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We perform a high statistics study of the JP ¼ 0þ and 1þ charmed-strange mesons, D�
s0ð2317Þ and

Ds1ð2460Þ, respectively. The effects of the nearby DK and D�K thresholds are taken into account by
employing the corresponding four-quark operators. Six ensembles with Nf ¼ 2 nonperturbatively OðaÞ
improved clover Wilson sea quarks at a ¼ 0.07 fm are employed, covering different spatial volumes and
pion masses: linear lattice extents L=a ¼ 24, 32, 40, 64, equivalent to 1.7 fm to 4.5 fm, are realized for
mπ ¼ 290 MeV and L=a ¼ 48, 64 or 3.4 fm and 4.5 fm for an almost physical pion mass of 150 MeV.
Through a phase shift analysis and the effective range approximation we determine the scattering lengths,
couplings to the thresholds and the infinite-volume masses. Differences relative to the experimental values
are observed for these masses, however, this is likely to be due to discretization effects as spin-averaged
quantities and splittings are reasonably compatible with experiment. We also compute the weak
decay constants of the scalar and axialvector and find f0

þ
V ¼ 114ð2Þð0Þðþ5Þð10Þ MeV and f1

þ
A ¼

194ð3Þð4Þðþ5Þð10Þ MeV, where the errors are due to statistics, renormalization, finite-volume and lattice
spacing effects.

DOI: 10.1103/PhysRevD.96.074501

I. INTRODUCTION

In 2003 the BABAR Collaboration announced the obser-
vation of a meson state in the inclusiveDþ

s π
0 invariant mass

distribution [1], compatible with a JP ¼ 0þ assignment, the
D�

s0ð2317Þ. This discovery was confirmed soon after by the
CLEO and Belle collaborations [2,3]. The newfound state
was the natural candidate to fill in the charm-strange 0þ P-
wave level predicted by quark models. However, while
quark models [4,5] and a number of early lattice calcu-
lations [6–9] based on quark-antiquark interpolators pre-
dicted the 0þ state to be a broad resonance above the nearby
DK threshold, the experiments observed a narrow state of
mass 2317MeV, 40MeV below threshold. The detection of
another narrow state just below the D�K threshold, the
Ds1ð2460Þ [10–12] with JP ¼ 1þ, presented a similar
puzzle.
The strange-charm meson sector can be interpreted

within heavy quark effective theory [13–18] (HQET). At
leading order in the inverse of the heavy quark mass, the
states are arranged in degenerate doublets corresponding
to the strange quark quantum numbers: jP ¼ 1

2
− for

angular momentum l¼0 and jP¼ 1
2
þ and 3

2
þ for l¼1

and so on. Interactions beyond leading order, including
with the heavy (charm) quark spin, lift the degeneracies
and cause mixing between jP ¼ 1

2
þ and 3

2
þ states. The

relevant quantum numbers are then the total quark and
antiquark spin, i.e. JP ¼ 0−, 1−, for the l ¼ 0 doublet
and 0þ, 1þ and 1þ, 2þ for l ¼ 1. The doublets can
be (loosely) identified with the observed ðDs;D�

sÞ;
ðD�

s0ð2317Þ; Ds1ð2460ÞÞ; and ðDs1ð2536Þ; D�
s2ð2573ÞÞ

mesons, respectively. Nevertheless, the surprisingly low
masses of the D�

s0ð2317Þ and Ds1ð2460Þ mesons have led
to a number of more exotic interpretations, for example, as
tetraquarks [19–21], molecules [22,23] or conventional
charm-strange mesons with coupled channel effects [24].
A recent comprehensive review of the experimental status
and theoretical understanding of these states can be found
in Ref. [25].
Subsequent lattice studies [26–28], utilizing quark-anti-

quark interpolators and, most recently, including chiral and
continuum extrapolations [29] also overestimate the mass
of the D�

s0ð2317Þ. A similarly conventional analysis by
some of us found consistency with the 0þ and 1þ Ds
experimental masses in Ref. [30], however, there were a
number of systematic uncertainties that could not be
quantified. The possible influence of the nearby threshold
needs to be taken into account by incorporating four-quark
DK interpolators and performing a finite-volume analysis
utilizing Lüscher’s formalism [31] for the unequal
mass case [32–34]. The first work in this direction was
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performed by Liu et al. who computed the scattering
lengths for the DK̄ system for which there are no compu-
tationally challenging disconnected diagrams [35].
Predictions were made for the DK channel via SU(3)
flavor symmetry. Following this, Mohler et al. [36] and
Lang et al. [37] studied the D�

s0ð2317Þ and Ds1ð2460Þ
mesons directly, including coupling with the threshold, and
found their masses to be compatible with experiment for an
ensemble with mπ ¼ 156 MeV, at a fairly coarse lattice
spacing of a ¼ 0.09 fm and a small spatial lattice
extent of L ¼ 2.9 fm (Lmπ ¼ 2.29). The effective range
approximation was assumed in order to extract infinite-
volume results. Notably, the masses of these states were
found to be overestimated if the DK interpolators were
omitted.
Clearly, a number of improvements can be made on this

pioneering study working, for example, at a finer lattice
spacing and exploring the dependence on the spatial
volume. The former is important since discretization effects
can be substantial for observables involving charm quarks
while the latter is needed as contributions which are
exponentially suppressed in Lmπ (that are ignored in the
Lüscher formalism) may not be small for Lmπ ¼ 2.29.
Furthermore, the range of validity of the effective range
approximation needs to be tested.
In this work we present a high statistics analysis at a ¼

0.07 fm for two pion masses, mπ ¼ 290 and 150 MeV,
utilizing multiple spatial volumes, with L in the range of
1.7 to 4.5 fm realizing values for Lmπ between 2.7 to 6.7.
Near-physical pion masses are required as the 0þ and 1þ

charm-strange states are sensitive to the position of the
threshold and one needs to reproduce the physical case. By
employing Nf ¼ 2 dynamical fermions, effects arising
from strange sea quarks are omitted with the expectation
that the valence strange quark provides the dominant
contribution. Furthermore, we treat the D�

s0ð2317Þ and
Ds1ð2460Þ as stable and ignore their (strong) decays to
Dsπ and D�

sπ and Dsππ, respectively. This is reasonable,
given that the first two decays are isospin-violating (and in
our simulation isospin is exact) and the third has a very
small width. Effects of the higher lying Dsη and D�

sη
thresholds are also neglected.
So far, most lattice studies have focused on computing

the particle masses and the couplings of the states to the two
meson channels. In this work, we also determine the weak
decay constants, i.e. the overlap of the (local) weak current
operator with the physical state, for JP ¼ 0þ and the lower
1þ meson. The decay constants have not yet been directly
determined in experiment, however, some information can

be extracted from nonleptonic B decays toDð�ÞDð�Þ
sJ . Within

the factorization approximation, invoking the heavy quark
limit [38,39], ratios of the corresponding branching frac-
tions give fD�

s0ð2317Þ ∼ fDs=3, while for the axialvector
channel fDs1ð2460Þ ∼ 2fD�

s
=3, see, for example, the analyses

of Refs. [40–42]. These results, however, are at odds with
heavy quark symmetry studies which find fDs1ð2460Þ ∼
fD�

s0ð2317Þ [43–45]. The decay constants have also been
computed, for example, within quark models [44,46–49]
and QCD sum rules [50,51] with results covering
a wide range, fD�

s0ð2317Þ ¼ 70 − 440 MeV and fDs1ð2460Þ ¼
117 − 410 MeV.
The paper is organized as follows. Details of the lattice

setup are given in Sec. II. The construction of the quark line
diagrams required for extracting the energy levels and
matrix elements for the states of interest are discussed in
Sec. III. The procedure for extracting the phase shifts, the
couplings to the two meson channels and the masses from
the finite-volume levels is well established and we only
provide a brief overview of the theoretical background in
Sec. IV. We extract the infinite-volume information
employing two methods: Lüscher’s formalism [31–34]
and the chiral unitary approach [52,53], which also allows
us to determine the so-called potential of the scattering
particles. Our results on the phase shifts, scattering lengths,
potentials, spectrum and decay constants are presented in
Sec. V, before we conclude in Sec. VI.

II. LATTICE SETUP

In order to study the volume dependence of the lowest
lying energy levels, various spatial volumes are realized at
two pion masses, mπ ∼ 290 MeV with L=a ¼ 24, 32, 40,
64 and mπ ∼ 150 MeV with L=a ¼ 48, 64, where L
denotes the linear extent. The ensembles were generated
by the RQCD and QCDSF collaborations and are com-
posed of Nf ¼ 2 nonperturbatively improved clover fer-
mions at a single lattice spacing a ¼ 0.071 fm [54]
(determined via the Sommer scale r0 [55]). Details of
the ensembles are given in Table I and Fig. 1. The strange
and charm quarks are partially quenched in our analysis and
their masses are fixed by reproducing (to within 1%) the
combination

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

K −m2
π

p
¼ 685.8 MeV employing the

electrically neutral, isospin-averaged estimates from
the FLAG review [56] (see the discussion below) and
the experimental value of the spin-averaged 1S charmo-
nium mass, m1S ¼ 3068.5 MeV, respectively. When com-
puting the latter we omit disconnected quark line diagrams
and mixing with other flavor singlets. The effect of this
omission is likely to be only a few MeV in the 1S
charmonium mass (see, for example, the studies in
Refs. [57,58]) and does not lead to a significant uncertainty
in our results for the Ds spectrum.
As mentioned previously, reproducing the physical DK

andD�K thresholds is important for studying the 0þ and 1þ
states, respectively. In order to compare our lattice values
for these thresholds and other levels with experiment,
however, corrections are required as we are working in
the isospin limit and electromagnetic effects are absent. We
choose to adjust the experimental results rather than
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correcting the lattice values. For the kaon we take the
FLAG review [56] value of mQCD

K ¼ 494.2ð3Þ MeV for
the physical mass in QCD. For the Dð�Þ mesons we define
the electrically neutral isospin symmetric mass as

mQCD
Dð�Þ ¼ 1

2
ðmDð�Þ0 þmDð�Þ� − δmQED

Dð�Þ Þ: ð1Þ

The electromagnetic mass contributions, δmQED
D ¼

2.3ð2Þ MeV and δmQED
D� ¼ 0.8ð2Þ MeV, were estimated

in Ref. [59] in the heavy quark limit including 1=mQ terms.
To be conservative we double the size of these QED errors.
Combining these values with the experimental masses gives
mQCD

D ¼ 1866.1ð2Þ MeV and mQCD
D� ¼ 2008.2ð2Þ MeV.

For the Dð�Þ
s mesons the electromagnetic mass contribution

is assumed to be of the same size as for the D mesons with

mQCD

Dð�Þ
s

¼ m
Dð�Þ

s
− δmQED

Dð�Þ ; ð2Þ

givingmQCD
Ds

¼1966.0ð4ÞMeV andmQCD
Ds

¼2111.3ð6ÞMeV.
No estimates have been made of δmQED for the positive
parity charm-strange mesons and in this case we add an

additional error of 2 MeV to the experimental masses to
indicate the likely size of this uncertainty. So, for example,
we quote for the 0þ mass, m0þ ¼ 2317.7ð0.6Þð2.0Þ MeV,
where the first error is experimental, while for the
splitting with the threshold we give mK þmD −m0þ ¼
42.6ð0.7Þð2.0Þ MeV, with the first error due to the QCD
estimate of mK þmD. Turning to the lattice data in Table I
for the mπ ¼ 150 MeV, L ¼ 64a ensemble, the kaon mass
is compatible with the FLAG estimate, while the D (D�)
meson mass is slightly above (below) the QCD value. This
leads to the DK and D�K thresholds being missed by only
þ14 and −9 MeV, respectively.
Leading order discretization effects are of Oða2Þ and, as

the charm quark mass in lattice units is not small
(amc ∼ 0.5), lattice spacing effects can be significant.
Fine structure splittings are expected to be particularly
sensitive to such effects as they are dominated by momen-
tum scales close to mc for heavy-light systems. This is
illustrated by our results for the D and Ds 1S hyperfine
splittings, mD� −mD ¼ 119ð3Þ MeV and mD�

s
−mDs

¼
118ð1Þ MeV, from the largest mπ ¼ 150 MeV ensemble,
which are approximately 23 MeV and 27 MeV below the
corrected experimental values, respectively. In contrast,
spin-averaged splittings which have typical energy scales
that are much smaller than the inverse lattice spacing (of the
order of Λ̄ ∼ 0.5 GeV for heavy-light systems which is
much less than a−1 ¼ 2.76 GeV), are less affected as will
be demonstrated in Sec. V.
We perform a high statistics study utilizing 1450 to 2200

configurations for each ensemble, see Table I. Careful
consideration of autocorrelations is required and these were
taken into account by binning over measurements (one per
configuration) to a level consistent with at least four times
the integrated autocorrelation time.
Finite-volume effects on hadron masses and decay

constants fall off exponentially with Lmπ and empirically
Lmπ > 4 has been found to be sufficient for such effects to
be suppressed in most observables. In Lüscher’s formalism
smaller volumes are beneficial for obtaining infinite-
volume information, however, the exponentially sup-
pressed finite-volume terms are neglected and Lmπ cannot
be too small. This will be discussed in Sec. V; for our
ensembles Lmπ ranges from 2.67 to 6.71.

TABLE I. Details of the ensembles used for this analysis. Lmπ is computed using the infinite-volume pion mass determined in
Ref. [54].

κl a (fm) V amπ mπ (MeV) Lmπ mK (MeV) mD (MeV) mD� (MeV) Nconf

0.13632 0.071 243 × 48 0.1112(9) 306.9(2.5) 2.67 540(2) 1907(3) 2038(5) 2222
0.071 323 × 64 0.10675(52) 294.6(1.4) 3.42 528(1) 1902(3) 2030(5) 1453
0.071 403 × 64 0.10465(38) 288.8(1.1) 4.19 527(1) 1901(2) 2030(4) 2000
0.071 643 × 64 0.10487(24) 289.5(0.7) 6.70 526(1) 1898(1) 2030(2) 1463

0.13640 0.071 483 × 64 0.05786(55) 159.7(1.5) 2.78 500(1) 1880(2) 2007(3) 2501
0.071 643 × 64 0.05425(49) 149.7(1.4) 3.49 497(1) 1877(1) 1996(3) 1591

FIG. 1. Overview of the ensembles employed in our analysis in
terms of the pion mass and the spatial extent L (in units of mπ).
The vertical line indicates the physical pion mass.
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III. CORRELATOR MATRIX

Two distinct sectors corresponding to JP ¼ 0þ and 1þ
are considered in this work. In the first case, the lowest
energy level is expected to coincide with the bound state
D�

s0ð2317Þ, followed by a DK scattering state somewhat
above. Analogously, in the second case we expect to find
the Ds1ð2460Þ, followed by a D�K scattering state as well
as the Ds1ð2536Þ.
In order to extract these levels a variational analysis is

performed [60,61]. Choosing a set of quark-antiquark and
two meson interpolators Oi which have an overlap Zkj ¼
hkjO†

j j0iwith the physical states of interest, jki, a correlator
matrix is constructed,

CijðtÞ ¼ h0jOiðtÞO†
j j0 ¼

X
k

Z†
ikZkje−Ekt: ð3Þ

Note that the interpolators are projected onto zero momen-
tum. By solving the generalized eigenvalue equation

CðtÞvðkÞðt; t0Þ ¼ λðkÞðt; t0ÞCðt0ÞvðkÞðt; t0Þ ð4Þ

for eigenvalues λðkÞðt; t0Þ and eigenvectors vðkÞðt; t0Þ for
t > t0, t0 being a reference time, the energy levels are
obtained from the exponential decay of the eigenvalues

λðkÞðt; t0Þ ¼ e−Ekðt−t0Þð1þOðe−ΔEktÞÞ; ð5Þ

whereΔEk is the difference between Ek and the first energy
level outside of the rank of the basis considered for t < 2t0
and t − t0 constant [62]. Clearly, the basis of operators must
be large enough in order to resolve the number of levels of
interest, and in general, due to the contamination from
higher states one needs a basis of at least nþ 1 operators in
order to reliably extract n states.
The choice of operators is also important, especially for

the charm-strange systems of interest here where the lowest
two energy levels are very close to each other (in particular
for the larger spatial volumes): a basis of operators with
poor overlap with the physical states will not separate the
energy levels within the finite (Euclidean) time extent of the
lattice. This is precisely the problem when forming a basis
of only q̄q interpolators, which leads to the overestimation
of the mass of both the lowest 0þ and 1þ Ds states as
illustrated in Refs. [36,37] and demonstrated again in
Sec. VA.
Our interpolator basis includes both q̄q and four-quark

operators and the correlator matrix has the general form

CðtÞ ¼
 hODs

ðtÞO†
Ds
ð0Þi hODs

ðtÞO†
DKð0Þi

hODKðtÞO†
Ds
ð0Þi hODKðtÞO†

DKð0Þi

!
; ð6Þ

where “Ds” and “DK” denote the two- and four-quark
cases, respectively. Several two-quark interpolators are

employed with multiple smearing levels (see Table II
and the discussion below), such that the entries in
Eq. (6) represent submatrices. The correlators are projected
onto zero-momentum and for the two meson interpolators,
both the particles are at rest. The omission of operators of
the form DðpÞKð−pÞ for momentum p is discussed in
Sec. VA. We remark that operators with derivatives were
also included in the analysis but the resulting correlation
functions were later discarded as they were too noisy.
The operators given in Table II for the scalar and

axialvector channels fall in the A1 and T1 irreducible
representations of the lattice cubic group, respectively.
These representations create a tower of states which, in
the continuum limit, correspond to J ¼ 0; 4; 6;… and
J ¼ 1; 3; 4;…, and include ground (single particle) states,
radial excitations and multiparticle levels. As we are only
interested in the lowest J in each case and the other states
lie much higher in the spectrum, there is very little
ambiguity in the spin identification of the energy levels
we extract and throughout this work we only refer to the
lowest continuum spin created.
The Wick contractions arising from Eq. (6) are shown in

Fig. 2. These quark line diagrams are evaluated using spin
and color diluted complex Z2 stochastic sources with the
one-end trick [63,64], following Refs. [65–67]. Evaluation
of the DK → DK box diagram requires two sequential
propagators involving a combination of light and charm
(lc) quarks and strange and light quarks (sl), represented by
the thin and thick lines with open arrows in the bottom right
of Fig. 2, respectively. These sequential propagators are
recycled in the determination of the triangular diagrams that
are averaged to improve the signal. The other propagators
required (see the lines with filled arrows in Fig. 2) are
similarly recycled where possible.
The sl sequential combination is the most computation-

ally expensive due to the need to realize the sequential
source on every sink timeslice t [cf. Eq. (6)]. For this reason
we restrict t=a ∈ ½5; 19�, a region chosen such that the
excited state contributions to the resulting correlation
functions are not large and the statistical noise is still
under control. This restriction affects the box diagram and
the lower left triangular diagram in Fig. 2. The remaining
diagrams are evaluated for all timeslices and the (anti)
periodic boundary conditions in the temporal direction of
length T enable averaging over the time regions 0 < t <
T=2 and T=2 < t < T.

TABLE II. Interpolators used in the analysis.

JP Two-quark operators
0þ ODs

¼ s̄1c;OD0
s
¼ s̄γtc

1þ ODs
¼ s̄γiγ5c;OD0

s
¼ s̄γtγiγ5c

JP Four-quark operators
0þ ODK ¼ ðūγ5cÞðs̄γ5uÞ þ ðd̄γ5cÞðs̄γ5dÞ
1þ ODK ¼ ðūγicÞðs̄γ5uÞ þ ðd̄γicÞðs̄γ5dÞ
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Gauge noise was found to dominate the correlator matrix
and only the minimum number of stochastic sources was
employed per configuration. This corresponds to 12 × 2,
where the first factor is due to spin-color dilution and the
second one arises because two independent stochastic
sources are required for the DK → DK diagram involving
the product of the D and K two-point functions. Spin
dilution is required in order to study both the 0þ and 1þ
states efficiently with the one-end trick. Color dilution does
not provide any reduction in the stochastic noise for fixed
computational cost however, implementing this within our
code turned out to be convenient.
In order to ensure that for both the scalar and axialvector

meson sectors we can resolve at least the lowest three
states, we construct the Ds and D0

s operators (see Table II)
with multiple spatial extents and the DK operators with a
single spatial extent. Wuppertal smearing [68] with three-
dimensionally APE smoothed spatial links [69,70] was
applied with the number of Wuppertal iterations (nitr) equal
to 16, 60 and 180 for ODs

interpolators shared between
quark and antiquark, nitr ¼ 16, 60 for OD0

s
and nitr ¼ 180

for ODK operators. These choices are illustrated for the 0þ
state in Fig. 3, which displays the effective masses1 of the
diagonal components of the correlator matrix. As expected,
increasing nitr significantly boosts the overlap with the
lowest state, at the cost of an increase in the noise at larger
times. Similar behavior is observed for the 1þ. The

determination of the lowest energy levels from the corre-
lator matrix via the variational approach is discussed in
Sec. VA, along with the impact of the operator basis
chosen. We also extract the decay constants of the
D�

s0ð2317Þ and Ds1ð2460Þ, as described in Sec. V E. For
this purpose we compute the diagrams in the upper row of
Fig. 2 with smeared source interpolators and local ODs

and
OD0

s
sink operators.

In total a 6 × 6 correlator matrix was realized at a
computational cost of 14 charm quark, 3 strange quark
and NT þ 3 light quark inversions for each spin and color
component of the stochastic propagator (i.e. times 12 for
the full cost) per configuration. We remark that in order to
minimize the number of inversions, the smearing for each
operator was split unevenly between the quark and anti-
quarks. The number of timeslices, NT ¼ 15, for the light
quark is due to the chosen range of the sink time mentioned
above. The cost of these light quark inversions, equivalent
to NT þ 3 point-to-all propagators, represents the main
overhead compared to a conventional analysis involving
only quark-antiquark operators. For the restricted basis of
operators considered here, the stochastic one end trick
method we employed is substantially cheaper than the
distillation technique used in Refs. [36,37] and enabled
much larger lattice volumes to be realized. However, the
latter approach becomes more attractive when considering a
wider range of the meson spectrum involving several
thresholds, see, for example, Refs. [28,71–73].

FIG. 2. The quark line diagrams computed on the lattice. The
charm, strange and light quarks are indicated by red, blue and
black lines, respectively. Stochastic propagators are represented
by lines with filled arrows and sequential stochastic propagators
by two successive lines of the same width with open arrows. Time
propagation is from right to left. The black dots indicate the
stochastic source position. Note that the triangular diagrams are
accompanied by a factor of 2 in Eq. (6) and the DK → DK
diagrams are accompanied by a factor of 4 and 2 for the box and
the product of D and K two-point functions, respectively, due to
the summation over the light quark flavor, see Table II.

FIG. 3. The effective masses for the diagonal elements of the
6 × 6 correlator matrix for the 0þ channel for mπ ¼ 150 MeV
and L=a ¼ 64. The operator basis for the matrix consists of three
operators of type ODs

(see Table II) with different levels of
Wuppertal smearing iterations, two of type OD0

s
and one ODK

interpolator. The grey band indicates the ground state energy
extracted by solving the generalized eigenvalue problem Eqs. (4)
and (5), see Sec. V for details.

1See Eq. (32) for the definition of the effective mass.
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IV. THEORETICAL BACKGROUND

In the following we briefly outline how energy levels
measured on a finite lattice volume can be used to extract
infinite-volume information via a parametrization of the
T-matrix. Two approaches are considered. The first is
based on Lüscher’s formalism and the effective range
approximation and the second on a determination of the
potential of the scattering particles in the chiral unitary
approach.

A. Lüscher’s method and the
effective range approximation

For two relativistic particles with masses m1 and m2,
scattering elastically in infinite volume, the s-wave
T-matrix in the center of momentum frame can be
expressed as

TðsÞ ¼ −8π
ffiffiffi
s

p
p cot δðpÞ − ip

; ð7Þ

where
ffiffiffi
s

p ¼ E is the center of momentum energy and p is
the modulus of the momentum of each particle,

p2 ¼ ðs − ðm1 þm2Þ2Þðs − ðm1 −m2Þ2Þ
4s

: ð8Þ

δðpÞ is the s-wave phase shift and p cot δðpÞ is a real
function of p2 which can be expanded around the threshold
p2 ¼ 0:

p cot δðpÞ ¼ 1

a0
þ 1

2
r0p2 þOðp4Þ: ð9Þ

The parameters a0 and r0 are the scattering length and the
effective range, respectively, which, up to Oðp4Þ, describe
the low-energy scattering of the particles.
Above threshold, the T-matrix shows a unitarity

cut which represents the continuous spectrum. Here,
unitarity dictates that the imaginary part is given by
ImT−1ðsÞ ¼ p

8π
ffiffi
s

p . Below threshold, p ¼ ijpj is imaginary

and T is real. If a bound state is present at s ¼ sB ≡m2
B or

p ¼ pB, it will appear as a pole of T on the real axis:

pB cot δðpBÞ ¼ ipB ≡ −jpBj: ð10Þ

In the vicinity of the pole the T-matrix takes the form

TðsÞ ∼ g2

s − sB
; ð11Þ

so that the coupling g can be obtained through

g2 ¼ lim
s→sB

TðsÞðs − sBÞ ¼ lim
s→sB

−8π
ffiffiffi
s

p ðs − sBÞ
p cot δðpÞ − ip

: ð12Þ

At finite spatial volume, L3, the energy levels and
momenta are discretized and the cut of the T-matrix is
replaced by poles at discrete values s ¼ sn:

ffiffiffiffiffi
sn

p ¼ En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ p2
n

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p2
n

q
ð13Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ k2n

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ k2n

q
þ ΔEn; ð14Þ

where kn ¼ 2π
L n, pn ¼ 2π

L qn, n ∈ Z3 and n ¼
ffiffiffiffiffiffiffiffi
jnj2

p
¼ffiffiffi

0
p

;
ffiffiffi
1

p
;
ffiffiffi
2

p
;…, while qn are real valued vectors. The

asymptotic two-particle states in the infinite-volume for-
malism are no longer free once they are placed in a finite
box as the probability for them to be within the interaction
range is finite. As L increases, the interaction term ΔEn

tends to zero, qn → n and p2
n → k2n. The position of the

bound state pole sB is shifted to s ~B at finite volume. We
allow the index n to assume an additional value n ¼ ~B so
that in Eqs. (13) and (14) E ~B ¼ m ~B, p ~B (imaginary) and
ΔE ~B (<0) represent, respectively, the mass, binding
momentum and binding energy of the bound state at finite
volume. As L → ∞, these quantities will tend to their
infinite-volume values mB, pB and ΔEB.
Lüscher’s equation [31] (and its analytical continuation

below threshold) relates the finite-volume energy levels to
the (infinite-volume) partial wave phase shift δðpÞ. For
p ¼ pn,

p cot δðpÞ ¼ 2

L
ffiffiffi
π

p Z00

�
1;

L2

4π2
p2

�
; ð15Þ

for s-wave scattering, where Z00 is the (analytic continu-
ation of the) generalized zeta-function. The latter has a
simple exact expansion below threshold [74], so that

pcotδðpÞ ¼ ipþ 1

L

X∞
n¼1

θnffiffiffi
n

p e−
ffiffi
n

p jpjL

¼ ipþ 1

L

�
6e−jpjL þ 12ffiffiffi

2
p e−

ffiffi
2

p jpjL þ � � �
�
; ð16Þ

where θn is the theta series of a simple cubic lattice. It is
clear that as L increases the summation term approaches
zero and p approaches the infinite-volume binding momen-
tum pB defined by Eq. (10). In principle, mixing with
higher partial waves needs to be considered when deter-
mining the phase shift. However, these contributions are
suppressed and for the energy range of interest in this study,
it is reasonable to neglect them.
Covering energies (through varying the lattice extent L)

that are below and above threshold, we compute p cot δðpÞ
from Eq. (15) and perform the simple linear fit consistent
with the effective range approximation Eq. (9) to determine
a0 and r0. Then the bound state condition Eq. (10), which
becomes
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1

a0
−
1

2
r0jpBj2 ¼ −jpBj; ð17Þ

will provide the infinite-volume binding momentum pB
and thus the bound state mass mB, using Eq. (13). Finally,
the coupling can be evaluated within the same approxi-
mation by expanding the denominator of Eq. (12) around
sB ≡m2

B and making use of Eq. (10), to arrive at

g2 ¼ 64πmBpB

ð1 − r0pBÞ
�
1 −

�
m2

1
−m2

2

m2
B

�
2
� : ð18Þ

B. Chiral unitary approach

Within the chiral unitary approach the s-wave T-matrix
is expressed in terms of a (real) “potential” VðsÞ for the
scattering particles,

TðsÞ ¼ 1

V−1ðsÞ − GðsÞ ; ð19Þ

and a loop function GðsÞ of two-meson propagators,

GðsÞ ¼
Z
jkj<Λ

d3k
ð2πÞ3 Iðs; kÞ; ð20Þ

with

Iðs; kÞ ¼ 1

2ω1ðkÞω2ðkÞ
ω1ðkÞ þ ω2ðkÞ

s − ðω1ðkÞ þ ω2ðkÞÞ2
ð21Þ

and ω1=2ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1=2 þ k2
q

. The integral is divergent and

can be regularized by imposing a cutoffΛ on the magnitude
of k. Alternatively, one can perform dimensional regulari-
zation and introduce a subtraction constant, αðμÞ, for a
renormalization scale μ:

GðsÞ ¼ 1

16π2

�
αðμÞ þ log

m1m2

μ2
þδm
2s

log
m2

2

m2
1

þ pffiffiffi
s

p lðsÞ
�
ð22Þ

and

lðsÞ¼þ logð2 ffiffiffi
s

p
pþsþδmÞþ logð2 ffiffiffi

s
p

pþs−δmÞ
− logð2 ffiffiffi

s
p

p−sþδmÞ− logð2 ffiffiffi
s

p
p−s−δmÞ; ð23Þ

where δm ¼ m2
2 −m2

1 and p is given by Eq. (8).
With knowledge of the potential, the bound state mass,

as a pole in the T-matrix, can be obtained by imposing the
condition

VðsBÞGðsBÞ ¼ 1; ð24Þ

while in the vicinity of the pole one can combine the
parametrization of Eq. (19) with Eq. (11) to derive the sum
rule

g2
∂V−1

∂s|fflfflfflffl{zfflfflfflffl}
Z

þ g2
�
−
∂G
∂s
�

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1−Z

¼ 1: ð25Þ

We remark that in weakly coupled quantum mechanics
the potential V can be interpreted as a perturbation to a
hypothetical, noninteracting HamiltonianH0. Then Z is the
probability of the bound state to correspond to the one-
particle sector of H0 while 1 − Z represents the probability
that it is made up of more than one free particle, e.g., the D
and the K. This is known as Weinberg’s compositeness
condition [75]. For detailed discussions of the interpreta-
tion of this quantity within the present context see, for
example, Refs. [76–78]. However, it is not clear how
meaningful this notion is for a strongly interacting quantum
field theory. The nature of resonances in elastic scattering
with a nearby s-wave threshold was earlier discussed in
Refs. [79,80].
Note that the bound state mass, coupling and “compos-

iteness” are independent of the choice of subtraction
constant in Eq. (22) [or equivalently Λ in Eq. (20)] since
a change in αðμÞ is compensated for by a change in the
potential such that physical quantities remain unaffected.
Expressions for the (scalar) potential for K and D meson

scattering can be derived within heavy meson chiral
perturbation theory [81–89] (HMChPT). At leading
order [81],

VðsÞ ¼ 1

4F2
π

�
−3sþ ðm2

D −m2
KÞ2

s
þ 2ðm2

D þm2
KÞ
�
; ð26Þ

where Fπ is the pion decay constant with the normalization
corresponding to the experimental value of 92 MeV.
However, the potential can also be extracted using the
energy spectrum determined on the lattice. Neglecting
finite-volume effects on the potential that are exponentially
suppressed, the T-matrix for a spatial extent L reads

~Tðs; LÞ ¼ 1

V−1ðsÞ − ~Gðs; LÞ : ð27Þ

The finite-volume loop function is normally expressed as
the sum of the infinite-volume function [given by Eq. (22)]
and a correction term ΔGðs; LÞ,

~Gðs; LÞ ¼ GðsÞ þ ΔGðs; LÞ; ð28Þ

where

MASSES AND DECAY CONSTANTS OF THE … PHYSICAL REVIEW D 96, 074501 (2017)

074501-7



ΔGðs; LÞ ¼ lim
Λ→∞

�
1

L3

Xjkj<Λ
k

−
Z
jkj<Λ

d3k
ð2πÞ3

�
Iðs; kÞ: ð29Þ

The discrete sum is over the lattice momenta k ¼ 2π
L n;

n ∈ Z3. The lattice energy levels (squared), sn ¼ snðLÞ in
Eq. (13), correspond to poles of ~T. Thus, the bound state
condition

V−1ðsnÞ ¼ ~Gðsn; LÞ ð30Þ

allows us to probe the potential by evaluating ~Gðsn; LÞ for
each snðLÞ. Fitting the potential with a modeling function
(see Sec. V C), the bound state mass can be accessed by
imposing Eq. (24) and the coupling and compositeness
via Eq. (25).
The infinite-volume T-matrix can also be reconstructed:

TðsnÞ ¼
1

ΔGðsn; LÞ
: ð31Þ

This is independent of the regulator used. Note that when
extracting the phase shift using Eq. (7) an explicit form for
the potential does not have to be introduced. Indeed,
as shown in Ref. [90], this is a more general approach
than Lüscher’s, as small volume contributions are kept.
However, in this work, we find these additional contribu-
tions to be negligible.

V. RESULTS

The matrix of correlators in Eq. (6) is constructed for
each ensemble and the variational method applied. The
extraction of the (finite-volume) spectra from the resulting
eigenvalues is presented in the next subsection. The phase
shifts and infinite-volume information, including the
masses and couplings, derived from the spectra via
Lüscher’s formalism are presented in Sec. V B, followed
by a complementary analysis via the chiral unitary
approach in Sec. V C. Our results for the low lying Ds
spectrum are given in Sec. V D. In addition, we determine
the scalar and vector decay constants of the D�

s0ð2317Þ and
the axialvector and tensor decay constants of theD�

s1ð2460Þ
in Sec. V E.

A. Energies

For each channel of interest the operator basis for
constructing the correlator matrix in Eq. (6) is varied in
order to determine the influence of each interpolator on the
energy spectrum and to realize the best signals possible.
Considering the 0þ channel first, a basis of four operators
consisting of ODs

with all three smearing levels and ODK

with a single smearing level (see Sec. III and Table II)
proved sufficient for extracting the lowest two energies
corresponding to the bound state and the scattering state, as

demonstrated below. The quality of the signal achieved is
illustrated in Fig. 4, which displays the effective masses,

Enðtþ a=2; t0Þ ¼ log
λnðt; t0Þ

λnðtþ a; t0Þ
; ð32Þ

for the two levels on all ensembles in the time range t=a ∈
½6; 19� where t > t0 and t0 is set to 5a. Utilizing higher
values of t0 gave consistent results. As discussed in Sec. III,
the range of t is smaller than the lattice temporal extent as
the computational cost in terms of the number of light
quark inversions for some elements of the correlator matrix
is roughly proportional to the number of sink timeslices.
Figure 4 shows that unwanted contributions to the

eigenvalues from other (higher) states die away around
timeslices 12–14, corresponding to the physical distances
0.8–1.0 fm. As the spatial volume is increased, the energy
of the lowest state increases and the next level decreases,
tending towards the noninteracting threshold. This behavior
is compatible with that of a bound state [the D�

s0ð2317Þ]
that couples to the DK threshold and a scattering state. The
final results for the energies are extracted by fitting the
eigenvalues within a chosen time window. The end point
for the fit (tmax) needs to be fixed with care due to the short
physical time extent of the lattices, corresponding to 3.4 fm
for L ¼ 24a and 4.5 fm for L > 24a. For (anti)periodic
boundary conditions in the temporal direction, there are
additional contributions to the spectral decomposition of
CijðtÞ in Eq. (3). These include terms arising from back-
ward propagation in time of the form ZkiZ

†
kje

−EkðT−tÞ,
which can be neglected for t < T=2 in our analysis due
to the size of Ek and T. However, there are also the so-
called “thermal” contributions involving two particles, one
traveling forward in time, and the other propagating
backward. These particles can be a D and a K meson,
respectively, leading to the contribution,

hDjOijKihKjO†
j jDie−ðT−tÞmKe−mDt; ð33Þ

which may be significant around t ¼ T=2, making the
extraction of the Ds meson and scattering energies less
straightforward. If the overlaps in Eq. (33) are of the same
order of magnitude as the leading forward propagating
overlaps in Eq. (3) then at t ¼ 19a (17a) for T=a ¼ 64 (48)
these contributions are of the order of the statistical errors in
the correlator matrix, decreasing rapidly for smaller t. In the
case of two degenerate particles, Eq. (33) reduces to a
constant term which can be removed by taking finite
differences, see Ref. [91]. Here we choose tmax < 19a
(17a) for T=a ¼ 64 (48) to avoid any significant contri-
bution from thermal states.
Both single and double exponential fits were performed

to each eigenvalue, giving compatible results as demon-
strated in Fig. 5 for the mπ ¼ 290 MeV, L=a ¼ 64
ensemble. The starting point for the fit window (tmin)
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was set requiring that the correlated χ2=d:o:f. should be less
than 2 and that larger values for tmin give consistent results
within errors. The energies extracted depend on the
operator basis of the correlator matrix as displayed in
Fig. 6. In particular, a basis comprised of only ODs

interpolators gives the first energy level around
2360 MeV with the next state lying much higher, above
2800 MeV. The OD0

s
operators give the same spectrum but

with larger statistical errors for the lowest level, also when
combined with ODs

.
The first (finite-volume) scattering level is only resolved

when including the DK operators, with the ground state
extracted being shifted approximately 15 MeV lower. This
suggests that our choice of two-quark interpolators has
overlap with both of the two (closely lying) lowest levels
and that the ground state is not isolated within the time
window realized, t < 19a, or 1.3 fm if the two-meson
operators are omitted. We note that similar observations
using two- and four-quark operator bases constructed via
the distillation approach were made in Refs. [36,37],
although in general a different basis, for example, in terms
of the spin structure or spatial extension, can lead to

FIG. 4. The effective masses of the lowest two eigenvalues for the 0þ (top) and 1þ (bottom) sectors on ensembles with mπ ¼
290 MeV (left) and 150MeV (right). The horizontal lines represent the lowest two free scattering states determined for the largest spatial
volume at each pion mass, where for the second level corresponding to DðpÞKð−pÞ, the spatial momentum jpj ¼ 2π=L. A 4 × 4
correlator matrix is employed in all the cases, consisting of theO

Dð0Þ
s
operators with three different smearing levels and theODK operator

with one smearing level (see Sec. III). The energies of the third eigenvalues lie much higher.

FIG. 5. The effectivemasses of the lowest two eigenvalues in the
0þ channel compared to the results from one and two exponential
fits indicated by the green and blue bands, respectively, for the
mπ ¼ 290 MeV, L=a ¼ 64 ensemble. The fitting ranges in each
case are marked by the darker colors. The eigenvalues are
generated from a 4 × 4 correlator matrix as in Fig. 3.
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different behavior. As seen in the figure, the best signal is
obtained from a 4 × 4 correlator matrix with all three ODs

operators and theDK interpolator. This turned out to be the
case for all ensembles. The final results for the lowest two
levels are summarized in Table III.
Given the difficulty in extracting the spectrum of closely

lying levels, we remark that the second noninteracting
threshold arising from a D and K meson with opposite
momentum, jpj ¼ 2π=L, lies approximately 85 MeVabove
the first (with jpj ¼ 0) for the largest spatial volumes, see
Fig. 4. The corresponding finite-volume scattering levels
will be similarly close. The inclusion of operators of the
form DðpÞKð−pÞ (omitted in our analysis) would help
determine whether the energy of the lowest scattering level
is reliably determined in our analysis. Any contamination
from higher states is likely to be a small effect, becoming
even less significant for the smaller spatial volumes, as
suggested by the fact that the energy difference between the
lowest two noninteracting thresholds becomes much larger,
rising to 494 MeV for L=a ¼ 24.

FIG. 6. Lowest energy levels of the 0þ (left) and 1þ (right) channels extracted from fits to the eigenvalues for different operator bases
for themπ ¼ 150 MeV, L=a ¼ 64 ensemble. The basis is indicated at the bottom of the figure, where Γ refers to the spin structure of the
quark-antiquark interpolators, s̄Γc (see Table II) with Γ ¼ 1 and γiγ5 for the 0þ and 1þ mesons, respectively. All smearing levels are
utilized for each operator (see Sec. III), such that for the 1þ states when including theD�K interpolators, the results labeled with “Γ” are
determined from a 4 × 4 correlator matrix, while ðΓ; γtΓÞ refers to a 6 × 6 matrix. The exception is the ðΓ; γtΓÞ combination (with and
without the DK operators) for the scalar channel for which only the γtΓ operator with the largest smearing is employed. The
noninteracting DK and D�K thresholds for this ensemble are also shown as the dashed blue lines. The black arrows emphasize the fact
that the lowest energy extracted without the two meson operators present is contaminated by contributions from the finite-volume
“scattering” state Dð�ÞKðLÞ and this level and the ground state are only isolated once the DK interpolators are included.

TABLE III. Results in MeV for the lowest energy levels
extracted in the scalar and axialvector channels. The error given
is statistical derived from jackknife resampling for the chosen fit
window. Changing the window and/or type of fit (including one
or two exponentials), for reasonable χ2=d:o:f, gives a variation in
the central values within �1σ of the statistical errors. Note that in
the axialvector case we extract two states (in addition to the
scattering level) and both are labeled Ds1.

JP ¼ 0þ JP ¼ 1þ

L=a D�
s0 DK Ds1 D�K Ds1

mπ ¼ 290 MeV
24 2318(5) 2594(13) 2435(6) 2691(16) 2549(14)
32 2352(5) 2529(5) 2469(6) 2621(14) 2540(17)
40 2362(4) 2485(6) 2477(8) 2602(6) 2574(11)
64 2382(3) 2440(5) 2496(4) 2570(3) 2552(5)

mπ ¼ 150 MeV
48 2332(5) 2417(6) 2440(4) 2535(4) 2533(6)
64 2344(4) 2402(6) 2449(5) 2513(8) 2519(5)
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The analysis of the axialvector channel proceeds in a
similar way. In this case, in addition to the bound state
Ds1ð2460Þ and scattering level one expects a resonance, the
Ds1ð2536Þ, just above threshold. As Figs. 4 and 7 show, an
ODs

, ODK basis resolves two closely lying levels, while the
third is only isolated when OD0

s
interpolators are included.

Varying the basis for the correlator matrix, we identify the
scattering level to be the one which is only resolved when
the D�K interpolators are included (like for the scalar
channel, see Fig. 6) and that tends towards the noninter-
acting threshold as the spatial volume increases. The
ground state is also only cleanly extracted when the
D�K interpolators are included, while for the third level
the basis must include both ODs

and OD0
s
. The final results

for the axialvector channel on all ensembles are detailed in
Table III. In contrast to the ground state, the third level that
we identify as the Ds1ð2536Þ is insensitive to the spatial
volume, suggesting only a small coupling to the D�K
threshold. This state lies below the threshold for the
ensembles with mπ ¼ 290 MeV, rising to slightly above
but consistent with the scattering level for mπ ¼ 150 MeV.

B. Phase shifts, scattering lengths
and infinite-volume energies

The energy levels presented in the previous subsection
are consistent with the expected spectrum. However, the
nature of the physical states and the infinite-volume
information—phase shifts, energies and scattering lengths
etc.—should be accessed via Lüscher’s relation. For each
energy level we first determine the corresponding momenta

of two particles undergoing elastic scattering via Eq. (13).
The continuum dispersion relation is assumed to apply for
the relevant Dð�Þ and K mesons, although discretization
effects can lead to deviations at finite lattice spacing.
Figure 8 demonstrates that the continuum dispersion
relation reproduces the finite momentum D and K meson
energies to within the 0.4% and 0.7% statistical errors,
respectively, for the range of momenta of interest in this
study: p < 400 MeV for the example of mπ ¼ 150 MeV
and L=a ¼ 64. Similar behavior is seen for the other
ensembles and also for the D� meson.
The rest masses of the scattering mesons are required as

input in Eq. (13). The values in Table I indicate a mild
dependence on the volume, although this is only sta-
tistically significant (>3σ) for mK between L ¼ 24a and
larger spatial extents for the mπ ¼ 290 MeV ensembles.
We prefer to use the masses from L ¼ 64a as estimates of
the infinite-volume values throughout because we are
relating the spectra to scattering amplitudes in this limit.
Systematics due to finite L are discussed below.
For the ground state and scattering level in the scalar and

axialvector channels, the phase shifts are extracted in the
combination p cot δ utilizing Eq. (15). The third state in the
axialvector channel is treated separately due to the lack of
volume dependence, indicating a small coupling to the
D�K threshold. This is discussed further in Sec. V D.
Figure 9 presents the results as a function of p2 for all
ensembles. The intersection of the data with the curve
representing ip ¼ −

ffiffiffiffiffiffiffiffiffi
−p2

p
indicates the position of the

pole in the T-matrix in infinite volume [according to
Eqs. (7) and (16)]. As seen in the figure, the results from
the largest ensembles for both channels and pion masses lie
very close to the intersection.
Within the effective range approximation of Eq. (9),

p cot δ is linearly dependent on p2. The data are reasonably
consistent with this expectation apart from the results of the
smallest spatial volume, L¼24a≈1.7 fm at mπ¼290MeV.
This may be due to the breakdown of the approximation
and/or the presence of finite-volume effects that are

FIG. 7. The effective masses of the first three eigenvalues in the
axialvector channel for a 6 × 6 correlator matrix involving a basis
of ODs

, OD0
s
and ODK operators for the mπ ¼ 150 MeV, L=a ¼

64 ensemble. The horizontal lines represent the lowest two free
scattering states, where for the second level corresponding to
DðpÞKð−pÞ, the spatial momentum jpj ¼ 2π=L.

FIG. 8. The dispersion relation for the K and D mesons for the
mπ ¼ 150 MeV, L=a ¼ 64 ensemble from a subset of configu-
rations, Nconf ¼ 600.
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exponentially suppressed with Lmπ , not taken into account
in Lüscher’s formalism. Performing a linear fit excluding
the L ¼ 24a data, we obtain the scattering length a0 and the
effective range r0. The infinite-volume binding momentum,
pB, can then be accessed via Eq. (17) and subsequently the
bound state mass and the coupling g through Eqs. (13) and
(18), respectively. Note that in terms of Lmπ the L ¼ 48a
lattice at mπ ¼ 150 MeV is similar in size, however, in this
case p2 is closer to the threshold and to leading order in

ChPT the exponential corrections are additionally sup-
pressed by a factor of m2

π .
The results for these quantities are compiled in Table IV.

The first error given corresponds to the statistical uncer-
tainty while the second is an estimate of possible residual
finite-volume effects due to the exponentially suppressed
terms mentioned above. This estimate is computed by
performing the fits to p cot δ, excluding the data from
the smallest spatial extent. This means using only the

FIG. 9. The combination p cot δ as a function of p2 for the 0þ (top) and 1þ (bottom) sectors. The threshold p2 ¼ 0 separates the bound
state (left) and scattering state (right) regions. Linear fits to the data excluding the L ¼ 24a results are shown as red and blue lines while
the dashed curve indicates ip ¼ −

ffiffiffiffiffiffiffiffiffi
−p2

p
. The inverse scattering length 1=a0 can be read off from the intersection with the threshold.

The results of Lang et al. [37] from an ensemble with a near-physical pion mass are shown for comparison.

TABLE IV. Scattering length a0, effective range r0, infinite-volume binding momentum jpBj, threshold splitting Δm, infinite-volume
mass mDs

and coupling g for the scalar and axialvector channels for the mπ ¼ 290 MeV and mπ ¼ 150 MeV ensembles. The first error
is statistical while the second indicates the shift in the central value if the analysis is repeated using only the L=a ¼ 64 data for
mπ ¼ 150 MeV and L=a ¼ 40 and 64 data for mπ ¼ 290 MeV. The physical value of mDs

and Δm ¼ mD þmK −mDs
for the QCD

theory are also given (labeled as “Expt.”). See Sec. II for details of how isospin breaking and electromagnetic effects are taken into
account.

0þ channel 1þ channel

mπ ¼ 290 MeV mπ ¼ 150 MeV Expt. mπ ¼ 290 MeV mπ ¼ 150 MeV Expt.

a0 [fm] −1.13ð0.04Þðþ0.05Þ −1.49ð0.13Þð−0.30Þ −0.96ð0.05Þð−0.04Þ −1.24ð0.09Þð−0.12Þ
r0 [fm] 0.08ð0.03Þðþ0.08Þ 0.20ð0.09Þðþ0.31Þ 0.11ð0.06Þðþ0.08Þ 0.27ð0.07Þðþ0.13Þ
jpBj [MeV] 180(6)(0) 142ð11Þð−9Þ 219(7)(0) 180ð11Þð−3Þ
Δm [MeV] 40(3)(0) 26ð4Þð−3Þ 42.6(0.7)(2.0) 59(4)(0) 42ð5Þð−2Þ 42.9(0.7)(2.0)
mDs

[MeV] 2384ð2Þð−1Þ 2348ð4Þðþ6Þ 2317.7ð0.6Þð2.0Þ 2497ð4Þð−1Þ 2451ð4Þðþ1Þ 2459.5ð0.6Þð2.0Þ
g [GeV] 11.9ð0.3Þðþ0.5Þ 11.0ð0.6Þðþ1.2Þ 14.2ð0.6Þðþ0.7Þ 13.8ð0.7Þðþ1.1Þ
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L=a ¼ 64 results, i.e. two data points, at mπ ¼ 150 MeV
and the L=a ¼ 40 and 64 results at mπ ¼ 290 MeV. The
shifts in the central values for most quantities are around
one to two statistical standard deviations or less of the
original results. Larger shifts are found for a0 and r0, in
particular, for the lightest ensemble, however, the results
are still consistent given the larger statistical errors for the
reduced fits.
In both channels the scattering length is negative,

compatible with the existence of a bound state. The masses
of these states depend on the pion mass, decreasing by
36(4) MeV and 46(5) MeV between mπ ¼ 290 and
150 MeV for the 0þ and 1þ, respectively. The errors
indicated are due to statistics only. Similarly, the second 1þ
level also decreases by 33(7) MeV (see the L ¼ 64a data in
Table III). These shifts are much larger than for the lower
lying pseudoscalar and vector Ds meson masses which
decrease by 3 MeV [from 1980(1) MeVat mπ ¼ 290 MeV
to 1977(1) at mπ ¼ 150 MeV] and 7 MeV [from
2101(1) MeV to 2094(1) MeV], respectively, hinting that
the 0þ and 1þ states may have a more complicated internal
structure. The (lower) axialvector level for the smallest pion
mass is reasonably consistent with experiment, while the
scalar lies somewhat high. This mismatch is likely to be
due to discretization effects and is discussed further in
Sec. V D. As expected, considering Fig. 9, the results for
the largest spatial extent at each pion mass in Table III are
consistent with the infinite-volume values.
A comparison can be made with the study of Ref. [37],

which also includes a near-physical pion mass ensemble
with mπ ¼ 156 MeV, although the lattice spacing is
coarser, a ¼ 0.09 fm, and the spatial extent is smaller,
L ¼ 2.9 fm. As shown in Fig. 9, the results for p cot δ are
consistent for both the scalar and axialvector cases, in
particular, when comparing with the linear fit to our data at
the larger jp2j values realized in Ref. [37]. Not surprisingly,
the scattering lengths and effective ranges they extract are
similar to ours with a0¼−1.33ð20Þfm and r0¼0.27ð17Þ fm
for the scalar and a0¼−1.11ð11Þ fm and r0 ¼ 0.10ð10Þ fm
for the axialvector. The coupling for this simulation was
evaluated in a separate study [92] with the results g ¼
12.6ð1.5Þ GeV and 12.6(7) GeV for the scalar and axial-
vector channels, respectively, in reasonable agreement with
our values in Table IV. This study focused on an analysis of
the Mohler et al. [36] and Lang et al. [37] data within
the chiral unitary approach [92], discussed in the next
subsection.
Another quantity of interest is the binding energy, i.e. the

splitting of the bound state with respect to the (noninter-
acting) threshold. This is computed at finite L as well as in
the infinite-volume limit. The values for the latter (denoted
Δm) are given in Table III while the dependence on L is
displayed in Fig. 10 together with the results of Ref. [37]
for mπ ¼ 156 MeV for comparison. Also included in the
figure is the same splitting for the lowest scattering levels,

which, as expected, tends to zero with increasing spatial
extent. To guide the eye, we employ the effective range
approximation together with the fits to p cot δ shown in
Fig. 9 to derive the dependence on L via Eqs. (14) and (15),
indicated by the dashed lines. The consistency found with
the data is a reflection of the agreement seen in Fig. 9. For
mπ ¼ 150 MeV, Δm in the axialvector channel is com-
patible with the physical values, while we undershoot by
17 MeV for the scalar case. Taking the spin average of
the two channels to minimize lattice spacing effects (see
Sec. V D) gives a splitting of Δm ¼ 38ð4Þ MeV which is
within 2σ of 43(7)(2.0) MeV for the QCD theory. We
remark that the scalar and axialvector states are more
strongly bound for heavier pion mass.

C. Potential

We now consider the chiral unitary approach as an
alternative method for extracting the bound state mass and
coupling. The first step is to compute the potential through
Eq. (27) for each energy level squared sn. We employ
dimensional regularization for the continuum loop function
GðsÞ for a range of αðμÞ from −0.4 to −2.2 with the
renormalization scale fixed to μ ¼ mD and mD� for the
scalar and axialvector cases, respectively. This range is
chosen to encompass values consistent with imposing a

cutoff of kmax ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
χ −m2

K

q
∼ 0.87 GeV in Eq. (20), where

the chiral symmetry breaking scale Λχ ∼ 1 GeV. In par-
ticular, in Ref. [83] GðsÞ, evaluated by imposing
kmax ¼ 0.8–0.9GeV, was found to be equivalent to
α ∼ −0.6. The results for the scalar potential are displayed
in Fig. 11 for the values of α which match VðsÞ for the
L ¼ 64a ensembles to the HMChPT potential Eq. (26). In
the axialvector case the potential shows a similar depend-
ence on the squared energy.
The next step is to fit the potential with a reasonable

functional form. A linear ansatz is the natural choice in the
small region around threshold we are considering and is
consistent with the data, apart from the smallest volume
ensemble at mπ ¼ 290 MeV. For the latter, we may be
observing finite-volume effects, although there is also the
possibility of the influence of the Dsη threshold or
Castillejo-Dalitz-Dyson poles [93]. Performing linear fits
(omitting the L ¼ 24a results) and utilizing Eqs. (24) and
(25) we obtain the bound state masses and couplings given
in Table V. These physical results are independent of the
subtraction constant employed, as they should be, and are
compatible with the values determined through Lüscher’s
formalism and the effective range approximation. The two
errors shown are, respectively, statistical and systematic,
representing an estimate of finite-volume effects, computed
by performing a reduced fit in the same way as discussed in
the previous subsection. Note that the phase shift extracted
in this approach through Eqs. (30) and (7) is numerically
very similar to the results of the previous subsection and
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hence the effective range and scattering length extracted are
in agreement with the values in Table IV.
For comparison we also display the scalar potential from

leading order HMChPT [81] in Fig. 11. We apply the values
of mD, mK and Fπ from the L ¼ 64a ensemble for each
pion mass. The pion decay constant, determined in
Ref. [54], is equal to 95.1(3) MeV at mπ ¼ 290 MeV
and 85(1) MeV at mπ ¼ 150 MeV, indicating that we
undershoot the experimental result. This may be due to
discretization effects at the present lattice spacing
(a ¼ 0.071 fm). The value of α for each pion mass is
chosen such that the bound state energy level for the largest
ensemble is reproduced by the HMChPT potential. This
matching is reflected in the figure by the potential inter-
secting the large ensemble results. One can see that for the
short range of s realized in the lattice data this potential is
approximately linear. The slope is somewhat steeper than
the lattice data suggest and the couplings derived from
Eqs. (25) and (26), g ¼ 10.7 GeV and 9.8 GeV for mπ ¼
290 MeV and 150 MeV, respectively (that are independent
of the subtraction constant) are slightly lower compared to
the results from our fits, cf. Table V. If the phenomeno-
logical values for the masses and decay constant are
utilized, the HMChPT potential gives g ¼ 10.7 GeV.
Details of the higher order HMChPT terms for the

potential can be found in Refs. [82,85–89] and of other

FIG. 10. The splittings of the two lowest states with the noninteracting threshold for the scalar and axialvector channels for mπ ¼
290 MeV and 150 MeV. Displayed as dashed lines is the dependence on L derived using the effective range approximation for p cot δ
and Eqs. (14) and (15) with the central values for a0 and r0 of Table III. The infinite-volume splitting, also given in Table III, is shown
(statistical errors only) along with the corrected experimental values. The horizontal lines indicate the infinite-volume binding energy of
the states for each pion mass. In addition, the results of Ref. [37] (Lang et al.) are included for comparison.

FIG. 11. The potential of the scattering D and K meson in the
scalar channel as a function of the square of the energy in the center
of momentum frame. The subtraction constant αðμÞ of Eq. (22),
utilized for each pion mass, is fixed such that the potential from
HMChPT [Eq. (26), also shown as a grey line] reproduces the
lattice bound state mass for the L ¼ 64a ensembles. The renorm-
alization scale μ is set tomD. Linear fits to the lattice data are shown
with one sigma error bars, while vertical lines indicate the squared
energy of the bound state (sB) and also the noninteracting threshold
(sth). Note that the potential is defined to be dimensionless.
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chiral models, for example, in Ref. [84]. These works
also consider coupled channel effects. Table VI compares
recent results employing HMChPT with this study and
those of Mohler et al. [36] and Lang et al. [37], where most
works determine the scattering length. In many cases some
input from the lattice is taken and overall a0 tends to
be lower.
Regarding the compositeness of the bound state, we

find a strong DK component in the wave function with
1−Z≈1 to within 2 sigma in the statistical errors for

mπ ¼ 150 MeV for both the scalar and axialvector
channels, with slightly lower values for the larger pion
mass. A large systematic shift is encountered when trying
to estimate finite-volume effects, in particular, for mπ ¼
150 MeV due to the limited number of data points
available. These results are higher than those determined
in a similar analysis of the Mohler et al. [36] and Lang
et al. [37] data at mπ ¼ 156 MeV. The authors of Ref. [92]
found 1 − Z ¼ 0.72ð13Þð5Þ for the 0þ and 0.57(21)(6) for
the 1þ, although the errors are large.

TABLE V. The bound state mass, the coupling and the compositeness 1 − Z for the scalar and axialvector channels extracted using the
chiral unitary approach via linear fits to the potential for a range of values of the subtraction constant α (see the text). The first error is
statistical while the second indicates the shift in the central value if the analysis is repeated using only the L=a ¼ 64 data for
mπ ¼ 150 MeV and the L=a ¼ 40 and 64 data for mπ ¼ 290 MeV.

Scalar

mπ ¼ 290MeV mπ ¼ 150 MeV

α −0.4 −1.4 −2.2 −0.4 −1.4 −2.2

mDs
(MeV) 2384(3)(0) 2384(2)(0) 2384(2)(0) 2348ð5Þðþ3Þ 2348ð4Þðþ3Þ 2348ð4Þðþ3Þ

g (GeV) 11.7ð0.3Þðþ0.7Þ 11.7ð0.3Þðþ0.7Þ 11.8ð0.3Þðþ0.7Þ 11.2ð0.6Þðþ1.0Þ 11.1ð0.6Þðþ1.0Þ 11.1ð0.6Þðþ1.1Þ
1 − Z 0.90ð0.04Þðþ0.10Þ 0.90ð0.03Þðþ0.10Þ 0.90ð0.03Þðþ0.10Þ 1.08ð0.08Þðþ0.23Þ 1.04ð0.08Þðþ0.30Þ 1.04ð0.08Þðþ0.31Þ

Axialvector

mπ ¼ 290 MeV mπ ¼ 150 MeV

α −0.4 −1.4 −2.2 −0.4 −1.4 −2.2

mDs
(MeV) 2500ð4Þð−3Þ 2498ð4Þð−1Þ 2497ð3Þð−1Þ 2451ð4Þðþ1Þ 2451ð4Þðþ1Þ 2451ð4Þðþ1Þ

g (GeV) 14.3ð0.5Þðþ1.2Þ 14.1ð0.5Þðþ1.0Þ 14.0ð0.5Þðþ1.0Þ 13.8ð0.6Þðþ0.6Þ 13.8ð0.6Þðþ1.0Þ 13.8ð0.6Þðþ1.0Þ
1 − Z 1.00ð0.08Þðþ0.14Þ 0.95ð0.07Þðþ0.14Þ 0.94ð0.07Þðþ0.13Þ 1.13ð0.08Þðþ0.17Þ 1.14ð0.09Þðþ0.19Þ 1.14ð0.09Þðþ0.19Þ

TABLE VI. Comparison of results for the scattering length, effective range, coupling and compositeness for the D�
s0ð2317Þ and the

Ds1ð2460Þ from the lattice and unitarized HMChPT. Note that the lattice results of this work and those of Mohler et al. [36] and Lang
et al. [37] were obtained using near-physical pion masses, mπ ¼ 150 MeV and 156 MeV, respectively. The † symbol indicates that the
coupling is given in Ref. [92] where a reanalysis of the data from Refs. [36,37] was also performed within the effective range
approximation. For the HMChPT studies we indicate if lattice and/or experimental input has been utilized; see the references for details.
Liu et al. in Ref. [35] performed a lattice study of KD̄ at unphysical quark mass and use SU(3) flavor symmetry to relate the results to
that for the DK system.

a0 (fm) r0 (fm) g (GeV) 1 − Z

Scalar

This work −1.49ð0.13Þð−0.30Þ 0.20ð0.09Þðþ0.31Þ 11.0ð0.6Þðþ1.2Þ 1.04ð0.08Þðþ0.30Þ
Refs. [36,37]: LQCD −1.33ð20Þ 0.27(17) 12.6(1.5)†

Ref. [92]: HMChPTþ LQCD [36,37] −1.3ð5Þð1Þ −0.1ð3Þð1Þ 11.3 0.72(13)(5)
Ref. [35]: LQCDþ HMChPT −0.86ð3Þ 0.72 − 0.66
Ref. [83]: HMChPTþ Expt 10.203
Ref. [88]: HMChPTþ Exptþ LQCD [35–37] −1.04þ0.06

−0.03
Ref. [89]: HMChPTþ Exptþ LQCD [35–37] −0.89þ0.06

−0.10
Ref. [94]: HMChPTþ Expt −0.95þ0.15þ0.08

−0.15−0.13 0.70þ4þ4
−6−8

Axialvector

This work −1.24ð0.09Þð−0.12Þ 0.27ð0.07Þðþ0.13Þ 13.8ð0.7Þðþ1.1Þ 1.14ð0.09Þðþ0.19Þ
Refs. [36,37]: LQCD −1.11ð11Þ 0.10(10) 12.6(7)†

Ref. [92]: HMChPTþ LQCD [36,37] −1.1ð5Þð2Þ −0.2ð3Þð1Þ 14.2 0.57(21)(6)
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Finally, HMChPT at leading order provides broadly
similar values in the scalar case which increase with pion
mass, with 1 − Z ¼ 0.75 and 0.81 for mπ ¼ 290 and
150 MeV, respectively [independent of αðμÞ]. This can
be compared to 1 − Z ¼ 0.71 when imposing the physical
values of Fπ, mK and mD. The HMChPT potential has
also been employed to fit the experimental DK invariant
mass distributions of B → DDK and Bs → πDK decays,
giving a prediction for 1 − Z of 0.70þ4þ4

−6−8 [94]. As already
remarked below Eq. (25), the precise meaning of Z in a
relativistic quantum field theory is not clear.

D. Final spectrum

Our final results for the lower lying Ds spectrum are
compiled in Table VII and displayed in Fig. 12. The
energies of the negative parity particles and the thresholds,
which display very little dependence on the spatial volume,
are taken from the mπ ¼ 150 MeV, L ¼ 64a ensemble.
The masses of the D�

s0ð2317Þ and Ds1ð2460Þ correspond to
the infinite-volume values in Table IV derived from the
phase shift analysis of Sec. V B. For the 1þ state above
threshold, identified as the Ds1ð2536Þ, we also found no
significant dependence of the mass on the spatial extent,
even in the presence of s-wave D�K interpolators. This
behavior suggests a small coupling to the threshold (which
is difficult to resolve on the lattice via Lüscher’s formalism)

and a narrow width. Indeed the experimentally measured
width is only approximately 0.8 MeV for this decay mode
[95]. It would be interesting to also consider coupling to the
D�K in d-wave since in the heavy quark limit this mode is
dominant for the jP ¼ 3

2
þ doublet of which the Ds1ð2536Þ

is part, with the s-wave channel absent [13] [the opposite
holds for the jP ¼ 1

2
þ doublet which contains the

Ds1ð2460Þ]. Experimentally, the s-wave mode dominates
and its contribution to the total width is 0.72(5)(1) [96].
At present, our best estimate of the physical Ds1ð2536Þ
energy is again provided by the mπ ¼ 150 MeV, L ¼ 64a
ensemble.
We achieve statistical errors below 0.2% for the

positive parity states and even smaller ones for the negative
parity states, due to the large number of configurations
analyzed. Although the overall pattern of energy levels is as
expected, at this level of precision, there are clear discrep-
ancies with the experimental spectrum due to the remaining
systematics arising from lattice spacing effects and the still
unphysical light quark mass. As mentioned in Sec. II,
fine structure splittings are expected to be sensitive to

TABLE VII. Final results for the masses, thresholds and
splittings of the lower lying positive and negative parity Ds
spectrum; see the text for definitions. The values for the energies
of the negative parity states, Dð�Þ, K and the 10þ state [identified
as the Ds1ð2536Þ] are taken from the mπ ¼ 150, L ¼ 64a
ensemble and the errors indicated are statistical only. The masses
of the 0þ and 1þ correspond to the infinite-volume values for the
near-physical pion mass detailed in Table IV. In these cases both
statistical and systematic (due to finite-volume effects) uncer-
tainties are given. The experimental values provided have been
corrected for isospin and QED effects, see Sec. II for details.

Energy (MeV) Expt. (MeV)

m0− 1976.9(2) 1966.0(4)
m1− 2094.9(7) 2111.3(6)
m0þ 2348ð4Þðþ6Þ 2317.7(0.6)(2.0)
m1þ 2451ð4Þðþ1Þ 2459.5(0.6)(2.0)
m10þ 2519(5) 2535.1(0.1)(2.0)
mD þmK 2374(2) 2360.3(4)
mD� þmK 2493(3) 2502.4(4)
m− 2065.4(5) 2075.0(4)
mþ 2425ð4Þðþ2Þ 2424.1(0.5)(2.0)
1
4
ðmD þ 3mD� Þ þmK 2463(2) 2466.8(3)

m1− −m0− 118(1) 145.3(7)
m1þ −m0þ 103ð6Þðþ1

−6Þ 141.8(0.9)(2.0)
m0þ −m0− 371ð4Þðþ6Þ 351.7(0.7)(2.0)
m1þ −m1− 356ð4Þðþ1Þ 348.2(0.8)(2.0)
m10þ −m1− 424(5) 423.8(0.6)(2.0)
mþ −m− 360ð3Þðþ2Þ 349.1(0.6)(2.0)

FIG. 12. Left: Our final results for the lower lying Ds spectrum
as detailed in Table VII. The short horizontal black lines indicate
the corrected experimental values (see Sec. II) while the green
horizontal lines give the positions of the DK and D�K non-
interacting thresholds. Our lattice results for the finite-volume
thresholds are labeled DK and D�K, respectively. The errors
indicated are statistical only. Right: The negative parity spin-
averaged 1S mass m− ¼ 1

4
ðm0− þ 3m1−Þ is denoted −, while the

same spin average of the positive parity 0þ and 1þ states is labeled
withþ and the weighted average of the threshold is labeled as D̄K.

BALI, COLLINS, COX, and SCHÄFER PHYSICAL REVIEW D 96, 074501 (2017)

074501-16



discretization effects [which begin at Oða2Þ in our study],
due to being dominated by high energy scales. We find
that the hyperfine splittings, mD�

s
−mDs

¼ 118ð1Þ MeV
and m1þ −m0þ ¼ 103ð6Þ MeV, are well below the QED
and isospin corrected experimental values of 145.3(7) and
142(2) MeV, respectively. Spin-averaged combinations are
less affected, and better agreement is seen as illustrated on
the right-hand side of Fig. 12—both the positive parity and
threshold averages are reproduced within errors—indicat-
ing that most of the disagreement observed for the
individual masses is likely due to discretization effects.
For the positive parity spin average we are computing
mþ ¼ 1

4
ðm0þ þ 3m1þÞ for the 1

2
þ doublet, which includes

the lower axialvector state. For the threshold we take
the spin average of the 1S D mesons masses, mD̄ ¼
1
4
ðmD þ 3mD� Þ, together with the kaon mass.
In order to separate the light and strange quark effects

from that of the charm quark, we compute the splitting
mþ −m−, displayed in Fig. 13 for the largest spatial extent.
The results for mπ ¼ 290 MeV are shown for comparison.
Heavy quark effects may also largely cancel when con-
sidering splittings between masses within the two j ¼ 1

2

doublets, i.e. Δm0 ¼ m0þ −m0− and Δm1 ¼ m1þ −m1− ,
and possibly between the lower jz components of the 3

2
þ

and 1
2
− doublets, Δm10 ¼ m10þ −m1− . The splittings are a

few hundred MeV in size as expected for quantities
dominated by scales of the order of Λ̄ ∼ 500 GeV
(≪a−1 ¼ 2.76 GeV). As mentioned in Sec. V B, there is
significant dependence on the pion mass which is at odds
with a simple charm-strange quark model interpretation of
the positive parity states (the masses of the 1S negative
parity states do not vary significantly with mπ). For
mπ ¼ 150 MeV, Δm1 and Δm10 are reasonably consistent

with experiment, while Δm0 displays a significant differ-
ence of around 6%. However, for the spin-averaged
splitting, for which lattice spacing effects are most effec-
tively suppressed, there is only a 3% discrepancy or 4σ in
the statistical errors. With a very short (crude) linear
extrapolation to the physical point of mπ ¼ 135 MeV,
we find 356(3) MeV for this splitting compared to the
physical value of 349(2) MeV.

E. Decay constants

We are interested in how the magnitude of the ground
state 0þ and 1þ decay constants compare with those of
“conventional” mesons such as the pseudoscalar Ds and
vector D�

s. Starting with the 0þ state, the scalar decay
constant, fS, is defined through

h0js̄cjD�
s0ðpÞi ¼ fSm0þ ; ð34Þ

where the physical state is normalized according to

hD�
s0ðpÞjD�

s0ðp0Þi ¼ 2EðpÞL3δpp0 ð35Þ

for a finite-volume L3 and EðpÞ is the energy of the state.
The conserved vector current relation (CVC) connects fS
with the vector decay constant, fV ,

h0js̄γμcjD�
s0ðpÞi ¼ fVpμ; ð36Þ

such that at zero momentum,

fV ¼ fSðmc −msÞ=mD�
s0
; ð37Þ

with mc and ms denoting the charm and strange quark
masses, respectively. For a 1þ state with polarization ϵμ,
one can define axialvector and tensor decay constants:

h0js̄γνγ5cjDs1ðp; ϵÞi ¼ fAmDs1
ϵν; ð38Þ

h0js̄γ5σμνcjDs1ðp; ϵÞi ¼ fTðpμϵν − pνϵμÞ; ð39Þ

where since we are at zero spatial momentum, we set μ ¼ t
and average over ν ¼ i ∈ f1; 2; 3g. The above normaliza-
tions are compatible with those for a pseudoscalar meson
for which the decay constant fDs

¼ 250ð7Þ MeV for
Nf ¼ 2, see the FLAG review [56] for details. Note that
when comparing with the latter, the 0þ vector and 1þ
axialvector decay constants are the corresponding weak
observables, while fS and fT only appear in Standard
Model processes beyond tree-level or new physics
interactions.
On the lattice, the bare matrix elements are extracted

from correlators with a source interpolator,O†, which has a
good overlap with the physical state, and local sink
operators, JS ¼ s̄c and JV ¼ s̄γtc for the 0þ and JA ¼
s̄γiγ5c and JT ¼ s̄γ5γtγic for the 1þ, that are projected onto
zero momentum:

FIG. 13. Mass splittings as a function of the pion mass squared
for ensembles with a spatial extent of L ¼ 64a. The correspond-
ing corrected experimental values (see Sec. II) are indicated as
black open symbols at mπ ¼ 0.135 GeV. The spin average of the
mass of the lowest lying negative (positive) parity states is
denotedm− (mþ), whilem1þ (m10þ ) denotes the mass of the lower
(higher) 1þ level. The errors shown are statistical only.
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CX
LSðtÞ ¼ h0jJXðtÞO†ð0Þj0i ð40Þ

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL3

2
emt0

r
flattX e−mt ð41Þ

with X ∈ fS; V; A; Tg and m ∈ fm0þ ; m1þg. The source
interpolator is constructed from the basis of smeared
operators realized for the variational analysis, weighted
by the components of the eigenvector of the lowest state. In
the limit of ground state dominance, we expect the time
dependence shown on the rhs, where t0 is the reference time
in Eq. (4). We perform simultaneous single exponential fits
to correlators containing operators with the same quantum
numbers, i.e. CS

LS and CV
LS for the 0

þ and CA
LS and CT

LS for
the 1þ Ds mesons. This ensures the mass in Eq. (41) is
consistent for the different decay constants. The resulting
masses were also found to be compatible with those
extracted from the variational analysis. The correlators
relevant for determining the axial and tensor decay con-
stants of theDs1ð2536Þwere also computed in our analysis;
however, the simultaneous fits were unsatisfactory and it
was not possible to achieve reliable results. For this reason,
we do not present values for the decay constants of this
resonance.
In order to convert the bare results, flattX , into physical

predictions the lattice decay constants are renormalized in
the MS scheme and Symanzik improvement is applied to
reduce the discretization errors to Oða2Þ,2

frenX ¼ ZXð1þ am̄bXÞflattX ; ð42Þ

where m ¼ ðmc þmsÞ=2 and the vector Ward identity
quark masses, mq¼c;s ¼ ð1=κq − 1=κcritÞ=2a. The critical
hopping parameter, κcrit ¼ 0.1364281ð12Þ, was evaluated
in Ref. [54], which also provides nonperturbative values for
the renormalization factors,

ZA ¼ 0.76487ð64Þ; ZV ¼ 0.7365ð48Þ;
ZS ¼ ZM̄S

S ðμ ¼ 2 GeVÞ ¼ 0.6153ð25Þ;
ZT ¼ ZMS

T ðμ ¼ 2 GeVÞ ¼ 0.8530ð25Þ; ð43Þ
that are updates of earlier determinations in Ref. [97]. One-
loop expressions for the improvement factors bA;V;T were
employed [98–100],

bA ¼ 1þ 0.15219ð5Þg2; bV ¼ 1þ 0.15323ð5Þg2;
bT ¼ 1þ 0.1392ð1Þg2; ð44Þ
along with the “improved” coupling g2 ¼ −3 lnP ¼
6=β þOðg4Þ. P denotes the plaquette with the normaliza-
tion P ¼ 1 at β ¼ ∞ and the chirally extrapolated value of
P is equal to 0.54988. The uncertainty due to omitting
higher orders of the perturbative expansion is taken to be
one half of the one-loop term. For the scalar case, we utilize
the nonperturbative determination of bS in Ref. [101].
The final results are detailed in Fig. 14 and Table VIII. In

the latter, the first error quoted is statistical, while the
second is the uncertainty due to renormalization and OðaÞ
improvement. The decay constants tend to decrease slightly
as the pion mass is reduced and for theD�

s1ð2317Þ there is a

FIG. 14. The scalar and vector decay constants of the D�
s0ð2317Þ (left) and the axial and tensor decay constants of the Ds1ð2460Þ

(right) for different pion masses and spatial volumes. The black crosses indicate fCVCV , the vector decay constant obtained using fS and
the CVC relation, Eq. (37). The errors shown correspond to the statistical and renormalization uncertainties added in quadrature, see
Table VIII.

2In addition to employing a nonperturbatively OðaÞ improved
fermion action.
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mild dependence on the spatial lattice extent. We find
reasonable consistency with Eq. (37) when we derive the
vector 0þ decay constant from the scalar one, as seen in the
figure, suggesting discretization effects are not severe. We
remark that since the combination fSðmc −msÞ is renorm-
alization group invariant and is free of additive renormal-
ization, fV determined in this way (denoted fCVCV ) does not
require knowledge of any renormalization factors or
improvement terms and is automatically OðaÞ improved.
We consider fCVCV to represent the most reliable estimate of
the vector decay constant.
We take the results from the mπ ¼ 150 MeV, L ¼ 64a

ensemble as being closest to the physical values.
Unfortunately, the correlators needed to evaluate the
negative parity equivalents were not computed, however,
a simulation with the same action by the ALPHA
Collaboration found the pseudoscalar decay constant
fDs

∼257MeV [102] at mπ¼190MeV and a¼0.065 fm
with a final continuum, chirally extrapolated value of
247(5)(5) MeV. Very little dependence on the pion mass
was observed. Considering this result and the FLAG value
quoted above, the (P-wave) 0þ vector decay constant is
roughly 45% of that of the pseudoscalar, slightly above the

estimate of ∼0.32 from nonleptonic B decays to Dð�ÞDð�Þ
sJ

but of a similar order of magnitude. The difference is
indicative of the size of 1=mc corrections and/or violations
of the factorization approximation in the latter approach.
Performing the same comparison for the D�

s and
Ds1ð2460Þ is more difficult as lattice results for the vector
meson are only available after continuum and chiral extrapo-
lation for different lattice actions: Becirevic et al. utilizing
Nf ¼ 2 twisted mass fermions found fDs� ¼ 311ð9Þ MeV
and fDs�=fDs

¼ 1.26ð3Þ [103], while for Nf ¼ 2þ 1þ 1

HPQCDwith theHISQ fermion action obtainedfDs�=fDs
¼

1.10ð2Þ [104] and the ETMCollaborationwith twistedmass
fermions quoted fDs� ¼ 268.8ð6.6Þ MeV and fDs�=fDs

¼
1.087ð20Þ [105]. Taking fDs�=fDs

in the range 1.1–1.3 and
our result for fDs1ð2460Þ gives the latter very roughly as

60–70% of fD�
s
, which is very similar to the estimate from

nonleptonic B decays.
With a statistical precision of less than 2% one might

expect the systematics arising from finite-volume and dis-
cretization effects to be noticeable. We quantify the former
by performing a finite-volume extrapolation of the mπ ¼
290 MeV data, where we have a sufficient number of
spatial volumes, with the leading order chiral form of
f þ ge−Lmπ=ðLmπÞ3=2. The L ¼ 24a values are omitted in
the fit as higher order terms may be required for Lmπ ¼ 2.7.
In spite of the proximity of the Dð�ÞK threshold the volume
dependence is small and for all decay constants theL ¼ 64a
data are compatible with the infinite-volume limits. From
Table I the largest volume formπ ¼ 150 MeV is equivalent
in terms of Lmπ to the L ¼ 32a,mπ ¼ 290 MeV ensemble.
For fixed Lmπ and to NLO ChPT finite-volume effects are
due to one-pion exchange and scale with g ∝ m2

π; hence, we
estimate these effects to be of the order of

ðf290 MeV
X;L¼64a − f290 MeV

X;L¼32aÞ × ð150=290Þ2 ð45Þ

in the near-physical data. In the case of theDs1 at the lighter
pion mass one may worry about how to define the decay
constants in view of the possibility of a p-wave decay to
Dsππ. The theoretical framework has been developed in
Ref. [106] for twomeson channels.An analogous result does
not as yet exist for the three body problem, however, in view
of the narrowness of the Ds1 state we would expect such
corrections to be very small.
With only one lattice spacing available it is not possible

to quantify the magnitude of discretization effects. Instead,
the 10 MeV difference between the a ¼ 0.065 fm result of
the ALPHA Collaboration mentioned above and their
continuum limit value is taken as an indication of their
possible size. This systematic, along with that for finite L,
is included in Table VIII. We remark that the shift in the
results from a linear chiral extrapolation in m2

π to the

TABLE VIII. Renormalized decay constants for theD�
s0ð2317Þ and Ds1ð2460Þ in MeV for all ensembles. The scalar and tensor decay

constants are renormalized in the MS scheme at a scale of 2 GeV. The errors given are in the first case statistical and in the second case
due to the uncertainty in the renormalization and improvement factors. For the mπ ¼ 150 MeV data the third error is an estimate of
finite-volume effects while the fourth is the possible order of magnitude of the discretization effects, see the text.

mπ ¼ 290 MeV mπ ¼ 150 MeV

L=a 24 32 40 64 48 64

D�
s0

frenS 233(8)(2) 225(8)(2) 249(8)(2) 270(7)(2) 238(25)(2) 241ð4Þð2Þðþ12Þð10Þ
frenV 108(3)(2) 104(4)(2) 114(3)(2) 123(3)(2) 109(11)(2) 111ð2Þð2Þðþ05Þð10Þ
fCVC;renV

112(4)(0) 106(4)(0) 117(4)(0) 126(3)(0) 113(12)(0) 114ð2Þð0Þðþ05Þð10Þ
Ds1

frenA 191(6)(4) 187(3)(4) 202(7)(4) 205(6)(4) 191(4)(4) 194ð3Þð4Þðþ5Þð10Þ
frenT 137ð4Þð2Þ 130(2)(2) 140(5)(2) 141(4)(2) 134(2)(2) 135ð2Þð2Þðþ3Þð10Þ
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physical point is below the statistical standard deviation of
the mπ ¼ 150 MeV results.
Our final results are compared with those of other works

in Table IX. To our knowledge there is only one previous
lattice study of the decay constants by UKQCD [107] who
employ Nf ¼ 2 nonperturbatively improved clover fer-
mions at a single coarse lattice spacing of a ¼ 0.10 fm and
a small volume with L ¼ 1.6 fm, without consideration of
the coupling to the DK threshold. Their values are above
ours but in agreement considering the large uncertainties of
their calculation. Our results are also somewhat above those
derived from the experimental branching ratios of B decays
(under the assumption of heavy quark symmetry and the
factorization approximation), while quark model and QCD
sum rule studies give a wide range of values, some of which
are consistent with ours.
In the heavy quark limit the 0þ and 1þ form a degenerate

doublet with f0
þ

V ¼ f1
þ

A . At the charm quark mass this
equality is violated by 40%, see Table IX. As mentioned
above the decay constants are suppressed relative to the
corresponding negative parity ones. This suggests the scalar
and axialvector particles are more spatially extended as
might be expected for P-wave states but this is also
compatible, for example, with a molecular interpretation.
If we look to the charmonium sector as an indication
of how conventional S- and P-wave quark model particles
compare, we find the ratio of decay constants for decay to γγ
between the JPC ¼ 0−þ ηc and the JPC ¼ 0þþ χc0 is
around 0.7.

VI. CONCLUSIONS

In summary, we have performed a high statistics study of
the scalar and axialvector sectors of the Ds spectrum
involving six volumes comprising linear spatial extents
from 1.7 fm up to 4.5 fm and two pion masses of 290 and
150 MeV for a single lattice spacing a ¼ 0.07 fm. The
near-physical pion mass enables the DK and D�K thresh-
olds to be realized to within 14 MeV of the QED and
isospin corrected experimental values. S-wave coupling to
the threshold is accounted for in the simulation through the
variational approach with a basis of five quark-antiquark
interpolators and a single four-quark interpolator for each
channel. The Dð�Þ

s η and Dsππ thresholds that also exist in
the isospin symmetric limit are not considered.
The four-quark operators were found to be essential for

reliably extracting the ground state and first scattering
levels in our setup while in the axialvector channel the third
state, identified as the Ds1ð2536Þ, could be resolved
sufficiently using quark-antiquark interpolators only. The
gap between the first and second scattering levels is not
large for the biggest volumes and the analysis could be
improved in the future with the inclusion of operators
representing the D and K mesons with opposite momenta.
The quark line diagrams were evaluated following the
stochastic approach of Refs. [65–67]. The limited basis of
interpolators required means this approach is substantially
cheaper in terms of the computer time compared to other
methods such as the distillation technique [109,110] and
enables large volumes and small pion masses to be realized.

TABLE IX. Comparison of lattice results for the scalar and vector decay constants ofD�
s1ð2317Þ and the axial decay

constant of theDs1ð2460Þ from this work and that of Ref. [107] with other approaches, in MeV. The errors indicated
for our values are, in order, statistical, those arising from the renormalization and estimates of the uncertainties due to

finite-volume and lattice spacing. References [22,41,42] combine the experimental branching fractions for B →

Dð�ÞDð�Þ
sJ decays with heavy quark symmetry (HQS) and the factorization approximation, while Refs. [44,46–49]

employ quark models (QM) and Refs. [50,51] use QCD sum rules (QCDSR). The study of Ref. [108] assumes a
Dð�ÞK molecular structure for the D�

s0ð2317Þ and Ds1ð2460Þ and constrains the parameters of their effective
Lagrangian with the experimental D → Kð�Þ semileptonic form factors. See the references for more details.

f0
þ

S f0
þ

V f1
þ
A

This work 241ð4Þð2Þðþ12Þð10Þ 114ð2Þð0Þðþ5Þð10Þ 194ð3Þð4Þðþ5Þð10Þ
LQCD [107] 340(110) 200(50)

B-decaysþ HQS [41] 74(11) 166(20)
B-decaysþ HQS [22] 67(13)
B-decaysþ HQS [42] 58–86 130–200
QM [44] 440 410
QM [47] 122–154
Light front QM [46] 71 117
Light cone QCDSR [50] 225(25) 225(25)
DK-molecule [108] 67.1(4.5) 144.5(11.1)
Light front QM [48] 74.4þ10.4

−10.6 159−36þ32

QM [49] 119 165
QCDSR [51] 333(20) 245(17)
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The energy spectrum is translated into values for the
phase shift above and below the threshold via Lüscher’s
formalism. The data were consistent with a linear
dependence on the energy squared, within the range
jp2j ≤ 300 GeV2, as expected in the effective range
approximation. The results for the smallest spatial extent
of L ¼ 24a ≈ 1.7 fm lie outside this region and may suffer
from exponentially suppressed finite-volume effects which
are not included in the Lüscher approach or may be in the
range where corrections to linear behavior are significant.
Our values for the scattering length, effective range, bind-
ing energy and coupling to the threshold are given in
Table IV. The scattering lengths are negative, compatible
with the existence of a bound state in each channel, and the
infinite-volume masses are consistent with the results from
the largest spatial extent of 4.5 fm. The phase shift was not
evaluated for the Ds1ð2536Þ state due to the lack of
sensitivity of the mass to the spatial volume.
A complementary analysis within the chiral unitary

approach provided very similar results for the bound state
masses and couplings, see Table V. One can also access
Weinberg’s compositeness probability 1 − Z, which we
found to be 1 within errors for both states. A large value for
the latter is often interpreted as indicating that the bound
state has a substantial DK component in the wave function.
The final results for the spectrum are compiled in

Table VII and displayed in Fig. 12. They are comprised
of masses of the 0þ and lower 1þ state derived from the
phase shift analysis of the mπ ¼ 150 MeV ensemble and
the energies of the negative parity levels and higher 1þ state
obtained on the largest spatial volume at this pion mass.
Due to the high statistical precision achieved, significant
disagreement is seen with experiment, in particular for fine
structure splittings. The splitting of the 0þ state with the
DK threshold is also well below the physical result, while
that for the 1þ level is consistent. These differences with
respect to experiment seem to be predominantly due to
lattice spacing effects, as reasonable agreement is observed
for spin-averaged quantities, for example, for the average
threshold splitting and average jP ¼ 1

2
þ, 1

2
− splitting.

Further simulations at finer lattices are required to remove
this source of systematics.
The masses of the scalar and both axialvector particles

are sensitive to the pion mass, suggesting that these may not
be conventional quark model states. A heavier light quark
mass leads to more strongly bound D�

s0 and Ds1 mesons.
Evaluation of the decay constants of these mesons provides
additional inputs to model calculations probing their
internal structure. We find f0

þ
V ¼114ð2Þð0Þðþ5Þð10ÞMeV

and f1
þ

A ¼ 194ð3Þð4Þðþ5Þð10Þ MeV, where the errors are
due to statistics, renormalization, finite-volume and lattice
spacing effects. The ratios with the negative parity equiv-
alents are of similar sizes to those extracted from analyses

of nonleptonic B decays toDð�ÞDð�Þ
sJ [40–42], exploiting the

factorization approximation within HQET. However, our
f0

þ
V comes out somewhat higher hinting at violations of

the approximations. Finally we also computed the scalar
and tensor decay constants of the 0þ and 1þ mesons,
respectively, f0

þ
S ¼ 241ð4Þð2Þðþ12Þð10Þ MeV and f1

þ
T ¼

135ð2Þð2Þðþ3Þð10Þ MeV. These are not accessible via
leading order Standard Model processes but it would be
interesting to see if any model calculation can reproduce
these numbers.
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