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We find that the quark propagator constructed from the domain-wall fermion operator has Ls − 1 extra
poles as well as the pole that realizes the physical quark in the continuum limit. We show the energy-
momentum dispersion relation for the physical and unphysical poles of Möbius domain-wall fermions in
free field theory at finite Ls. The dependence of extra pole energies on the Möbius parameter b − c and on
the domain-wall height M5 is investigated. Our result suggests that small values of b − c set a large lower
bound on the unphysical pole masses and the contribution of these poles could be suppressed well by
calculating with small b − c.
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I. INTRODUCTION

Introducing the charm quark into lattice simulation is
desired to provide accurate Standard Model predictions for
flavor physics, which enable us to probe for new physics
beyond the Standard Model. Especially, the nonperturba-
tive calculation of quantities associated with the Glashow-
Iliopoulos-Maiani (GIM) mechanism [1] such as the
KL–KS mass difference (ΔMK) essentially needs the charm
quark to cancel the divergent contributions of up-quark
loop diagrams. Because of the large charm-quark mass mc
compared to the typical scale of QCD, a lattice calculation
including a charm quark encounters a scale problem.
Namely, the lattice cutoff a−1 needs to be sufficiently
larger than mc to safely control the discretization error
arising from amc, while the box size L is usually required
to obey mπL≳ 4, with the pion mass mπ , to avoid
uncontrollable finite volume effects. Thus, lattice calcu-
lation at the physical pion and charm quark masses is a
challenging task for the currently available computational
resources.
This work is devoted to investigating properties of the

discretization effects appearing in Möbius domain-wall
fermions [2,3], an extension of Shamir domain-wall fer-
mions [4,5], at heavy quark masses. Although the charm
quark completely violates chiral symmetry due to its heavy
mass, introducing the charm quark as a domain-wall
fermion is still necessary to achieve an accurate GIM
cancellation if the light quarks are implemented with a
domain-wall fermion formulation, which appropriately
preserves the chiral symmetry of the light quarks. There
have been several works onDmeson decay constants using
domain-wall fermions [6,7] and overlap fermions for
valence quarks and domain-wall fermions for sea quarks
[8]. A lattice simulation including 2þ 1þ 1 optimal
domain-wall fermions [9] was implemented [10] and

was the first study with a dynamical domain-wall charm
quark. In addition, the RBC and UKQCD collaborations
are pursuing the calculation of the ΔMK [11,12], εK
[12,13], rare kaon decays K → πlþl− [14,15], and
K → πνν̄ [16,17], which are all associated with the GIM
mechanism and quite sensitive to the discretization effects
due to the charm-quark mass.
The charm quark treated in the domain-wall fermion

formulation is supposed to have some special difficulties in
addition to the naive Oða2m2

cÞ discretization errors and
beyond. The seminal work on domain-wall fermions at
large quark masses [18,19] investigated the Hermitian
version of the domain-wall operator, the five-dimensional
Dirac operator multiplied by the chirality operator γ5 and
the five-dimensional reflection operator. It found that the
Hermitian operator contains unphysical modes of which
the eigenvalues are largely independent of the input quark
mass. This fact indicates that as the input quark mass
approaches the cutoff the contribution of physical modes
will be contaminated by unphysical modes.
This unphysical contribution may be related to the

oscillatory behavior of domain-wall fermions [20], which
is a particular issue of domain-wall fermions and is observed
in correlation functions when a simulation is carried out at
large domain-wall heights such as M5 ≃ 1.7. This unphys-
ical oscillation was understood as the result of negative
eigenvalues of the transfer matrix [21], which were shown to
exist in the region of M5 > 1 in the free field case.
Recently, another description of the origin of the

unphysical oscillation was proposed [22,23]. The authors
argued that the four-dimensional quark propagator con-
structed from the domain-wall fermion operator has an
extra pole, the energy of which has a nonzero imaginary
part iπ in lattice units for M5 > 1 in free field theory,
leading to an oscillatory behavior of the quark propagator.
Their numerical result [23] indicates that the impact of the
unphysical oscillation could be reduced by choosing M5
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and the Möbius parameters b and c to satisfyM5ðb−cÞ<1
and that the Borići domain-wall fermion [24] (b ¼ c) is
optimal to suppress the unphysical oscillation. Although
this viewpoint of an unphysical pole is quite impressive and
provides a clear interpretation of the unphysical effects
of domain-wall fermions, we find that when examined in
detail the authors’ description [22,23] is not correct.
Especially, we find there are Ls − 1 unphysical poles,
while they found only one.
To motivate the presence of this collection of unphysical

poles, it may be helpful to consider the case of overlap
fermions, which has the same quark propagator as domain-
wall fermions in the limit of infinite Ls up to a contact term
and a normalization factor. The overlap Dirac operator is
given by

Dov ¼
1

2
þ 1

2
γ5

Hffiffiffiffiffiffi
H2

p ; ð1Þ

with a Hermitian kernel H. The corresponding propagator
contains

ffiffiffiffiffiffi
H2

p
and becomes ambiguous in the region where

H2 is not positive definite, resulting in the presence of an
unphysical brunch cut for an imaginary value of Euclidean
momentum variable p4. In this paper, we demonstrate the
presence of Ls − 1 unphysical poles for finite Ls as the
counterpart of this brunch cut.
We also examine the fundamental properties of the

unphysical poles of domain-wall fermions by showing the
dispersion relation for the physical and unphysical poles in
free field theory at finite Ls. We find that the range of
unphysical pole energies significantly depends on M5 and
b − c as well as on the spatial momentum and that small
values of b − c set a large lower bound on the unphysical
pole energies, possibly suppressing the contribution of the
unphysical poles. Since this range of unphysical pole
energies is found to be independent of the physical quark
mass, numerical calculation with heavy quarks would be
contaminated by unphysical poles as the physical quark
mass approaches the lower bound of the unphysical pole
region.
The paper is organized as follows. In Sec. II, we give

definitions and some comments on the parameters of
Möbius domain-wall fermions. In Sec. III, we give the
five- and four-dimensional propagators of Möbius domain-
wall fermions. In Sec. IV, we show the presence of
unphysical poles of domain-wall fermions as well as the
physical pole. In Sec. V, we show the dispersion relation for
the physical and unphysical poles and discuss the depend-
ence of unphysical pole energies on the parameters of
Möbius domain-wall fermions. In Sec. VI, we conclude
this paper and give some discussion. In Appendix A, we
discuss a connection with overlap fermions and demon-
strate that domain-wall fermions in the limit of infinite Ls
and overlap fermions have an unphysical branch cut instead
of unphysical poles. In Appendix B, we give the five- and

four-dimensional propagators in some special cases, in
which the usual form of these propagators is irrelevant.

II. MÖBIUS DOMAIN-WALL FERMIONS

In this study, wework in the momentum space, where the
lattice action of a Möbius domain-wall fermion is given by

S ¼
XLs−1

s;t¼0

X
p

ψ̄ sð−pÞðDMDWÞs;tψ tðpÞ: ð2Þ

Here, ψ̄ sð−pÞ and ψ tðpÞ are the five-dimensional Möbius
domain-wall fermion fields labeled by the four-dimensional
momentum variables, −p and p, and the indices for the
fifth direction, s; t ¼ 0; 1;…; Ls − 1. We employ the con-
vention used by the RBC and UKQCD collaborations [25],
in which the corresponding Dirac operator is defined by

DMDW ¼

0
BBBBBBBBBBBBBBB@

~D −P− 0 … 0 mPþ

−Pþ ~D −P−
. .
.

0 0

0 −Pþ ~D . .
. . .

. ..
.

..

. . .
. . .

. . .
.

−P− 0

0 0 . .
.

−Pþ ~D −P−

mP− 0 … 0 −Pþ ~D

1
CCCCCCCCCCCCCCCA

:

ð3Þ

Here, we define the chiral projection operators P� ¼
1
2
ð1� γ5Þ and

~D¼D−1
− Dþ; Dþ¼1þbDW; D−¼1−cDW; ð4Þ

with the Wilson Dirac operatorDW in the momentum space
at a negative mass parameter −M5,

DW ¼ i ~pþ
X
μ

ð1 − cospμÞ −M5; ð5Þ

where ~p ¼ P
μγμ sinpμ. For simplicity, we omit the lattice

spacing a, and everything is expressed in lattice units
throughout this paper.
We define the corresponding four-dimensional quark

fields by

q ¼ P−ψ0 þ PþψLs−1; q̄ ¼ ψ̄0Pþ þ ψ̄Ls−1P−: ð6Þ

As shown in Refs. [3,25], the four-dimensional quark
propagator constructed from these fields S4dF ðpÞ ¼
hqð−pÞq̄ðpÞi in the limit Ls → ∞ is the same as that in
the corresponding overlap action up to a contact term and a
normalization factor.
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The action has five input parameters in total: the mass
parameter m, the extent of the fifth dimension Ls, the
domain-wall height M5, and the Möbius parameters b
and c. Except for the mass parameter m, these are
parameters of the regularization and do not affect any
observables in the continuum limit. Therefore, we can tune
them to minimize unwanted discretization effects. As is
well known, the fifth-dimensional extent Ls determines
the amount of violation of chiral symmetry on the lattice,
which is usually quantified by the residual mass mres and
vanishes in the limit Ls → ∞. The domain-wall height M5

determines the scale for the exponential locality of the four-
dimensional effective fermion field [26,27] and is also
related to mres [28]. The optimal choice of M5 is 1 for the
case of the free field, while that in the nonperturbative case
has been studied by analyzing the spectral flow on some
representative configurations to minimize mres [28–31].
The obtained best choice was M5 ¼ 1.7–1.8 depending
on the detail of the lattice setup. By applying link smearing,
the residual mass may be better controlled, and the optimal
choice ofM5 could be moved to 1 [32]. In addition, theM5

dependence of the amount of discretization error for the
heavy-heavy decay constant was investigated, resulting in a
slightly smaller tuned value M5 ¼ 1.6 [33]. The Möbius
scale bþ c, which is proportional to the Möbius kernel, has
also been tuned to minimize mres, while the dependence on
b − c has not been studied a lot. In this work, we investigate
how the significance of the unphysical modes depends on
these parameters including b − c.

III. QUARK PROPAGATOR AT FINITE Ls

The five-dimensional Dirac operator DMDW can be
rewritten as

DMDW ¼ bþ c
D†

−D−
i ~pþWþP− þW−Pþ; ð7Þ

where

W�
s;t ¼ Wδs;t − δs�1;t þmδs=t;Ls−1δt=s;0; ð8Þ

W ¼ −bcð ~p2 þM2Þ þ ðb − cÞMþ 1

D†
−D−

; ð9Þ

M ¼
X
μ

ð1 − cospμÞ −M5; ð10Þ

D†
−D− ¼ c2ð ~p2 þM2Þ − 2cMþ 1; ð11Þ

with ~p2 ¼ P
μ sin

2 pμ. Thus, we can calculate the five-
dimensional propagator of Möbius domain-wall fermions
in the same way [5] as for Shamir domain-wall fermions.
We obtain

D−1
MDW ¼

�
−

bþ c
D†

−D−
i ~pþW−

�
G−P−

þ
�
−

bþ c
D†

−D−
i ~pþWþ

�
GþPþ; ð12Þ

G� ¼
��

bþ c
D†

−D−

�
2

~p2 þW∓W�
�
−1 ≡ ðQ�Þ−1;

G�
s;t ¼ A0e−αjs−tj þ A�eαðsþt−Lsþ1Þ þ A∓e−αðsþt−Lsþ1Þ

þ Am cosh½αðs − tÞ�; ð13Þ

cosh α ¼
ð bþc
D†

−D−
Þ2 ~p2 þW2 þ 1

2W
; ð14Þ

A0 ¼
1

2W sinh α
; ð15Þ

A� ¼ A0

FLs

ð1 −m2ÞðW − e∓αÞ; ð16Þ

Am¼ A0

FLs

½4mW sinhα−2ðWe−α−1þm2ð1−WeαÞÞe−αLs �;

ð17Þ

FLs
¼ eαLsð1 −Weα þm2ðWe−α − 1ÞÞ − 4mW sinh α

þ e−αLsðWe−α − 1þm2ð1 −WeαÞÞ: ð18Þ

Since the four-dimensional effective fields q and q̄
are given by (6), the four-dimensional quark propagator
S4dF ðpÞ ¼ hqð−pÞq̄ðpÞi constructed from the Möbius
domain-wall fermions is written as

S4dF ðpÞ¼P−ðD−1
MDWÞ0;0PþþPþðD−1

MDWÞLs−1;Ls−1P−

þP−ðD−1
MDWÞ0;Ls−1P−þPþðD−1

MDWÞLs−1;0Pþ

¼ 2sinhðαLsÞ
FLs

bþc
D†

−D−
i ~pþ 2

FLs

fm½W sinhðαðLs−1ÞÞ

− sinhðαLsÞ�−W sinhαg: ð19Þ

In the limit of infinite Ls, this four-dimensional propagator
becomes

S4dF ðpÞ →
Ls→∞

bþc
D†

−D−
i ~pþmðWe−α − 1Þ

1 −Weα þm2ðWe−α − 1Þ : ð20Þ

Since the Möbius scale bþ c is associated only with Ls
dependence, the propagator in the limit of infinite Ls (20)
must be independent of bþ c, despite its apparent depend-
ence on that combination. The bþ c-independent form is
given in (A3).
The four-dimensional quark propagator (19) at finite Ls

is quite different from that given in Ref. [23]. This may
originate from the slight difference in FLs

. Since the
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coefficients (16) and (17) are determined through the
boundary conditions (B5)–(B8) for the fifth direction,
the validity of these coefficients and FLs

given in this
section can be checked by inserting G�

s;t into the boundary
conditions.

IV. PHYSICAL AND UNPHYSICAL
POLES AT FINITE Ls

It is well known that the quark propagator S4dF has a
physical pole that reproduces an appropriate Dirac fermion
in the continuum limit. This can be verified by expanding
the denominator of the quark propagator with respect to
the momentum variable. In the case of infinite Ls, the
denominator of S4dF in (20) is expanded as

1 −Weα þm2ðWe−α − 1Þ

¼ −
ðbþ cÞ½M2

5ð2 − ðb − cÞM5Þ2m2 þ p2�
M5ð2 − ðb − cÞM5Þð1þ cM5Þ2

þOðp4; m2p2Þ: ð21Þ

Thus, the massmpole
f of the physical pole is approximated at

M5ð2 − ðb − cÞM5Þm for a light quark and is generally
different from the input mass m even in the case of infinite
Ls. In this work, we inputm

pole
f and tune the parameterm to

realize the pole mass mpole
f .

Besides this physical pole, we find that FLs
has other

zero points, which could give an unphysical contribution
to four-dimensional physics. Figure 1 shows jFLs

e−αLs j2
calculated with Shamir domain-wall fermions at Ls ¼ 8,
M5 ¼ 0.9, mpole

f ¼ 0.35, p⃗ ¼ 0, and Rep4 ¼ 0. While the

physical pole is seen at Imp4 ¼ mpole
f ¼ 0.35, there are nine

other zero points of FLs
. Two of them are trivially identified

as the points satisfying cosh α ¼ 1 or cosh α ¼ −1, which
correspond to Imp4 ≃ 2.30 and 0.74 in the plot, respec-
tively. Between these two zero points, the seven other zero
points are found. All of the zero points in this parameter
choice are located on the imaginary axis of p4.
In Refs. [22,23], one of the trivial zero points satisfying

cosh α ¼ 1 was regarded as the unphysical pole of
domain-wall fermions. However, the vanishing of FLs

at
cosh α ¼ �1 does not mean the presence of unphysical
poles at these points because the numerator of the quark
propagator (19) also vanishes at these points and one can
verify the limit limα→0;iπS4dF ðpÞ is still finite. In fact, the
original Ls × Ls matrix Q� ¼ ðG�Þ−1 is still regular,
detQ� ≠ 0, even at these points. This confusion may
originate from the fact that the functional form of the
inverse matrix (13) is invalid for some special cases,
cosh α ¼ �1 or W ¼ 0, and the inverse matrix G�

s;t in
these special cases has another functional form as given in
Appendix B.

The quark propagator at each of the remaining seven
zero points between these special zero points has a real
singularity. These zero points may give a significant lattice
artifact when the calculation is done at a large value of
mpole

f . We regard these zero points as the unphysical poles.
Note that these unphysical poles are located in the region
−1 < cosh α < 1, in which α is pure imaginary and any

FIG. 1. jFLs
e−αLs j2 calculated at Ls¼8,M5¼0.9,mpole

f ¼0.35,
b − c ¼ 1, bþ c ¼ 1, p⃗ ¼ 0, and Rep4 ¼ 0 plotted as a function
of Imp4. The lower two panels are magnifications of complicated
parts in the top panel, which accommodates all the zero points
of FLs

.
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terms in (18) are not suppressed at large Ls, showing some
oscillatory behavior with varying Imp4. As the extent of the
fifth direction Ls increases, the number of these oscillations
also increases, leading to the presence of more unphysical
poles. In our analysis, there are always Ls − 1 unphysical
poles. In the limit of infinite Ls, an unphysical branch cut
appears instead of a series of unphysical poles as shown in
Appendix A.
In the following section, we discuss the fundamental

properties of these unphysical poles by showing the energy-
momentum dispersion relation at various input parameters.

V. DISPERSION RELATIONS

As mentioned in the previous section, the quark propa-
gator (19) at finite Ls has Ls − 1 unphysical poles as well as
the physical pole. In this section, we discuss the properties
of the unphysical poles and the best choice of the Möbius
parameters to suppress them by analyzing the dispersion
relation for these poles in free field theory. While it is likely
familiar to the reader, for completeness, we point out that,
although lattice calculations are performed in Euclidean
space with ~p2 ¼ P

μ sin
2 pμ > 0, it is the location of poles

at negative values of p2
4 that determines the physical

energies Eðp⃗Þ ¼ Imp4ðp⃗Þ of the quark states in free field
theory. These poles and corresponding energies determine
the exponential falloff of the quark propagators at large
Euclidean time separations. The dispersion relation for
fermions on the lattice deviate from those for continuum
fermions with Oða2Þ error. While dispersion relations for
improved overlap fermions using the Brillouin kernel were
investigated [32,34], we concentrate on the dispersion
relations for unimproved Möbius domain-wall fermions
to investigate another source of cutoff effects due to
unphysical poles.
Figure 2 shows the dispersion relation for the domain-wall

fermion atM5 ¼ 0.9, Ls ¼ 8, mpole
f ¼ 0, b ¼ 1, and c ¼ 0.

The spatial momentum is chosen in the diagonal direction,
p⃗ ¼ ðjp⃗jffiffi

3
p ; jp⃗jffiffi

3
p ; jp⃗jffiffi

3
p Þ. In the figure, one physical (solid curve)

and seven unphysical poles (dashed curves) are seen on the
imaginary axis of p4 at any spatial momentum.
As discussed in the previous section, these unphysical

poles are confined to the region between two curves,
cosh α ¼ 1 (dashed-dotted curve) and coshα ¼ −1 (dotted
curve). The boundaries cosh α ¼ �1 are analytically
given by

cosp4jcosh α¼1 ¼
P

3
i¼1 sin

2pi þ B2 þ 1

2B
; ð22Þ

cosp4jcoshα¼−1

¼ 4þ 4ðb − cÞBþ ðb − cÞ2ðP3
i¼1 sin

2pi þ B2 þ 1Þ
4ðb − cÞ þ 2ðb − cÞ2B ;

ð23Þ

B ¼ 4 −M5 −
X3
i¼1

cospi: ð24Þ

The solution of cosh α ¼ 1 depends only on M5 and pi,
implying that either of the corresponding lower or upper
bounds on the unphysical pole locations depends only
on M5. On the other hand, the solution of cosh α ¼ −1
depends also on b − c, and therefore the other bound on the
unphysical pole masses could be controlled by varying
b − c. Since bþ c is not related to the region of unphysical
pole energies and is usually tuned to minimize the residual
mass, we fix bþ c ¼ 1 and do not vary it in this work.
Before varying M5 and b − c, which play a key role to

change the region of unphysical pole energies, we briefly
present the results of varying the other parametersmpole

f and
Ls. In Fig. 3, we show the dispersion relation in a massive
case at mpole

f ¼ 0.35. While the physical pole mass has
certainly moved to 0.35, the unphysical poles remain at
close to their earlier locations when mpole

f ¼ 0. In fact, the

FIG. 2. Dispersion relation for the domain-wall fermion at
M5 ¼ 0.9; Ls ¼ 8; mpole

f ¼ 0; bþ c ¼ 1; b − c ¼ 1, and spatial

momentum p⃗ ¼ ðjp⃗jffiffi
3

p ; jp⃗jffiffi
3

p ; jp⃗jffiffi
3

p Þ.

FIG. 3. Same as Fig. 2 but at mpole
f ¼ 0.35.
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boundaries (22), (23) of the unphysical poles are indepen-
dent of mpole

f . Therefore, as the physical pole mass mpole
f

increases and approaches the unphysical pole masses, the
dominance of the physical pole would be lost. A similar
observation was shown in Refs. [18,19], which investigated
the physical and unphysical modes of the Hermitian version
of the five-dimensional operator, the Dirac operator multi-
plied by γ5, and the reflection operator.
Figure 4 shows the dispersion relation at Ls ¼ 16 and

with the same values of the other parameters as those in
Fig. 2. As described in the previous section, FLs

oscillates
in the region −1 < cosh α < 1 with varying the momentum
variable, and its frequency is proportional to Ls. Thus, the
number of unphysical poles has been increased to 15.
Now, we show the results at smaller values of b − c.

Figure 5 shows the result at b − c ¼ 0.5. The values of
Imp4 on the curve cosh α ¼ −1 are larger than those for
the Shamir type b − c ¼ 1, and the lower bound on the
unphysical pole masses has been increased to ∼1.41. This
fact implies that the contribution of unphysical poles at
long distances would be suppressed more rapidly.
Figure 6 shows the result at b − c ¼ 0, where Imp4 with

cosh α ¼ −1 is infinitely large as (23) indicates. Thus,
small values of b − c make the unphysical modes heavy
and realize a small coupling between unphysical poles and
the four-dimensional physics.
So far, we have discussed in the case of M5 ¼ 0.9 < 1,

which has the most simple structure of unphysical poles.
The case M5 ¼ 1 gives a similar dispersion relation with a
slight modification that Imp4 with cosh α ¼ 1 diverges at
p⃗ ¼ 0 as described by (22).
In the case of M5 > 1, α could be pure imaginary at

Rep4 ¼ π as well as at Rep4 ¼ 0, and therefore some of the
unphysical poles are located at Rep4 ¼ π. Figure 7 shows
the result at M5 ¼ 1.4. The curve of coshα ¼ 1 (dashed-
dotted curve) on the imaginary axis blows up at jp⃗j≃ 0.90,
below which the solution of cosh α ¼ 1 (dashed double-
dotted curve) is located at Rep4 ¼ π. Thus, there are some
unphysical poles at Rep4 ¼ π (coarse-dashed curves) at
small spatial momenta. As suggested in Refs. [22,23], this
kind of unphysical pole may cause unphysical oscillation
because the contribution of an unphysical pole at p4 ¼
ppole
4 to the quark propagator for the time direction has a

term ∼eip
pole
4

x4 , which is oscillatory unless Reppole
4 ¼ 0.

FIG. 4. Same as Fig. 2 but at Ls ¼ 16.

FIG. 5. Same as Fig. 2 but at b − c ¼ 0.5.

FIG. 6. Same as Fig. 2 but at b − c ¼ 0.

FIG. 7. Same as Fig. 2 but at M5 ¼ 1.4.
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In Fig. 7, the lower bound on the unphysical poles
masses at Rep4 ¼ 0 is smaller than that at Rep4 ¼ π,
implying that the unphysical contributions from the former
poles are more significant than those from the latter poles.
Figure 8 shows the result at b − c ¼ 0. Although the
unphysical poles on the imaginary axis of p4 at small
spatial momenta have certainly disappeared by taking
b − c ¼ 0, all unphysical poles have entered the region
of Rep4 ¼ π, the lower limit (22) of which can be increased
only by changing M5.
We close this section with some comments on the choice

of domain-wall parameters. As we have seen, taking small
b − c plays a crucial role in reducing the contribution of
unphysical poles by increasing the lower bound on their
masses. In fact, the oscillatory behavior of domain-wall
fermions [20], which is supposed to be due to the
unphysical poles, has never been observed in the case of
b − c ¼ 0, while that for b − c ¼ 1 is quite visible at large
values of M5.
The lower bound on the unphysical pole masses is

determined by the solution of cosh α ¼ −1 (23) if b − c
satisfies

b − c >
2ð1 −M5Þ

1 − ð1 −M5Þ2
for M5 < 1;

b − c >
2ðM5 − 1Þ

1þ ðM5 − 1Þ2 for M5 > 1: ð25Þ

At small values of b − c that do not satisfy the inequality
(25), the lower bound is determined by the solution of
cosh α ¼ 1 (22), which is independent of b − c and
depends only on M5. This fact provides two prospects.
One is that taking extremely small b − c compared to the
threshold in (25) may not have a strong advantage. The
other is thatM5 may also need to be chosen appropriately
to suppress the unphysical contribution. Obviously, the
choice M5 ¼ 1 is optimal in free field theory. In the
mean field approximation [22,35], the optimal choice is

modified toM5 ¼ 4 − 3u0 with u0 being the averaged link
variable.
It is also important to take into account the violation of

chiral symmetry of the light quarks due to finite Ls. The
parameters bþ c andM5 are usually tuned to minimize the
residual mass, while the dependence on b − c has not been
investigated a lot. Note that small values of b − c, which are
desired to reduce the contribution of the unphysical poles,
set a large upper limit on the eigenvalues of the Möbius
kernel, potentially resulting in an inappropriate approxi-
mation to the sign function. Thus, the parameters b, c,
and M5 need to be carefully tuned in nonperturbative
studies so that both the residual mass and the contribution
of unphysical poles are safely small.

VI. CONCLUSION

This study is dedicated to the exploration of a new way
to precisely calculate heavy-quark physics using Möbius
domain-wall fermions. Our strategy is to treat the charm
quark with the same regularization as the lighter quarks
without applying any effective theory or changing any
discretization parameters to achieve an appropriate GIM
cancellation. We have concentrated on a serious discreti-
zation error for heavy quarks that originates from the
unphysical poles of domain-wall fermions by analyzing the
energy-momentum dispersion relation.
As we have shown, the quark propagator constructed

from domain-wall fermions has Ls − 1 unphysical poles,
and their energies are strongly dependent on the difference
of the Möbius parameters b − c as well as on the domain-
wall height M5. The lower bound on the unphysical pole
masses in the case of b − c ¼ 1 is usually smaller than the
lattice cutoff and quite comparable to the charm-quark mass
on lattices at currently available lattice spacings. We
demonstrated that this lower bound can be increased by
taking b − c smaller.
One concern is that small b − c could increase the

residual mass because the upper limit on the eigenvalues
of the Möbius kernel increases as b − c decreases, poten-
tially spoiling the accuracy of the approximated sign
function. We therefore need to tune the parameters, taking
account of the residual breaking of chiral symmetry as well
as of the impact of unphysical poles. A nonperturbative
study to explore the best choice of these parameters is
ongoing.
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FIG. 8. Same as Fig. 7 but at b − c ¼ 0.
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APPENDIX A: UNPHYSICAL BRANCH
CUT IN INFINITE Ls

In this Appendix, we demonstrate what happens in the
limit of infinite Ls. First of all, it is important to note that
the four-dimensional quark propagator for infinite Ls is
supposed to be independent of bþ c because bþ c is
associated only with Ls dependence, while (20) does
apparently contain bþ c. We can show (20) is independent
of bþ c as follows. Since the limit (20) is valid only if
Reα > 0 on the real axis of p4, we can identify

sinh α ¼ ðbþ cÞ ffiffiffiffiffiffiffi
FG

p

WD†
−D−

; ðA1Þ

where we define

F ¼ ~p2 þM2

2
; G ¼ ðb − cÞ2 ~p2 þ ð2þ ðb − cÞMÞ2

2
:

ðA2Þ

In the case of W < 0, sinh α is negative for Reα > 0
because cosh α is also negative and α has an imaginary part
iπ. Inserting e�α ¼ cosh α� sinh α into (20), we obtain

lim
Ls→∞

S4dF ¼ −
i ~pþmðMþ ðb − cÞF −

ffiffiffiffiffiffiffi
FG

p Þ
ð1 −m2ÞðMþ ðb − cÞFÞ þ ð1þm2Þ ffiffiffiffiffiffiffi

FG
p :

ðA3Þ

Thus, the four-dimensional quark propagator in the limit of
infinite Ls is independent of bþ c.
Since there are square roots of FG in (A3), some

ambiguity could occur in the region where FG is not
positive definite. This ambiguity could be interpreted as the
presence of an unphysical branch cut. In fact, F and G
vanish at p4, satisfying cosh α ¼ 1 (22) and coshα ¼ −1
(23), respectively, and the product FG is negative between
these two points. Thus, a series of unphysical poles at finite
Ls becomes an unphysical branch cut in the limit of infinite
Ls. The quark propagator at finite Ls does not contain such
a branch cut because the insertion of e�α ¼ coshα� sinh α
to (19) cancels the square roots.
The propagator (A3) can be derived also from the Dirac

operator of overlap fermions, which is defined by

Dov ¼
1þm
2

þ 1 −m
2

γ5
HMffiffiffiffiffiffiffiffi
H2

M

p : ðA4Þ

Here, we use the Möbius kernel

HM ¼ γ5
ðbþ cÞDW

2þ ðb − cÞDW
: ðA5Þ

The inverse matrix of Dov is found to be

D−1
ov ¼ ð1 −mÞð−i ~pþMþ ðb − cÞFÞ þ ð1þmÞ ffiffiffiffiffiffiffi

FG
p

ð1 −m2ÞðMþ ðb − cÞFÞ þ ð1þm2Þ ffiffiffiffiffiffiffi
FG

p

;ðA6Þ

and obeys

lim
Ls→∞

S4dF ¼ D−1
ov − 1

1 −m
: ðA7Þ

Therefore, overlap fermions have the same unphysical
effects as domain-wall fermions.

APPENDIX B: PROPAGATOR IN
SOME SPECIAL CASES

In this paper, we wrote the explicit form of G�, the
inverse of the matrix

Q� ¼
�
bþ c
D†

−D−

�
2

~p2 þW∓W�: ðB1Þ

The components of Q� are given by

Q�
s;t ¼

��
bþ c
D†

−D−

�
2

~p2 þW2 þ 1

�
δs;t −Wðδsþ1;t þ δs−1;tÞ

þmWðδs;Ls−1δt;0 þ δs;0δt;Ls−1Þ − ð1 −m2Þ

×

�
δs;0δt;0ðþÞ
δs;Ls−1δt;Ls−1ð−Þ

: ðB2Þ

The inverse matrixG� ¼ ðQ�Þ−1 satisfies the recurrence
relations

��
bþ c
D†

−D−

�
2

~p2 þW2 þ 1

�
G�

s;t −WðG�
sþ1;t þG�

s−1;tÞ ¼ δs;t;

ðB3Þ
��

bþ c
D†

−D−

�
2

~p2 þW2 þ 1

�
G�

s;t −WðG�
s;tþ1 þ G�

s;tþ1Þ ¼ δs;t

;ðB4Þ

and the boundary conditions

WGþ
−1;t − ð1 −m2ÞGþ

0;t þmWGþ
Ls−1;t ¼ 0; ðB5Þ

Gþ
Ls;t

þmGþ
0;t ¼ 0; ðB6Þ

mG−
Ls−1;t þ G−

−1;t ¼ 0; ðB7Þ

WG−
Ls;t

− ð1 −m2ÞG−
Ls−1;t þmWG−

0;t ¼ 0: ðB8Þ

The solution for the usual case is already given in (13).
In the following, we give G�

s;t and the corresponding
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four-dimensional quark propagator S4dF in the special cases,
W ¼ 0, cosh α ¼ 1, and cosh α ¼ −1.

1. W = 0

In this case, the matrices Q� are given by

Qþ
s;t ¼

��
bþ c
D†

−D−

�
2

~p2 þ 1

�
δs;t − ð1 −m2Þδs;0δt;0; ðB9Þ

Q−
s;t ¼

��
bþ c
D†

−D−

�
2

~p2 þ 1

�
δs;t − ð1 −m2Þδs;Ls−1δt;Ls−1:

ðB10Þ

The corresponding inverse matrices are

Gþ
s;t ¼

��
bþ c
D†

−D−

�
2

~p2 þ 1

�
−1
δs;tð1 − δs;0Þ

þ
��

bþ c
D†

−D−

�
2

~p2 þm2

�
−1
δs;0δt;0; ðB11Þ

G−
s;t ¼

��
bþ c
D†

−D−

�
2

~p2 þ 1

�
−1
δs;tð1 − δs;Ls−1Þ

þ
��

bþ c
D†

−D−

�
2

~p2 þm2

�
−1
δs;Ls−1δt;Ls−1; ðB12Þ

which correspond to the four-dimensional quark propagator

S4dF ¼
− bþc

D†
−D−

i ~pþm

ð bþc
D†

−D−
Þ2 ~p2 þm2

: ðB13Þ

2. coshα= 1

In this case, the recurrence relations (B3) and (B4) are

2WG�
s;t −WðG�

sþ1;t þ G�
s−1;tÞ ¼ δs;t;

2WG�
s;t −WðG�

s;tþ1 þ G�
s;t−1Þ ¼ δs;t; ðB14Þ

the solution of which is formally given by

G�
s;t ¼ −

js − tj
2W

þ Cð1Þ
2;�stþ Cð1Þ

s;�sþ Cð1Þ
t;�tþ Cð1Þ

0;�: ðB15Þ

The boundary conditions (B5)–(B8) determine the coef-
ficients,

Cð1Þ
2;þ ¼ Cð1Þ

2;− ¼ −
1

WFð1Þ
Ls

ð1 −m2Þð1 −WÞ; ðB16Þ

Cð1Þ
s;þ ¼ Cð1Þ

t;þ ¼ 1

2WFð1Þ
Ls

ð1 −m2Þðð1 −WÞLs þWÞ;

ðB17Þ

Cð1Þ
s;− ¼ Cð1Þ

t;− ¼ 1

2WFð1Þ
Ls

ð1 −m2Þðð1 −WÞLs þW − 2Þ;

ðB18Þ

Cð1Þ
0;þ ¼ −

Ls

Fð1Þ
Ls

; ðB19Þ

Cð1Þ
0;− ¼ −

1

WFð1Þ
Ls

ðWLs − ð1 −m2ÞðLs − 1ÞÞ; ðB20Þ

Fð1Þ
Ls

¼ ð1 −m2Þð1 −WÞLs −Wð1þmÞ2: ðB21Þ

The corresponding four-dimensional propagator is given by

S4dF ¼ bþ c
D†

−D−

Ls

Fð1Þ
Ls

i ~p −
Lsmð1 −WÞ þ ð1þmÞW

Fð1Þ
Ls

⟶
Ls→∞

bþc
D†

−D−
i ~p −mð1 −WÞ

ð1 −m2Þð1 −WÞ ¼ −
i ~p −mM
ð1 −m2ÞM : ðB22Þ

The inverse matrix G�
s;t and the four-dimensional quark

propagator S4dF derived in this subsection can be reproduced
also from the limit α → 0 of G�

s;t and S4dF in the standard
case (13), (19), (20).

3. coshα= − 1
The recurrence relations (B3) and (B4) in this case are

−2WG�
s;t −WðG�

sþ1;t þG�
s−1;tÞ ¼ δs;t;

−2WG�
s;t −WðG�

s;tþ1 þG�
s;t−1Þ ¼ δs;t; ðB23Þ

the solution of which is formally given by

G�
s;t¼

�js− tj
2W

þCð−1Þ
2;� stþCð−1Þ

s;� sþCð−1Þ
t;� tþCð−1Þ

0;�

�
ð−1Þs−t:

ðB24Þ

In the case of even Ls, the coefficients are

Cð−1Þ
2;þ ¼ Cð−1Þ

2;− ¼ 1

WFð−1Þ
Ls

ð1 −m2Þð1þWÞ; ðB25Þ

Cð−1Þ
s;þ ¼ Cð−1Þ

t;þ ¼ −
1

2WFð−1Þ
Ls

ð1 −m2Þðð1þWÞLs −WÞ;

ðB26Þ

Cð−1Þ
s;− ¼ Cð−1Þ

t;− ¼ −
1

2WFð−1Þ
Ls

ð1−m2Þðð1þWÞLs −W − 2Þ;

ðB27Þ
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Cð−1Þ
0;þ ¼ −

Ls

Fð−1Þ
Ls

; ðB28Þ

Cð−1Þ
0;− ¼ −

1

WFð−1Þ
Ls

ðWLs þ ð1 −m2ÞðLs − 1ÞÞ; ðB29Þ

Fð−1Þ
Ls

¼ ð1 −m2Þð1þWÞLs þWð1þmÞ2: ðB30Þ

The corresponding four-dimensional propagator is
given by

S4dF ¼ bþ c
D†

−D−

Ls

Fð−1Þ
Ls

i ~p −
Lsmð1þWÞ − ð1þmÞW

Fð−1Þ
Ls

⟶
Ls→∞

bþc
D†

−D−
i ~p −mð1þWÞ

ð1 −m2Þð1þWÞ

¼ −
2i ~pþmð2Mþ ðb − cÞð ~p2 þM2ÞÞ
ð1 −m2Þð2Mþ ðb − cÞð ~p2 þM2Þ : ðB31Þ

G�
s;t and S4dF derived in this subsection can be reproduced

also from the limit α → iπ of G�
s;t and S4dF in the standard

case (13), (19), (20).
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