free parameter θ whose value can be fixed by the
reactor angle θ13. Hence all the lepton mixing angles, the
Dirac CP violating phase, and the Majorana CP phases
can be predicted [35]. Moreover, other phenomena involv-
ing CP phases such as neutrinoless double beta decay and
leptogenesis are also strongly constrained in this approach
[22,33,36]. In fact, we find that the leptogenesis CP
asymmetries are exclusively due to the Dirac and
Majorana CP phases in the lepton mixing matrix, and
the R-matrix depends on only a single real parameter in this
scenario [22].
In this paper we shall extend upon the work of [22] in

which the SM is extended to introduce three RH neutrinos.
Here we shall study the interplay between residual sym-
metry and leptogenesis in the seesaw model with two RH
neutrinos. We find that all the leptogenesisCP asymmetries
would be exactly vanishing if two residual CP trans-
formations or a cyclic residual flavor symmetry were
preserved by the seesaw Lagrangian. On the other hand,
if only one remnant CP transformation is preserved in the
neutrino sector, all mixing angles and CP phases are then
fixed in terms of three real parameters θ1;2;3 which can take
values between 0 and π, and the R-matrix would be
constrained to depend on only one free parameter. The
total CP asymmetry ϵ1 ≡ ϵe þ ϵμ þ ϵτ in leptogenesis is
predicted to be zero. Hence our discussion will be entirely
devoted to the flavored thermal leptogenesis scenario in
which the lightest RH neutrino mass is typically in the
interval of 109 GeV ≤ M1 ≤ 1012 GeV. Our approach is
quite general and it is independent of the explicit form of
the residual symmetries and how the vacuum alignment

achieving the residual symmetries is dynamically realized.
In order to show concrete examples, we apply this general
formalism to the flavor group Δð6n2Þ combined with CP
symmetry, which is broken down to an Abelian subgroup in
the charged lepton sector and a remnant CP transformation
in the neutrino sector. The expressions for the lepton
mixing matrix as well as mixing parameters in each
possible case are presented. We find that for small values
of the flavor group index n, the experimental data on lepton
mixing angles can be accommodated for certain values of
the parameters θ1;2;3. The corresponding predictions for the
cosmological matter-antimatter asymmetry are discussed.
The rest of the paper is organized as follows. In Sec. II

we briefly review some generic aspects of leptogenesis in
the two RH model and present some analytic approxima-
tions which will be used later. In Sec. III we study the
scenario that one residualCP transformation is preserved in
the neutrino sector. The lepton mixing matrix is determined
up to an arbitrary real orthogonal matrix multiplied from
the right-hand side. The R-matrix contains only one free
parameter, and each element is either real or purely
imaginary. The total CP asymmetry ϵ1 is vanishing;
consequently the unflavored leptogenesis is not feasible
unless subleading corrections are taken into account.
The scenario of two remnant CP transformations or a
cyclic residual flavor symmetry is discussed in Sec. IV. All
leptogenesis CP asymmetries ϵe;μ;τ are found to vanish in
both cases. Leptogenesis could become potentially viable
only when higher order contributions lift the postulated
residual symmetry. In Sec. V we apply our general
formalism to the case that the single residual CP trans-
formation of the neutrino sector arises from the breaking of
the most general CP symmetry compatible with the Δð6n2Þ
flavor group, which is broken down to an Abelian subgroup
in the charged lepton sector. The predictions for lepton
flavor mixing and baryon asymmetry are studied analyti-
cally and numerically. Finally, in Sec. VI we summarize
our main results and draw the conclusions.

II. GENERAL SETUP OF LEPTOGENESIS
IN A MODEL WITH TWO

RIGHT-HANDED NEUTRINOS

The seesaw mechanism is a popular extension of the
SM to explain the smallness of neutrino masses. In the
famous type I seesaw mechanism [18], one generally
introduces three additional right-handed neutrinos which
are singlets under the SM gauge group. Although the
seesaw mechanism describes qualitatively well the obser-
vations in neutrino oscillation experiments, it is quite
difficult to make quantitative predictions for neutrino mass
and mixing without further hypothesis for underlying
dynamics. The reason is that the seesaw mechanism
involves a large number of undetermined parameters at
high energies, whereas many fewer parameters could be
measured experimentally.
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An intriguing way out of this problem is to simply reduce
the number of right-handed neutrinos from three to two
[37–39]. The two right-handed neutrino (2RHN) model can
be regarded as a limiting case of three right-handed neutrinos
in which one of the RH neutrinos decouples from the seesaw
mechanism either because it is very heavy or because its
Yukawa couplings are very weak. Since the number of free
parameters is greatly reduced, the 2RHN model is more
predictive than the standard scenario involving three RH
neutrinos. Namely, the lightest left-handed neutrino mass
automatically vanishes, while the masses of the other two
neutrinos are fixed by δm2 and Δm2. Hence only two
possible mass spectra can be obtained:

NO∶ m1 ¼ 0; m2 ¼
ffiffiffiffiffiffiffiffi
δm2

p
; m3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2 þ δm2=2

q
;

IO∶ m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−δm2=2−Δm2

q
; m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δm2=2−Δm2

q
;

m3 ¼ 0: ð2:1Þ

Moreover there is only one Majorana CP violating phase
corresponding to the phase difference between these two
nonzero mass eigenvalues. The Lagrangian responsible for
lepton masses in the 2RHN model takes the following form,

L ¼ −yαL̄αHlαR − λiαN̄iR
~H†Lα −

1

2
MiN̄iRNc

iR þ H:c:;

ð2:2Þ

where Lα ≡ ðναL; lαLÞT and lαR indicate the lepton doublet
and singlet fields with flavor α ¼ e, μ, τ, respectively; NiR

is the RH neutrino with mass Mi (i ¼ 1, 2); and H ≡
ðHþ; H0ÞT is the Higgs doublet with ~H ≡ iσ2H�. The
Yukawa couplings λiα form an arbitrary complex 2 × 3
matrix. Here we have worked in the basis in which both the
Yukawa couplings for the charged leptons and the Majorana
mass matrix for the RH neutrinos are diagonal and real. After
electroweak symmetry breaking, the light neutrino mass
matrix is given by the famous seesaw formula

mν ¼ −v2λTM−1λ ¼ U�mU†; ð2:3Þ

where v ¼ 175 GeV refers to the vacuum expectation
value of the Higgs field H0; M≡ diagðM1;M2Þ and
m≡ diagðm1; m2; m3Þ, with m1 ¼ 0 for NO and m3 ¼ 0
for IO; and U is the lepton mixing matrix. It is convenient
to express the Yukawa coupling λ in terms of the
neutrino mass eigenvalues, mixing angles, and CP violation
phases as1

λ ¼ iM1=2Rm1=2U†=v; ð2:4Þ

where R is a 2 × 3 complex orthogonal matrix having the
following structure [41,42],

NO∶ R ¼
�
0 cos θ̂ ξ sin θ̂

0 − sin θ̂ ξ cos θ̂

�
; ð2:5aÞ

IO∶ R ¼
�

cos θ̂ ξ sin θ̂ 0

− sin θ̂ ξ cos θ̂ 0

�
; ð2:5bÞ

where θ̂ is an arbitrary complex number and ξ ¼ �1. From
Eqs. (2.5a) and (2.5b) we can check that the R-matrix
satisfies

RRT ¼ diagð1; 1Þ; for NO and IO;

RTR ¼ diagð0; 1; 1Þ; for NO;

RTR ¼ diagð1; 1; 0Þ; for IO: ð2:6Þ

Leptogenesis is a natural consequence of the seesaw
mechanism, and it provides an elegant explanation for
the baryon asymmetry of the Universe [19]. For illustration,
we shall work in the typical N1-dominated scenario, and
we assume that right-handed neutrinos are hierarchical
M2 ≫ M1 such that the asymmetry is dominantly produced
from the decays of the lightest RH neutrino N1. The
approach of this paper can also be applied to discuss the
resonant leptogenesis [43]. The naturalness of the electro-
weak scale restricts the heavy RH neutrino mass to be
M1 ≤ 107 GeV [44]. This bound arises from the naturalness
requirement that the RH neutrino loops do not lead to
unnaturally large radiative corrections to the Higgs mass.
However, the unknown dynamics of quantum gravity at the
Planck scale MP would always introduce an unavoidable
naturalness problem. In addition, the theoretical criterion of
naturalness requires the presence of new physics at the TeV
scale. But no any signal of new physics has been observed at
the LHC or elsewhere. The argument for naturalness has
failed so far as a guiding principle, and nature does not much
care about our notion of naturalness. Therefore we do not
require the Vissani bound M1 ≤ 107 GeV to be fulfilled in
this paper. Actually we shall work in the two-flavored
leptogenesis regime, that is, at 109 GeV ≤ M1 ≤ 1012 GeV.
The phenomenology of leptogenesis in the 2RHN model

has been comprehensively studied [38,39,42,45]. The
flavored CP asymmetries in the decays of N1 into leptons
of different flavors are of the form [46–49]

ϵα ≡ ΓðN1 → lαHÞ − ΓðN1 → l̄αH̄ÞP
αΓðN1 → lαHÞ þ ΓðN1 → l̄αH̄Þ

¼ 1

8πðλλ†Þ11
X
j≠1

�
Im½ðλλ†Þ1jλ1αλ�jα�gðxjÞ

þ Im½ðλλ†Þj1λ1αλ�jα�
1

1 − xj

�
; ð2:7Þ1For other parametrizations of the neutrino Yukawa coupling,

see Ref. [40].
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where ΓðN1 → lαHÞ and ΓðN1 → l̄αH̄Þ, with α ¼ e, μ, τ,
denote the flavored decay rates of N1 into lepton lα and
antilepton l̄α, respectively; the parameter xj is defined as
xj ≡M2

j=M
2
1, and the loop function gðxÞ is

gðxÞ ¼ ffiffiffi
x

p �
1

1 − x
þ 1 − ð1þ xÞ ln

�
1þ x
x

��

≃ −
3

2
ffiffiffi
x

p þOðx−3=2Þ for x ≫ 1: ð2:8Þ

In the hierarchical limit M2 ≫ M1, i.e., x2 ≫ 1, the CP
asymmetries can be written as2

ϵα ≃ −
3

16π

X2
j¼1

M1

Mj

ℑ½ðλλ†Þ1jλ1αλ�jα�
ðλλ†Þ11

¼ −
3M1

16πv2
ℑðPij

ffiffiffiffiffiffiffiffiffiffiffimimj
p mjR1iR1jU�

αiUαjÞP
jmjjR1jj2

: ð2:9Þ

Actually, only the j ¼ 2 term is relevant in the first line of
Eq. (2.9), since ℑ½ðλλ†Þ1jλ1αλ�jα� ¼ 0 for the case of j ¼ 1.
Here the summation over j allows us to straightforwardly
derive the compact expression of Eq. (2.9). We notice
that ϵα is invariant under the transformation ξ → −ξ
and θ̂ → −θ̂. Consequently we shall choose ξ ¼ 1 as an
illustration in the following numerical analysis. Inserting
the expression for the Yukawa coupling in Eqs. (2.5)
and (2.5b) into Eq. (2.9), we obtain the CP asymmetry

ϵα ≃ −
3

16πv2
M1

m2j cos θ̂j2 þm3j sin θ̂j2
× fðm2

3jUα3j2 −m2
2jUα2j2Þℑsin2θ̂

þ ξ
ffiffiffiffiffiffiffiffiffiffiffiffi
m2m3

p ½ðm2 þm3ÞℜðU�
α2Uα3Þℑðsin θ̂ cos θ̂Þ

þ ðm3 −m2ÞℑðU�
α2Uα3Þℜðsin θ̂ cos θ̂Þ�g ð2:10Þ

for the NO and

ϵα ≃ −
3

16πv2
M1

m1j cos θ̂j2 þm2j sin θ̂j2
× fðm2

2jUα2j2 −m2
1jUα1j2Þℑsin2θ̂

þ ξ
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p ½ðm1 þm2ÞℜðU�
α1Uα2Þℑðsin θ̂ cos θ̂Þ

þ ðm2 −m1ÞℑðU�
α1Uα2Þℜðsin θ̂ cos θ̂Þ�g ð2:11Þ

for the IO neutrino mass spectrum. If the RH neutrino mass
M1 is large enough (e.g.,M1 > 1012 GeV), the interactions
mediated by all three charged lepton Yukawa couplings are
out of equilibrium. As a result, the one-flavor approxima-
tion rigorously holds, and the total CP asymmetry is

ϵ1 ≡
X
α

ϵα ¼ −
3M1

16πv2
ℑðPim

2
i R

2
1iÞP

jmjjR1jj2
; ð2:12Þ

which is completely independent of the lepton mixing
matrix U. For the parametrization of the R-matrix in
Eqs. (2.5) and (2.5b), we have

NO∶ ϵ1 ¼ −
3M1

16πv2
ðm2

3 −m2
2Þℑsin2θ̂

m2j cos θ̂j2 þm3j sin θ̂j2
; ð2:13aÞ

IO∶ ϵ1 ¼ −
3M1

16πv2
ðm2

2 −m2
1Þℑsin2θ̂

m1j cos θ̂j2 þm2j sin θ̂j2
: ð2:13bÞ

We see that the total CP asymmetry ϵ1 would vanish when
the parameter θ̂ is real or purely imaginary up to π=2. The
total baryon asymmetry is the sum of each individual lepton
asymmetry. In the present paper we will be concerned with
the temperature window ð109 ≤ T ∼M1 ≤ 1012Þ GeV. In
this range only the τ charged lepton Yukawa interaction is
in equilibrium, the e and μ flavors are indistinguishable,
and the final baryon asymmetry is well approximated
by [50–53]

YB ≃ −
12

37g�

�
ϵ2η

�
417

589
~m2

�
þ ϵτη

�
390

589
~mτ

��
; ð2:14Þ

where ϵ2 ≡ ϵe þ ϵμ, ~m2 ≡ ~me þ ~mμ, g� is the number of
relativistic degrees of freedom, and η is the efficiency factor
which depends on the initial abundance ofN1. The washout
mass ~mα parametrizes the decay rate of N1 into the leptons
of flavor α with

~mα ≡ jλ1αj2v2
M1

¼
				X

i

m1=2
i R1iU�

αi

				2; α ¼ e; μ; τ: ð2:15Þ

Plugging Eqs. (2.5) and (2.5b) into the above equation, we
find that the explicit expression of the washout mass is

~mα ¼
(
j ffiffiffiffiffiffim2

p
U�

α2 cos θ̂ þ ξ
ffiffiffiffiffiffi
m3

p
U�

α3 sin θ̂j2; for NO;

j ffiffiffiffiffiffim1

p
U�

α1 cos θ̂ þ ξ
ffiffiffiffiffiffi
m2

p
U�

α2 sin θ̂j2; for IO:

ð2:16Þ

Then the washout parameter K defined as K ¼Pα ~mα= ~m�

with ~m� ∼ 10−3 eV takes the form

2The flavored CP asymmetry ϵα contains two terms: the
lepton-number-violating (LNV) piece ϵLNVα ∝ ℑ½ðλλ†Þ1jλ1αλ�jα�
and the lepton-flavor-violating (LFV) piece ϵLFVα ∝
ℑ½ðλλ†Þj1λ1αλ�jα�. Since ϵLNVα ∼ Oðx−1=2j Þ and ϵLFVα ∼Oðx−1j Þ in
the limit xj ≫ 1, the LFV term is suppressed with respect to
the LNV one; hence we shall neglect the LFV contribution in
this work.
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K ¼
(

m2jcos θ̂j2þm3j sin θ̂j2
~m� ≥ m2

~m� ≃ 8.683; for NO;

m1jcos θ̂j2þm2j sin θ̂j2
~m� ≥ m1

~m� ≃ 48.397; for IO:
ð2:17Þ

Therefore the two right-handed models are always in
the strong washout regime. As a consequence, the
initial N1 abundance is almost irrelevant [54], and
the right-handed neutrinos are brought to thermal
equilibrium by inverse decays and by ΔL ¼ 1 scatter-
ings. To a good accuracy, the efficiency factor ηð ~mαÞ is
approximately given by [50]

ηð ~mαÞ≃
��

~mα

8.25×10−3 eV

�
−1
þ
�
0.2×10−3 eV

~mα

�−1.16�−1
:

ð2:18Þ

III. LEPTOGENESIS WITH ONE RESIDUAL
CP TRANSFORMATION

In a series of papers [23–35], it has been shown that
the residual CP symmetry of the light neutrino mass matrix
can quite efficiently predict the lepton mixing angles as
well as CP violation phases. If the residual CP symmetry is
preserved by the seesaw Lagrangian, leptogenesis would
also be strongly constrained [22,36,55]. We assume that the
flavor and CP symmetries are broken at a scale above the
leptogenesis scale. As a consequence, leptogenesis occurs
in the standard framework of the SM plus two heavy RH
neutrinos without involving any additional state in its
dynamics. Otherwise if the flavor and CP symmetries
are broken close to or below the leptogenesis scale, the
additional interactions and new particles related to flavor
and CP symmetries should be considered [56], and the
resulting scenarios would be quite different from the
standard one. In this section, we shall study the implica-
tions of residual CP for leptogenesis in the 2RHN model,
and we assume that both the neutrino Yukawa coupling and
the Majorana mass term in Eq. (A1) are invariant under one
generic residual CP transformation, defined as

νL↦
CP
iXνγ0Cν̄TL; NR↦

CP
iX̂Nγ0CN̄T

R; ð3:1Þ

where νL ≡ ðνeL; νμL; ντLÞT ; NR ≡ ðN1R; N2RÞT ; C denotes
the charge-conjugation matrix; Xν is a 3 × 3 symmetric
unitary matrix to avoid degenerate neutrino masses; and X̂N
is a 2 × 2 symmetric unitary matrix. For the symmetry to
hold, λ and M have to fulfill

X̂†
NλXν ¼ λ�; X̂†

NMX̂�
N ¼ M�: ð3:2Þ

As we work in the basis in which the RH neutrino
mass matrix M is real and diagonal, the residual CP

transformation X̂R should be diagonal with elements equal
to �1, i.e.,

X̂N ¼ diagð�1;�1Þ: ð3:3Þ

Notice that the conclusion would not be changed even ifM
is nondiagonal in a concrete flavor symmetry model [22],
and the reason is explained in Appendix A. Thus we can
find that the light neutrino mass matrix mν given by the
seesaw formula satisfies

XT
νmνXν ¼ m�

ν; ð3:4Þ

which means (as expected) that mν is invariant under the
residual CP transformation Xν. The light neutrino mass
matrix can be diagonalized by a unitary transformation Uν

withmν ¼ U�
νdiagðm1; m2; m3ÞU†

ν. Then from Eq. (3.4) we
can obtain

ðU†
νXνU�

νÞTdiagðm1; m2; m3ÞðU†
νXνU�

νÞ
¼ diagðm1; m2; m3Þ: ð3:5Þ

Note that m1 ¼ 0 for NO and m3 ¼ 0 for IO in the 2RHN
model. HenceUν is subject to the following constraint from
the residual CP transformation Xν,

U†
νXνU�

ν ¼ X̂ν; ð3:6Þ

with

X̂ν ¼ diagðeiα;�1;�1Þ for NO;

X̂ν ¼ diagð�1;�1; eiαÞ for IO; ð3:7Þ

where α is a real parameter in the interval between 0 and 2π.
Then it is easy to check that Xν is a symmetric and unitary
matrix for both the NO and IO cases. Moreover, with the
definition of the R-matrix in Eq. (2.4), we can derive that
the postulated residual symmetry leads to the following
constraint on R as

X̂NR�X̂−1
ν ¼ R; ð3:8Þ

Obviously −X̂N and −X̂ν give rise to the same constraint on
R as X̂N and X̂ν; therefore it is sufficient to only consider
the cases of X̂N ¼ diagð1;�1Þ, X̂ν ¼ diagðeiα;�1;�1Þ for
NO and X̂ν ¼ diagð�1;�1; eiαÞ for IO. The explicit forms
of the R-matrix for all possible values of X̂N and X̂ν are
collected in Table I. We see that there are three admissible
forms of the R-matrix summarized as follows:
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R-1st ∶

8>>><
>>>:

R ¼
�
0 cosϑ ξ sinϑ

0 − sinϑ ξ cosϑ

�
for NO;

R ¼
�

cosϑ ξ sinϑ 0

− sinϑ ξ cosϑ 0

�
for IO;

R-2nd ∶

8>>><
>>>:

R ¼ �
�
0 coshϑ iξ sinhϑ

0 −i sinhϑ ξ coshϑ

�
for NO;

R ¼ �
�

coshϑ iξ sinhϑ 0

−i sinhϑ ξ coshϑ 0

�
for IO;

R-3rd ∶

8>>><
>>>:

R ¼ �
�
0 i sinhϑ −ξ coshϑ
0 coshϑ iξ sinhϑ

�
for NO;

R ¼ �
�
i sinhϑ −ξ coshϑ 0

coshϑ iξ sinhϑ 0

�
for IO:

ð3:9Þ

We would like to point out that the R-matrix is constrained
to depend on a single real parameter ϑ in this setup.
Moreover, from Eq. (2.12) we can see that the total lepton
asymmetry ϵ1 is vanishing, i.e.,

ϵ1 ¼ ϵe þ ϵμ þ ϵτ ¼ 0: ð3:10Þ

As a result, the net baryon asymmetry cannot be generated
in the one-flavor approximation which is realized when
the mass of the lightest right-handed neutrino M1 is larger
than about 1012 GeV, unless the residual CP symmetry is
further broken by subleading order corrections. This result
is quite general; it is independent of the explicit form of the
residual CP transformation and how the residual symmetry
is dynamically realized.
Next we proceed to determine the lepton mixing matrix

from the postulated remnant CP transformation. Since Xν

must be a symmetric unitary matrix to avoid degenerate

neutrino masses, by performing the Takagi factorization Xν

can be written as [23,35]

Xν ¼ ΣνΣT
ν ; ð3:11Þ

where Σν is a unitary matrix and it can be expressed in
terms of the eigenvalues and eigenvectors of Xν [35]. Thus
the constraint on the neutrino diagonalization matrix Uν in
Eq. (3.6) can be simplified into

ΣT
νU�

νX̂
−1
2

ν ¼ Σ†
νUνX̂

1
2
ν: ð3:12Þ

The matrices on the two sides of this equation are unitary
and complex conjugates of each other. Therefore the

combination Σ†
νUνX̂

1
2
ν is a generic real orthogonal matrix,

and consequently the unitary transformation Uν takes the
form [35,55,57]

Uν ¼ ΣνO3×3X̂
−1
2

ν ; ð3:13Þ

where O3×3 is a three-dimensional real orthogonal matrix,
and it can be generally parametrized as

O3×3ðθ1; θ2; θ3Þ ¼

0
B@

1 0 0

0 cos θ1 sin θ1
0 − sin θ1 cos θ1

1
CA

×

0
B@

cos θ2 0 sin θ2
0 1 0

− sin θ2 0 cos θ2

1
CA

×

0
B@

cos θ3 sin θ3 0

− sin θ3 cos θ3 0

0 0 1

1
CA; ð3:14Þ

where θi (i ¼ 1, 2, 3) are real free parameters in the range
of ½0; πÞ. In our working basis (usually called leptogenesis
basis) where the charged lepton mass matrix is diagonal,
lepton flavor mixing completely arises from the neutrino
sector, and therefore the lepton mixing matrix U coincides
with Uν. Hence we conclude that the mixing matrix and
all mixing angles and CP phases would depend on three
free continuous parameters θ1;2;3 if only one residual CP
transformation is preserved in the neutrino sector. In order
to facilitate the discussion of leptogenesis, we separate out
the CP parity matrices X̂N and X̂ν and define the following
three parameters,

U0 ≡UX̂
1
2
ν; R0 ≡ X̂

−1
2

N RX̂
1
2
ν;

Ki ≡ ðX̂NÞ11ðX̂−1
ν Þii; i ¼ 1; 2; 3: ð3:15Þ

TABLE I. The explicit form of the R-matrix for all possible
independent values of X̂N and X̂ν, where ϑ is a real free
parameter. The symbol ✗ denotes that the solution for the
R-matrix does not exist since it has to fulfill the equality of
Eq. (2.6). The notation Dðx; yÞ with x; y ¼ �1 refers to
diagðeiα; x; yÞ and diagðx; y; eiαÞ for NO and IO, respectively.

X̂N X̂ν R (NO) R (IO)

diagð1; 1Þ Dð1; 1Þ ð0
0

cos ϑ
− sin ϑ

ξ sin ϑ
ξ cos ϑÞ ð cos ϑ

− sin ϑ
ξ sin ϑ
ξ cos ϑ

0
0
Þ

diagð1; 1Þ Dð1;−1Þ ✗ ✗

diagð1; 1Þ Dð−1; 1Þ ✗ ✗

diagð1; 1Þ Dð−1;−1Þ ✗ ✗

diagð1;−1Þ Dð1; 1Þ ✗ ✗

diagð1;−1Þ Dð1;−1Þ �ð0
0

coshϑ
−i sinh ϑ

iξ sinh ϑ
ξ cosh ϑÞ �ð coshϑ

−i sinh ϑ
iξ sinh ϑ
ξ cosh ϑ

0
0
Þ

diagð1;−1Þ Dð−1; 1Þ �ð0
0
i sinh ϑ
cosh ϑ

−ξ cosh ϑ
iξ sinh ϑ Þ �ði sinh ϑcosh ϑ

−ξ cosh ϑ
iξ sinh ϑ

0
0
Þ

diagð1;−1Þ Dð−1;−1Þ ✗ ✗
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We see that R0 is real and the parameter Ki is equal to þ1,
−1 or �e−iα. As a consequence, the flavored CP asym-
metry ϵα can be expressed as

ϵα ¼ −
3M1

16πv2
ℑðPij

ffiffiffiffiffiffiffiffiffiffiffimimj
p mjR0

1iR
0
1jU

0�
αiU

0
αjKjÞP

jmjR02
1j

; ð3:16Þ

and the washout mass ~mα is given by

~mα ¼
			X

i

ffiffiffiffiffiffi
mi

p
R0
1iU

0
αi

			2: ð3:17Þ

Taking into account that the lightest neutrino is massless in
the 2RHNmodel, we find that ϵα and ~mα can be written into
a rather simple form:

NO∶ ϵα ¼ −
3M1

16πv2
WNOIαNO;

~mα ¼ j ffiffiffiffiffiffim3

p
R0
13U

0
α3 þ

ffiffiffiffiffiffi
m2

p
R0
12U

0
α2j2; ð3:18aÞ

IO∶ ϵα ¼ −
3M1

16πv2
WIOIαIO;

~mα ¼ j ffiffiffiffiffiffim2

p
R0
12U

0
α2 þ

ffiffiffiffiffiffi
m1

p
R0
11U

0
α1j2; ð3:18bÞ

with

WNO ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m2m3

p
R0
12R

0
13ðm3K3 −m2K2Þ

m2R02
12 þm3R02

13

;

IαNO ¼ ℑðU0
α3U

0�
α2Þ;

WIO ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p
R0
11R

0
12ðm2K2 −m1K1Þ

m1R02
11 þm2R02

12

;

IαIO ¼ ℑðU0
α2U

0�
α1Þ: ð3:19Þ

The explicit expressions of WNO and WIO for the three
viable forms of the R-matrix are shown in Table II. Notice
that WNO;IO are fixed by the light neutrino masses m2;3 and
ϑ, which parametrize the R-matrix, and the bilinear
invariants IαNO;IO depend on the low energy CP phases
contained in the mixing matrix U. As a result, if the signal
ofCP violation were observed in future neutrino oscillation
experiments or neutrinoless double beta (0νββ) decay
experiments, we would expect a nonzero baryon asymme-
try to be generated through leptogenesis in this framework.
In the following, we shall perform a general analysis of
leptogenesis in the 2RHNmodel with a generic residualCP
transformation, and the lepton mixing matrix can be para-
metrized as [58]

U ¼

0
BB@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23
s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

1
CCAdiagð1; eiϕ2; 1Þ; ð3:20Þ

where cij ≡ cos θij, sij ≡ sin θij, and δ and ϕ are the Dirac
type and Majorana type CP violating phases, respectively.
Note that there is only one Majorana CP phase ϕ in the
presence of one massless light neutrino.
Now we discuss the predictions for matter/antimatter

asymmetry for each admissible R-matrix. The explicit

expressions of the CP asymmetry parameter ϵα and the
washout mass ~mα are given in Appendix B. The contour
regions of YB=Yobs

B for the three types of R matrices R-1st,
R-2nd, and R-3rd are displayed in the plane ϕ versus ϑ in
Figs. 1, 2, and 3, respectively. Here both the three lepton
mixing angles and the mass-squared splittings are set to

TABLE II. The parametrization of the first row of R0 and the corresponding expressions of WNO and WIO for the
three viable forms of the R-matrix.

Mass ordering Ki ðR0
11; R

0
12; R

0
13Þ WNO (WIO)

R-1st NO K2 ¼ K3 ¼ 1 ð0; cos ϑ; ξ sin ϑÞ ξ
ffiffiffiffiffiffiffiffiffi
m2m3

p ðm3−m2Þ sin 2ϑ
2ðm2 cos2 ϑþm3 sin2 ϑÞ

IO K1 ¼ K2 ¼ 1 ðcos ϑ; ξ sinϑ; 0Þ ξ
ffiffiffiffiffiffiffiffiffi
m1m2

p ðm2−m1Þ sin 2ϑ
2ðm1 cos2 ϑþm2 sin2 ϑÞ

R-2nd NO K2 ¼ −K3 ¼ 1 �ð0; cosh ϑ;−ξ sinh ϑÞ ξ
ffiffiffiffiffiffiffiffiffi
m2m3

p ðm2þm3Þ sinh 2ϑ
2ðm2 cosh2 ϑþm3 sinh2 ϑÞ

IO K1 ¼ −K2 ¼ 1 �ðcosh ϑ;−ξ sinh ϑ; 0Þ ξ
ffiffiffiffiffiffiffiffiffi
m1m2

p ðm1þm2Þ sinh 2ϑ
2ðm1 cosh2 ϑþm2 sinh2 ϑÞ

R-3rd NO −K2 ¼ K3 ¼ 1 �ð0;− sinhϑ;−ξ cosh ϑÞ ξ
ffiffiffiffiffiffiffiffiffi
m2m3

p ðm2þm3Þ sinh 2ϑ
2ðm2 sinh2 ϑþm3 cosh2 ϑÞ

IO −K1 ¼ K2 ¼ 1 �ð− sinh ϑ;−ξ cosh ϑ; 0Þ ξ
ffiffiffiffiffiffiffiffiffi
m1m2

p ðm1þm2Þ sinh 2ϑ
2ðm1 sinh2 ϑþm2 cosh2 ϑÞ
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their best fit values [4] and two representative values
δ ¼ 0;−π=2 are considered. From Eqs. (2.9) and (2.14)
we know that the final baryon asymmetry YB is propor-
tional to M1. We shall take M1 ¼ 5 × 1011 GeV for
illustration in this work, and the conclusions would not
change qualitatively for other values of M1. The neutrino
mass spectrum is NO and IO, respectively, in the first row
and second row of these plots, and we choose δ ¼ 0 in the
left column and δ ¼ −π=2 in the right column. Note that
the period of ϑ for R-1st is π and there are no phenom-
enologically viable points in the region of jϑj > 0.6π for

both R-2nd and R-3rd. For R-1st, we find that the exper-
imentally measured value of the baryon asymmetry can be
accommodated in the case of NO, while YB is too small to
account for its observed value for IO. The second case R-2nd
can result in successful leptogenesis regardless of whether
the neutrino mass spectrum is NO or IO. From Fig. 3, we see
that the realistic baryon asymmetry can be generated in the
case of R-3rd plus IO, while YB is determined to be smaller
than its measured value for R-3rd plus NO.
We have chosen the representative values δ ¼ 0 and

−π=2 for illustration in Figs. 1–3. In view of the fact that
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FIG. 1. The contour plots of YB=Yobs
B in the ϑ − ϕ plane for the case of R-1st. Here we chooseM1 ¼ 5 × 1011 GeV, so that only the tau

Yukawa couplings are in equilibrium. The first row and the second row are for the NO and IO spectra, respectively, and the Dirac CP
phase δ is taken to be 0 in the left panels and −π=2 in the right panels. The neutrino oscillation parameters θ12, θ13, θ23, δm2, and Δm2

are fixed at their best fit values [4]. The thick green curve represents the experimentally observed values of the baryon asymmetry
Yobs
B ¼ 8.66 × 10−11 [59].
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the Dirac CP phase δ is not constrained at the 3σ level
at present, we display the regions in the δ − ϕ plane in
Fig. 4, where successful leptogenesis (YB=Yobs

B ¼ 1) can
be realized for certain values of ϑ. We notice that the
observed baryon asymmetry can be generated in quite large
regions of the δ − ϕ plane. For the cases of IO:R-1st and
NO:R-3rd with M1 ¼ 5 × 1011 GeV, the baryon asymme-
try YB is too small to be in accordance with experimental
data. Equations (2.9) and (2.14) imply that YB increases
with M1. The maximal value of M1 is 1012 GeV in the
flavored leptogenesis regime; accordingly we find that the

maximum of YB=Yobs
B is 0.226 and 0.968 for IO:R-1st and

NO:R-3rd, respectively, when δ, ϕ, and ϑ are treated as free
parameters. Therefore these two cases cannot lead to
successful leptogenesis in our setup even if δ and M1

are not fixed to the above example values. From Fig. 4, we
can easily see whether the minimal seesaw model plus a
residual CP symmetry is capable of explaining the matter/
antimatter asymmetry or not for each possible experimental
outcome of δ and ϕ.
The 0νββ decay process is an important probe for the

Majorana nature of neutrinos. If it were observed in the
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FIG. 2. The contour plots of YB=Yobs
B in the ϑ − ϕ plane for the case of R-2nd. Here we choose M1 ¼ 5 × 1011 GeV, so that only the

tau Yukawa couplings are in equilibrium. The first row and the second row are for the NO and IO spectra, respectively, and the Dirac CP
phase δ is taken to be 0 in the left panels and −π=2 in the right panels. The neutrino oscillation parameters θ12, θ13, θ23, δm2, and Δm2

are fixed at their best fit values [4]. The thick green curve represents the experimentally observed values of the baryon asymmetry
Yobs
B ¼ 8.66 × 10−11 [59].
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future, then neutrinos must be Majorana particles. The amplitude of the 0νββ decay is proportional to the effective Majorana
neutrino mass mee, which is defined as [58]

mee ¼
				X

i

miU2
1i

				 ¼ jm1c212c
2
13 þm2s212c

2
13e

iϕ þm3s213e
−2iδj: ð3:21Þ

In the 2RNH model, the lightest neutrino is massless with m1 ¼ 0 for NO and m3 ¼ 0 for IO. Consequently the expression
of mee can be reduced to

mee ¼

8>><
>>:
			 ffiffiffiffiffiffiffiffiδm2
p

s212c
2
13e

iðϕþ2δÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2 þ δm2=2

p
s213

			; for NO;			 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δm2 − δm2=2

p
c212c

2
13 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δm2 þ δm2=2

p
s212c

2
13e

iϕ
			; for IO;

ð3:22Þ

where the light neutrino masses in Eq. (2.1) are used. We
see that the effective mass mee depends on the combination
ϕþ 2δ for the NO and on the phase ϕ for the IO case. From
the panels in the first row of Fig. 4, we find that the phase
ϕþ 2δ can take any value between −π and π when
sufficient baryon asymmetries are generated for the NO
case. Similarly the panels in the second row of Fig. 4 imply
that the phase ϕ can vary in the range of ½−π; π� if the
observed baryon asymmetry is generated for IO. Thus
the effective Majorana massmee reaches the maximal value
when ϕþ 2δ ¼ 0 (ϕ ¼ 0) and the minimal value when
ϕþ 2δ ¼ πðϕ ¼ πÞ for the NO (IO) spectrum. Therefore in
the parameter space of successful leptogenesis, the effective
mass mee varies in the interval

0.000717 eV ≤ mee ≤ 0.00449 eV for NO;

0.0130 eV ≤ mee ≤ 0.0478 eV for IO: ð3:23Þ
The predictions of the IO case can be tested in future 0νββ
decay experiments.

IV. LEPTOGENESIS WITH TWO RESIDUAL
CP TRANSFORMATIONS OR A CYCLIC

RESIDUAL FLAVOR SYMMETRY

In this section, we shall proceed to discuss the predic-
tions for leptogenesis in the case that two residual CP
transformations or a cyclic residual flavor symmetry is
preserved by the seesaw Lagrangian in the 2RHN model.

A. Two residual CP transformations preserved

Following the same method as in Sec. III, we investigate
what we could learn if the parent CP symmetry at a high
energy scale is broken down to two residual CP trans-
formations in the neutrino sectors. The lepton fields trans-
form as

νL↦
CP1

iXν1γ0Cν̄TL; NR↦
CP1

iX̂N1γ0CN̄T
R;

νL↦
CP2

iXν2γ0Cν̄TL; NR↦
CP2

iX̂N2γ0CN̄T
R; ð4:1Þ

with Xν1 ≠ Xν2 and X̂N1 ≠ X̂N2. The invariance of λ andM
under the action of the above CP transformations Xνi and
X̂Ni implies

X̂†
N1λXν1 ¼ λ�; X̂†

N1MX̂�
N1 ¼ M�; ð4:2aÞ

X̂†
N2λXν2 ¼ λ�; X̂†

N2MX̂�
N2 ¼ M�: ð4:2bÞ

Notice that −Xνi, −X̂Ni leads to the same constraints as Xνi,
X̂Ni; hence they are identified as the same residual CP
transformation. Because the RH neutrino fields N1R and
N2R are assumed to be in the mass eigenstates, X̂N1 and X̂N2

must be diagonal with elements þ1 or −1, i.e.,

X̂N1; X̂N2 ¼ diagð�1;�1Þ: ð4:3Þ

The light neutrino mass matrix mν is given by the
seesaw relation. We can straightforwardly check that the
residual CP transformations lead to the following two
constraints on mν,

XT
ν1mνXν1 ¼ m�

ν; XT
ν2mνXν2 ¼ m�

ν: ð4:4Þ

This is exactly the condition that mν is invariant under the
residual CP transformations Xν1 and Xν2. From Eq. (4.4)
we can derive that the unitary transformation Uν which
diagonalizes mν should satisfy

U†
νXν1U�

ν ¼ X̂ν1; U†
νXν2U�

ν ¼ X̂ν2; ð4:5Þ

with

X̂ν1; X̂ν2 ¼ diagðeiα1;2 ;�1;�1Þ for NO;

X̂ν1; X̂ν2 ¼ diagð�1;�1; eiα1;2Þ for IO; ð4:6Þ

where α1 and α2 are arbitrary real parameters.
Equation (4.5) indicates that both residual CP
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transformations Xν1 and Xν2 must be symmetric unitary
matrices. Using the symmetry properties of λ, M, and Uν

shown in Eqs. (4.2), (4.2b), and (4.4), we find that the R-
matrix is subject to the following constraints,

X̂N1R�X̂−1
ν1 ¼ R; X̂N2R�X̂−1

ν2 ¼ R; ð4:7Þ

which imply

R ¼ X̂N1X̂N2RX̂ν1X̂
−1
ν2 : ð4:8Þ

Because the residual CP transformations Xν1, X̂N1 are
distinct from Xν2, X̂N2, the combinations X̂N1X̂N2 and
X̂ν1X̂

−1
ν2 should take the form3

X̂N1X̂N2 ¼ diagð1;−1Þ;
X̂ν1X̂

−1
ν2 ¼ Pνdiagðeiðα1−α2Þ; 1;−1ÞPT

ν ; ð4:9Þ
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FIG. 3. The contour plots of YB=Yobs
B in the ϑ − ϕ plane for the case of R-3rd. Here we choose M1 ¼ 5 × 1011 GeV, so that only the

tau Yukawa couplings are in equilibrium. The first row and the second row are for the NO and IO spectra, respectively, and the Dirac CP
phase δ is taken to be 0 in the left panels and −π=2 in the right panels. The neutrino oscillation parameters θ12, θ13, θ23, δm2, and Δm2

are fixed at their best fit values [4]. The thick green curve represents the experimentally observed values of the baryon asymmetry
Yobs
B ¼ 8.66 × 10−11 [59].

3The same results for the R-matrix would be obtained in the
case of X̂N1X̂N2 ¼ −diagð1;−1Þ, X̂ν1X̂

−1
ν2 ¼ Pνdiagðeiðα1−α2Þ; 1;

−1ÞPT
ν .
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where Pν is a permutation matrix with Pν ¼ P123; P132

for NO and Pν ¼ P231; P321 for IO. Here the six 3 × 3
permutation matrices are denoted as

P123 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; P132 ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA;

P213 ¼

0
B@

0 1 0

1 0 0

0 0 1

1
CA; P231 ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA;

P312 ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA; P321 ¼

0
B@

0 0 1

0 1 0

1 0 0

1
CA: ð4:10Þ

Inserting Eq. (4.9) into Eq. (4.8) we obtain

RPν ¼ diagð1;−1ÞRPνdiagðeiðα1−α2Þ; 1;−1Þ: ð4:11Þ

Consequently the (13) and (22) elements of the matrix RPν

are vanishing. The explicit forms of the R-matrix for all
possible values of Pν are summarized in Table III. It is
easy to check that all the flavored CP symmetry ϵα is
vanishing, i.e.,

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0
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1.0

NO: R 1st

1.0 0.5 0.0 0.5 1.0
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1.0

NO: R 2nd

1.0 0.5 0.0 0.5 1.0
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1.0

IO: R 2nd
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0.5

1.0

IO: R 3rd

FIG. 4. The viable regions in the δ − ϕ plane where the cosmological matter/antimatter asymmetry can be generated for certain values
of ϑ. For the cases of IO:R-1st and NO:R-3rd, the baryon asymmetry YB is smaller than its observed value for any value of δ, ϕ, and ϑ.

TABLE III. The explicit form of the R-matrix for different
possible values Pν, where ξ is either þ1 or −1.

Mass ordering Pν θ̂ R

NO P123 0; π R ¼ ð0
0
�1
0

0
�ξÞ

P132 � π
2 R ¼ ð0

0
0
∓1

�ξ
0
Þ

IO P231 0; π R ¼ ð�1
0

0
�ξ

0
0
Þ

P321 � π
2 R ¼ ð 0

∓1
�ξ
0

0
0
Þ
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ϵe ¼ ϵμ ¼ ϵτ ¼ 0: ð4:12Þ

As a result, a net baryon asymmetry cannot be generated
at leading order in this case, and moderate high order
corrections are necessary in order to make leptogenesis
viable. We would like to emphasize that this result is quite
general and it is independent of the explicit form of the
residual CP transformations Xνi and X̂Ni.

B. A cyclic residual flavor symmetry preserved

In this section we shall proceed to discuss the implica-
tions of the residual flavor symmetry (without residual CP)
for leptogenesis. We assume that the flavor symmetry
group is broken down to a cyclic Zn subgroup in the
neutrino sector, where the subscript n denotes the order
of the cyclic group. Under the action of the generator of
the residual flavor symmetry Zn, the neutrino fields trans-
form as

νL↦
Zn
GννL; NR↦

Zn
ĜNNR; ð4:13Þ

where Gν is a 3 × 3 unitary matrix with Gn
ν ¼ 13×3 and

ĜN ¼ diagð�1;�1Þ in our working basis. For this residual
symmetry to hold, the Yukawa coupling λ and the RH
neutrino mass matrix M≡ diagðM1;M2Þ have to fulfill

Ĝ†
NλGν ¼ λ; Ĝ†

NMĜ�
N ¼ M: ð4:14Þ

Subsequently we can check that the light neutrino mass
matrix is invariant under the residual flavor symmetry

GT
νmνGν ¼ mν: ð4:15Þ

From this condition we find that the neutrino diagonaliza-
tion matrix Uν can diagonalize the residual flavor sym-
metry transformation Gν as well,

U†
νGνUν ¼ Ĝν; with

Ĝν ¼
�
diagðeiα;�1;�1Þ for NO

diagð�1;�1; eiαÞ for IO
; ð4:16Þ

where α ¼ 2πk=nwith k coprime to n is a rational multiple
of π. Notice that the maximal invariance group of the
neutrino mass matrix is Uð1Þ × Z2 × Z2, not a Klein group
Z2 × Z2, because one light neutrino mass is zero in this
case. From Eqs. (4.14) and (4.16), we can determine that
the residual flavor symmetry gives rise to the following
constraint on the R-matrix,

R ¼ ĜNRĜν: ð4:17Þ

The explicit forms of the R-matrix for all possible values
of Ĝν and ĜN are listed in Table IV. We see that there is

only one nonzero element in each row of the R-matrix;
consequently all the flavored CP asymmetries are zero:

ϵe ¼ ϵμ ¼ ϵτ ¼ 0: ð4:18Þ

Hence the baryon asymmetry YB would be generally
vanishing in the 2RHN model with a remnant Zn flavor
symmetry in the neutrino sector. In a concrete model,
one could take into account the nonleading corrections
arising from loop effects and higher dimensional
operators to explain the correct size of matter/antimatter
asymmetry [21].

V. EXAMPLES IN Δð6n2Þ FLAVOR
SYMMETRY AND CP

In Sec. III, we have presented the general results for
leptogenesis in the scenario that one residual CP trans-
formation is preserved in the neutrino sector. In order to
show concrete examples, we shall study the case that the
single residual CP transformation arises from the breaking
of the generalized CP symmetry compatible with the
Δð6n2Þ flavor group.
Δð6n2Þ as the flavor symmetry group and the resulting

phenomenological consequence for lepton flavor mixing
have been discussed in the literature [28–30,60]. In the
present work, we shall adopt the conventions and notations
of Ref. [30] for the Δð6n2Þ group. The Δð6n2Þ group is
isomorphic to ðZn × ZnÞ⋊S3, where the index n is a generic
integer. The Δð6n2Þ group can be generated by four
generators, a, b, c, and d, which obey the following
relations [30,61]:

TABLE IV. The explicit form of the R-matrix for different
possible values of ĜN and Ĝν. The notation ✗ means that the
solution for the R-matrix does not exist, and Dðx; yÞ with x; y ¼
�1 refers to diagðeiα; x; yÞ and diagðx; y; eiαÞ for NO and IO,
respectively. Note that the residual flavor symmetry gives no
constraint on the R-matrix for ĜN ¼ −diagð1; 1Þ and
Ĝν ¼ Dð−1;−1Þ.

ĜN Ĝν R (NO) R (IO)

diagð1;−1Þ Dð1; 1Þ ✗ ✗
diagð1;−1Þ Dð1;−1Þ ð0

0
�1
0

0
�ξÞ ð�1

0
0
�ξ

0
0
Þ

diagð1;−1Þ Dð−1; 1Þ ð0
0

0
∓1

�ξ
0
Þ ð 0

∓1
�ξ
0

0
0
Þ

diagð1;−1Þ Dð−1;−1Þ ✗ ✗
diagð−1; 1Þ Dð1; 1Þ ✗ ✗
diagð−1; 1Þ Dð1;−1Þ ð0

0
0
∓1

�ξ
0
Þ ð 0

∓1
�ξ
0

0
0
Þ

diagð−1; 1Þ Dð−1; 1Þ ð0
0
�1
0

0
�ξÞ ð�1

0
0
�ξ

0
0
Þ

diagð1; 1Þ Dð−1;−1Þ ✗ ✗
−diagð1; 1Þ Dð1; 1Þ ✗ ✗
−diagð1; 1Þ Dð1;−1Þ ✗ ✗
−diagð1; 1Þ Dð−1; 1Þ ✗ ✗

IMPLICATIONS OF RESIDUAL CP SYMMETRY FOR … PHYSICAL REVIEW D 96, 075005 (2017)

075005-13



a3 ¼ b2 ¼ ðabÞ2 ¼ cn ¼ dn ¼ 1; cd ¼ dc;

aca−1 ¼ c−1d−1; ada−1 ¼ c; bcb−1 ¼ d−1;

bdb−1 ¼ c−1: ð5:1Þ

The Δð6n2Þ group has 6n2 elements, which can be
expressed as

g ¼ aαbβcγdδ; α ¼ 0; 1; 2; β ¼ 0; 1;

γ; δ ¼ 0; 1;…; n − 1: ð5:2Þ

The group Δð6n2Þ has one-dimensional, two-dimensional,
three-dimensional, and six-dimensional irreducible repre-
sentations [30,61]. It has been shown that Δð6n2Þ has
2ðn − 1Þ three-dimensional irreducible representations
denoted by 3k;l in which the explicit form of the four
generators can be chosen as

3k;l∶ a ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; b ¼ ð−1Þk

0
B@

0 0 1

0 1 0

1 0 0

1
CA;

c ¼

0
B@

ηl 0 0

0 η−l 0

0 0 1

1
CA; d ¼

0
B@

1 0 0

0 ηl 0

0 0 η−l

1
CA;

ð5:3Þ

where η≡ e2πi=n; k ¼ 1, 2; and l ¼ 1; 2;…; n − 1. In the
following, without loss of generality, we shall embed
the three generations of left-handed lepton doublets into
the faithful triplet 31;1, which is denoted by 3 for simplicity,
while the two right-handed neutrinos are assumed to trans-
form as a doublet ofΔð6n2Þ. As has been shown in Ref. [30],
the most general CP transformation consistent with the
Δð6n2Þ flavor symmetry is of the same form as the flavor
symmetry transformation in the basis of Eq. (5.3), i.e.,

Xr ¼ ρrðgÞ; g ∈ Δð6n2Þ; ð5:4Þ

where ρrðgÞ denotes the representation matrix of the element
g in the irreducible representation r of the Δð6n2Þ group.
Moreover, we assume that the Δð6n2Þ flavor symmetry is
broken down to anAbelian subgroupGl in the charged lepton
sector and Gl is capable of distinguishing among the three
generations of the charged leptons. As a result, the charged
lepton mass matrix is invariant under the action of the
generator gl of Gl,

ρ†3ðglÞm†
l mlρ3ðglÞ ¼ m†

l ml; ð5:5Þ

where the charged leptonmassmatrixml is given in the right-
left basis. The matrix ρ3ðglÞ can be diagonalized by a unitary
transformation Ul,

U†
l ρ3ðglÞUl ¼ ρdiag3 ðglÞ: ð5:6Þ

Then Eq. (5.5) implies that Ul also diagonalizes the charged
lepton mass matrix m†

l ml. Notice that Ul is uniquely
determined up to permutations and phases of their column
vectors. All possible residual subgroup Gl and the corre-
sponding diagonalization matrices Ul are summarized in
Table V, where Gl is assumed to be generated by a single
generator. If we further take into account the case thatGl is a
product of several cyclic groups, the constraints on the
parameters s and t in Table V would be removed, yet no
new additional form of Ul is generated [62]. In the neutrino
sector, a single remnantCP transformationXν is preserved by
the neutrinomassmatrix such that the neutrinomixingmatrix
Uν is of the formof Eq. (3.13), as shown in Sec. III. Hence the
lepton mixing matrix is determined to be given by

U ¼ PlU
†
lΣνO3×3X̂

−1
2

ν ; ð5:7Þ

where Pl is a generic 3 × 3 permutation matrix since the
charged lepton masses cannot be predicted in this approach.
One can straightforwardly check that two pairs of subgroups
fGl; Xνg and fG0

l; X
0
νg would yield the same results for the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix
[34], if they are related by a similarity transformation Ω,

ρ3ðg0lÞ ¼ Ωρ3ðglÞΩ†; X0
ν ¼ ΩXνΩT; ð5:8Þ

where gl and g0l denote the generator of Gl and G0
l,

respectively. Moreover generally, we denote the mixing
matrices predicted by two generic residual symmetries
fGl; Xνg and fG0

l; X
0
νg as

U ¼ PlU
†
lΣνO3×3X̂

−1
2

ν ; U0 ¼ P0
lU

0†
lΣ0

νO0
3×3X̂

0−1
2

ν : ð5:9Þ

The condition under which U and U0 essentially lead to the
same mixing pattern is found to be [34]

ΣΣT ¼ QLPLΣ0Σ0TPT
LQL; ð5:10Þ

where Σ≡U†
lΣν, Σ0 ≡U0†

lΣ0
ν, PL ≡ PT

l P
0
l, and QL is a

diagonal phase matrix. As stated above, we assume that the
concernedΔð6n2Þ flavor group andCP symmetry are broken
to an Abelian subgroup in the charged lepton sector and to a
single remnant CP transformation Xν in the neutrino sector.
Thus Xν has to be a symmetric unitary matrix and it can be

Xν ¼ ρ3ðcxdyÞ; ρ3ðbcxd−xÞ; ρ3ðabcxd2xÞ;
ρ3ða2bc2xdxÞ; x; y ¼ 0; 1;…; n − 1; ð5:11Þ

which are related to each other by a similarity transformation
as follows:
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ρ3ðbÞρ3ðbcxd−xÞρT3 ðbÞ ¼ ρ3ðbcxd−xÞ;
ρ3ða2Þρ3ðbcxd−xÞρT3 ða2Þ ¼ ρ3ðabcxd2xÞ;

ρ3ðad2xÞρ3ðbcxd−xÞρT3 ðad2xÞ ¼ ρ3ða2bc2xdxÞ: ð5:12Þ

Hence it is sufficient to consider the choices ofXν ¼ ρ3ðcxdyÞ
and Xν ¼ ρ3ðbcxd−xÞ with x; y ¼ 0; 1;…; n − 1. The cor-
responding Takagi factorization matrix can be read out as

Xν ¼ ρ3ðcxdyÞ;
Σν ¼ diagðexπi

n ; e
ðy−xÞπi

n ; e−
yπi
n Þ; ð5:13Þ

Xν ¼ ρ3ðbcxd−xÞ; Σν ¼

0
B@

0 −iexπi
n e

xπi
nffiffiffi

2
p

e−
2xπi
n 0 0

0 ie
xπi
n e

xπi
n

1
CA:

ð5:14Þ

Furthermore taking into account the following conjugate
relations,

bðabcsdtÞb−1 ¼ a2bc−td−s;

ρ3ðbÞρ3ðcxdyÞρT3 ðbÞ ¼ ρ3ðc−yd−xÞ;
ρ3ðbÞρ3ðbcxd−xÞρT3 ðbÞ ¼ ρ3ðbcxd−xÞ; ð5:15Þ

we only need to consider eight possible remnant symmetries
constituted by Gl ¼ hcsdti, hbcsdti, hacsdti, habcsdti and
Xν ¼ ρ3ðcxdyÞ, Xν ¼ ρ3ðbcxd−xÞ. In this section, we shall
investigate the predictions for lepton flavor mixing and
matter-antimatter asymmetry via leptogenesis for each pos-
sible case. The explicit form of the lepton mixing matrix and
the expressions of the mixing parameters and rephasing
bilinear invariants are given in Appendix C.
For the first case, the lepton mixing matrix is given

by Eq. (C1), and both Dirac and Majorana CP violation
phases are trivial. The CP asymmetries ϵα are found to be
vanishing; therefore nonzero baryon asymmetry cannot
be generated, although the experimental data on lepton
mixing angles can be accommodated. Freely varying the
parameters θ1;2;3 and requiring the three mixing angles in
the experimentally preferred 3σ ranges [4], we find that the
effective Majorana neutrino mass mee takes values in the
following intervals,

NO∶ 0.000717 eV ≤ mee ≤ 0.00219 eV and

0.00308 eV ≤ mee ≤ 0.00449 eV;

IO∶0.0130 eV ≤ mee ≤ 0.0227 eV and

0.0471 eV ≤ mee ≤ 0.0478 eV: ð5:16Þ

Here the two different regimes for both NO and IO arise
from the CP parity matrix X̂ν. In other words, the CP
parities of the two massive light neutrinos can be identical
or opposite, and accordingly two distinct values of mee are
obtained.
The second kind of residual symmetry gives rise to the

lepton mixing pattern of Eq. (C6). Three independent
mixing patterns can be obtained from the six row permu-
tations, yet only the mixing matrix UII;3 is viable.
Equation (C9) indicates that both the Dirac CP phase δ
and the atmospheric mixing angle θ23 are maximal, while
the values of θ12 and θ13 are not constrained for the mixing
matrix UII;3. The best fitting values ðsin2 θ13Þbf ¼ 0.0234
[ðsin2 θ13Þbf ¼ 0.0240] and ðsin2 θ12Þbf ¼ 0.308 [4] for
NO (IO) can be reproduced for certain values of the

TABLE V. The unitary transformation Ul for the possible
remnant subgroup Gl. Here the notation hgi denotes a group
generated by the element g. The allowed values of the parameters
s and t are s; t ¼ 0; 1;…; n − 1, and ω ¼ e2πi=3 is the cube root of
the unit. Note that the identity ðactdt−sÞ2 ¼ a2csdt is fulfilled;
consequently the unitary matrix Ul for Gl ¼ ha2csdti can be
obtained from the corresponding one ofGl ¼ hacsdti through the
replacement s → t and t → t − s. The constraints on the param-
eters s and t are to eliminate the degeneracy among the
eigenvalues of the generator of Gl, and they can be completely
relaxed by extending Gl to be the direct product of several cyclic
groups [62].

Gl Ul Constraints

hcsdti  
1 0 0

0 1 0

0 0 1

!
sþ t ≠ 0

mod ðnÞ
s − 2t ≠ 0
mod ðnÞ

t − 2s ≠ 0
mod ðnÞ

hbcsdti
1ffiffiffi
2

p

0
B@ e−iπ

sþt
2n 0 e−iπ

sþt
2n

0
ffiffiffi
2

p
0

−eiπsþt
2n 0 eiπ

sþt
2n

1
CA s − t ≠ 0; n

3
; 2n
3

mod ðnÞ

hacsdti
1ffiffiffi
3

p

0
B@ e−2iπ

s
n ω2e−2iπ

s
n ωe−2iπ

s
n

e−2iπ
t
n ωe−2iπ

t
n ω2e−2iπ

t
n

1 1 1

1
CA

� � �

ha2csdti
1ffiffiffi
3

p

0
B@e−2iπ

t
n ω2e−2iπ

t
n ωe−2iπ

t
n

e2iπ
s−t
n ωe2iπ

s−t
n ω2e2iπ

s−t
n

1 1 1

1
CA

� � �

habcsdti
1ffiffiffi
2

p

0
B@ eiπ

t−2s
2n eiπ

t−2s
2n 0

−e−iπt−2s2n e−iπ
t−2s
2n 0

0 0
ffiffiffi
2

p

1
CA t ≠ 0; n

3
; 2n
3

ha2bcsdti
1ffiffiffi
2

p

0
B@

ffiffiffi
2

p
0 0

0 eiπ
s−2t
2n eiπ

s−2t
2n

0 −e−iπs−2t2n e−iπ
s−2t
2n

1
CA s ≠ 0; n

3
; 2n
3
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parameters θ1;2;3, as shown in Table VI. Since the lepton
mixing angles in Eq. (C9) are invariant under the trans-
formations ðθ2;θ3Þ→ ðπ−θ2;θ3Þ, ðθ2; θ3Þ → ðθ2; π − θ3Þ,
and ðθ2; θ3Þ → ðπ − θ2; π − θ3Þ, four best fitting values for
θ2;3 can be found. Recently T2K and NOνA have reported a
slight preference for δ close to 3π=2, while maximal θ23 is

favored by T2K and disfavored by NOνA [9–13]. T2K
and NOνA are expected to be able to exclude maximal θ23
at a 90% confidence level after their full period of data
taking. These two experiments can also contribute to the
measurement of the Dirac phase δ, if running in both the
neutrino and the antineutrino modes. They can possibly

TABLE VI. Results of the χ2 analysis for some representative mixing patterns which arise from the breaking of the Δð6n2Þ flavor
group and CP to an Abelian subgroup in the charged lepton sector and a single remnant CP transformation in the neutrino sector. The χ2

function has a global minimum χ2min at the best fit values θ
bf
1 , θ

bf
2 , and θ

bf
3 for θ1, θ2, and θ3. We display the values of the mixing angles as

well as j sin δj and j sinϕj at the given θbf1;2;3. We also present the value of the effective Majorana neutrino mass mee at the best fit points

θbf1;2;3. Notice that mee can take two distinct values due to the CP parity matrix X̂ν.

ϱi θbf1 =π θbf2 =π θbf3 =π χ2min sin2 θ13 sin2 θ12 sin2 θ23 j sin δj j sinϕj mee=eV

UII;3 � � � NO � � � 0.049 0.187 3.645 0.0234 0.308 0.5 1 0 0.00377 or 0.00145
0.813

0.951 0.187
0.813

IO � � � 0.050 0.187 0.0475 or 0.0179
0.813 0.105 0.024

0.950 0.187
0.813

UIII;1 ϱ1 ¼ π
6

NO 0.322 0.155 0.614 27.205 0.0295 0.308 0.577 0.985 0.253 0.00162 or 0.00389
0.977

0.678 0.845 0.386
0.023

IO 0.340 0.143 0.606 2.143 0.0251 0.641 0.983 0.789 0.0433 or 0.0263
0.968

0.660 0.857 0.394
0.032

UIII;2 ϱ1 ¼ π
6

NO 0.329 0.150 0.611 7.674 0.0278 0.308 0.398 0.984 0.829 0.00168 or 0.00381
0.974

0.671 0.850 0.389
0.026

IO 0.331 0.149 0.610 7.281 0.0274 0.393 0.984 0.773 0.0434 or 0.0259
0.973

0.669 0.851 0.390
0.027

UIII;3 ϱ1 ¼ π
3

NO 0.049 0.040 0.306 0 0.0234 0.308 0.437 0.873 0.852 0.00377 or 0.00145
0.681

0.951 0.960 0.319
0.694

0.281 0.437 0.035
0.409

0.719 0.563 0.591
0.965

IO 0.050 0.028 0.308 0.024 0.455 0.870 0 0.0475 or 0.0179
0.683

0.950 0.972 0.317
0.692

0.334 0.443 0.356
0.981

0.666 0.557 0.019
0.644

(Table continued)
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exclude certain ranges of δ, especially the values around
δ ¼ �π=2, depending on θ23 and the neutrino mass
hierarchy. Future long-baseline experiments DUNE [63],
T2HK [64], and T2HKK [65] will allow for a measurement
of the Dirac phase and atmospheric mixing angle with
significantly improved sensitivities and thus can fully test
the maximal-maximal predictions. Note that the next-
generation neutrino experiments [63,64] are capable of
testing the predictions for maximal δ and θ23. Furthermore,
we plot the numerical results of the baryon asymmetry YB
with respect to the free parameter ϑ in Fig. 5, where the
parameters θ1;2;3 are set to their best fit values. Obviously
the observed matter-antimatter asymmetry in the Universe
can be obtained for particular values of ϑ except the cases
of NO:R-3rd and IO:R-1st. This conclusion is consistent
with the general results of Sec. III. In addition, the allowed
regions of the effective Majorana mass mee are found to be

the same as case I, and they are given in Eq. (5.16). The
reason is because mee is independent of θ23, as shown in
Eq. (3.22). We also present the value of mee at the best
fitting points θbf1;2;3 in Table VI.
For case III, three independent lepton mixing patterns

can be obtained as shown in Eq. (C16). The predictions of
the mixing parameters for mixing matrix UIII;1 are given in
Eq. (C17). The parameter value of ϱ1 ¼ 0 is always
admissible, and the resulting lepton mixing matrix is the
same as UI if the possible shifts in θ1;2;3 are taken into
account. Consequently the lepton mixing angles in the
experimentally preferred range can be achieved for appro-
priate choices of the parameters θ1;2;3. However, both
Dirac phase δ and Majorana phase ϕ would be determined
to be trivial, such that successful leptogenesis cannot be
achieved. The smallest value of the index n which is

TABLE VI. (Continued)

ϱi θbf1 =π θbf2 =π θbf3 =π χ2min sin2 θ13 sin2 θ12 sin2 θ23 j sin δj j sinϕj mee=eV

UV;1 ϱ3 ¼ 0, ϱ4 ¼ π
2

NO 0.454 0.694 0.028 3.327 0.0233 0.339 0.433 0.931 0.072 0.00210 or 0.00385
0.468 0.808

IO 0.465 0.692 0.021 3.599 0.0238 0.340 0.449 0.961 0 0.0149 or 0.0475
0.476 0.809

UV;1 ϱ3 ¼ 0, ϱ4 ¼ π
3

NO 0.448 0.684 0.017 0 0.0234 0.308 0.437 0.899 0.929 0.00153 or 0.00374
0.746 0.703 0.848 0.00366 or 0.00173

0.465 0.798 0.003 0.984 0.892 0.00274 or 0.00298
0.740 0.097 0.999 0.00259 or 0.00310

IO 0.463 0.684 0.004 0.024 0.455 0.936 0.826 0.0272 or 0.0428
0.736 0.623

0.475 0.803 0.731 0.191 0.806 0.0267 or 0.0431
0.995 0.997

UVI ϱ5 ¼ π
2

NO 0.530 0.075 0.487 0.854 0.0235 0.323 0.448 0.894 0.016 0.00355 or 0.00226
0.925

IO 0.508 0.086 0.496 0.349 0.0240 0.317 0.487 0.994 0 0.0170 or 0.0475
0.914

UVIII;1 � � � NO 1 0.862 0.106 18.549 0.0244 0.308 0.578 0.667 0.580 0.00228 or 0.00337
0.894

0 0.138 0.106
0.894

IO 1 0.861 0.106 0.794 0.024 0.579 0.668 0.616 0.0229 or 0.0453
0.894

0 0.139 0.106
0.894

UVIII;2 � � � NO 1 0.861 0.106 0.537 0.0236 0.308 0.420 0.389 0.616 0.00228 or 0.00334
0.894

0 0.139 0.106
0.894

IO 0 0.138 0.894 1.182 0.0242 0.422 0.667 0.615 0.0229 or 0.0453
0.106

1 0.862 0.894
0.106
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capable of accommodating the experimental data and
nontrivial CP violating phases is n ¼ 6, with ϱ1 ¼ π=6
up to the symmetry transformations shown in Eq. (C14).
Please see Table VI for the corresponding results of the χ2

analysis. We notice that the atmospheric mixing angle
deviates from maximal mixing with sin2 θ23 ¼ 0.577
(0.641) for NO (IO) at the best fit point where the χ2

function reaches a global minimum, and the Dirac CP
phase is approximately maximal with j sin δj ¼ 0.985
(0.983). This result is consistent with the weak evidence
of maximal Dirac CP violation reported by T2K [9–11]
and NOνA [12,13] and global data fitting [4–8], and it can
be tested in forthcoming neutrino oscillation experiments
[63–65]. The numerical results of YB versus ϑ for ϱ1 ¼ π=6
are shown in Fig. 6. We see that the correct value of the
baryon asymmetry can be obtained for particular values
of ϑ except in the case of R-3rd with the NO spectrum and
R-1st with the IO. Moreover, we find that the effective mass
mee varies in the intervals,

NO∶ 0.000723 eV ≤ mee ≤ 0.00449 eV;

IO∶ 0.0223 eV ≤ mee ≤ 0.0297 eV and

0.0430 eV ≤ mee ≤ 0.0436 eV: ð5:17Þ

The mixing parameters forUIII;2 are given by Eq. (C19).
As shown in Table VI, agreement with the experimental

data can be achieved for both ϱ1 ¼ 0 and ϱ1 ¼ π=6. The
CP asymmetries fulfill ϵ2 ¼ ϵτ ¼ 0 in this case; therefore
the baryon asymmetry YB is predicted to be zero.
Regarding the third mixing pattern UIII;3, the expressions
of mixing parameters and the rephase invariants are shown
in Eqs. (C21) and (C22), respectively. For the smallest
group index n ¼ 2, the parameter ϱ1 can be either 0 or π=2.
We find that the experimental data on lepton mixing angles
can be accommodated well for both ϱ1 ¼ 0 and ϱ1 ¼ π=2.
The mixing pattern UIII;3 with ϱ1 ¼ 0 is equivalent to UI

in Eq. (C1), the Dirac as well as Majorana CP phases
are trivial, and consequently a nonzero baryon asymmetry
cannot be generated. The mixing matrixUIII;3 for ϱ1 ¼ π=2
is related to UII;3 as follows:

UIII;3ðϱ1 ¼ π=2; θ1; θ2; θ3Þ ¼ UII;3ðθ01; θ02; θ03Þ; ð5:18Þ

where θ01;2;3 are defined through O3×3ðθ01; θ02; θ03Þ ¼
P231O3×3ðθ1; θ2; θ3Þ. Hence UIII;3 with ϱ1 ¼ π=2 and
UII;3 lead to the same predictions for lepton mixing
parameters and YB. Furthermore, the new mixing pattern
can be obtained from the Δð6 · 32Þ ¼ Δð54Þ group for
ϱ1 ¼ π=3. Note that ϱ1 ¼ 2π=3 leads to the same mixing
matrix as ϱ1 ¼ π=3 after the shift of θ1;2;3 is considered. As
shown in Table VI, the best fit values [4] of the three mixing
angles can be achieved for certain values of the parameters
θ1;2;3. The corresponding predictions for YB as a function of
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FIG. 5. YB=Yobs
B as a function of the parameter ϑ in case II, where we choose the RH neutrino massM1 ¼ 5 × 1011 GeV. The red solid,

green dashed-dotted, blue dotted, and black dashed lines correspond to the four best fitting points as shown in Table VI. The horizontal
red dashed line represents the experimental measured value Yobs

B . The neutrino mass spectrum is NO and IO in the first row and
the second row, respectively. The panels in the left, middle, and right columns are for the three admissible forms of the R-matrix such as
R-1st, R-2nd, and R-3rd, respectively.
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ϑ are plotted in Fig. 7. The observed matter-antimatter
asymmetry could be reproduced except for the cases of NO:
R-3rd and IO:R-1st. Furthermore, we obtain the effective
mass mee of the 0νββ decay is

NO∶ 0.000717 eV ≤ mee ≤ 0.00219 eV and

0.00308 eV ≤ mee ≤ 0.00449 eV;

IO∶ 0.0130 eV ≤ mee ≤ 0.0227 eV and

0.0471 eV ≤ mee ≤ 0.0478 eV: ð5:19Þ

For case IV, the resulting lepton mixing matrix UIV is
equivalent to UI . Hence we get the same predictions for
lepton flavor mixing, 0νββ decay, and leptogenesis as those
of case I.
Similarly three mixing matrices can be obtained in

case V. For the mixing matrix UV;1, the results of the
mixing parameters are given by Eq. (C32), the CP
invariants IαNO and IαIO are shown in Eq. (C33). For the
smallest Δð6n2Þ group with n ¼ 2, the values of ϱ3 and ϱ4
can be 0 and π=2 in the fundamental interval. Utilizing
the equivalence condition of Eq. (5.10), we find two
independent mixing patterns with ϱ3 ¼ ϱ4 ¼ 0 and
ϱ3 ¼ 0; ϱ4 ¼ π=2. Moreover, the mixing matrix UV;1 for
ϱ3 ¼ ϱ4 ¼ 0 is the same as UII;3 if the possible shifts of
θ1;2;3 are considered. In the case of ϱ3 ¼ 0 and ϱ4 ¼ π=2,

the results of the χ2 analysis are summarized in Table VI,
and the predictions for YB are plotted in Fig. 8. The
effective Majorana neutrino mass mee is determined to take
values in the intervals

NO∶ 0.00143 eV ≤ mee ≤ 0.00449 eV;

IO∶ 0.0144 eV ≤ mee ≤ 0.0161 eV and

0.0464 eV ≤ mee ≤ 0.0478 eV: ð5:20Þ

For the flavor groupΔð6 · 32Þ ¼ Δð54Þ, the possible values
of ϱ3 and ϱ4 are 0, π=3, and 2π=3. We can obtain three
phenomenologically viable mixing patterns corresponding
to ðϱ3; ϱ4Þ ¼ ð0; 0Þ, ð0; π=3Þ, ð0; 2π=3Þ. Note that UV;1 for
ðϱ3; ϱ4Þ ¼ ð0; 2π=3Þ is equivalent to the complex conjugate
of UV;1 with ðϱ3; ϱ4Þ ¼ ð0; π=3Þ. The best fit values of the
three lepton mixing angles can be reproduced for particular
values of θ1;2;3 in the case of ðϱ3; ϱ4Þ ¼ ð0; π=3Þ, the
resulting predictions for CP violation phases are listed
in Table VI, and the variation of YB with respect to ϑ is
plotted in Fig. 9. In addition, we find that the effective mass
mee is

NO∶ 0.000717 eV ≤ mee ≤ 0.00449 eV;

IO∶ 0.0264 eV ≤ mee ≤ 0.0285 eV and

0.0399 eV ≤ mee ≤ 0.0455 eV: ð5:21Þ
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FIG. 6. YB=Yobs
B as a function of the parameter ϑ for the mixing pattern UIII;1 with ϱ1 ¼ π=6, where we choose the RH neutrino mass

M1 ¼ 5 × 1011 GeV. The red solid, green dashed-dotted, blue dotted, and black dashed lines correspond to the four best fitting points as
shown in Table VI. The horizontal red dashed line represents the experimental measured value Yobs

B . The neutrino mass spectrum is NO
and IO in the first row and the second row, respectively. The panels in the left, middle, and right columns are for the three admissible
forms of the R-matrix such as R-1st, R-2nd, and R-3rd, respectively.
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FIG. 7. YB=Yobs
B as a function of the parameter ϑ for the mixing pattern UIII;3 with ϱ1 ¼ π=3, where we choose the RH neutrino mass

M1 ¼ 5 × 1011 GeV. The red solid, green dashed-dotted, blue dotted, black dashed, pink solid, cyan dashed-dotted, dark green dotted,
and brown dashed lines correspond to the eight best fitting points as shown in Table VI. The horizontal red dashed line represents the
experimental measured value Yobs

B . The neutrino mass spectrum is NO and IO in the first row and the second row, respectively. The
panels in the left, middle, and right columns are for the three admissible forms of the R-matrix such as R-1st, R-2nd, and R-3rd,
respectively.
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The other two mixing matrices UV;2 and UV;3 cannot
accommodate the experimental data on the lepton mixing
angles for n ¼ 2, and they give rise to the same mixing
patterns as UV;1 in the case of n ¼ 3.
The symmetry breaking pattern in case VI leads to only

one independent mixing matrix, which is given in
Eq. (C35). The predictions for the mixing parameters
and the rephasing invariants are reported in Eqs. (C40)
and (C41), respectively. For the Δð6 · 22Þ ≅ S4 flavor
group, the value of ϱ5 is either 0 or π=2 in the fundamental
region. Notice that UVI for ϱ5 ¼ 0 is equivalent to UI .
Hence the three lepton mixing angles are not subject to any
constraint, and the Dirac as well as Majorana CP phases are
trivial. The results of the χ2 analysis for ϱ5 ¼ π=2 are
collected in Table VI. We display the variation of YB with
respect to ϑ in Fig. 10. The observed baryon asymmetry can
be generated for certain values of ϑ except in the case of
NO:R-3rd and IO:R-1st. Moreover, we find the effective
Majorana neutrino mass mee is in the intervals

NO∶0.00117 eV ≤ mee ≤ 0.00449 eV;

IO∶0.0144 eV ≤ mee ≤ 0.0174 eV and

0.0458 eV ≤ mee ≤ 0.0478 eV: ð5:22Þ

As shown in Appendix C, case VII leads to the same
predictions for lepton mixing, neutrinoless double

decay, and matter/antimatter asymmetry via leptogenesis
as case III.
At the end of this section, we proceed to discuss the last

case, case VIII. After considering all possible row permu-
tations, we can obtain three independent mixing matrices,
which are given by Eq. (C46). The mixing parameters and
CP invariants for the mixing patternUVIII;1 are summarized
in Eqs. (C48) and (C49), respectively. Our numerical
results for this case are summarized in Table VI, and the
variation of YB as a function of ϑ is shown in Fig. 11. From
the expressions of the CP asymmetry ϵα and the washout
mass ~mα, we can see that the final baryon asymmetry YB
has the following symmetry properties:

YBðϑ; θ1 ¼ π; θ2; θ3Þ
¼ −YBðϑ; θ1 ¼ π; θ2; π − θ3Þ
¼ YBð−ϑ; θ1 ¼ 0; π − θ2; θ3Þ
¼ −YBð−ϑ; θ1 ¼ 0; π − θ2; π − θ3Þ; for NO; ð5:23Þ

YBðϑ; θ1 ¼ π; θ2; θ3Þ
¼ −YBð−ϑ; θ1 ¼ π; θ2; π − θ3Þ
¼ YBðϑ; θ1 ¼ 0; π − θ2; θ3Þ
¼ −YBð−ϑ; θ1 ¼ 0; π − θ2; π − θ3Þ; for IO: ð5:24Þ
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B as a function of the parameter ϑ for the mixing pattern UV;1 with ϱ3 ¼ 0 and ϱ4 ¼ π=3, where we choose the RH

neutrino massM1 ¼ 5 × 1011 GeV. The red solid, green dashed-dotted, blue dotted, and black dashed lines correspond to the four best
fitting points as shown in Table VI. The horizontal red dashed line represents the experimental measured value Yobs
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M1 ¼ 5 × 1011 GeV. The red solid, green dashed-dotted, blue dotted, and black dashed lines correspond to the four best fitting points as
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Thus the coincidence of two pairs of curves in the IO case
can be easily understood from Eq. (5.24). The second
mixing matrix UVIII;2 is related to UVIII;1 through the
exchange of the second and third rows. Therefore they
lead to the same reactor and solar mixing angles, while the
atmospheric angle changes from θ23 to π=2 − θ23 and the
Dirac phase changes from δ to π þ δ. The corresponding
results of the χ2 analysis are listed in Table VI, and the
predictions for the matter-antimatter asymmetry YB are
displayed in Fig. 12. UVIII;1 and UVIII;2 give the same
prediction for the effective mass mee as follows:

NO∶ 0.000717 eV ≤ mee ≤ 0.00449 eV;

IO∶ 0.0226 eV ≤ mee ≤ 0.0256 eV and

0.0417 eV ≤ mee ≤ 0.0475 eV: ð5:25Þ

Lastly, the third mixing matrix UVIII;3 cannot describe the
measured values of θ13 and θ12 simultaneously because of
the sum rule shown in Eq. (C52).
The above predicted lepton mixing patterns can be tested

in various ways. The upcoming reactor neutrino oscillation
experiments such as JUNO [66] will be able to make very
precise subpercent measurements of the solar mixing
angle θ12. The current experiments T2K and NOνA have
the potential to exclude maximal θ23 and maximal Dirac
phase δ. The next generation of long-baseline experiments

DUNE [63], T2HK [64], and T2HKK [65] will be able to
place important constraints on the parameters θ23 and δ;
in particular the sensitivity to the CP phase δ would be
improved significantly. In short, future neutrino facilities
would be able to improve our knowledge of the mixing
parameters in a number of ways. This could allow many of
the presented mixing patterns to be excluded. Moreover,
forthcoming 0νββ experiments are expected to probe the full
region of parameter space associated with the IO neutrino
mass spectrum. Thus all our models for the IO mass
spectrum can be tested independently of oscillation physics.

VI. CONCLUSIONS

The smallness of neutrino masses can be naturally
explained by the seesaw mechanism in which two or three
RH neutrinos are added in the SM. The 2RHN model can
be regarded as the limiting case of the three RH neutrino
model in which one of the RH neutrinos is very heavy. The
2RHN model is more predictive than the three RH neutrino
model because the number of parameters is greatly
reduced. One remarkable feature is that the lightest neutrino
is massless in the 2RHN model. Leptogenesis is a natural
cosmological consequence of the seesaw mechanism, and it
provides a simple explanation for the matter-antimatter
asymmetry of the Universe.
Finite discrete flavor symmetry and CP symmetry,

which are broken to distinct subgroups in the charged
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FIG. 12. YB=Yobs
B as a function of the parameter ϑ for the mixing pattern UVIII;2, where we choose the RH neutrino mass

M1 ¼ 5 × 1011 GeV. The red solid, green dashed-dotted, blue dotted, and black dashed lines correspond to the four best fitting points as
shown in Table VI. The horizontal red dashed line represents the experimental measured value Yobs

B . The neutrino mass spectrum is NO
and IO in the first row and the second row, respectively. The panels in the left, middle, and right columns are for the three admissible
forms of the R-matrix such as R-1st, R-2nd, and R-3rd, respectively.
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lepton and neutrino sectors, are a quite powerful approach
to explain the lepton mixing angles and CP violation
phases. Other phenomena involving CP phases, such as
neutrinoless double beta decay and leptogenesis, are also
subject to strong constraints in this approach. In the present
work, we study the interplay between residual symmetry
and leptogenesis in the 2RHN model, and we assume that
the scale of flavor symmetry breaking is above the lepto-
genesis scale. In our method, only the residual symmetry is
assumed, and we do not need to consider the possible
dynamics which realizes the residual symmetry.
Without loss of generality we work in the basis in which

both the charged lepton and RH neutrino mass matrices are
diagonal. If two residual CP transformations or a cyclic
residual flavor symmetry arising from the original flavor
and CP symmetries are preserved by the seesaw
Lagrangian, we find that each row of the R-matrix would
have only one nonzero entry, which is equal to �1. Hence
the baryon asymmetry would be zero at leading order.
Successful leptogenesis is possible only if the remnant
symmetry is appropriately broken by subleading order
contributions in concrete models [21].
If a single residual CP transformation is preserved in the

neutrino sector, then the lepton mixing matrix contains
three real free parameters θ1;2;3 in the range of ½0; πÞ, the R-
matrix is found to depend on only one real parameter ϑ, and
it can take three viable forms as summarized in Eq. (3.9).
Each entry of the R-matrix is real or purely imaginary in
this case; consequently the total CP asymmetry ϵ1 vanishes
unless the nonleading contributions are taken into account
in a concrete model. Hence in this paper we discuss the
flavored thermal leptogenesis in which the interactions
mediated by the τ lepton Yukawa couplings are in equi-
librium, and the lightest RH neutrino mass is typically in
the interval of 109 GeV ≤ M1 ≤ 1012 GeV. Then the
baryon asymmetry is generated uniquely by the CP phases
in the PMNS mixing matrix in this scenario. Therefore the
observation of low energy leptonic CP violating phases
would imply the existence of a baryon asymmetry.
Moreover, we have performed a general analysis of lepto-
genesis in the 2RHN model with a residual CP trans-
formation. For illustration, the numerical results of YB for
δ ¼ 0;−π=2 are presented, as shown in Figs. 1, 2, and 3.
We have performed a comprehensive study in which the

single remnant CP transformation originates from the CP
symmetry compatible with the Δð6n2Þ flavor group, which
is broken to an Abelian subgroup in the charged lepton
sector. All possible residual symmetries and the resulting
predictions for lepton flavor mixing and leptogenesis are
studied. We find there are in total eight possible cases (from
case I to case VIII). Cases I and IV give rise to the same
lepton mixing pattern and the same results for leptogenesis.
Cases III and VII are also the same after the shift of the free
parameters θ1;2;3 is taken into account. The PMNSmatrix in
cases I and IV is real up to the CP parity of the neutrino

states. As a consequence, although the experimental data
on mixing angles can be accommodated in these cases, all
the leptogenesis CP asymmetries are vanishing and a net
baryon asymmetry cannot be generated without correc-
tions. For the remaining cases, the observed matter/anti-
matter asymmetry could be reproduced except for R-3rd
with a NO spectrum and R-1st with an IO spectrum.
Moreover, we find that the smallΔð6n2Þ group (e.g., n ¼ 2,
3, 4, etc.) can describe the experimentally measured values
of the mixing angles for certain choices of the parameter
values. Our approach is very general and model indepen-
dent, and the results of this paper should be helpful to
discuss the phenomenology of leptogenesis in a specific
2RHN model based on flavor and CP symmetries.

ACKNOWLEDGMENTS

G.-J. D. acknowledges the support of the National Natural
Science Foundation of China under Grant No. 11522546.
C.-C. L. is supported by CPSF-CAS Joint Foundation for
Excellent Postdoctoral Fellows No. 2017LH0003.

APPENDIX A: BASIS INDEPENDENCE

In this paper, we have worked in the leptogenesis basis in
which both the charged lepton mass matrix and the RH
neutrino mass matrix are diagonal. However, the conclu-
sions of this paper do not depend on the basis. In a large
class of models, the charged lepton mass matrix is diagonal,
while the RH neutrino mass matrix is not diagonal. Then
the Lagrangian for the lepton masses is written as

Lmod ¼ −yαL̄αHlαR − λmod
iα N̄iR

~H†Lα

−
1

2
Mmod

ij N̄iRNc
jR þ H:c:; ðA1Þ

where Mmod
ij is a complex symmetric 2 × 2 matrix, and it

can be diagonalized by a unitary transformation UN ,

U†
NM

modU�
N ¼ diagðM1;M2Þ≡M: ðA2Þ

Similar to Sec. III, we consider the scenario that the
neutrino sector preserves one CP transformation, i.e.,

νL↦
CP
iXνγ0Cν̄TL; NR↦

CP
iXNγ0CN̄T

R; ðA3Þ
where the CP transformation matrix XN is not diagonal for
nondiagonalMmod. The invariance of λmod andMmod under
the above residual CP transformation implies

X†
Nλ

modXν ¼ ðλmodÞ�; X†
NM

modX�
N ¼ ðMmodÞ�: ðA4Þ

Inserting Eq. (A2) into Eq. (A4) we obtain

UT
NX

†
NUN ¼ diagð�1;�1Þ≡ X̂N: ðA5Þ

In the leptogenesis basis, the neutrino Yukawa coupling λ
takes the form
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λ ¼ U†
Nλ

mod: ðA6Þ

From Eqs. (A4)–(A6) we can check that λ and M are
subject to the following constraint,

X̂†
NλXν ¼ λ�; X̂†

NMX̂�
N ¼ M�; ðA7Þ

which exactly coincides with Eq. (3.2). Therefore the same
predictions for leptogenesis are obtained as in Sec. III, and
the results do not change with the working basis.

APPENDIX B: GENERAL RESULTS
OF ϵα AND ~mα

In this Appendix we shall present the explicit expres-
sions of the CP asymmetry parameter ϵα and the washout
mass ~mα for the three viable forms of the R-matrix shown in
Eq. (3.9). Here we shall perform a general analysis, and the
lepton mixing matrix is parametrized in the standard
convention of Eq. (3.20).

(i) R-1st
In this case, the CP asymmetry parameter ϵα for the NO case is given by

ϵe ¼
3M1

16πv2
WNOs12c13s13 sin

�
δþ ϕ

2

�
;

ϵμ ¼ −
3M1

16πv2
WNOc13s23

�
s12s13s23 sin

�
δþ ϕ

2

�
− c12c23 sin

ϕ

2

�
;

ϵτ ¼ −
3M1

16πv2
WNOc13c23

�
s12s13c23 sin

�
δþ ϕ

2

�
þ c12s23 sin

ϕ

2

�
; ðB1Þ

where the expression of WNO has been listed in Table II. It is easy to check that the identity ϵe þ ϵμ þ ϵτ ¼ 0 is
fulfilled. Notice that the CP asymmetry ϵα is closely related to the lower energy CP phases. If both the Dirac phase δ
and the Majorana phase ϕ are trivially zero, all the asymmetry parameters ϵe, ϵμ, and ϵτ would be vanishing such that
a nonzero baryon asymmetry cannot be generated. The washout mass ~mα for NO takes the form

~me ¼ j ffiffiffiffiffiffim2

p
s12c13e

iϕ
2 cos ϑþ ξ

ffiffiffiffiffiffi
m3

p
s13e−iδ sin ϑj2;

~mμ ¼ j ffiffiffiffiffiffim2

p ðc12c23 − s12s13s23eiδÞe
iϕ
2 cosϑþ ξ

ffiffiffiffiffiffi
m3

p
c13s23 sinϑj2;

~mτ ¼ j ffiffiffiffiffiffim2

p ðc12s23 þ s12s13c23eiδÞe
iϕ
2 cos ϑ − ξ

ffiffiffiffiffiffi
m3

p
c13c23 sin ϑj2: ðB2Þ

In the same manner, we find that ϵα for the IO spectrum is

ϵe ¼ −
3M1

16πv2
WIOc12s12c213 sin

ϕ

2
;

ϵμ ¼
−3M1

16πv2
WIO

�
s13c23s23

�
c212 sin

�
δ −

ϕ

2

�
þ s212 sin

�
δþ ϕ

2

��
− c12s12ðc223 − s213s

2
23Þ sin

ϕ

2

�
;

ϵτ ¼
3M1

16πv2
WIO

�
s13c23s23

�
c212 sin

�
δ −

ϕ

2

�
þ s212 sin

�
δþ ϕ

2

��
þ c12s12ðs223 − s213c

2
23Þ sin

ϕ

2

�
ðB3Þ

and for the washout mass ~mα we get

~me ¼ c213j
ffiffiffiffiffiffi
m1

p
c12 cosϑþ ξ

ffiffiffiffiffiffi
m2

p
s12e

iϕ
2 sin ϑj2;

~mμ ¼ j ffiffiffiffiffiffim1

p ðs12c23 þ c12s13s23eiδÞ cos ϑ − ξ
ffiffiffiffiffiffi
m2

p ðc12c23 − s12s13s23eiδÞe
iϕ
2 sinϑj2;

~mτ ¼ j ffiffiffiffiffiffim1

p ðs12s23 − c12s13c23eiδÞ cosϑ − ξ
ffiffiffiffiffiffi
m2

p ðc12s23 þ s12s13c23eiδÞe
iϕ
2 sinϑj2: ðB4Þ

We see that both ϵα and ~mα depend on the CP violating phases δ, ϕ and the free parameter ϑ.
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(ii) R-2nd
In this case, ϵα for NO is found to be

ϵe ¼ −
3M1

16πv2
WNOs12c13s13 cos

�
δþ ϕ

2

�
;

ϵμ ¼ −
3M1

16πv2
WNOc13s23

�
c12c23 cos

ϕ

2
− s12s13s23 cos

�
δþ ϕ

2

��
;

ϵτ ¼
3M1

16πv2
WNOc13c23

�
c12s23 cos

ϕ

2
þ s12s13c23 cos

�
δþ ϕ

2

��
: ðB5Þ

The washout mass ~mα is of the following form:

~me ¼ j ffiffiffiffiffiffim2

p
s12c13e

iϕ
2 coshϑ − iξ

ffiffiffiffiffiffi
m3

p
s13e−iδ sinhϑj2;

~mμ ¼ j ffiffiffiffiffiffim2

p ðc12c23 − s12s13s23eiδÞe
iϕ
2 coshϑ − iξ

ffiffiffiffiffiffi
m3

p
c13s23 sinhϑj2;

~mτ ¼ j ffiffiffiffiffiffim2

p ðc12s23 þ s12s13c23eiδÞe
iϕ
2 coshϑþ iξ

ffiffiffiffiffiffi
m3

p
c13c23 sinhϑj2: ðB6Þ

Similarly for the IO mass spectrum, we have

ϵe ¼ −
3M1

16πv2
WIOc12s12c213 cos

ϕ

2
;

ϵμ ¼
3M1

16πv2
WIO

�
s13c23s23

�
c212 cos

�
δ −

ϕ

2

�
− s212 cos

�
δþ ϕ

2

��
þ c12s12ðc223 − s213s

2
23Þ cos

ϕ

2

�
;

ϵτ ¼ −
3M1

16πv2
WIO

�
s13c23s23

�
c212 cos

�
δ −

ϕ

2

�
− s212 cos

�
δþ ϕ

2

��
þ c12s12ðs213c223 − s223Þ cos

ϕ

2

�
: ðB7Þ

and

~me ¼ c213j
ffiffiffiffiffiffi
m1

p
c12 coshϑ − iξ

ffiffiffiffiffiffi
m2

p
s12e

iϕ
2 sinhϑj2;

~mμ ¼ j ffiffiffiffiffiffim1

p ðs12c23 þ c12s13s23eiδÞ coshϑþ iξ
ffiffiffiffiffiffi
m2

p ðc12c23 − s12s13s23eiδÞe
iϕ
2 sinhϑj2;

~mτ ¼ j ffiffiffiffiffiffim1

p ðs12s23 − c12s13c23eiδÞ coshϑþ iξ
ffiffiffiffiffiffi
m2

p ðc12s23 þ s12s13c23eiδÞe
iϕ
2 sinhϑj2: ðB8Þ

(iii) R-3rd
In the case of NO, we find that the flavored CP asymmetry ϵα is

ϵe ¼
3M1

16πv2
WNOs12c13s13 cos

�
δþ ϕ

2

�
;

ϵμ ¼
3M1

16πv2
WNOc13s23

�
c12c23 cos

ϕ

2
− s12s13s23 cos

�
δþ ϕ

2

��
;

ϵτ ¼ −
3M1

16πv2
WNOc13c23

�
c12s23 cos

ϕ

2
þ s12s13c23 cos

�
δþ ϕ

2

��
: ðB9Þ

It is easy to check that the equality ϵ2 ≡ ϵe þ ϵμ ¼ −ϵτ is satisfied. The washout mass ~mα takes the form

~me ¼ ji ffiffiffiffiffiffi
m2

p
s12c13e

iϕ
2 sinhϑþ ξ

ffiffiffiffiffiffi
m3

p
s13e−iδ coshϑj2;

~mμ ¼ ji ffiffiffiffiffiffi
m2

p ðc12c23 − s12s13s23eiδÞe
iϕ
2 sinhϑþ ξ

ffiffiffiffiffiffi
m3

p
c13s23 coshϑj2;

~mτ ¼ ji ffiffiffiffiffiffi
m2

p ðc12s23 þ s12s13c23eiδÞe
iϕ
2 sinhϑ − ξ

ffiffiffiffiffiffi
m3

p
c13c23 coshϑj2: ðB10Þ
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For the IO case, we can read out ϵα as

ϵe ¼
3M1

16πv2
WIOc12s12c213 cos

ϕ

2
;

ϵμ ¼
−3M1

16πv2
WIO

�
s13c23s23

�
c212 cos

�
δ −

ϕ

2

�
− s212 cos

�
δþ ϕ

2

��
þ c12s12ðc223 − s213s

2
23Þ cos

ϕ

2

�
;

ϵτ ¼
3M1

16πv2
WIO

�
s13c23s23

�
c212 cos

�
δ −

ϕ

2

�
− s212 cos

�
δþ ϕ

2

��
− c12s12ðs223 − s213c

2
23Þ cos

ϕ

2

�
: ðB11Þ

Furthermore the washout mass ~mα for IO turns out to be

~me ¼ c213ji
ffiffiffiffiffiffi
m1

p
c12 sinhϑþ ξ

ffiffiffiffiffiffi
m2

p
s12e

iϕ
2 coshϑj2;

~mμ ¼ ji ffiffiffiffiffiffi
m1

p ðs12c23 þ c12s13s23eiδÞ sinhϑ − ξ
ffiffiffiffiffiffi
m2

p ðc12c23 − s12s13s23eiδÞe
iϕ
2 coshϑj2;

~mτ ¼ ji ffiffiffiffiffiffi
m1

p ðs12s23 − c12s13c23eiδÞ sinhϑ − ξ
ffiffiffiffiffiffi
m2

p ðc12s23 þ s12s13c23eiδÞe
iϕ
2 coshϑj2: ðB12Þ

APPENDIX C: LEPTON MIXING PATTERNS
AND LEPTOGENESIS FROM Δð6n2Þ AND CP

As shown in Sec. V, it is sufficient to consider only
eight possible residual symmetries in the scenario that the
discrete flavor group Δð6n2Þ and CP symmetry are broken
down to an Abelian subgroup Gl in the charged lepton
sector and to a single remnant CP transformation Xν in the
neutrino sector. In the following, we shall investigate the
predictions for lepton flavor mixing and matter-antimatter
asymmetry via leptogenesis in each possible case.

(I) Gl ¼ hcsdti, Xν ¼ ρ3ðcxdyÞ
From Table V and Eq. (5.13) we find that the

lepton mixing matrix is given by

UI ¼ PlO3×3ðθ1; θ2; θ3ÞX̂−1
2

ν : ðC1Þ

The permutation matrix Pl can be absorbed into
the orthogonal matrix O3×3; hence we can choose
Pl ¼ P123 ¼ 13×3 without loss of generality. Thus
the three lepton mixing angles read

sin2θ12¼sin2θ3; sin2θ13¼sin2θ2; sin2θ23¼sin2θ1

ðC2Þ

and the Jarlskog invariant JCP is vanishing,

JCP ¼ 0; ðC3Þ

where JCP is defined as [67]

JCP¼ℑðU11U33U�
13U

�
31Þ

¼1

8
sin2θ12 sin2θ13 sin2θ23 cosθ13 sinδ: ðC4Þ

Consequently the Dirac CP phase δ is either 0 or π.
Moreover, we can easily check that both the rephase
invariants IαNO, I

α
IO and the CP asymmetry ϵα in

leptogenesis are vanishing as well:

IαNO ¼ IαIO ¼ ϵα ¼ 0: ðC5Þ

Therefore a net baryon asymmetry cannot be gen-
erated in this case, and moderate subleading correc-
tions are necessary in order to make the leptogenesis
viable.

(II) Gl ¼ hcsdti, Xν ¼ ρ3ðbcxd−xÞ
In this case, the PMNS mixing matrix is deter-

mined to be of the form

UII ¼
1ffiffiffi
2

p

0
B@

0 −i 1ffiffiffi
2

p
0 0

0 i 1

1
CAO3×3ðθ1; θ2; θ3ÞX̂−1

2
ν

¼ diagðe−iθ1 ; 1; eiθ1Þ 1ffiffiffi
2

p

0
B@

0 −i 1ffiffiffi
2

p
0 0

0 i 1

1
CA

×O3×3ð0; θ2; θ3ÞX̂−1
2

ν ðC6Þ

up to possible permutations of rows. The diagonal
phase matrix diagðe−iθ1 ; 1; eiθ1Þ can be absorbed into
the charged lepton fields. Moreover, it is easy to
check that the following identity is fulfilled:

P321UIIðθ1; θ2; θ3Þ
¼ UIIð−θ1; θ2;−θ3Þdiagð1;−1; 1Þ: ðC7Þ
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Consequently the six possible row permutations lead
to three independent mixing patterns,

UII;1¼UII; UII;2¼P132UII; UII;3¼P213UII:

ðC8Þ

We find that UII;1 and UII;2 predict tan θ13 ¼ cos θ23
and tan θ13 ¼ sin θ23, respectively, such that the
experimental data [4] of the mixing angles θ13
and θ23 cannot be accommodated simultaneously.
For the mixing matrix UII;3, the lepton mixing
parameters are given by

sin2θ13¼ sin2θ2; sin2θ12¼ sin2θ3; sin2θ23¼
1

2
;

JCP¼
1

8
cosθ2 sin2θ2 sin2θ3; jsinδj ¼ 1:

ðC9Þ

Furthermore, we find that the rephasing bilinear
invariants take the form

IeNO ¼ 0; IμNO ¼ −IτNO ¼ 1

2
cos θ2 cos θ3;

IeIO ¼ 0; IμIO ¼ −IτIO ¼ 1

2
sin θ2: ðC10Þ

Hence only the muon and tau flavored asymmetries
in heavy neutrino decay contribute to the lepto-
genesis.

(III) Gl ¼ hbcsdti, Xν ¼ ρ3ðcxdyÞ
Using Table V and Eq. (5.13), we find that the

lepton mixing matrix up to possible permutations of
rows is fixed to be

UIII ¼
1ffiffiffi
2

p

0
B@

1 0 −eiϱ1

0
ffiffiffi
2

p
0

1 0 eiϱ1

1
CAO3×3ðθ1; θ2; θ3ÞX̂−1

2
ν ;

ðC11Þ

with

ϱ1 ¼ −
ðsþ tþ xþ yÞ

n
π; ðC12Þ

which can take the following values:

ϱ1ðmod 2πÞ ¼ 0;
1

n
π;
2

n
π;…;

2n − 1

n
π: ðC13Þ

We can easily check that the mixing matrix UIII has
the properties

UIIIðϱ1 þ π; θ1; θ2; θ3Þ ¼ UIIIðϱ1;−θ1;−θ2; θ3Þdiagð1; 1;−1Þ;
UIIIðπ − ϱ1; θ1; θ2; θ3Þ ¼ diagð−e−iϱ1 ; 1; e−iϱ1ÞUIIIðϱ1; θ01; θ02; θ03Þdiagð1; 1;−1Þ; ðC14Þ

where the parameters θ01;2;3 fulfill O3×3ðθ01; θ02; θ03Þ ¼ P321O3×3ð−θ1;−θ2; θ3Þ. As a consequence, the fundamental
interval of the parameter ϱ1 can be chosen to be 0 ≤ ϱ1 ≤ π

2
. The mixing pattern arising from the multiplication of the

permutation matrix P321 from the left-hand side is related to UIII through shifts of the continuous parameters θ1;2;3
and redefining X̂ν as follows:

P321UIIIðϱ1; θ1; θ2; θ3Þ ¼ UIIIðϱ1;−θ1;−θ2; θ3Þdiagð1; 1;−1Þ: ðC15Þ

Hence three mixing patterns are obtained after all six row permutations are considered:

UIII;1 ¼ UIII; UIII;2 ¼ P132UIII; UIII;3 ¼ P213UIII: ðC16Þ

For the mixing matrix UIII;1, we can extract the mixing parameters in the usual way and find

sin2θ13 ¼
1

2
ðsin2θ2 þ cos2θ1cos2θ2 − cos θ1 sin 2θ2 cos ϱ1Þ;

sin2θ12 ¼ sin2θ3 þ
sin 2θ3ð2 sin θ1 cos θ2 cos ϱ1 þ sin 2θ1 sin θ2Þ þ 2sin2θ1 cos 2θ3

2 − sin2θ2 − cos2θ1cos2θ2 þ cos θ1 sin 2θ2 cos ϱ1
;

sin2θ23 ¼
2sin2θ1cos2θ2

2 − sin2θ2 − cos2θ1cos2θ2 þ cos θ1 sin 2θ2 cos ϱ1
;

JCP ¼ 1

16
sin θ1 cos θ2 sin ϱ1½4 sin 2θ1 sin θ2 cos 2θ3 þ ð1þ 3 cos 2θ1 þ 2sin2θ1 cos 2θ2Þ sin 2θ3�; ðC17Þ
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which have the symmetry transformation ðθ1; θ2; θ3Þ → ðπ − θ1; π − θ2; π − θ3Þ. As regards the leptogenesis, the
relevant CP invariants are of the form

IeNO ¼ −IτNO ¼ −
1

2
ðcos θ1 sin θ3 þ sin θ1 sin θ2 cos θ3Þ sin ϱ1; IμNO ¼ 0;

IeIO ¼ −IτIO ¼ 1

2
sin θ1 cos θ2 sin ϱ1; IμIO ¼ 0: ðC18Þ

One sees that the lepton asymmetry ϵα would be vanishing for ϱ1 ¼ 0 such that the cosmological baryon asymmetry
cannot be generated. For the second mixing pattern UIII;2, the three lepton mixing angles and Jarlskog invariant are
determined to be

sin2θ13 ¼
1

2
ðsin2θ2 þ cos2θ1cos2θ2 − cos θ1 sin 2θ2 cos ϱ1Þ;

sin2θ12 ¼ sin2θ3 þ
sin 2θ3ð2 sin θ1 cos θ2 cos ϱ1 þ sin 2θ1 sin θ2Þ þ 2sin2θ1 cos 2θ3

2 − sin2θ2 − cos2θ1cos2θ2 þ cos θ1 sin 2θ2 cos ϱ1
;

sin2θ23 ¼
1 − sin2θ1cos2θ2 þ cos θ1 sin 2θ2 cos ϱ1

2 − sin2θ2 − cos2θ1cos2θ2 þ cos θ1 sin 2θ2 cos ϱ1
;

JCP ¼ −
1

16
sin θ1 cos θ2 sin ϱ1½4 sin 2θ1 sin θ2 cos 2θ3 þ ð1þ 3 cos 2θ1 þ 2sin2θ1 cos 2θ2Þ sin 2θ3�: ðC19Þ

Regarding the CP invariants in leptogenesis, we get

IeNO ¼ −IμNO ¼ −
1

2
ðcos θ1 sin θ3 þ sin θ1 sin θ2 cos θ3Þ sin ϱ1; IτNO ¼ 0;

IeIO ¼ −IμIO ¼ 1

2
sin θ1 cos θ2 sin ϱ1; IτIO ¼ 0; ðC20Þ

which implies IeNO þ IμNO ¼ 0 and IeIO þ IμIO ¼ 0. Hence the summation of the CP asymmetry in the electron and
muon flavors would vanish, i.e., ϵ2 ≡ ϵe þ ϵμ ¼ 0. As a consequence, YB would be predicted to be zero in the mass
window 109 GeV ≤ M1 ≤ 1012 GeV unless the postulated residual symmetry is broken by nonleading order
corrections arising from higher dimensional operators. For the third possible PMNS mixing matrix UIII;3, the lepton
mixing parameters read as

sin2θ13 ¼ sin2θ1cos2θ2;

sin2θ12 ¼
ðcos θ1 cos θ3 − sin θ1 sin θ2 sin θ3Þ2

1 − sin2θ1cos2θ2
;

sin2θ23 ¼
1

2
−
cos θ1 sin 2θ2 cos ϱ1
2 − 2sin2θ1cos2θ2

;

JCP ¼ −
1

16
sin θ1 cos θ2 sin ϱ1½4 sin 2θ1 sin θ2 cos 2θ3 þ ð1þ 3 cos 2θ1 þ 2sin2θ1 cos 2θ2Þ sin 2θ3�: ðC21Þ

The rephase invariants IαNO and IαIO are of the following form:

IμNO ¼ −IτNO ¼ −
1

2
ðcos θ1 sin θ3 þ sin θ1 sin θ2 cos θ3Þ sin ϱ1; IeNO ¼ 0;

IμIO ¼ −IτIO ¼ 1

2
sin θ1 cos θ2 sin ϱ1; IeIO ¼ 0: ðC22Þ

(IV) Gl ¼ hbcsdti, Xν ¼ ρ3ðbcxd−xÞ
In the same manner as previous cases, we find the lepton mixing matrix is given by

UIV ¼Pl

0
B@
0 cosϱ2 sinϱ2
1 0 0

0 −sinϱ2 cosϱ2

1
CAO3×3ðθ1;θ2;θ3ÞX̂−1

2
ν ¼PlP213O3×3ðθ1þ ϱ2;θ2;θ3ÞX̂−1

2
ν ; ðC23Þ
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where Pl is a generic 3 × 3 permutation matrix, and
the contributions of Pl and P213 can be absorbed into
the real orthogonal matrixO3×3. The parameter ϱ2 is
fixed by the chosen residual symmetry as

ϱ2 ¼ −
sþ t
2n

π; ðC24Þ

whose possible values are

ϱ2ðmod 2πÞ ¼ 0;
1

2n
π;

2

2n
π;…;

4n − 1

2n
π: ðC25Þ

After the relabeling of PlP213 → Pl and θ1 þ ϱ1 →
θ1 is taken into account, the mixing matrixUIV would
coincide with UI , as shown in Eq. (C1). As a result,
the predictions for mixing parameters and lepto-
genesis are exactly the same as case I. The exper-
imentally preferred values of the lepton mixing angles
can be accommodated, the DiracCP phase δ is trivial,
and the cosmic baryon asymmetry YB is predicted to
be vanishing without higher order corrections.

(V) Gl ¼ hacsdti, Xν ¼ ρ3ðcxdyÞ
Combining the unitary transformations Ul for

Gl ¼ hacsdti shown in Table V and Uν in
Eq. (5.13), we find that the PMNS mixing matrix
is of the form

UV ¼
1ffiffiffi
3

p

0
B@

eiϱ3 1 eiϱ4

ω2eiϱ3 1 ωeiϱ4

ωeiϱ3 1 ω2eiϱ4

1
CAO3×3ðθ1;θ2;θ3ÞX̂−1

2
ν ;

ðC26Þ

up to permutations of rows, where ϱ3 and ϱ4 are
determined by residual symmetry,

ϱ3¼
2s−2tþ2x−y

n
π; ϱ4¼

−2tþx−2y
n

π; ðC27Þ

which can independently take the values

ϱ3; ϱ4ðmod 2πÞ ¼ 0;
1

n
π;
2

n
π;…;

2n − 1

n
π: ðC28Þ

We observe that the mixing matrix UV has the
following properties:

UVðϱ3þπ;ϱ4;θ1;θ2;θ3Þ
¼UVðϱ3;ϱ4;θ1;−θ2;−θ3Þdiagð−1;1;1Þ;

UVðϱ3;ϱ4þπ;θ1;θ2;θ3Þ
¼UVðϱ3;ϱ4;−θ1;−θ2;θ3Þdiagð1;1;−1Þ: ðC29Þ

Consequently the fundamental regions of the param-
eters ϱ3 and ϱ4 can be taken to be ½0; πÞ. Exchanging
the second and third rows of UV leads to the same
mixing pattern as swapping ϱ3 and ϱ4, i.e.,

P132UVðϱ3; ϱ4; θ1; θ2; θ3Þ ¼ UVðϱ4; ϱ3; θ01; θ02; θ03Þ;
ðC30Þ

where θ01;2;3 fulfill O3×3ðθ01; θ02; θ03Þ ¼ P321O3×3

ðθ1; θ2; θ3Þ. Hence it is enough to only consider
three out of the six possible row permutations if all
possible values of ϱ3 and ϱ4 are considered,

UV;1¼UV; UV;2¼P213UV; UV;3¼P231UV:

ðC31Þ

For the case of UV;1, we can obtain the following
expressions for the mixing angles and the Jarlskog
invariant,

sin2θ13 ¼
1

3
½sin 2θ2ðcos θ1 cosðϱ3 − ϱ4Þ þ sin θ1 cos ϱ3Þ þ sin 2θ1cos2θ2 cos ϱ4 þ 1�;

sin2θ12 ¼ sin2θ3 þ
sin 2θ3ðcos θ1 cos θ2 cos ϱ3 − sin θ1 cos θ2 cosðϱ3 − ϱ4Þ − cos 2θ1 sin θ2 cos ϱ4Þ

2 − sin 2θ2ðcos θ1 cosðϱ3 − ϱ4Þ þ sin θ1 cos ϱ3Þ − sin 2θ1cos2θ2 cos ϱ4

þ cos 2θ3ð1 − sin 2θ1 cos ϱ4Þ
2 − sin 2θ2ðcos θ1 cosðϱ3 − ϱ4Þ þ sin θ1 cos ϱ3Þ − sin 2θ1cos2θ2 cos ϱ4

;

sin2θ23 ¼
sin 2θ2ðcos θ1 sinðϱ3 − ϱ4 þ π

6
Þ þ sin θ1 cosðϱ3 þ π

3
ÞÞ þ cos2θ2 sin 2θ1 cosðϱ4 − π

3
Þ − 1

sin 2θ2ðcos θ1 cosðϱ3 − ϱ4Þ þ sin θ1 cos ϱ3Þ þ sin 2θ1cos2θ2 cos ϱ4 − 2
;

JCP ¼ 1

6
ffiffiffi
3

p ½cos 2θ1 cos 2θ2 cos 2θ3 þ sin 2θ1 sin θ2ð1 − 3=2cos2θ2Þ sin 2θ3
þ cos θ2ðsin 2θ3ðcos2θ1 − sin2θ1sin2θ2Þ þ sin 2θ1 sin θ2 cos 2θ3Þ½sin θ1 cosðϱ3 þ ϱ4Þ
− cos θ1 cosðϱ3 − 2ϱ4Þ� þ cos3θ2 sin 2θ3ðcos θ1 cosðϱ3 − 2ϱ4Þ − tan θ2 cosð2ϱ3 − ϱ4ÞÞ�: ðC32Þ
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Moreover, the CP invariants IαNO and IαIO are given by

IeNO ¼ 1

3
½sinðϱ4 − ϱ3Þðsin θ1 sin θ2 cos θ3 þ cos θ1 sin θ3Þ þ cos θ2 cos θ3 sin ϱ4

þ sin ϱ3ðcos θ1 sin θ2 cos θ3 − sin θ1 sin θ3Þ�;

IμNO ¼ 1

3

�
sin

�
ϱ3 − ϱ4 −

π

3

�
ðsin θ1 sin θ2 cos θ3 þ cos θ1 sin θ3Þ þ cos θ2 cos θ3 sin

�
π

3
− ϱ4

�

þ sin

�
ϱ3 þ

π

3

�
ðsin θ1 sin θ3 − cos θ1 sin θ2 cos θ3Þ

�
;

IeIO ¼ 1

3
ðsin θ1 cos θ2 sinðϱ3 − ϱ4Þ − cos θ1 cos θ2 sin ϱ3 þ sin θ2 sin ϱ4Þ;

IμIO ¼ 1

3

�
sin θ1 cos θ2 sin

�
π

3
− ϱ3 þ ϱ4

�
þ cos θ1 cos θ2 sin

�
ϱ3 þ

π

3

�
þ sin θ2 sin

�
π

3
− ϱ4

��
;

IτNO ¼ −ðIeNO þ IμNOÞ; IτIO ¼ −ðIeIO þ IμIOÞ: ðC33Þ
Then we proceed to discuss the second permutation UV;2. We can straightforwardly extract the mixing parameters
and find

sin2θ13 ¼
1

3

�
1 − sin 2θ2

�
cos θ1 cos

�
ϱ3 − ϱ4 −

π

3

�
þ sin θ1 cos

�
ϱ3 þ

π

3

��
− sin 2θ1cos2θ2 cos

�
ϱ4 −

π

3

��
;

sin2θ12 ¼ sin2θ3 þ
cos 2θ3ðsin 2θ1 cos ðϱ4 − π

3
Þ þ 1Þ

2þ sin 2θ2ðcos θ1 cosðϱ3 − ϱ4 − π
3
Þ þ sin θ1 cosðϱ3 þ π

3
ÞÞ þ sin 2θ1cos2θ2 cosðϱ4 − π

3
Þ ;

þ sin 2θ3ðsin θ1 cos θ2 cosðϱ3 − ϱ4 − π
3
Þ − cos θ1 cos θ2 cosðϱ3 þ π

3
Þ þ cos 2θ1 sin θ2 cosðϱ4 − π

3
ÞÞ

2þ sin 2θ2ðcos θ1 cosðϱ3 − ϱ4 − π
3
Þ þ sin θ1 cosðϱ3 þ π

3
ÞÞ þ sin 2θ1cos2θ2 cosðϱ4 − π

3
Þ ;

sin2θ23 ¼
sin 2θ2ðcos θ1 cosðϱ3 − ϱ4Þ þ sin θ1 cos ϱ3Þ þ sin 2θ1cos2θ2 cos ϱ4 þ 1

2þ sin 2θ2ðcos θ1 cosðϱ3 − ϱ4 − π
3
Þ þ sin θ1 cosðϱ3 þ π

3
ÞÞ þ sin 2θ1cos2θ2 cosðϱ4 − π

3
Þ ;

JCP ¼ −
1

6
ffiffiffi
3

p ½cos 2θ1 cos 2θ2 cos 2θ3 þ sin 2θ1 sin θ2ð1 − 3=2cos2θ2Þ sin 2θ3
þ cos θ2ðsin 2θ3ðcos2θ1 − sin2θ1sin2θ2Þ þ sin 2θ1 sin θ2 cos 2θ3Þ½sin θ1 cosðϱ3 þ ϱ4Þ
− cos θ1 cosðϱ3 − 2ϱ4Þ� þ cos3θ2 sin 2θ3ðcos θ1 cosðϱ3 − 2ϱ4Þ − tan θ2 cosð2ϱ3 − ϱ4ÞÞ�: ðC34Þ

SinceUV;2 andUV;1 are related through the permutation of the first and second rows, the rephasing invariants IαNO;IO
for UV;2 can be obtained from Eq. (C33) by interchanging the expressions of IeNO;IO and IμNO;IO. The third mixing
matrix UV;3 can be easily obtained by exchanging the second and third rows of UV;2. As a consequence, UV;2 and
UV;3 lead to the same reactor and solar mixing angles, while the atmospheric one changes from θ23 to π=2 − θ23, i.e.,
sin2 θ23 is replaced by cos2 θ23 in Eq. (C34), and the Dirac phase changes from δ to π þ δ such that the overall sign
of the Jarlskog invariant JCP becomes opposite. Furthermore, the CP invariants can be obtained from Eq. (C33) by
replacing IeNO;IO → IτNO;IO, I

μ
NO;IO → IeNO;IO, and IτNO;IO → IμNO;IO.

(VI) Gl ¼ hacsdti, Xν ¼ ρ3ðbcxd−xÞ
In this case, the PMNS mixing matrix takes the following form,

UVI ¼
ffiffiffi
2

3

r 0
BBB@

eiϱ5ffiffi
2

p sin ϱ6 cos ϱ6

− eiϱ5ffiffi
2

p cos ðπ
6
− ϱ6Þ sin ðπ

6
− ϱ6Þ

eiϱ5ffiffi
2

p cos ðϱ6 þ π
6
Þ − sin ðϱ6 þ π

6
Þ

1
CCCAO3×3ðθ1; θ2; θ3ÞX̂−1

2
ν

¼
ffiffiffi
2

3

r 0
BBB@

eiϱ5ffiffi
2

p 0 1

− eiϱ5ffiffi
2

p cos π
6

sin π
6

eiϱ5ffiffi
2

p cos π
6

− sin π
6

1
CCCAO3×3ðθ1 − ϱ6; θ2; θ3ÞX̂−1

2
ν ; ðC35Þ
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where the discrete parameters ϱ5 and ϱ6 depend on the choice of the residual symmetry as

ϱ5 ¼
−sþ 2t − 3x

n
π; ϱ6 ¼

s
n
π; ðC36Þ

whose values can be

ϱ5; ϱ6ðmod 2πÞ ¼ 0;
1

n
π;
2

n
π;…;

2n − 1

n
π: ðC37Þ

From Eq. (C35) we can see that the parameter ϱ6 is irrelevant since it can be absorbed into the free parameter θ1.
Furthermore we find that UVI has several symmetry properties,

P132UVIðϱ5; ϱ6; θ1; θ2; θ3Þ ¼ diagð1;−1;−1ÞUVIðϱ5;−ϱ6;−θ1; θ2;−θ3Þdiagð1;−1; 1Þ;

P312UVIðϱ5; ϱ6; θ1; θ2; θ3Þ ¼ diagð1;−1;−1ÞUVI

�
ϱ5; ϱ6 þ

2π

3
; θ1; θ2; θ3

�
;

P231UVIðϱ5; ϱ6; θ1; θ2; θ3Þ ¼ diagð−1;−1; 1ÞUVI

�
ϱ5; ϱ6 −

2π

3
; θ1; θ2; θ3

�
; ðC38Þ

and

UVIðϱ5 þ π; ϱ6; θ1; θ2; θ3Þ ¼ UVIðϱ5; ϱ6; θ1;−θ2;−θ3Þdiagð−1; 1; 1Þ: ðC39Þ

Equation (C38) implies that the six possible row permutations lead to the same mixing pattern, and Eq. (C39)
indicates that the fundamental region of ϱ5 is ½0; πÞ. We can read off the mixing parameters from the mixing matrix
UVI in Eq. (C35) as follows:

sin2θ13 ¼
1

3
ð1þ cos 2θ1cos2θ2 þ

ffiffiffi
2

p
cos θ1 sin 2θ2 cos ϱ5Þ;

sin2θ12 ¼ sin2θ3 þ
sin θ1ð2 sin θ1 cos 2θ3 − sin 2θ3ð

ffiffiffi
2

p
cos θ2 cos ϱ5 − 2 cos θ1 sin θ2ÞÞ

2 − cos 2θ1cos2θ2 −
ffiffiffi
2

p
cos θ1 sin 2θ2 cos ϱ5

;

sin2θ23 ¼
1 − cos ð2θ1 þ π=3Þcos2θ2 −

ffiffiffi
2

p
sinðθ1 þ π=6Þ sin 2θ2 cos ϱ5

2 − cos 2θ1cos2θ2 −
ffiffiffi
2

p
cos θ1 sin 2θ2 cos ϱ5

;

JCP ¼ cos θ2 sin 2θ3 sin ϱ5½4 sin 3θ1 sin θ2 cot 2θ3 − cos 3θ1ðcos 2θ2 − 3Þ − 2
ffiffiffi
2

p
sin 2θ2 cos ϱ5�

12
ffiffiffi
6

p ; ðC40Þ

where the redefinition of θ1 → θ1 þ ϱ6 is used. Moreover, the rephasing invariants involved in leptogenesis are found
to be of the form

IeNO ¼ −
ffiffiffi
2

p

3
sin ϱ5ðcos θ1 sin θ3 þ sin θ1 sin θ2 cos θ3Þ;

IμNO ¼
ffiffiffi
2

p

3
sin ϱ5½sinðθ1 þ π=6Þ sin θ3 þ sinðθ1 − π=3Þ sin θ2 cos θ3�

IeIO ¼
ffiffiffi
2

p

3
sin θ1 cos θ2 sin ϱ5;

IμIO ¼ −
ffiffiffi
2

p

3
sinðθ1 − π=3Þ cos θ2 sin ϱ5;

IτNO ¼ −ðIeNO þ IμNOÞ; IτIO ¼ −ðIeIO þ IμIOÞ: ðC41Þ

(VII) Gl ¼ habcsdti, Xν ¼ ρ3ðcxdyÞ
Similar to the previous cases, the lepton mixing matrix is given by, up to permutations of rows and unphysical

phases,
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UVII ¼
1ffiffiffi
2

p

0
B@

eiϱ7 −1 0

eiϱ7 1 0

0 0
ffiffiffi
2

p

1
CAO3×3ðθ1; θ2; θ3ÞX̂−1

2
ν ;

¼ diagð−1; 1; 1ÞP132

1ffiffiffi
2

p

0
B@

1 0 −eiϱ7

0
ffiffiffi
2

p
0

1 0 eiϱ7

1
CA½P231O3×3ðθ1; θ2; θ3Þ�X̂−1

2
ν ; ðC42Þ

with

ϱ7 ¼
2s − tþ 2x − y

n
π: ðC43Þ

Comparing Eq. (C42) with Eq. (C11), we can see that this case gives rise to the same mixing pattern and the baryon
asymmetry YB as case III if all possible row permutations are taken into account.

(VIII) Gl ¼ habcsdti, Xν ¼ ρ3ðbcxd−xÞ
In this case, we find that the PMNS mixing matrix takes the form

UVIII ¼
1

2

0
B@

−
ffiffiffi
2

p
−ieiϱ8 eiϱ8ffiffiffi

2
p

−ieiϱ8 eiϱ8

0 i
ffiffiffi
2

p
e−iϱ8

ffiffiffi
2

p
e−iϱ8

1
CAO3×3ðθ1; θ2; θ3ÞX̂−1

2
ν

¼ 1

2

0
B@

−
ffiffiffi
2

p
−i 1ffiffiffi

2
p

−i 1

0 i
ffiffiffi
2

p ffiffiffi
2

p

1
CAO3×3ðθ1 − ϱ8; θ2; θ3ÞX̂−1

2
ν ; ðC44Þ

with

ϱ8 ¼
2s − tþ 3x

n
π: ðC45Þ

Obviously the value of ϱ8 is irrelevant since it can be absorbed into the free parameter θ1. Furthermore, the six
possible row permutations lead to three independent mixing patterns, which can be chosen as

UVIII;1 ¼ UVIII; UVIII;2 ¼ P132UVIII; UVIII;3 ¼ P312UVIII: ðC46Þ

The reason is because UVIII fulfills the equality

P213UVIIIðϱ8; θ1; θ2; θ3Þ ¼ UVIIIðϱ8; θ1;−θ2;−θ3Þdiagð−1; 1; 1Þ: ðC47Þ

For the mixing matrix UVIII;1, after the parameter θ1 is shifted into θ1 þ ϱ8, we can read off the mixing parameters as

sin2θ13 ¼
1

8
ð3 − cos 2θ2 − 2

ffiffiffi
2

p
cos θ1 sin 2θ2Þ;

sin2θ12 ¼ sin2θ3 þ
2ðcos 2θ3 þ

ffiffiffi
2

p
sin θ1 cos θ2 sin 2θ3Þ

5þ cos 2θ2 þ 2
ffiffiffi
2

p
cos θ1 sin 2θ2

;

sin2θ23 ¼
3 − cos 2θ2 þ 2

ffiffiffi
2

p
cos θ1 sin 2θ2

5þ cos 2θ2 þ 2
ffiffiffi
2

p
cos θ1 sin 2θ2

;

JCP ¼ 1

32
ffiffiffi
2

p ½4 sin θ1 sin 2θ2 cos 2θ3 − cos θ1ðcos θ2 þ 3 cos 3θ2Þ sin 2θ3�: ðC48Þ
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The CP invariants IαNO;IO (α ¼ e, μ, τ) turn out to take the form

IeNO ¼ 1

4
½cos θ2 cos θ3 þ

ffiffiffi
2

p
ðsin θ1 sin θ3 − cos θ1 sin θ2 cos θ3Þ�;

IμNO ¼ 1

4
½cos θ2 cos θ3 −

ffiffiffi
2

p
ðsin θ1 sin θ3 − cos θ1 sin θ2 cos θ3Þ�

IeIO ¼ 1

4
ðsin θ2 þ

ffiffiffi
2

p
cos θ1 cos θ2Þ; IμIO ¼ 1

4
ðsin θ2 −

ffiffiffi
2

p
cos θ1 cos θ2Þ;

IτNO ¼ −ðIeNO þ IμNOÞ ¼ −
1

2
cos θ2 cos θ3; IτIO ¼ −ðIeIO þ IμIOÞ ¼ −

1

2
sin θ2: ðC49Þ

The second mixing matrix UVIII;2 is related to UVIII;1 through the permutation of the second and third rows. As a
consequence, the expressions for θ12 and θ13 coincide with Eq. (C48), the overall sign of JCP is reversed, and the
atmospheric mixing angle θ23 changes into

sin2θ23 ¼
4cos2θ2

5þ cos 2θ2 þ 2
ffiffiffi
2

p
cos θ1 sin 2θ2

: ðC50Þ

Moreover the rephase invariants can be obtained from Eq. (C49) by interchanging IμNO;IO and IτNO;IO. Finally we
proceed to the third mixing matrix UVIII;3. We can extract the following results for the mixing angles,

sin2θ13 ¼
1

2
cos2θ2; sin2θ12 ¼

1

2
þ cos2θ2 cos 2θ3

3 − cos 2θ2
; sin2θ23 ¼

1

2
−

ffiffiffi
2

p
cos θ1 sin 2θ2
3 − cos 2θ2

; ðC51Þ

which implies 				sin2θ12 − 1

2

				 ≤ 1

2
tan2θ13;

				sin2θ23 − 1

2

				 ≤ tan θ13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − tan2θ13

q
: ðC52Þ

Hence the experimental data [4] on θ13 and θ12 cannot be accommodated simultaneously without higher order
corrections for this mixing matrix.
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