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We revisit the static potential for the QQQ̄ Q̄ system using SU(3) lattice simulations, studying both the
color singlets’ ground state and first excited state. We consider geometries where the two static quarks and
the two antiquarks are at the corners of rectangles of different sizes. We analyze the transition between a
tetraquark system and a two-meson system with a two by two correlator matrix. We compare the potentials
computed with quenched QCD and with dynamical quarks. We also compare our simulations with the
results of previous studies and analyze quantitatively fits of our results with Ansätze inspired in the string
flip-flop model and in its possible color excitations.
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I. INTRODUCTION

Our current understanding of strong interaction phenom-
enology, being the hadron spectrum or the form factors
associated to transitions between hadrons, relies on the
description of the quark and gluon interaction within
quantum chromodynamics. Despite the efforts of several
decades, the nonperturbative nature of QCD still ensconces
several properties of its fundamental particles. Indeed, we
still do not understand the confinement mechanism, which
prevents the observation of free quarks and gluons in nature,
and we still do not have a satisfactory answer why the
experimentally [1] confirmed hadrons are composed of three
valence quarks or a pair of a quark and antiquark.
QCD is a gauge theory and physical observables should

be gauge invariant objects. Gauge invariance implies that
only certain combinations of quarks and/or gluons can lead
to observables particles. If one applies blindly such a
simple rule, the observed hadrons are necessarily
composite states involving multiquarks and multigluon
configurations. There is a priori no reason why states with
valence compositions other than mesons or baryons, called
in general exotic states, should not be observed. Exotic
states can be pure glue states (glueballs), multiquark states
(tetraquark, pentaquarks, etc.) or hybrid states (mesons
with a nonvanishing valence gluon content). Besides the
hadron states compatible with the quark model, the particle
data book [1] also reports candidates for the different types
of exotic states; see, e.g., the reviews on pentaquarks and

non-qq̄ mesons. The masses of the experimental states
listed as candidates to multiquark/gluon hadrons cover the
full range of energies of the particle spectrum. In particular
the exotics with the most observations are the tetraquarks.
Regarding the experimental observation of exotic tetra-

quarks, the quarkonium sector of double-heavy tetraquarks
including a QQ̄ pair is the most explored experimentally;
see, e.g., the recent reviews [2–4]. In particular, the charged
Z�
c and Z�

b are cryptoexotic, but technically they can be
regarded as essentially exotic tetraquarks if we neglect cc̄
or bb̄ annihilation. There are two Z�

b observed only by the
BELLE Collaboration at KEK [5], slightly above the BB̄�

and B�B̄� thresholds, the Zbð10610Þþ and Zbð10650Þþ.
Their nature is possibly different from the two Zcð3940Þ�
and Zcð4430Þ�, whose mass is well above the DD thresh-
old [6]. The Z�

c has been observed with very high statistical
significance and has received a series of experimental
observations by the BELLE Collaboration [7,8], the
Cleo-C Collaboration [9], the BESIII Collaboration [10–
14], and the LHCb Collaboration [15]. This family is
possibly related to the closed-charm pentaquark recently
observed at LHCb [16]. Notice that, using naïve resonant
group method calculations, in 2008, some of us predicted
[17] a partial decay width to πJ=ψ of the Zcð4430Þ− con-
sistent with the recently observed experimental value [15].
On the other hand, regarding lattice QCD simulations,

the most promising exotic tetraquark sector is also double-
heavy, but it has a pair of heavy quarks QQ or antiquarks
Q̄ Q̄, and thus it differs from the quarkonium sector. Note
that in lattice QCD, the study of exotics is presently even
harder than in the laboratory, since the techniques
and computer facilities necessary to study resonances with
many decay channels remain to be developed. Simulations
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utilizing lattice QCD have searched for evidence of a large
tetraquark component in the closed-charm Zcð3940Þ−
candidate but this resonance is well above threshold, and
Refs. [18–21] concluded there is no robust lattice QCD
evidence of a Z�

c tetraquark resonance. Works using lattice
QCD also have searched for the expected bound state in
light-light-antiheavy-antiheavy channels [22,23]. Using
dynamical quarks, the only heavy quark presently acces-
sible to lattice QCD simulations is the charm quark. No
evidence for bound states in this possible family of
tetraquarks, say, for a udc̄ c̄, was found. Moreover the
potentials between two mesons, each composed of a light
quark and a static (or infinitely heavy) antiquark, have been
computed in lattice QCD [24,25]. A static antiquark
constitutes a good approximation to a spin-averaged b̄
bottom antiquark. The potential between the two light-
static mesons can then be used, with the Born-
Oppenheimer approximation [26], as a B − B potential,
where the higher order 1=mb terms including the spin-
tensor terms are neglected. From the potential of the
channel with larger attraction, which occurs in the
isospin ¼ 0 and spin ¼ 0 quark-quark system, the possible
bound states of the heavy antiquarks have been investigated
with quantum mechanics techniques. Recently, this
approach indeed found evidence for a tetraquark udb̄ b̄
bound state [27,28], while no bound states have been found
for states where the heavy quarks are c̄ b̄ or c̄ c̄ (consistent
with full lattice QCD computations [22,23]) or where the
light quarks are s̄ s̄ or c̄ c̄ [27,29–33]. The b̄ b̄ probability
density in the only binding channel has also been computed
in Refs. [27,29–33].
The quark models for tetraquarks with the most sophis-

ticated description of confinement are the string flip-flop
models. Clearly, tetraquarks are always coupled to meson-
meson systems, and we must be able to address correctly
the meson-meson interactions. The first quark models had
confining two-body potentials proportional to the SU(3)
color Casimir invariant λ⃗i · λ⃗jVðrijÞ suggested by the one-
gluon-exchange type of potential. However this would lead
to an additional van der Waals potential VVan der Waals ¼
V 0ðrÞ
r × T, where T is a polarization tensor. The resulting van

der Waals [34–39] force between mesons or baryons would
be extremely large and this is clearly not compatible with
observations. The string flip-flop potential for the meson-
meson interaction was developed in Refs. [40–43], to solve
the problem of the van der Waals forces produced by the
two-body confining potentials. The first considered string
flip-flop potential was the one minimizing the energy of the
possible two different meson-meson configurations, say,
M13M24 orM14M23. This removes the intermeson potential
and thus solves the problem of the van der Waals force.
An upgrade of the string flip-flop potential includes a
third possible configuration [44], in the tetraquark channel,
say, T12;34, where the four constituents are linked by
a connected string [45,46]. The three confining string

configurations differ in the strings linking the quarks
and antiquarks; this is illustrated in Fig. 1. When the
diquarks qq and q̄ q̄ distances are small, the tetraquark
configuration minimizes the string energy. When the quark-
antiquark pairs qq̄ and qq̄ are close, the meson-meson
configuration minimizes the string energy. With a triple
string flip-flop potential, bound states below the threshold
for hadronic coupled channels have been found [45–50].
On the other hand, the string flip-flop potentials allow fully
unitarized studies of resonances [41,42,49–51]. Analytical
calculations with a double flip-flop harmonic oscillator
potential [51], using the resonating group method again
with a double flip-flop confining harmonic oscillator
potential [41,42], and with the triple string flip-flop
potential [49,50] have already predicted resonances and
bound states.
So far. the theoretical and experimental interpretations of

the observed states that can possibly be exotics is not clear
crystal and, certainly, a better understanding of the color
force helps to elucidate our present view of the hadronic
spectrum. For heavy quark systems its dynamics can be
represented by a potential which, in general, is a function of
the geometry of the hadrons, of the spin orientation of its
components and of the quark flavors. In the limit of infinite
quark mass one can compute the so-called static potential
using first principle lattice QCD techniques via the evalu-
ation of Wilson loops. The static potential provides an
important input to the modeling of hadrons and it gives a
simple realization of the confinement mechanism. Moreover
it can be applied to study tetraquarksQQQ̄ Q̄with two heavy
quarks and two heavy antiquarks (see for instance a Dyson-
Schwinger study in Ref. [52]) at the intersection of the two
sectors most studied experimentally and theoretically.
The static potential has been computed using lattice

QCD for mesons, tetraquarks, pentaquarks, and hybrid

FIG. 1. The paradigm of the string flip-flop model, with three
possible arrangements of quark colors in the ground state for a
QQQ̄ Q̄ color singlet system: meson-meson, tetraquark, and
meson-meson.
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systems; see [53–59]. For a quark and an antiquark system,
the static potential VQQ̄ is a landmark calculation in lattice
QCD and it is used to set the scale of the simulations. VQQ̄

has been computed both in the quenched theory and in full
QCD with the lattice data being well described by a one-
gluon exchange potential (a Coulomb-like potential) at
short distances and a linear rising function of the quark
distances at large separations. The behavior at large
interquark distances provides a nice explanation of the
confinement mechanism. Moreover, for other hadronic
systems and for large separations of its constituents a
similar pattern of the corresponding static potentials has
been observed in lattice simulations, i.e., a linear rising
potential which, once more, is a simple realization of quark
confinement.
In the current work we revisit the static potential for

tetraquarks using lattice simulations. The static potential for
tetraquarks was computed for the gauge group SU(3) and in
the quenched approximation in [54–56]. The hybrid poten-
tial defined and measured in [58] can also be viewed as a
particular limit of the tetraquark potential. Herein, of all the
possible geometries for theQQQ̄ Q̄ system we consider the
case where quarks and antiquarks are at the corners of a
rectangle (see Fig. 2), and we recompute the static potential
of the system both in the quenched approximation and in
full QCD. We focus our analysis in the comparison of the
quenched and full QCD and also in the transition between a
tetraquark system and a two-meson system. Thus we go
beyond the triple string flip-flop paradigm of Fig. 1 and
analyze, in the transition region, the mixing between the
meson-meson and tetraquark string configurations.
Moreover we explore not only the ground state but also
the first excited state.
The current work is organized as follows. In Sec. II we

discuss the possible color structures for a QQQ̄ Q̄ system
and introduce theQQ̄ potentials used to compare the results
of the static potentials for the tetraquark. In Sec. III we
revisit the geometries used to compute the static potentials
and discuss the expected configurations at large separa-
tions. In Sec. IV the method used to evaluate the static
potentials is described. In Sec. V we report on the
parameters used in the lattice simulations and how we
set the scale of the simulations. The results for the static

tetraquark potential for the two geometries are described in
Sec VI. In Sec. VII we resume and conclude. In the
Appendix, the reader can find various tables with all our
numerical results.

II. THE COLOR STRUCTURE
OF A QQQ̄ Q̄ SYSTEM

The color-spin-spatial wave function of aQQQ̄ Q̄ system
has multiple combinations, relevant for the computation of
static potentials. In this section, we analyze the possible
color wave functions associated with a tetraquark system.
The quarks belong to the fundamental 3 representation of

SU(3), while antiquarks are in a 3̄ representation of the
group. The space built from the direct product 3 ⊗ 3 ⊗
3̄ ⊗ 3̄ includes two independent color singlet states.
In a QQQ̄ Q̄ system, quarks and antiquarks can combine

into color singlet mesonlike states, leading naturally to the
two-meson states,

j113124i ¼
1

3
δikδjljQiQjQ̄kQ̄li;

j114123i ¼
1

3
δilδjkjQiQjQ̄kQ̄li; ð1Þ

where only the color indices are written explicitly and 1ij
refers to the mesonlike color singlet state built combining
quark i and antiquark j. The two color singlet states in
Eq. (1) are not orthogonal to each other and a straightfor-
ward algebra gives

h113124j114123i ¼
1

3
: ð2Þ

Moreover, a quark and antiquark pair, besides a color
singlet state, can also form a color octet state. With two
color octets it is again possible to build a color singlet state.
For the QQQ̄ Q̄ system the color singlet states built from
the octets read

j813824i ¼
1

4
ffiffiffi
2

p λaikλ
a
jljQiQjQ̄kQ̄li;

j814823i ¼
1

4
ffiffiffi
2

p λailλ
a
jkjQiQjQ̄kQ̄li; ð3Þ

FIG. 2. Our two different planar geometries for the static tetraquark potential: the parallel geometry (left) and the antiparallel geometry
(right) considered in our simulations.
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where the factors comply with the normalization
condition,

h813824j813824i ¼ h814823j814823i ¼ 1: ð4Þ

The color octet-octet states in Eq. (3) can be written in
terms of the meson-meson states defined in Eq. (1),

j813824i ¼
3j114123i − j113124i

2
ffiffiffi
2

p ;

j814823i ¼
3j113124i − j114123i

2
ffiffiffi
2

p : ð5Þ

A simple calculation shows that the color octet states (3) are
not orthogonal (in color space) to each other. However,
each of the octet-octet states is orthogonal to the corre-
sponding meson-meson state, i.e.,

h113124j813824i ¼ 0;

h114123j814823i ¼ 0: ð6Þ

The states in Eqs. (1) and (3) do not represent all the
possible color singlet states that can be associated to a
QQQ̄ Q̄ system. We can also consider diquark-antidiquark
configurations. For the group SU(3) it follows that
3 ⊗ 3 ¼ 3̄ ⊕ 6, 3̄ ⊗ 3̄ ¼ 3 ⊕ 6̄ and the two color singlet
states belong to the space spanned by 3 ⊗ 3̄ and 6 ⊗ 6̄,

j3̄12334i ¼
1

2
ffiffiffi
3

p ϵijmϵklmjQiQjQ̄kQ̄li

¼
ffiffiffi
3

4

r
ðj113124i − j114123iÞ; ð7Þ

j6126̄34i ¼
ffiffiffi
3

8

r
ðj113124i þ j114123iÞ: ð8Þ

The states in Eqs. (7) and (8) are orthogonal to each other
in color space, i.e., h3̄12334j6126̄34i ¼ 0. Furthermore, they
are eigenstates of the exchange operators of quarks or
antiquarks, and verify the following relations,

P12j3̄12334i ¼ P34j3̄12334i ¼ −j3̄12334i;
P12j6126̄34i ¼ P34j6126̄34i ¼ þj6126̄34i; ð9Þ

where Pij is the exchange operator of (anti)quark i with
(anti)quark j. Equations (7) and (8) can be inverted, giving

j113124i ¼
ffiffiffi
2

3

r
j6126̄34i þ

1ffiffiffi
3

p j3̄12334i;

j114123i ¼
ffiffiffi
2

3

r
j6126̄34i −

1ffiffiffi
3

p j3̄12334i; ð10Þ

which shows that the meson-meson states of Eq. (1) are not
eigenstates of the quark and of the antiquark exchange
operators P12 and P34.
The static potential V for a QQQ̄ Q̄ system is a compli-

cated object which may involve two-, three-, and four-body
interactions. In general, V also depends on the allowed
quantumnumbers of the constituents of themultiquark state.
The static potential should allow, when combined with
quantum mechanics, for the ground states to be the ones of
Fig. 1. For example, the static potential should allow for the
formation of two-meson states when the quark-antiquark
distances are small compared to the quark-quark and
antiquark-antiquark distances, or possibly for the formation
of a tetraquark at other particular distances.
As an approximate model to understand the results of the

lattice simulations for the static potential in terms of
overlaps with the various color singlets, one can consider
the two-body potential given by the Casimir scaling,

VCS ¼
X
i<j

CijVM; ð11Þ

where VM is the mesonic static QQ̄ potential with

Cij ¼ λai ·λ
a
j

−16=3, and compare the results of the simulations
with the one of any of the color singlet states and the
Casimir potential given by

VΨ ¼ hΨjVCSjΨi: ð12Þ

Note, for a two-body system, the one-gluon exchange
predicts a static potential proportional to λai · λ

a
j .

The expectation values hΨjCijjΨi for the possible color
singlet states associated to the QQQ̄ Q̄ system are reported
in Table I. These numbers are important to obtain a
qualitative insight into the result of the simulations. For
instance, if for a given state Cij < 0, we do not expect that
the lattice result would give us a strong attraction between
the particles i and j and, therefore, one can expect significant
deviations of the static potential relative to the potential VCS
associated to the corresponding color singlet state.
Moreover we consider as well the first excitation of the

QQQ̄ Q̄, which also depends in the particular distances of

TABLE I. Normalized mean values of the Casimir invariant
operators hΨjCijjΨi. The indices i and j refer to the quarks and
antiquarks.

jΨi C12 C13 C14

j113124i 0 1 0
j813824i 1=4 −1/8 7=8
j114123i 0 0 1
j814823i 1=4 7=8 −1/8
j3̄12334i 1=2 1=4 1=4
j6126̄34i −1/4 5=8 5=8
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the system. Based in the orthogonality conditions and in a
crude Casimir scaling where VM would be a spatial
independent potential, we would expect the pairs of color
singlet states (j113124i, j813824i); (j114123i, j814823i); and
(j3̄12334i, j6136̄24i) to form possible (ground state, first
excited state) pairs. This already goes beyond the simple
paradigm of Fig. 1.
Nevertheless, Eq. (11) is clearly an approximation, and

our aim is to compute more rigorous potentials. Previous
lattice studies [54–57] show that the static potential for a
tetraquark system is not described entirely by a function
proportional to this potential. An example of this kind of
potential is the two-meson potential,

V33 ¼ h113124jVCSj113124i;
¼ VMðr13Þ þ VMðr24Þ; ð13Þ

which we expect to saturate the ground state when the
quark-quark and antiquark-antiquark distances are large.

III. GEOMETRICAL SETUP

We aim to measure the static potential for the QQQ̄ Q̄
system but also to investigate the transition between the
tetraquark and a two-meson state, and the transition
between the two two-meson states. This computation
within lattice QCD simulations requires choosing a par-
ticular geometrical setup of the quark system under inves-
tigation. In principle, one could choose any of the available
geometrical configurations allowed by the hypercubic
lattice. In order to study in detail the transitions between
the different states, in the current work we opt for
restricting our study to the case where the four particles
are at the corners of a rectangle and look at two particular
alignments. In the so-called parallel alignment [see Fig. 2
(left)], the two quarks (antiquarks) are at adjacent corners of
the rectangle. In the antiparallel alignment [see Fig. 2
(right)], the quarks (antiquarks) are at the opposite corners
of the rectangle.

A. Parallel alignment of quarks

For this geometry, where the two quarks are at neighbor
corners of the rectangle, we can describe the system via the
intradiquark distances,

r12 ¼ jx1 − x2j ¼ jx3 − x4j; ð14Þ

and the interdiquark distances,

r13 ¼ jx1 − x3j ¼ jx2 − x4j: ð15Þ

Note that for both cases the second equality holds only due
to the particular geometrical configuration considered.
If one assumes that quarks are confined within colorless

states, this geometrical setup has two limits which allow us
to study the transition between a tetraquark state and a two-
meson system. Indeed, when r12 ≪ r13 one expects the
ground state of theQQQ̄ Q̄ system to be that of a tetraquark,
while for the opposite case, i.e., for r13 ≪ r12, one expects
the system, i.e., its potential, to behave as a two-meson
system.
For this geometrical setup, in the evaluation of the static

potential we consider the basis of operators shown in Fig. 3.
They are associated with a tetraquark operator (left in the
figure) and a two-meson operator (right in the figure), the
two ground state configurations expected for this particular
geometry.

B. Antiparallel alignment of quarks

For the antiparallel alignment of quarks described in
Fig. 2 (right), we take as distance variables

r13 ¼ jx1 − x3j ¼ jx2 − x4j;
r14 ¼ jx1 − x4j ¼ jx2 − x3j; ð16Þ

where, again, the second equalities are valid due to the
particular characteristics of the geometrical distribution of
quarks and antiquarks.

FIG. 3. The two spatial operators used in the computation of the static potential for the parallel alignment geometry, defined in Fig. 2
(left), where the quarks have indices 1, 2 and the antiquarks have indices 3, 4. The left operator OYY [where ϵ stands for a Levi-Cività
symbol (see text for details)] creates a j3̄12334i state, while the right one creates a two-meson state.
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For this geometrical setup, one expects the ground state
of the system when r13 ≪ r14 and r14 ≪ r13 to be domi-
nated by the two possible independent two-meson states.
For the computation of the static potential we use the basis
of operators shown in Fig. 4 that are associated with the two
two-meson operators.

IV. COMPUTING THE STATIC POTENTIAL

For the computation of the static potential, including the
ground state and the first excited state, we rely on a basis of
two operators Oi for each of the geometrical setups
discussed in Sec. III. Defining the correlation matrix,

Mij ¼ hOið0Þ†OjðtÞi
¼
X
n

c�incjne
−Vnt; ð17Þ

where h� � �i stands for the vacuum expectation value,
cin ¼ hnjOij0i, and jni are the eigenstates of the
Hamiltonian of the system, the determination of the
potential requires the knowledge of the solutions of
the generalized eigenvalue problem:

MijðtÞajðtÞ ¼ λkðtÞMijðt0ÞajðtÞ: ð18Þ

In our calculation, we assume that the creation of an excited
state out of the vacuum occurs at t ¼ 0. From the
generalized eigenvalues λk, the energy levels of system
Vk can be estimated from the plateaus on the effective mass
given by

MeffðtÞ ¼ log
λkðtÞ

λkðtþ 1Þ
¼ Vk þOðe−ðVkþ1−VkÞtÞ: ð19Þ

In practice, the effective mass plateaus are identified fitting
to a constant both generalized eigenvalues. In this way, one
is able to compute both the static potential for the ground
state and the first excited state of the system.

As described above, the basis of operators chosen to
compute V depends on the geometry of the system and on
the expected ground states. For the antiparallel alignment,
we use two meson-meson operators, while for the parallel
alignment a meson-meson operator and a diquark-antidi-
quark operator, i.e., a 3̄12334 color configuration, are used to
compute the correlation matrix.

FIG. 4. The two spatial operators used in the computation of the static potential for the antiparallel alignment case, defined in Fig. 2
(right), where the quarks have indices 1, 2 and the antiquarks have indices 3, 4. Note that both Wilson lines describe two-meson
operators.

FIG. 5. Correlation matrix for the parallel alignment case. In the
horizontal plane we represent the spatial operators and in the
vertical direction we represent the temporal Wilson lines.
Because we have two different spatial operators, defined in
Fig. 3, the correlation matrix is a 2 × 2 matrix.
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In the case where the quarks are in the antiparallel
alignment, the operators used to compute the potential are

O13;24 ¼
1

3
Qi

1L
ij
13Q̄

j
3Q

k
2L

kl
24Q̄

l
4;

O14;23 ¼
1

3
Qi

1L
ij
14Q̄

j
4Q

k
2L

kl
23Q̄

l
3; ð20Þ

where L are Wilson lines connecting the quark. Its
representation in terms of closed Wilson loops is given
in Fig. 6. The corresponding correlation matrix reads

M ¼
�
W13W24

1
3
W1324

1
3
W1423 W14W23

�
; ð21Þ

where Wi are normalized mesonic Wilson loops
W ¼ 1

3
Tr½U�.

On the other hand, for the parallel alignment the two
operators we consider are

OYY ¼ 1

2
ffiffiffi
3

p Qi
1Q

j
2ϵi0j0kL

ii0
1aL

jj0
2aL

kk0
ab ϵk0l0m0Ll0l

b3L
m0m
b4 Q̄l

3Q̄
m
4 ;

O13;24 ¼
1

3
Qi

1L
ij
13Q̄

j
3Q

k
2L

kl
24Q̄

l
4: ð22Þ

The closed Wilson loops associated to OYY and O13;24 are
represented in Fig. 5 and the corresponding correlation
matrix is given by

M ¼
 

WYY
1

2
ffiffi
3

p WYY;1324

1

2
ffiffi
3

p W1324;YY W13W24

!
: ð23Þ

V. LATTICE SETUP

From the static potential we aim to understand the
transition between possible configurations of a QQQ̄ Q̄
system. Furthermore, we also want to glimpse any possible
differences due to the quark dynamics. Therefore, for the
computation of Vk we consider two different simulations.
Our quenched simulation uses an ensemble of 1199

configurations provided by the PtQCD Collaboration
[60–62], generated using the Wilson action in a 243 × 48
lattice for a value of β ¼ 6.2. The quenched configu-
rations were generated using GPUs and a combination of
Cabbibo-Marinari, pseudoheatbath, and over-relaxation
algorithms, and computed in the GPU servers of the
PtQCD Collaboration.
Our full QCD simulation uses a Wilson fermion dynami-

cal ensemble of 156 configurations generated in a 243 × 48
lattice and a β ¼ 5.6. In the dynamical ensemble we take
κ ¼ 0.15825 for the hopping parameter, which corresponds
to a pion mass ofmπ ¼ 383 MeV. For Wilson fermions the
deviations from continuum physics are of orderOðaÞ in the
lattice spacing and, therefore, one can expect relatively
large systematic errors. However, we expect the static
potential as measured from the full QCD simulation away
from the physical point to be more realistic when compared
to the quenched simulation. The full QCD configuration
generation has been performed in the Centaurus cluster [63]
using the Chroma library [64]. The hybrid Monte Carlo
integrator scheme has been tuned using the methods
described in [65,66].
Then, with both the quenched and full QCD ensembles

of configurations, we perform our correlation matrix
computations at the PC cluster ANIMAL of the PtQCD
Collaboration.
The Wilson loops at large Euclidean time are decaying

exponential functions of the static potential times the
Euclidean time and, therefore, for large Euclidean times
the Wilson loops are dominated by the statistical noise of
the Monte Carlo. A reliable measurement of the static
potential requires techniques which reduce the contribution
of the noise to the correlation functions used in the
evaluation of V.

FIG. 6. Correlation matrix for the antiparallel alignment of
quarks. In the horizontal plane we represent the spatial operators
and in the vertical direction we represent the temporal Wilson
lines. Because we have two different spatial operators, defined in
Fig. 4, the correlation matrix is a 2 × 2 matrix.
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The quality of the measurement of the effective masses
depends strongly on the overlap with the ground state of the
system. In order to improve the ground state overlap we
applied 50 iterations of APE smearing [67] with w ¼ 0.2
to the spatial links in both configuration ensembles.
Furthermore, for the quenched ensemble, to further
improve the signal to noise ratio, we used the extended
multihit technique [68]. This procedure generalizes the
multihit as described in [69] by fixing the nth neighboring
links instead of the first ones when performing the averages
of the links. However, this technique has the inconvenience
of changing the short distance behavior of the correlators
and, therefore, one should not consider the points with
r < rmin. In previous studies with the multihit, rmin ¼ 2
was sufficient, but in our study we consider rmin ¼ 4. For
the dynamical configurations the multihit technique cannot
be applied and, therefore, we resorted to hypercubic block-
ing [70] with the parameters α1 ¼ 0.75, α2 ¼ 0.60, and
α3 ¼ 0.30 to improve the signal to noise ratio.
For the conversion into physical units we first evaluate

Wilson loops to access the ground state meson static
potential on a single axis. In this calculation, we use a
variational basis built using four different smearing levels
to access the ground state meson static potential. The lattice
data for the static meson potential are then fitted to the
Cornell potential functional form,

VMðrÞ ¼ K −
γ

r
þ σr: ð24Þ

The fits for different fitting ranges are reported in Tables II
and III for the quenched and the dynamical ensembles,
respectively. The fits allow for the evaluation of the

physical scale associated to the two ensembles through
the Sommer method [71]. Indeed, by demanding that

r20
dVM

dr
ðr0Þ ¼ 1.65; ð25Þ

where r0 ¼ 0.5 fm, the lattice spacing a is measured and
we present it in Tables II and III for various fitting ranges.
The results show that a is fairly independent of the fitting
intervals and, in the following, we take a≃ 0.0681 fm for
the quenched data ensemble and a≃ 0.0775 fm for the
dynamical data set. Our QCD lattice spacing is essentially
similar to the one obtained with different techniques.
It follows that the lattice volumes used in the simulation
are ð1.63 fmÞ3 × 3.27 fm for the quenched case and
ð1.86 fmÞ3 × 3.72 fm for the dynamical simulation. For
completeness, in Fig. 7 we show the ground state meson
potentials for the two ensembles in physical units.

TABLE III. Fits of the static QQ̄ meson potential (Wilson loop) in full QCD, for different intervals r ∈ ½rmin; rmax�, to the Cornell
potential model of Eq. (24).

rmin rmax χ2=d:o:f: Ka γ σa2 a (fm) a−1 (GeV)

3 12 0.43 0.2995(23) 0.3625(49) 0.03092(25) 0.0775 2.546
4 12 0.50 0.3005(84) 0.3654(270) 0.03085(64) 0.0775 2.546
5 12 0.43 0.2931(169) 0.3386(638) 0.03129(109) 0.0772 2.546
3 11 0.19 0.3017(42) 0.3666(117) 0.03065(33) 0.0773 2.553
4 11 0.04 0.3063(25) 0.3799(76) 0.03030(21) 0.0772 2.546
5 11 0.05 0.3042(58) 0.3728(204) 0.03044(40) 0.0772 2.546
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FIG. 7. MesonQQ̄ static potential for the two sets of data. Both
potentials are shifted by a constant, for VðrÞ to vanish at
r0 ¼ 0.5 fm.

TABLE II. Fits of the staticQQ̄meson potential (Wilson loop) in quenched QCD, for different intervals r ∈ ½rmin; rmax�, to the Cornell
potential model of Eq. (24).

rmin rmax χ2=d:o:f: Ka γ σa2 a (fm) a−1 (GeV)

5 12 0.98 0.6406(21) 0.3078(77) 0.02490(14) 0.0681 2.898
6 12 0.62 0.6382(49) 0.2987(199) 0.02506(29) 0.0681 2.898
5 11 1.08 0.6409(21) 0.3085(75) 0.02488(14) 0.0681 2.898
6 11 0.79 0.6385(55) 0.2996(224) 0.02504(34) 0.0681 2.898
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VI. RESULTS FOR THE STATIC
QQQ̄ Q̄ POTENTIAL

In this section, we report on the results for the static
potential with the two different geometries mentioned in
Sec. III, and we apply fits with Ansatz bases in the string
flip-flop potential and in the Casimir scaling.
In Fig. 8, as an example, we show effective mass plots

for the pure gauge simulation (left) and full QCD simu-
lation (right), and for the ground state (top) and first excited
state (bottom), for a QQQ̄ Q̄ system in the antiparallel
geometry. The red curves are the results of fitting the lattice
data to measure the static potential. See the Appendix for
further details on the numerics. We consider the maximum
number of points aligned in a horizontal line with accept-
able χ2=d:o:f:. Because the noise reduction technique in the
quenched simulation rejects the cases with source distances
smaller than 4a, we end up by accepting a few more results
in the full QCD case than in the quenched case.

A. The antiparallel alignment

We start by analyzing the simpler case of the antiparallel
geometry, where the meson-meson systems are expected to

have lower energies than the tetraquark system. Our results
are plotted in Figs. 9 and 10. Clearly there are two different
trends for r13 < r14 and for r13 > r14 and a transition, with
mixing, at the point r13 ¼ r24. Moreover we compare in
detail our results with different Ansätze.
From the string flip-flop paradigm of Fig. 1 we expect

the ground state of the system to be that of a two-meson
system when the distance between a quark and an anti-
quark, i.e., r13 or r14, is much smaller than the quark-quark
distance, i.e., r12. Then, for sufficiently small r13 and/or r14
the potential of the ground state of the QQQ̄ Q̄ should
reproduce the string flip-flop potential,

V0 ≃ Vff ¼ min ½VMM; VMM0 �; ð26Þ

where the two different meson-meson potentials are

VMM ¼ 2VMðr13Þ;
VMM0 ¼ 2VMðr14Þ;

and VM is the ground state potential of a meson in Eq. (24).
Previous lattice simulations [54–56] confirm that V0 is
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FIG. 8. Effective mass plots for the quenched simulation (left) and full QCD simulation (right), in the antiparallel QQQ̄ Q̄ geometry
with distances r1 ¼ r2 ¼ 7a, for the ground state (top) and the first excited state (bottom). The red lines are the plateau fits which
measure the static potential.
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compatible with such a result. Deviations from Eq. (26) are
expected at intermediate distances together with a smooth
transition from one picture to the other, i.e., from the
two-meson state with valence content Q1Q̄3 and Q2Q̄4 to
the two-meson state with valence content Q1Q̄4 and
Q2Q̄3.
On the other hand, for the excited state, we have two

possible scenarios. From the string flip-flop, we would
again expect, when the distance between a quark and an
antiquark, i.e., r13 or r14, is much smaller than the quark-
quark distance, i.e., r12, the system to be that of the next
two-meson system,

V1 ≃? max ½VMM; VMM0 �: ð27Þ

However, given that the color wave functions of the two-
meson states are not orthogonal [see Eq. (2) and Sec. II], the

excited state is possibly not another mesonic state, but
instead an octet state,

V1 ≃? max ½V88; V880 �; ð28Þ

where we estimate the color octet potential assuming
Casimir scaling, i.e., using the decomposition in
Eq. (11) and the values reported in Table I,

V88¼
1

2
VM

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r213þr214

q �
þ7

4
VMðr14Þ−

1

4
VMðr13Þ;

V880 ¼
1

2
VM

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r213þr214

q �
þ7

4
VMðr13Þ−

1

4
VMðr14Þ: ð29Þ

Thus we have two different simple Ansätze to interpret
our results. The ground state potential V0 and the first
excited state potential V1 for the quenched and dynamical
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FIG. 9. Ground state and first excited stateQQQ̄ Q̄, computed with the quenched ensemble, for the antiparallel alignment. Results are
compared with both two-meson potential and octet-octet potentials.
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ensembles are reported in Figs. 9 and 10, respectively,
together with VMM, VMM0 and the octet potentials V88, V880 .
As the figures show, the ground state static potential V0

as a function of r14 is compatible with two two-meson
potentials for small and large values of r14. Indeed, for all
r13, at small values of r14 the static potential is compatible
with VMM, while for large r14, V0 becomes compatible with
VMM0 . We show in Table IV, Cornell fits for the quenched
excited state, compatible with the formation of an adjoint
string with σ ¼ 9=4σmeson. This is slightly above the value

predicted by Ref. [72]. However, this fit is only performed
for large r2 and intermediate r1 ¼ 6 or r1 ¼ 7. At shorter
distances the error bars are too large and we are not able to
estimate the Coulomb term.
In the transition region r13 ∼ r14 where also

VMM ∼ VMM0 , deviations of V0 from VMM or VMM0 can
be seen. The difference between the ground state potential
and the sum of the two-meson potentials in physical units is
detailed in Fig. 11, and in particular the transition point
r12 ¼ r13 is analyzed in Fig. 12. The results for the
quenched simulation are well described assuming an off-
diagonal term Δ in the correlation matrix, leading to the
functional form,

V0ðr13; r14Þ ¼
VMM þ VMM0

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
VMM − VMM0

2

�
2

þ Δ2

s
;

ð30Þ

where we may have either
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FIG. 10. The same as in Fig. 9 but for the dynamical ensemble.

TABLE IV. Fits of the quenchedQQQ̄ Q̄ antiparallel alignment
excited state potential to a Cornell Ansatz.

r1 rmin rmax χ2=d:o:f: Ca γ σa2 σ=σmeson

6 8 12 1.30 1.183(60) 0.14(30) 0.0570(30) 2.28(12)
9 12 0.11 1.252(54) 0.50(28) 0.0537(26) 2.16(10)

7 8 12 1.00 1.124(77) 0.24(37) 0.0584(39) 2.35(16)
9 12 0.03 1.218(32) 0.23(17) 0.0537(15) 2.16(6)
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Δðr1; r2Þ ¼
Δ0e−λðr1þr2Þ

1þ cðr1 − r2Þ2
ð31Þ

or

Δðr1; r2Þ ¼
Δ0

1þ cðr1 − r2Þ2 þ dðr1 þ r2Þ2
: ð32Þ

Equation (30) interpolates between the two potentials in the
flip-flop picture of a meson-meson.
The fits for the functional forms in Eqs. (31) and (32) are

reported in Tables V and VI. In order to quantify the
deviation from the two limits where the system behaves
as a two-meson system, we recall that the fits give
Δð0.5 fm; 0.5 fmÞ≃ 60 MeV, a number to be compared
with typical values for the meson potential which are of the
order of GeV (see Fig. 7). This result shows that the

corrections due to Δ to the flip-flop picture are small when
the quarks and antiquarks are in an antiparallel geometry.
The full QCD simulation shows similar results to the

quenched QCD simulation. However, the results for V0 for
the full QCD configurations are not described by the same
type of functional form given in Eq. (30) which reproduces
the flip-flop potential at large distances. We found no
window where the fits are stable and, therefore, conclude
that the dynamical V0 is not reproduced by Eq. (30) with
the deviations parametrized by either Eq. (31) or Eq. (32).
Regarding the excited state potential V1 there are clearly

two different regimes for r13 very different from r14, but we
are not able to find an analytic form compatible with the
lattice data, neither for the quenched simulations nor for the
full QCD simulations. In both Figs. 9 and 10, it is clear that
the static potential V1 lies between the functional forms of
Eqs. (27) and (28). There are subtle differences between
Figs. 9 and 10. In general, the full QCD case is closer to the
octet expression of Eq. (28) than the quenched QCD case.
A fortiori, we are not able as well to find good Ansätze to

fit V1 in the transition region. For a detailed view of the
differences for the quenched simulation in this region,
see Fig. 13.
This observed behavior for V1 can be understood in

terms of adjoint strings. When the quark and antiquark
inside the octets are close to each other, they can be seen
externally as a gluon. Therefore, we have a single adjoint
string with a tension of σA ¼ 9

4
σ. On the other hand, when

the quark and the antiquark are pulled apart, the adjoint
string tends to split into two fundamental strings, with a
total string tension of 2σ. The splitting of the adjoint string
gives a repulsive interaction between the quark-antiquark
pairs that form octets in the excited state. This is qualita-
tively consistent with the behavior predicted by Casimir
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V14 þ V23Þ. The maximum difference at r13 ¼ r24 is due to
the mixing between the tetraquark strings and the meson-meson
strings.
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FIG. 12. The difference between the ground state energy V0

and Vmin ¼ minðV13 þ V24; V14 þ V23Þ for r ¼ r13 ¼ r14 in the
antiparallel QQQ̄ Q̄ geometry. For a typical distance of 0.5 fm
the difference is of the order of 60 MeV for both data sets. For
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TABLE V. Fits of the quenched data antiparallel alignment
ground state potential to the transition Ansatz of Eqs. (30) and
(31).

rmin rmax χ2=d:o:f: Δ0a ca2 λa

5 11 1.02 0.0335(16) 0.1547(89) 0.0309(37)
5 12 1.15 0.0335(16) 0.1548(90) 0.0309(38)
6 11 0.75 0.0362(49) 0.1644(127) 0.0363(86)
6 12 0.79 0.0363(49) 0.1643(127) 0.0364(86)

TABLE VI. Fits of the quenched data antiparallel alignment
ground state potential to the transition Ansatz of Eqs. (30) and
(32).

rmin rmax χ2=d:o:f: Δ0a ca2 da2

5 11 1.07 0.0285(10) 0.1934(144) 0.0016(3)
5 12 1.19 0.0285(10) 0.1938(147) 0.0016(3)
6 11 0.77 0.0294(33) 0.2275(330) 0.0018(7)
6 12 0.80 0.0295(33) 0.2278(332) 0.0018(7)
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scaling, where the potential for a quark and an antiquark in
an octet corresponds to a repulsive interaction.

1. Mixing angle

For the antiparallel geometry and for the ground state
potential the lattice results show that the tetraquark is
essentially a two-meson state. Therefore, one can write the
most general ket describing the ground state ju0i of a
QQQ̄ Q̄ system as a linear combination of the available
colorless states:

ju0i ¼ cos θj6126̄34i þ sin θj3̄12334i

¼
ffiffiffi
3

4

r ��
cos θffiffiffi

2
p þ sin θ

�
j113124i

þ
�
cos θffiffiffi

2
p − sin θ

�
j114123i

�
: ð33Þ

For a pure two-meson state, the mixing angle is either
θ ¼ θ0, for j113124i, or θ ¼ −θ0, for j114123i, with θ0 ¼
tan−1ð1= ffiffiffi

2
p Þ. For the general case, the angle θ can be

estimated using the generalized eigenvectors obtained
solving Eq. (18) with the following operators,

OS ¼
ffiffiffi
3

8

r
ðO13;24 þO14;23Þ;

OA ¼
ffiffiffi
3

4

r
ðO13;24 −O14;23Þ: ð34Þ

The results for θ for the quenched simulation can be
seen in Fig. 14. From the lattice data one can estimate a
typical length, or broadness, associated to the transition
between the two two-meson states. In the region where
jr13 − r14j≲ dtrans, the transition occurs and the ground

state is a mixing of the MM and MM0 states. We estimate
the typical transition length from

d−1trans ∼
dθðr13; r14Þ

dr14

				
r14¼r13

: ð35Þ

For the quenched data (see Fig. 14), the derivative
stays within 0.36=a and 0.42=a and, therefore, dtrans ∼
0.16–0.19 fm. For the dynamical simulation (see Fig. 15),
the typical transition length is essentially the same and we
find dtrans ∼ 0.16–0.20 fm.
The lattice data for the mixing angle give a vanishing

angle for r13 ¼ r14. This means that the ground state for the
antiparallel alignment is given only by j6126̄34i and has no
j3̄12334i component.
The results reported in Figs. 14 and 15 show that, in

general, a QQQ̄ Q̄ system is in a mixture of two possible
color meson states and it approaches meson states as the
distance between the quark-antiquark pairs is much smaller
than the distance between quarks or antiquarks.

B. The parallel alignment

For this particular geometry, the static potential was
investigated with lattice methods in [54,56]. For the ground
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state and in the limit where r12 ≪ r13, the authors found
that the lattice data are compatible with the double-Y (or
butterfly) potential,

VYY ¼ 2K − γ

�
1

2r12
þ 1

2r34
þ 1

4r13
þ 1

4r24
þ 1

4r14
þ 1

4r23

�
þ σLmin; ð36Þ

where γ and K are the estimates of the static meson
potential and σ is the fundamental string tension. For the
geometry described on the right-hand side of Fig. 2 and for
r13 > r12=

ffiffiffi
3

p
the butterfly potential simplifies to

VYY ¼ 2K − γ

�
1

r12
þ 1

2r13
þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r212 þ r213

p �

þ σð
ffiffiffi
3

p
r12 þ r13Þ: ð37Þ

Moreover, from the expression for the Casimir scaling
potential given in (11) and using the results reported in

Table I it is possible to define various types of potentials to
be compared with the static potential computed from the
lattice simulations.
The potential associated to the state where the quarks and

antiquarks are in triplet states leads to the so-called triplet-
antitriplet or diquark-antidiquark potential,

V33 ¼
X
i<j

h3̄12334jCijj3̄12334iVMðrijÞ; ð38Þ

or in a form similar to (37),

V33 ¼ 2K − γ

�
1

r12
þ 1

2r13
þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r212 þ r213

p �

þ σ

�
r12 þ

1

2
r13 þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r212 þ r213

q �
: ð39Þ

Similarly, the antisextet-sextet potential is given by
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in the QQQ̄ Q̄ parallel geometry. The figures also include fits with various potential models, namely, the two-meson potential; the
double Y potential; and the Casimir antitriplet-triplet, sextet-antisextet, and octet-octet potentials.
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V66¼
X
i<j

h6126̄34jCijj6126̄34iVMðrijÞ

¼5

4
VMðr13Þþ

5

4
VM

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r212þr213

q �
−
1

2
VMðr12Þ; ð40Þ

and the octet-octet potential reads

V88 ¼
1

2
VMðr12Þ −

1

4
VMðr13Þ þ

7

4
V
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r212 þ r213

q �
: ð41Þ

The lattice estimates for the ground state and first excited
(whenever possible) potentials can be seen in Figs. 16
and 17 for the quenched and for the dynamical simulation,
respectively. The data show that for large quark-antiquark
distances, i.e., for large r13, the static potentials are
compatible with a linearly rising function of r13. This
result can be viewed as an indication that the fermions on a
tetraquark system are confined particles.
For both the pure gauge and dynamical simulations and

for small quark-antiquark distances, i.e., for small r13 and
up to r13 ≤ r12, the ground state potential reproduces that of

a two-meson state VMM. In this sense, one can claim that
for sufficiently small quark-antiquark distances the ground
state of a QQQ̄ Q̄ system is a two-meson state. For the
excited potential, the pure gauge results are among the
double-Y potential (36) and the octet-octet potential (41).
However, for the dynamical results, the static potential
seems to be closer to V88 at smaller and large r13 and closer
to VYY as r13 approaches r12.
On the other hand, for sufficiently large r13, the ground

state potential is essentially that of a diquark-antidiquark
system V33 and the system enters its tetraquark phase.
Indeed, the ground potential is given by 2VM for quark-
antiquark distances up to r13 ¼ r12 and is just above VYY
for distances r13 ≥ r12 þ 1 in lattice units. These results
suggest that, for this geometrical setup, the transition
of a two-meson state towards a tetraquark state occurs at
r13 ∼ r12 þ 1 (in lattice units).
Regarding the dependence of V0 on r12, the lattice data

suggest that the potential increases with the quark-quark
distance and favors a V0 ∼ VYY for sufficiently large r12 as
was also observed in [54,56].
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FIG. 17. Ground state (black dots) and first excited state (blue dots, where possible) full QCD lattice estimation of the static potentials
in the QQQ̄ Q̄ parallel geometry. The figures also include fits with various potential models, namely, the two-meson potential; the
double Y potential; and the Casimir antitriplet-triplet, sextet-antisextet, and octet-octet potentials.
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For the quark models with four-body tetraquark poten-
tials, in particular the string flip-flop potential illustrated in
Fig. 1, it is very important to quantify the deviation of V0

from the VYY Ansatz, and we have studied several Ansätze
for this difference. Clearly V0 is more attractive than the
tetraquark potential VYY of Eq. (36) reported by previous
authors, and this favors the existence of tetraquarks.
Adding a negative constant (attractive) to the double-Y

potential is not sufficient for a good fit of the lattice data
for any of the sets of configurations. Adding a correction to
the double-Y potential which is linear in the quark-quark
distance,

VB
YY ¼ VYYðr12; r34Þ þ δK þ δσ12r12; ð42Þ

describes quite well the dynamical simulation data and a fit
gives δK ¼ −0.12ð3Þ ffiffiffi

σ
p

, δσ12 ¼ −0.34ð5Þσ, where σ is
the fundamental string tension, for a χ2=d:o:f: ¼ 0.46 (see
the tables in the Appendix for details on the fits). The
dynamical data for the deviations from VYY are also
compatible with a Coulomb-like correction

VC
YY ¼ VYYðr12; r34Þ þ δK þ δγ12

r12
; ð43Þ

for δK ¼ −0.67ð4Þ ffiffiffi
σ

p
, δγ12 ¼ 0.22ð3Þ, with a χ2=d:o:f: ¼

0.62 (see the Appendix for details). Such a functional form
is not compatible with the lattice data for the pure gauge
case. A possible explanation could come from the differ-
ence in the statistics of both ensembles. Recall that the
number of configurations for the pure gauge ensemble is
about ten times larger than for the dynamical simulation
and, therefore, the associated statistical errors are much
smaller.
Regarding the first excited potential V1, the data for the

pure gauge and for the dynamical fermion simulation
follow slightly different patterns. In the quenched simu-
lation and for r13 < r12, the potential is close to VT and the
behavior for larger values of r13 does not reproduce any of
the potentials considered here. On the other hand, in the
dynamical simulation V1 for small and large values of r13 is
just below the data for the antisextet-sextet potential

V66 ¼
X
i<j

h6126̄34jCijj6126̄34iVMðrijÞ; ð44Þ

which, for this geometry, is given by

V66¼
5

4
VMðr13Þþ

5

4
VM

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r212þr213

q �
−
1

2
VMðr12Þ ð45Þ

and, at intermediate distances where r13 ∼ r12, is compat-
ible with the octet-octet potential,

V88 ¼
1

2
VMðr12Þ −

1

4
VMðr13Þ þ

7

4
V
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r212 þ r213

q �
: ð46Þ

Further, at very small distances the potential seems to
flatten for full QCD and the data also suggest a flattening or
a small repulsive core. Note that for the quenched simu-
lation distances smaller than 4 are not accessible, and this
short distance effect is not visible.

VII. SUMMARY AND DISCUSSION

In this work the static potential for aQQQ̄ Q̄ system was
investigated using both quenched and Wilson fermion full
QCD simulations for two different geometric setups. The
two geometries are designed to investigate sectors where
dominantly meson-meson or tetraquark static potentials are
expected. All our results are detailed in the Appendix, in
Tables VII–XIV.
The simulations show that whenever one distance is

much larger than the other, the ground state potential and
the first excited state potential are compatible with a
linearly rising function of the distance between constitu-
ents, suggesting that quarks and antiquarks are confined
particles. For the distances studied, the quenched and full
QCD results are qualitatively similar, and their subtle
differences only become clearer when we compare the
lattice data with Ansätze inspired from the string flip-flop
potential and from Casimir scaling.
For the antiparallel geometry setup, the ground state

potential V0 is approximately described by a sum of two
two-mesonpotentials; i.e., it is compatiblewith the string flip-
flop type of potential. We take this result as an indication that
theQQQ̄ Q̄wave function is given by a superposition of two-
meson states and we compute the mixing angle as a function
of the quark-antiquark distances that characterize such a
quantum state. The mixing angle shows that the tetraquark
system undergoes a transition from one of themeson states to
the other configuration as the quark-antiquark distance
increases, and the broadness of this transition has a typical
length scale of 0.16–0.20 fm. Moreover, for the quenched
simulation, we found an analytical expression which
describes well the lattice ground state. The analytical expres-
sion is essentially a flip-flop typeof potentialwith corrections,
parametrized byΔðr1; r2Þ, which are typically≲10% than the
sum of two two-meson potentials.
Regarding the first excited potential V1 in the antiparallel

geometry, the results show that for small enough quark-
antiquark distances the potential is just below one of the
possible octet-octet potentials and approaches a two-meson
potential from above from large quark-antiquark distances.
These results for the excited potential can be interpreted in
terms of an excited state including a combination of meson-
meson and octet-octet states.
For the parallel geometry setup, the ground state poten-

tial V0 is compatible with a diquark-antidiquark potential
for large quark-antiquark distances and a sum of two-
meson potentials for small separations. Moreover, the
lattice data for the full QCD simulation are compatible
with a butterfly type of potential with corrections that we
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are able to parametrize. For the quenched simulation we
found no analytical expressions that are able to describe the
data, but the trend is the same.
The interpretation of the first excited potential V1 for the

parallel geometry, in terms of possible color configurations, is
not as compliant with models as in the antiparallel geometry.
It seems that V1 for the full QCD simulation is just below the
octet-octet from small quark-antiquark distances and
approaches again the octet-octet potential for large distances.
For the quenched simulation, the interpretation ofV1 in terms
of color components is not so clear, as the lattice data seem to
point to a combination of different color potentials.
Importantly for quark models with four-body tetraquark

potentials, in particular for the string flip-flop potential
illustrated in Fig. 1, we obtain a ground state potential V0

more attractive, by a difference of −300 to −500 MeV,
than the butterfly potential reported by previous authors
[54–57], and this favors the existence of tetraquarks.
As an outlook, with more computational power, it would

be interesting to measure the static QQQ̄ Q̄ potentials for
larger distances, utilizing larger lattices. It would also be
interesting to explore more different geometries. Moreover
it would also be possible to utilize a more complete set of
operators. It would be interesting to utilize smeared spatial
operators, with staplelike Wilson lines, or with ladderlike
Wilson lines, to complete our operators in Figs. 3 and 4

with strait Wilson lines. This would increase the signal to
noise ratio. It would also be possible, both in the parallel
and antiparallel geometries, to utilize operators correspond-
ing to all possible color singlet combinations, including the
meson-meson operators and the diquark-antidiquark oper-
ators. The larger correlation matrix would produce eigen-
vectors combining several different operators, closer to the
actual physical states. We leave this for future studies, with
more efficient computers.
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APPENDIX: TABLES OF RESULTS

TABLE VII. Data for the ground state potential in the antiparallel geometry for the pure gauge simulation. All values are in lattice units.

r13 r14 V0 ti − tf χ2r r13 r14 V0 ti − tf χ2r

4 4 1.3010(1) 9–16 0.94 7 7 1.51984(14) 6–10 0.52
5 1.32119(8) 8–16 0.82 8 1.53675(17) 6–10 0.65
6 1.32452(4) 5–16 0.62 9 1.54052(23) 6–16 0.48
7 1.32547(5) 5–16 0.69 10 1.54154(31) 6–16 0.88
8 1.32581(5) 5–16 0.53 11 1.54208(32) 6–16 1.06
9 1.32594(5) 5–16 0.82 12 1.54220(36) 6–16 0.49
10 1.32601(5) 5–16 0.76 8 8 1.58247(33) 6–16 0.96
11 1.32608(6) 5–16 1.40 9 1.59850(38) 6–13 1.01
12 1.32604(6) 5–10 0.85 10 1.60205(42) 6–16 0.38

5 5 1.38254(8) 5–11 0.92 11 1.60289(59) 6–16 1.09
6 1.40149(9) 5–11 0.63 12 1.60232(13) 7–12 0.52
7 1.40546(10) 5–16 0.70 9 9 1.64322(81) 6–16 1.02
8 1.40657(11) 5–16 0.87 10 1.65809(101) 6–15 0.94
9 1.40657(12) 5–16 1.13 11 1.65919(90) 7–16 0.76
10 1.40716(12) 5–16 0.86 12 1.65961(95) 7–10 0.75
11 1.40729(11) 5–16 0.64 10 10 1.70108(219) 7–16 1.00
12 1.40729(12) 6–13 1.06 11 1.71397(156) 7–10 1.03

6 6 1.45412(15) 5–10 0.88 12 1.71573(183) 7–10 1.06
7 1.47203(21) 5–16 1.00 11 11 1.75794(335) 7–10 1.26
8 1.47596(26) 5–16 1.21 12 1.77037(216) 7–10 0.70
9 1.47710(31) 5–16 1.34 12 12 1.81682(432) 7–10 0.74
10 1.47760(31) 5–16 1.37
11 1.47783(31) 5–16 1.20
12 1.47763(13) 6–13 0.38
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TABLE VIII. Data for the first excited state potential for the antiparallel geometry and for the pure gauge simulation. All values are in
lattice units.

r13 r14 V1 ti − tf χ2r r13 r14 V1 ti − tf χ2r

4 4 1.37342(8) 4–7 1.11 7 7 1.57714(10) 7–10 0.17
5 1.43446(6) 4–6 0.41 8 1.62034(21) 7–16 0.23
6 1.50427(8) 4–5 0.32 9 1.67517(27) 7–13 0.39
7 � � � � � � � � � 10 1.73150(34) 7–13 0.26
8 � � � � � � � � � 11 1.78729(32) 7–14 0.34
9 � � � � � � � � � 12 1.84313(215) 7–15 0.23
10 � � � � � � � � � 8 8 1.63344(67) 7–15 0.39
11 � � � � � � � � � 9 1.67532(85) 7–14 0.48
12 � � � � � � � � � 10 1.72029(29) 9–10 0.01

5 5 1.45092(12) 5–7 0.66 11 1.77764(267) 8–10 0.51
6 1.50245(14) 5–7 0.57 12 1.83159(607) 8–15 0.51
7 1.56502(18) 5–7 1.02 9 9 1.68826(48) 7–16 0.24
8 1.62775(18) 5–6 0.40 10 1.72195(153) 9–11 0.20
9 � � � � � � � � � 11 1.78195(74) 7–8 0.37
10 � � � � � � � � � 12 1.83526(272) 7–12 0.57
11 � � � � � � � � � 10 10 1.73977(76) 7–14 0.22
12 � � � � � �– � � � 11 1.78172(233) 7–12 0.72

6 6 1.51750(20) 6–14 1.12 12 1.83504(281) 7–14 0.41
7 1.56389(24) 6–16 0.44 11 11 1.79142(126) 7–12 0.40
8 1.62139(19) 6–8 0.64 12 1.83291(374) 7–12 0.49
9 1.68025(11) 6–7 0.07 12 12 1.84085(34) 7–13 0.16
10 1.73928(61) 6–7 1.03
11 1.79777(48) 5–6 0.79
12 1.85509(28) 5–6 0.17

TABLE IX. Data for the ground state potential for the antiparallel geometry and for the full QCD simulation. All values are in lattice
units.

r13 r14 V0 ti − tf χ2r r13 r14 V0 ti − tf χ2r

3 3 0.5126(1) 6–10 0.07 6 6 0.8248(26) 6–8 0.62
4 0.5397(2) 6–10 0.07 7 0.8464(12) 6–7 0.26
5 0.5431(2) 6–10 0.24 8 0.8504(18) 6–8 0.79
6 0.5438(1) 6–10 0.12 9 0.8503(25) 6–8 0.82
7 0.5437(2) 6–10 0.07 10 0.8520(10) 6–7 0.18
8 0.5438(2) 6–10 0.20 11 0.8531(18) 6–11 0.38
9 0.5433(3) 6–10 0.34 7 7 0.9088(67) 6–10 0.60

10 0.5434(3) 6–10 0.32 8 0.9293(72) 6–10 1.07
11 0.5440(2) 6–10 0.39 9 0.9157(23) 7–8 0.12

4 4 0.6364(6) 6–10 0.50 10 0.9314(71) 6–8 1.12
5 0.6620(3) 6–10 0.08 11 0.9342(10) 6–8 0.19
6 0.6658(1) 6–10 0.02 8 8 0.9854(214) 6–12 0.83
7 0.6654(9) 6–10 0.80 9 1.0023(159) 6–11 1.25
8 0.6655(10) 6–10 0.66 10 1.0048(96) 6–10 0.70
9 0.6654(9) 6–10 0.58 11 1.0004(82) 6–10 0.40

10 0.6667(5) 6–10 0.32 9 9 1.0650(277) 6–10 1.01
11 0.6677(4) 6–10 0.14 10 1.0734(178) 6–10 0.55

5 5 0.7382(9) 6–10 0.26 11 1.0805(26) 5–6 0.22
6 0.7605(5) 6–10 0.29 10 10 1.1377(56) 5–6 0.64
7 0.7621(14) 6–10 0.66 11 1.1491(18) 5–6 0.06
8 0.7630(20) 6–10 1.09 11 11 1.1630(298) 6–9 0.14
9 0.7642(11) 6–10 0.54

10 0.7643(8) 6–10 0.28
11 0.7664(16) 6–10 0.20
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TABLE X. Data for the first excited state potential for the antiparallel geometry and for the full QCD simulation. All values are in
lattice units.

r13 r14 V1 ti − tf χ2r r13 r14 V1 ti − tf χ2r

3 3 0.6039(2) 6–7 0.12 6 6 0.8988(38) 6–12 0.16
4 0.7062(10) 6–7 0.91 7 0.9549(19) 6–15 0.69
5 � � � � � � � � � 8 1.0233(101) 6–10 1.26
6 � � � � � � � � � 9 1.0933(184) 6–11 0.34
7 � � � � � � � � � 10 1.1690(8) 6–10 0.10
8 � � � � � � � � � 11 1.2341(136) 6–9 0.25
9 � � � � � � � � � 7 7 0.9704(33) 6–10 0.67

10 � � � � � � � � � 8 1.0235(96) 6–10 0.81
11 � � � � � � � � � 9 1.0952(79) 6–10 0.34

4 4 0.7234(3) 6–10 0.19 10 1.1683(170) 6–9 1.26
5 0.7990(8) 6–13 0.12 11 1.2274(408) 6–9 0.31
6 0.8960(22) 6–12 0.78 8 8 1.0482(35) 6–12 0.42
7 0.9974(47) 6–7 1.20 9 1.1122(9) 6–8 0.11
8 � � � � � � � � � 10 1.1956(30) 6–9 0.42
9 � � � � � � � � � 11 1.2612(89) 6–9 0.06

10 � � � � � � � � � 9 9 1.1219(15) 6–10 0.13
11 � � � � � � � � � 10 1.1852(360) 6–9 0.92

5 5 0.8160(12) 6–14 0.27 11 1.2526(507) 6–11 0.26
6 0.8821(16) 6–12 0.27 10 10 1.1621(476) 6–9 0.79
7 0.9617(25) 6–12 0.63 11 1.2069(751) 6–9 1.46
8 1.0409(16) 6–12 0.63 11 11 1.2052(998) 6–9 1.30
9 1.1287(136) 6–8 0.49

10 1.1992(362) 6–9 0.71
11 1.2929(606) 6–8 0.88

TABLE XI. Data for the ground state potential for the parallel geometry and for the pure gauge simulation. All values are in lattice units.

r12 r13 V0 ti − tf χ2r r12 r13 V0 ti − tf χ2r r12 r13 V0 ti − tf χ2r

4 4 1.31360(7) 9–16 0.90 7 4 1.32551(5) 7–16 0.64 10 4 1.32607(8) 7–14 1.09
5 1.37514(19) 9–16 0.90 5 1.40571(11) 7–16 0.88 5 1.40713(10) 7–15 0.75
6 1.41847(24) 9–14 0.78 6 1.47380(8) 7–16 0.18 6 1.47735(10) 6–16 0.23
7 1.45346(28) 9–15 0.76 7 1.53399(6) 7–15 0.41 7 1.54129(20) 7–14 0.54
8 1.48445(25) 9–15 0.28 8 1.57844(29) 7–15 1.10 8 1.60145(57) 7–15 0.99
9 1.51359(33) 9–15 0.49 9 1.63355(32) 7–15 0.68 9 1.65887(79) 7–10 0.86

10 1.54153(63) 9–12 0.49 10 1.67247(85) 7–14 0.66 10 1.71108(252) 8–10 1.37
11 1.57062(87) 8–12 0.91 11 1.70545(208) 7–14 0.81 11 1.76163(373) 8–10 1.18
12 1.59793(83) 8–12 0.84 12 1.73700(298) 7–13 1.03 12 1.81737(460) 7–13 0.67

5 4 1.32224(5) 5–16 0.38 8 4 1.32583(5) 6–16 0.67 11 4 1.32618(9) 8–12 1.02
5 1.39610(12) 6–16 0.88 5 1.40657(8) 7–16 0.53 5 1.40724(10) 6–16 0.85
6 1.45207(32) 8–16 1.07 6 1.47618(10) 7–16 0.34 6 1.47750(12) 6–16 0.19
7 1.49576(37) 8–16 0.94 7 1.53861(10) 7–14 0.25 7 1.54185(33) 6–16 0.92
8 1.53054(45) 9–13 1.10 8 1.59605(24) 7–12 0.18 8 1.60217(25) 7–10 0.32
9 1.56251(81) 8–15 1.00 9 1.64883(59) 7–15 0.63 9 1.65978(75) 7–10 1.01

10 1.59199(100) 8–15 1.05 10 1.69660(123) 7–14 0.89 10 1.71562(138) 7–10 0.98
11 1.62032(89) 8–13 0.72 11 1.73760(192) 7–12 0.70 11 1.76992(238) 7–10 0.88
12 1.64931(87) 7–15 0.46 12 1.76709(231) 8–12 0.21 12 1.82503(171) 7–15 0.67

6 4 1.32467(4) 5–16 0.39 9 4 1.32597(6) 6–15 0.85 12 4 1.32661(17) 10–16 0.85
5 1.40329(12) 5–16 0.74 5 1.40698(9) 6–14 1.02 5 1.40731(12) 6–16 1.07
6 1.46806(17) 6–16 0.49 6 1.47693(11) 6–14 0.17 6 1.47769(11) 6–14 0.26
7 1.52250(34) 6–16 0.57 7 1.54083(22) 6–14 0.28 7 1.54211(33) 6–16 0.52
8 1.56670(24) 7–16 0.32 8 1.59999(25) 7–16 0.72 8 1.60188(67) 7–16 1.11
9 1.60289(89) 8–14 1.01 9 1.65665(13) 7–15 0.26 9 1.65957(131) 7–16 1.21

10 1.63500(109) 8–11 0.58 10 1.70918(103) 7–14 0.84 10 1.71533(282) 7–16 1.08
11 1.66453(89) 8–16 0.19 11 1.75771(215) 7–14 0.89 11 1.77108(299) 7–10 1.34
12 1.69415(147) 8–15 0.74 12 1.80102(441) 7–15 0.93 12 1.82536(277) 7–13 0.42
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TABLE XII. Data for the first excited state potential and for the parallel geometry for thepure gauge simulation.All values are in lattice units.

r12 r13 V0 ti − tf χ2r r12 r13 V0 ti − tf χ2r r12 r13 V0 ti − tf χ2r
4 4 � � � � � � � � � 7 4 1.59960(18) 7–13 0.40 10 4 1.74590(101) 7–16 0.33

5 � � � � � � � � � 5 1.61629(19) 7–14 0.39 5 1.75813(40) 7–16 0.32
6 � � � � � � � � � 6 1.63726(37) 7–15 0.84 6 1.77430(162) 7–14 0.80
7 � � � � � � � � � 7 1.66201(25) 7–12 0.39 7 1.79224(143) 7–13 0.54
8 � � � � � � � � � 8 1.69130(104) 7–15 0.67 8 1.81258(123) 7–14 0.91
9 � � � � � � � � � 9 1.72705(87) 7–10 0.91 9 1.83436(263) 7–15 0.91

10 � � � � � � � � � 10 1.76824(107) 7–10 0.49 10 1.85436(263) 7–15 0.86
11 � � � � � � � � � 11 1.81376(100) 7–14 0.75 11 1.87964(35) 7–16 0.63
12 � � � � � � � � � 12 1.85802(299) 7–13 0.55 12 1.90681(118) 7–12 0.30

5 4 1.48851(16) 7–11 0.61 8 4 1.65264(44) 7–15 0.31 11 4 1.78291(307) 7–15 0.96
5 � � � � � � � � � 5 1.66678(121) 6–16 0.76 5 1.79754(100) 7–14 1.27
6 � � � � � � � � � 6 1.68246(25) 7–14 0.42 6 1.81565(156) 7–11 1.04
7 � � � � � � � � � 7 1.70390(12) 7–15 0.38 7 1.83565(337) 7–14 0.70
8 � � � � � � � � � 8 1.72841(33) 7–15 0.42 8 1.85526(365) 7–15 0.74
9 � � � � � � � � � 9 1.75774(96) 7–15 0.65 9 1.87600(800) 7–15 0.60

10 � � � � � � � � � 10 1.79002(155) 7–11 0.59 10 1.89616(84) 7–12 0.80
11 � � � � � � � � � 11 1.82871(186) 7–13 0.40 11 1.91507(533) 7–12 0.84
12 � � � � � � � � � 12 1.87212(329) 7–15 0.91 12 1.93991(618) 7–13 0.67

6 4 1.54514(37) 6–13 0.85 9 4 1.70183(27) 7–15 0.68 12 4 1.80257(107) 8–12 1.17
5 1.56559(22) 7–14 0.59 5 1.71365(17) 7–16 0.17 5 1.83135(262) 7–14 0.46
6 1.59216(34) 7–14 0.33 6 1.72868(41) 7–15 0.73 6 1.85330(267) 7–11 0.34
7 1.62468(83) 7–15 0.89 7 1.74737(42) 7–15 0.36 7 1.87618(254) 7–13 0.39
8 � � � � � � � � � 8 1.76888(84) 7–14 0.80 8 1.89751(246) 7–13 0.18
9 � � � � � � � � � 9 1.79388(113) 7–14 0.86 9 1.91888(266) 7–13 0.27

10 � � � � � � � � � 10 1.82044(154) 7–14 0.22 10 1.93594(431) 7–9 0.45
11 � � � � � � � � � 11 1.85045(370) 7–14 0.51 11 1.95381(962) 7–15 0.89
12 � � � � � � � � � 12 1.88700(724) 7–14 0.94 12 1.97689(190) 7–13 0.45

TABLE XIII. Data for theground state potential and for the parallel geometry and for the fullQCDsimulation.All values are in lattice units.

r12 r13 V0 ti − tf χ2r r12 r13 V0 ti − tf χ2r r12 r13 V0 ti − tf χ2r
3 3 0.5280(4) 5–15 1.07 6 3 0.5432(3) 5–13 0.47 9 3 0.5435(3) 5–14 0.74

4 0.6163(6) 7–16 0.29 4 0.6654(4) 5–10 0.29 4 0.6665(6) 5–15 0.59
5 0.6718(11) 7–12 0.75 5 0.7630(6) 5–15 0.58 5 0.7661(13) 5–13 1.03
6 0.7162(13) 7–12 0.29 6 0.8450(13) 5–13 0.87 6 0.8447(57) 7–13 1.01
7 0.7553(14) 7–12 0.74 7 0.9143(27) 5–11 0.58 7 0.9331(30) 5–15 0.59
8 0.7925(11) 7–10 0.09 8 0.9696(56) 5–15 0.92 8 1.0092(39) 5–11 0.66
9 0.8259(34) 7–10 0.57 9 1.0157(75) 5–11 0.93 9 1.0813(52) 5–10 0.80
10 0.8546(27) 7–9 0.59 10 1.0551(104) 5–13 1.05 10 1.1512(14) 5–6 0.12
11 0.8882(27) 7–8 0.30 11 1.0939(77) 5–10 1.26 11 1.2129(148) 5–9 1.60

4 3 0.5396(2) 7–16 0.46 7 3 0.5434(3) 5–16 0.92 10 3 0.5433(4) 5–16 0.74
4 0.6513(6) 7–16 0.43 4 0.6660(6) 5–13 0.64 4 0.6666(6) 5–16 1.07
5 0.7283(15) 7–16 0.66 5 0.7652(9) 5–14 0.74 5 0.7658(16) 5–16 0.90
6 0.7827(12) 6–16 0.91 6 0.8516(12) 5–13 0.76 6 0.8505(18) 6–12 0.46
7 0.8264(16) 6–15 0.45 7 0.9281(17) 5–10 1.27 7 0.9237(53) 7–9 0.71
8 08649(26) 6–14 0.39 8 0.9958(36) 5–8 1.07 8 1.0054(92) 6–15 0.74
9 0.9006(38) 6–9 0.95 9 1.0531(84) 5–10 1.27 9 1.0766(164) 6–12 0.92
10 0.9316(73) 6–14 0.79 10 1.0868(140) 6–11 0.76 10 1.0857(296) 7–9 0.47
11 0.9638(88) 6–16 0.80 11 1.1255(125) 6–10 1.22 11 1.2039(334) 6–9 0.72

5 3 0.5425(3) 5–16 0.42 8 3 0.5437(2) 5–15 0.46 11 3 0.5431(4) 5–14 0.80
4 0.6622(6) 5–16 0.63 4 0.6666(5) 5–16 0.83 4 0.6665(5) 5–12 0.63
5 0.7528(12) 6–11 0.72 5 0.7664(9) 5–13 1.18 5 0.7657(2) 6–14 0.47
6 0.8244(13) 6–12 0.25 6 0.8534(14) 5–15 0.89 6 0.8531(11) 6–14 0.45
7 0.8778(27) 6–16 0.38 7 0.9336(9) 5–10 0.40 7 0.9318(13) 6–11 0.42
8 0.9214(48) 6–16 0.36 8 1.0065(29) 5–11 0.69 8 1.0040(63) 6–11 0.31
9 0.9575(70) 6–11 0.94 9 1.0652(128) 6–10 1.20 9 1.0490(319) 7–10 1.18
10 0.9905(123) 6–9 2.34 10 1.1188(330) 6–10 0.96 10 1.1035(584) 7–11 0.81
11 1.0301(84) 6–11 1.09 11 1.1548(428) 6–10 0.96 11 1.2040(147) 6–8 0.52
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