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Accessing the topological susceptibility via the Gribov horizon
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The topological susceptibility, y*, following the work of Witten and Veneziano, plays a key role in

identifying the relative magnitude of the #' mass, the so-called U(1), problem. A nonzero y* is caused by
the Veneziano ghost, the occurrence of an unphysical massless pole in the correlation function of the
topological current K. In this paper, we investigate the topological susceptibility, y*, in SU(3) and SU(2)
Euclidean Yang-Mills theory using an appropriate Padé approximation tool and a nonperturbative gluon
propagator, within a Becchi-Rouet-Stora-Tyutin invariant framework and by taking into account Gribov

copies in a general linear covariant gauge.
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I. INTRODUCTORY REMARKS

There are two important properties of QCD that are
decisive in determining its particle spectrum: confinement,
the fact that quarks and gluons are not observable as free
particles, and chiral symmetry breaking, answering the
question why hadrons composed of u, d or s quarks or
antiquarks are so massive while these (light) quark flavors
themselves are almost massless.

Already 40 years ago, Gribov [1] showed that the
Faddeev-Popov construction is not valid at the nonpertur-
bative level, i.e. in the low energy limit where the coupling
constant, g, is large. In this regime, we have Gribov copies,
caused by multiple intersections of gauge orbits with the
hypersurface corresponding to a given gauge condition
f(A) = 0. This means that we have to deal in some way
with equivalent field configurations obeying the same
gauge fixing condition. Thus, in a nonperturbative non-
Abelian gauge theory setting, the Faddeev-Popov pro-
cedure is incomplete as it stands. For reviews, see [2,3].
The Gribov problem for covariant gauges was also put on a
mathematical footing in [4], at the same time showing that
it cannot be avoided. Loosely speaking, Gribov copies
imply that:

(i) we are overcounting equivalent gauge configura-
tions, since we have more than one gauge fixed
configuration for each gauge orbit. This implies the
Faddeev-Popov o-function implementing the gauge
condition will have multiple zeros of its argument,
complicating its interpretation as a unity being
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inserted into the a priori gauge invariant partition
function.

(ii) the Faddeev-Popov measure is ill-defined, since
there are zero-modes of the Faddeev-Popov operator
when considering the infinitesimal copies. This
implies a vanishing Faddeev-Popov (Jacobian) de-
terminant. Indeed, considering 2 infinitesimally con-
nected gauge configurations,

Al = AL + D6, (1)

AZ will obey the same (linear) gauge condition,
0,A; = f9, as Ay if

~9,Deb0" =0, 2)

i.e. whenever the Faddeev-Popov operator exhibits
normalizable zero modes, see [3] for some explicit
example.

To solve this problem, Gribov proposed to restrict the
domain of integration in the path integral to a certain region
Q in field space, called the Gribov region, which is free
from infinitesimal Gribov copies:

Q={A%0,A4 =0, M(A)=-9,Di(A)>0}. (3)
The Gribov region is the set of all field configurations
which obey the Landau gauge, 9,45 = 0, and where the
Hermitian Faddeev-Popov operator, M“(A), is positive.
Inside the Gribov region, there are no infinitesimal copies,
since M (A) > 0. The region Q is also known to be
convex, bounded and intersected at least once by every
gauge orbit [5]. Its boundary, 0Q, where the first vanishing
eigenvalue of M (A) (i.e. the first zero-mode of Faddeev-
Popov operator) appears, is called the first Gribov horizon.
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Unfortunately, even if the restriction of the domain of
integration in the functional integral to the region Q allows
to get rid of a large number of copies, there still remain
additional copies inside Q [6,7]. A subregion of €, known
as the fundamental modular region A, has been proven to
be fully free from Gribov copies. However, unlike the
Gribov region €, a concrete setup to implement the
restriction of the domain of integration in the functional
integral to A within a local and renormalizable framework
is still far beyond our present capabilities. Therefore, we
shall focus on the Gribov region €, which enables us to
already capture quite useful nonperturbative aspects, see [8]
for recent applications. Let us proceed by giving a sketchy
overview of the construction of the local action which
emerges from the restriction to €, referring to [1,9-16] for
the specific details.

In the Landau gauge, the effective implementation of the
restriction to € is accomplished by means of the Gribov-
Zwanziger action [1,9,10],

S = Sym + Sgr + Saz- (4)

Sywm 1s the Yang-Mills action,
1 4 a ra
SYM = Z d XFMDF;U/’ (5)
Sar 1s the Landau gauge Faddeev-Popov action,
Sar = / d*x(ib*9,A% + ¢9,D% (A)c?),  (6)
and finally,

Soz = [ dlag 0D ol - 0510, (Do)
— 90,3 b D
~rg [ A A+ (V= 1)),
™

is the part of the action which enables us to restrict the
functional integral to Q. In expression (7), (@, @) is a
pair of complex-conjugate bosonic fields, (@}°, w;;) a pair
of anti-commuting complex-conjugate fields, while y is the
Gribov parameter, dynamically fixed by means of its gap
equation [9,10],
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2
(fabeAd(pbe + @) =2a(N> - 1) (8)

NS

Remarkably, the action S is multiplicative renormalizable
to all orders, as discussed in [10-13].

After the formulation of the Gribov-Zwanziger action, it
was realized that it is plagued by nonperturbative dynami-
cal instabilities, caused by the formation of the dimension
two condensates, (A%A%) and (22" — @i’ wiP), which
are energetically favoured [14—16]. These condensates can
be taken into account from the beginning, leading to the so-

called Refined-Gribov-Zwanziger action [14—16]
Sk = Sym + Scr + Sraz: )

where

m? 4
SRGZ == SGZ + 7/ d XA;AZ
+ M? / d*x(pi it — ot wi?).  (10)

As much as the Gribov mass y?, the new parameters
(m?, M?) are dynamically determined by their own gap
equations [14—16]. As the action S, the refined action Sy is
multiplicative renormalizable to all orders [14-16].
Moreover, the introduction of the aforementioned conden-
sates allows for a nice agreement with the lattice data, see
e.g. [17-19].

Recently, the Gribov-Zwanziger formalism was gener-
alized to the linear covariant gauges [20]. Simultaneously,
an exact Becchi-Rouet-Stora-Tyutin (BRST) invariance of
the Landau gauge actions (4), (9) was found, with imme-
diate extension to the linear covariant gauges [20].
Following [20], the action (4) is replaced by

Sic = Sym + Sk + Srez + S5 (11)

where Sgr now denotes the Faddeev-Popov gauge-fixing in
linear covariant gauges, i.e.

Ser = / d“x(%b“b“+ib”8”A;’+E“6”Dﬁb(A)cb>, (12)

with a denoting the gauge parameter. The value a =0
corresponds to the Landau gauge. For the refined-Gribov-
Zwanziger action in linear covariant gauges we have [20]

2

2

o o , , o .m
Sraz = /d4x <—§0‘J°M“b(Ah)€0f° + @ M (AN + g f e (A" (n¢ + @) +/d4x(Ah)Z(Ah)Z

+ M? / d*x (Pt @it — % wi’) — d(N? — 1)7/4),

(13)
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and M“(A") is the Hermitian, gauge invariant operator

MP(AR) = =579 + gf*c(AM)5D,. (14)
The configuration Aﬁ is a nonlocal power series in the
gauge field, obtained by minimizing the functional f,[u]
along the gauge orbit of A, [5,6,21], with

falul = n{lui{lTr/d“xAzAﬁ,
Al =u"Au —|—éu78ﬂu. (15)

One finds that a local minimum is given by

9,0,
Al = (5ﬂ >¢y, 9,Ah =0,

b, =A, - [azaAA] LyaA d, 826 }+0(A3).

(16)

It can be checked that the quantity Aﬁ is gauge invariant
order by order [20]. To get control on the renormalization
properties of this seemingly highly nonlocal quantum field
theory, an equivalent local formulation can be obtained.
Following [20,22], we set

i
Al = (AM)aTe = hTAGT h +§hTaﬂh, (17)

while
h = e%'T (18)

with the role of the fields & akin to that of the Stueckelberg
formulation. The local gauge invariance of Af,‘ under a
gauge transformation u € SU(N) is now immediately clear
from

h—u'h, ht = hiu, A, — utAu +£uT8”u.
g

(19)

The term
s, — / 9, (M (20)

implements, through the Lagrange multiplier 7, the trans-
versality of the composite operator (Ah) , namely

0y (Ah)l‘j = 0. Solving the latter constraint gives back the
nonlocal expression for the field A/’j expressed in (16). This
constraint also plays a crucial role to maintain the
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ultraviolet renormalizability of the theory [22], in sharp
contrast with the standard Stueckelberg formulation. It can
also be shown that at the practical level, (4) and (11) give
rise to identical dynamics when working in the Landau
gauge, due to the gauge condition J,A] = 0 [20].

The action §). enjoys an exact nilpotent BRST invari-
ance, s5;. = 0, expressed by [20]

sAz = —Dzbcb, sct = gf"bccbcc,

sct = b4, sb? =0,

shil = —iged(T*) Rk,
sqo,‘jb =0, sa)ﬁ” =0,
sc?),‘jb =0, s@ﬁb =0,

st = 0. (21)

A detailed analysis of the consequences of this BRST
invariance at the quantum level can be found in [22], where
e.g. the Nielsen identities were discussed. Notice that this
BRST transformation is different from the one adopted
before in e. g [10]. In particular, the auxiliary fields
(93, pib, wib @a?) are now BRST singlets, i.e. they are
BRST invariant fields. However, as shown in details in [23]
they possess their own Ward identities which ensure the all
orders renormalizability of the action S)., Eq. (11). The gap
equation (8) gets replaced by its gauge invariant counterpart

(Fre (Al + @he)) = 2d(N* = 1) 5.
work, we are mostly interested in the general form of the

gluon propagator [22]. Introducing the standard transversal
and longitudinal projectors,

For the current

s

Pwp>:5v ’ Lz/p:— (22
H ( f P’ i (p) »? )
one finds that
PuPv
D, (p) = D(p)P,(p) + L(p) 2 (23)
with the transverse form factor,
2 2
p-+M
D = , (24
) p*+ (M* + m?)p* + M*m* + 2 24)

containing all nontrivial information. At tree level, this
factor stems from the quadratic part of the action (11),
where we set A* = 2¢>Ny*. Analogously as in perturbation
theory, the longitudinal gluon propagator is still exactly
known, being equal to its tree level expression, as it follows
from the BRST symmetry (21). In particular, we have

L(p) = . (25)
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The same behavior for the longitudinal component of the
propagator is found in other nonperturbative approaches to
the linear covariant gauges [24].

It is worth mentioning here that expression (24) fits very
well the lattice data, see [17-19]. Moreover, when the
various mass parameters are estimated by means of the
direct lattice comparison [17-19], it turns out that expres-
sion (24) exhibits 2 complex-conjugate poles, indicating
that the corresponding degrees of freedom cannot be
associated to excitations of the physical spectrum, similar
to the rationale of e.g. [25-27]. Said otherwise, expression
(24) can be seen as a manifestation of gluon confinement.
Propagators with complex poles such as (24) have also
been used to fit finite temperature lattice data [28], based on
which the confinement-deconfinement transition was dis-
cussed using the Polyakov loop criterion, providing a
reasonable estimate for the critical temperature, see e.g.
[29,30]. How to connect the (infrared) behavior of the
gluon, quark and ghost propagators and their mutual
interaction vertices to the linear confining potential
between static charges etc. is an open question, for what-
ever analytical scheme is considered to study the elemen-
tary n-point functions of QCD.

II. THE TOPOLOGICAL SUSCEPTIBILITY

Returning to QCD with 3 light flavors (u, d, s), we recall
it enjoys an (almost) U, (3) x Ug(3) (left x right) sym-
metry. There is a dynamical chiral (axial = L — R) sym-
metry breaking, reducing the invariance to the vector part
(L 4+ R), Uy(3). So one experimentally expects a nonet of
(almost) massless Goldstone modes, viz the 3 pions, 4
kaons,  and 7. However, it turns out that the #’ particle is
way too massive to be called the ninth “almost Goldstone”
boson as m, ~ 958 MeV.

One solution to this apparent U, (1) problem was offered
by ’t Hooft by means of instanton calculus, see [31]. The
validity of the instanton calculus in the large N limit is a
delicate issue (see [32] for a recent account), but another
way to understand the anomalous #' mass was, independ-
ently, worked out by Veneziano and Witten in [33,34].l
Summarizing, the celebrated Veneziano-Witten formula
reads

4N
mi, = f—zfﬁfg:o,Nf:o ~O(1/N), (26)

where 0 is the vacuum angle and f, the pion decay
constant. Although simple at first sight, this is a very
intricate formula, since the Lh.s. refers to QCD (with N
flavors), while the r.h.s. to the pure gauge theory. The
relation (26) thus explains the relatively large 7’ mass, given

'Due to the intricate infrared problems accompanying instan-
tons in an infinite volume, a large N extrapolation is difficult
when not working in a finite volume [32].
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that )(?):o,Nf:o = y* is sufficiently large. Filling in the

numbers requires y* ~ (200 MeV)*, not far from the lattice
SU(3) estimates as reported in [35].

In papers such as [26,36,37], it was suggested that a
resolution of the Gribov copies problem under the form of
infrared modified correlations functions, being intimately
linked with the topology of the gauge group, might also be
of direct importance to capture the nontrivial topological
structure of the QCD vacuum.

In Euclidean space-time, we have the classical instanton
solutions, describing in Minkowski space-time the tunnel-
ing between the degenerate vacuum states with different
Chern-Simons charge [38],

X = / Pk, (27)

with K, the temporal component of topological Chern-
Simons current,

2
g D AC,a g abc o
K, = 62 oy <a/A + 3 fob A@AC). (28)

This current is related to the topological charge density,

2

O(x) = 0,K, =2 F,

u WF ﬂDF e (29)
Witten and Veneziano suggested that the vacuum topology
fluctuations can be captured by the occurrence of an
unphysical mass pole [33,34], the Veneziano ghost, in
the topological current correlator,

pup(KuK,,_o) # 0. (30)

Thus, the Veneziano solution was to assume that

- 4
K(p) =i / a5 (K, (K, 0)"*" ~L3g, (1)

where y* >0 is the topological susceptibility of pure
Yang-Mills theory. The negative sign in (31) means
that we are dealing with an unphysical ghost particle, so
it cannot be directly measured in a physical process,
however the couplings of the ghosts can influence physical
amplitudes [26].

IIL SETUP OF A RATIONAL (PADE)
APPROXIMATION VIA THE SPECTRAL
KALLEN-LEHMANN REPRESENTATION OF
THE TOPOLOGICAL CURRENT CORRELATOR

From now on, we wish to find out if, by using Gribov
type propagators, we can obtain a reasonable ‘“‘semi-
nonperturbative” estimate for the topological susceptibility
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x*, without the need to introduce new effective vertices. We
notice that transversal component D(p) of the propagator
in (24) can be written as the linear combination of 2
standard massive propagators with complex-conjugate
masses, which allows for standard Feynman diagram-
computational manipulations.

We will follow the Euclidean conventions of [39]. More
precisely, we have

Xt = —[}grjlopﬂpu<KﬂKy> > 0. (32)

That y* > 0 follows from translational invariance applied to
= /d“x(FF(x),FF(O))

=v-! / d*x / d*y(FF(x),FF(y)) > 0. (33)

As pointed out originally in [40,41], see also [42], it
holds that

(0(x)Q(0)) <.

due to the (Osterwilder-Schrader) reflection positivity
and to the fr-odd character of Q. Combined with
J d*x(Q(x)Q(0)) > 0, this entails that (Q(x)Q(0)) must
contain a positive contact term to compensate the negative
rest of the integral. For example, setting

(0(x)0(0)),

for |x| > 0, (34)

Q(x) = for |x| > 0, (35)

then we need

(0(x)Q(0)) =

with C > 0.

The contact term thus plays a pretty important role in the
definition of the topological susceptibility, as recognized in
[40]. Contact terms are evidently also important to get a
finite (cf. additive renormalization) value for (Q(x)Q(0)).
As in principle these contact terms can be chosen, one
might have the impression that this would reflect in a
randomness in the definition of y*. This is however not the
case, see later.

Closely related to the above comment is that the 7-odd
character of Q also means that the Kaéllén-Lehmann
spectral density of (QQ) is negative. The original remarks
can be found in [40,41]. Following the derivation of the
usual Minkowski 2-point function of Q, we will find a
positive spectral integral. However, upon passing to
Euclidean space-time via a Wick rotation, the f-odd nature
of Q will introduce an extra factor i,” meaning that (QQ) in

Q(x) 4+ C5(x), for |x| >0, (36)

2Compare indeed to the complex i@F F topological term in the
Euclidean YM action.
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Euclidean spacetime will pick up an extra overall minus.
Thus, actually, we have

p(u) (i)

55 >0.
H+p

Q) =(0(n)0(-p)) == [ " du
(37)

It is interesting to remark that (37) is consistent with (34)
when we think in terms of the usual temporal Schwinger

function that is used to check for positivity violations [43].
Indeed, usually we introduce, for ¢ > 0,

C(1) = 21—” / dpe™'"'Q(p?). (38)

Substituting (37) into (38), we can rewrite this as

__l *® ﬂ(_/l)e_,\/ﬁ:_ © vo(v e
Clt) = zl s Adp(z) <0,
(39)

The definition (38) can however be rewritten as, with
x| = |(#.X)| > 0,

3 4 —ipx
27:V;/d /dpepQ 2). (40)

We recognize the Fourier transform of Q(x), so we recover
Q1) x C(r) <0, (41)

i.e. the negative spectral density in the Killén-Lehmann
representation (37) indeed ensures (34).

Let us now carry out a power counting analysis. As
dim Q( p?) = 4, this correlation function needs 3 subtrac-
tions to make it well defined (finite), as p(7) ~ 7> for
7 — oo. Without loss of generality, we can subtract at zero
momentum, finding as proper version of (37)

p(7)
(z+ p*)7
(42)

Q(Pz) =ay+ap*+ ap* - P6A dr

Doing so, y* would be determined by the subtraction
constant ag. This is a somewhat undesirable feature, as we
wish to derive an estimate for y* from the correlator.
However, usually one employs the a priori knowledge of
the correlator, and possibly of its slope, at zero momentum
via low energy theorems, to exchange constants like a, a;
in terms of these a priori known numbers (like y*) to
completely fix the correlation at any momentum. This is
rather the inverse order of the current analysis, where y* is
unknown. For a few examples we refer to [44].

074036-5



DUDAL, FELIX, GUIMARAES, and SORELLA

Next, including quarks in the analysis, it was shown in
[45] that the susceptibility, as defined via (32), is the one
entering the anomalous chiral Ward identities. As discussed
in [39], this definition also concurs with the one given in
[34] via the double derivative of the € term in the action.

Let us show that by employing expression (32), we can
also remove any ambiguity imposed by the subtraction
procedure. We may in general set

(Ko (p)K.(=p)) = (% - ”;f”)mw P ()

= 5,41/ _ pﬂgv / dr pJ_(T)Z
p 0 T+ p
N pyfu / A (7)
14 0

7+ p?’
based on Euclidean invariance. Then, we already find that®

(43)

QAp*) = =p*Ky(p?) = =p Aw drif)z (44)

T+ p
and thus
—7* = 1im p2K;(p?) = lim p? / "4 (1)2_ (45)
p*=0 =0 Jo T+p

As the 1.h.s. of (44) is gauge invariant, so should the r.h.s.
be, meaning that the longitudinal form factor K(p?*) and
its associated spectral function p;(u) ought to be gauge
invariant. Likewise, the transversal piece may contain
gauge variant contributions depending on the gauge
parameter a. This is the reason why we opt to work with
a general linear covariant gauge, as we can then explicitly
check how the gauge (in)variance manifests itself in the full
(KK)-correlation function.

Let us now be a bit more careful, and include the
subtraction terms. We focus on the relevant longitudinal
sector. From dimensional analysis, it is clear that this time
we only need 2 subtractions (p(z) ~ 7 for 7 — o), so a
finite result’ is guaranteed from

*We temporarily ignored the necessary subtractions here, see
later.

*It has been shown that the topological charge operator itself is
a renormalization group invariant [42,46] in pure gauge theories
(it is not when dynamical quarks are included, in which case even
operator mixing occurs with the chiral current). However, we are
interested in the topological susceptibility of the pure gauge
theory. Notice that it is indeed this quantity which enters the
Witten-Veneziano formula for the 7' mass [33,34]. As a conse-
quence, the leading ultraviolet behaviour in the p?> — co limit of
the correlator /C; ( p?) will also be completely determined by its
tree level behavior, taking into account the asymptotic freedom
and vanishing anomalous dimension of the topological charge
operator.
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py(7)

)7 (46)

Ky(p?) = by + b p* + p“/ dr
0 (T"’

and thus

—* = tim p?( by + by p* + 4/00517'0”(7) ey
e ,,zﬁop<° A N P (47)

with b ; subtraction constants. Obviously, we can rewrite
(47) as

—* = lim 6/°°d_/’n(7) 48
X p2—>0p 0 T(T + p2)1'2 ( )

and all reference to subtraction constants is indeed gone.

In a loop expansion approach using the refined Gribov-
Zwanziger (RGZ) action and associated RGZ propagator
(24), (48) will still automatically vanish. It is important to
stress here how difficult it is to get nonzero value for the
topological susceptibility from a continuum viewpoint.
Obviously, in the absence of a dynamical singularity at p> —
0 in the correlation function of two topological currents, y*
will always automatically vanish. This is precisely why one
needs a dynamically generated massless (ghost) bound state
in the K, channel. Usually, to get an estimate for a bound
state mass, one makes a series of approximations and/or
assumptions and obtain an estimate for e.g. the mass of a
pion. Here, an approximation of the mass of the Veneziano
ghost would be insufficient, as we need it to be exactly zero.
Usually, a massless bound state can be probed when a
symmetry (and symmetry-consistent approximations) pro-
tects the mass to be zero, needless to say we are thinking
about the Goldstone mechanism here. Clearly, the latter does
not apply to the Veneziano ghost particle, which is not the
Goldstone degree of freedom created by a current corre-
sponding to a spontaneously broken global symmetry. On
the contrary, it is a topologically conserved current. The
inherent difficulty just sketched to get a continuum handle
on the Veneziano ghost is what, to our understanding,
explains the lack of references trying to tackle the problem
directly. Notice that this does not a priori exclude a truly
nonperturbative lattice study of the relevant correlator, apart
from the potential difficulties in precisely defining the
topological current on the lattice [47-50].

Therefore, in this section we work out an approximation
to the quantity appearing in (48), more precisely to

6 | - ﬂ||(7)
p / dr (49)

7+ p?)e?’

Evidently, e.g. the one loop approximation to & (p?) is not
exact, since RGZ is still meant to be an expansion in the
YM coupling ¢?, this on top of a nontrivial vacuum,
encoded in the condensates, e.g. the dynamical mass scales,
present in (24). Due to asymptotic freedom, the one loop
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result will be trustworthy at sufficiently large p?. As such,
we will only retain the leading # power correction (propor-
tional to the mass scales present in the RGZ propagator)
relative to the standard perturbative one loop estimate
for IC” ( p2)

Assuming we temporarily rewrite the RGZ gluon propa-
gator as

p*+ M}

D(p?) = ,
(P7) P MR 1M

(50)

we first need to extract the spectral density associated with
the Killén-Lehmann representation of the physical part of
the K, correlation function. This has been worked out in
full detail in the Appendix, leading to (A27),

4n2_ 2_ap2_ d-1)/2
g (N* =1 72 —4b% —4ar) (@1
PMﬂ:—%HA—wé7n ll( a2
22PN (5) T
fort>7,=2(a+ a>+b?), (51)
where
M3 VAM3 — M3
a= 72 b= 73 2. (52)

A formal way to derive the spectral density based on
properties of the Stieltjes transform can be found in [51].
The threshold 7. is the natural generalization to the case of
2 complex conjugate masses of the usual threshold appear-
ing at (m + m')? in the case of 2 standard particles with
masses m and m'.

It is perhaps interesting to notice here that other non-
perturbative approaches do also give reasonably good
descriptions of the lattice data, see, e.g., [52-55], but in
particular is the output of functional equations as used in
[52—-54] purely numerical, which would make the deter-
mination of the here required spectral density much more
cumbersome, perhaps possibly via the (rather involved)
numerical routine of [56]. Therefore, we will solely rely
here on the discussed RGZ propagator, which allows for
closed analytical expressions.

As we use lattice data to get an estimate of the parameters
M, we need to work in a lattice compatible renormalization
scheme, such as the momentum subtraction scheme
(MOM), defined by

(53)

The proper renormalization factor Z, at scale y, is thus
given by

PHYSICAL REVIEW D 96, 074036 (2017)
P>+ M;

2\
D) vy yze

(54)

with

g L My My
2

(55)
pooow My

Since the gluon propagator we will use is the one
renormalized in MOM scheme at scale y, the coupling
constant ¢g> present in (A27) becomes

1 g LN
() T3 TeR

2
AMOM

(56)

g (u) =

We have checked the conversion formulas of [57], leading
to the following relation, valid for generic N and Ny =0

between the MOM and MS scales.

169/264

AMOM = Ame (57)

This relation follows from the general theory of [58], using
the following relation between the MS (3°) and MOM
coupling (),

169
F=70+cag+ ), Cy :¥N- (58)
For A}5?, we can use the estimate of [59],
N=2
AV 50,752/ (59)

with ¢ the string tension to set the physical scale on a
lattice. Using the standard value /o ~ 0.44 GeV, we find

N=2
AY=2 %331 MeV (60)

and thus

AVZ2 ~ 628 MeV. (61)

Moreover, [59] also reports AQIT? ~0.538,/6 ~ 237 MeV,
a value which compares favorably well with the estimate of
[57], stating Aﬁ_f ~ 224 MeV. The (somewhat older)
work [60] predicted A%3 ~ 233 MeV. The more recent
work [61] gave a preliminary value of Aﬁ_? ~0.62r) ~

262 MeV by using ry ~ 2.367/GeV. Using the estimate of
[57], we get

ANiGy =425 MeV. (62)
Let us first work out the SU(3) case. Including the
renormalization factors Z, the eventual spectral density
can be obtained from (A27),
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g (n)Z? (7> — 4b* - 4ar)3/?
297 72 '

pi(t) = —24.A_ (63)

Using the following values obtained from a fit to lattice
data [62],

M?=4473+0.021 GeV2, M2 =0.704 +0.029 GeV?,
M?% =0.3959 +0.0054 GeV*, (64)

we get from the central values

a=0352GeV2, h=0.522GeV?, 24,A_=31.719.
(65)

The fitted estimates of the mass scales entering (24) were
obtained by matching the tree level propagator on top of the
nonperturbative gluon lattice data, as a way to determine
the size of the dynamical RGZ mass scales. The latter
capture the non-perturbative nature of the nontrivial RGZ
vacuum, around which we expect perturbation theory to
work, as the RGZ mass scales offer a dynamical screening
of the Landau pole. At the to be considered scales p,
relative to the MOM scale (62), the corresponding MOM
strong coupling expansion parameter is effectively very
small, an indication that a perturbative treatment certainly
makes sense in the considered momentum region, after
which we, using the described Padé analysis, “extrapolate”
to the deep infrared, where we can no longer trust our
perturbative result, albeit corrected with power corrections,
for the correlation function. This is also the region where
we eventually have to consider the zero momentum limit to
make contact with the topological susceptibility. The Padé
extrapolation is thus used to estimate the hard to access
small momentum behavior of a correlation function from
its controllable behavior at higher momentum. This shares
a certain resemblance with the (Laplace or other) sum rules
approaches to estimate the topological susceptibility, where
the ultimate source of nonperturbative effects is also tracing
back to nontrivial QCD vacuum condensates that enter the
operator product expansion of a specific correlation func-
tion, from which is, after transforming, then also extracted
the information of interest by scanning for an optimal
parameter space [44,63].

More precisely, we approximated (49) with an
[./\/l + 2, ./\/l] Padé rational function in variable pz, which
are the ones having the same large p? behavior, viz. O(p*).
We opted to do the Padé approximation around p? = u?.
In general, given a function f(x), its [N, M] Padé
approximant R},  (x) is given by

7ao+..+aNxN
14+ byaM

R (%) (66)

PHYSICAL REVIEW D 96, 074036 (2017)

such that the Taylor series around x, of R} ,,(x) and f(x)
coincide up to order N + M.

With this, we can study the function y(u?) using the
previous ingredients and search for optimal values, in the
sense of minimal dependence, on the scale 4. We remark
here that the scale at which we do the Padé approximation
should be not too small, so that we can trust the (perturba-
tively) computed r.h.s. of (48), and not too large so that we
are taking into account sizable nonperturbative effects from
the presence of the RGZ mass scales in (24), and perform a
sensible extrapolation of the approximant to zero momen-
tum to get an estimate for y*. A natural choice is to expand
around the renormalization scale u?, since the MOM
renormalization scale is subject to the same assumptions
when used to renormalize lattice data, see e.g. [64]. The
results are shown in Fig. 1 for M = 1, 2, 3 for a reasonable
interval for y?, to be compared with the lattice ballpark
value of y ~200 MeV [35]. It is not a surprise that the
results are pushed down as M grows, since for M —
the approximant will converge to the original propagator
which we know to have a trivial y. So, although Padé
approximation suggests a nonzero value for y, it is difficult
to provide a definite estimate.

To get an error estimation from the uncertainty on
X = (M? M3, M%), we compute the corresponding stan-
dard deviation on y(u?) in the standard way,

2
2

(W) = Z <§—i> o2, (67)

o

as the errors on the x; are small; the ¢, can be read off from
(64). We have displayed o, (4*) in Fig. 2.

For N =2, Ayom is given by (61) and the spectral
density thence reads

3¢ () Z*(u) (7 — 4b> — 4az)’?

pi(r) = —2ALA_ (68)

212”4 ,L.2

Xx(MeV)
300 |
250
200 f
150 |
100 f

50 |

FIG. 1. The SU(3) topological susceptibility y for variable u?
for M =1, 2, 3 (full, dashed, dotted).
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o(MeV)
25

20

- am=
-
-
-
-
I

FIG.2. Estimated error on y for SU(3) due to the uncertainty on
the fitting parameters for variable p?> for M =1, 2, 3 (full,
dashed, dotted).

X(MeV)
250

200 |
150 |
100 |

50

FIG. 3. The SU(2) topological susceptibility y for variable u?
for M =1, 2, 3 (full, dashed, dotted).

o(MeV)

FIG.4. Estimated error on y for SU(2) due to the uncertainty on
the fitting parameters for variable p?> for M =1, 2, 3 (full,
dashed, dotted).

Following the same procedure as for N = 3, we get the
graphs of Fig. 3 and Fig. 4 in the N = 2 case. Here, we used

M? =2.508 4+ 0.078 GeV?,
M4 =0.518+0.013 GeV*,

M3 = 0.590 £ 0.026 GeV?,
(69)

PHYSICAL REVIEW D 96, 074036 (2017)

as can be inferred from the largest volume data of Table II
in [18], yielding as central values

a=0.295GeV?, b=0.657GeV>, 2A,A_=6.176.

(70)

For the record, let us mention that the SU(2) lattice
prediction for the topological susceptibility sets y =
200-230 MeV, see [65]. A compatible value was also found
in [37] using a nonperturbative continuum Hamiltonian
approach in Coulomb gauge.

IV. CONCLUSION

We have analyzed the topological susceptibility, y*, in
SU(2) and SU(3) Euclidean Yang-Mills theory in a generic
linear covariant gauge taking into account the Gribov
ambiguity. We employed a recently constructed effective
action that implements a restriction of the gauge field path
integration to a suitable subregion so that at least the
infinitesimal gauge copies are eliminated, this without
violating the BRST symmetry. As a consequence, the
topological susceptibility is, as required, gauge invariant
in this nonperturbative framework, explicitly checked to
leading order in the present work. In an attempt to get
estimates for the topological susceptibility, we developed a
particular Padé rational function approximation based on
the Killén-Lehmann spectral integral representation of the
topological current correlation function. To improve upon
the presented crude estimates, we plan to include the next
order correction in future work. Notice this will be
computationally challenging, thanks to the significantly
enlarged set of vertices in the now considered Refined
Gribov-Zwanziger action for the linear covariant gauge.
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APPENDIX: EXPLICIT EVALUATION
OF THE SPECTRAL DENSITY

In this Appendix, we compute at leading order the
spectral density of the topological current correlator. Using
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2
Ku = T uioht (@Az - gf““A';Ag) ,
we obtain for the current-current correlator (KK) at one loop order
g
<K/4 (x)Kv (y>> = W Eﬂﬂpagywa <A/l§ (x) apAZ (X)Ajf7 (J’)aeAg (y)> .
Now, in Fourier space

4
<K/4 ()C) KI-/ (y)> = # gyﬁpo'gylea <A; ()C) apAg' (X)Af (y)aHAg (.y)>

4

= Wé’ﬂﬁpaé’ywa/dded”dqeiqyelpxe’kxemvP Po <A§(k)Ag(P)Aﬁi(”)Ag(CI)>-

We perform the contractions using Wick’s theorem and disregarding the disconnected contributions, we get

g'(N*=1)

(K, (X)K,(y)) = T

Via the substitutions
£=k—q and ¢ =p-+k,
we can rewrite (A4)

d d p!
KWK = [ %e’”’“‘”ﬂu(ﬂ + [ %e%’wgﬂm,

by which

4A2 d
Pl ) = upiin | i = €0,k = 0Dl Dol =)

and

PN - 1) Ak

) = ummtiins | (ymyalle’ =KD (D2 ).

Using FEYNCALC [66], these expressions can be further simplified to

Ful0) =Tm ) [P Gule (D) - L) 20008

+ k.Z((L(k) — D(k))k.f +4D(k)k*) — 2D(k)k*£?]
+2,[¢,(K*(L(k) = D(k)) + 2D(k)k?)

+ k,((D(k) = L(k))k.£ = 2D(k)k*)]
+ k, [k, (€*(L(k) — D(k)) + 2D(k)k?*)
+¢,((D(k) = L(k))k.¢ = 2D(k)k*)]}

and
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402 _ d
be(f’) _9 (1]22”4 D / (jﬂ])cd 2D(k)D(¢ — k) [5ﬂy(k.f’ — kz) + k#(k,, -2, (A10)

We are only interested in the longitudinal component, which can be extracted by acting with the appropriate projector
L,,(p). As it can be easily verified, the a-dependent contributions do cancel, as expected from gauge invariance. As such,
from here on, we can set L(k) = 0. Doing so, (A9) reduces to

Fult) = gV -1) / (ddk D)D(Z = k) (=8, 20202 + K2 (2K — %) — 4*k.C + (k)]

16274 27)4 k?
+ £, [k, + k, (k€ = 2K%)] + k,[(2k* — %)k,
+ 2, (k. - 2k*)]}. (A11)

Eventually, in Fourier space we obtain

(K, (p)K,(—p)) = g — b / (ddk D(k)D(p — k){66,,,,k. P+ 4k, k, — 48,k — 8, p?

16°x 2r)4
(k. p)z k.p k,k, k.p
4kﬂ Py + 5;41/ k2 + PuPv + pﬂk k2 - Zpuku - p2 22 =+ kﬂpu 7 (A12)

The longitudinal part of (A12) is then given by

H(N? - d 2 12,2
(K, (p)K,(-p)) = LDl / (d £ D()D(p - k)4<k'l’>7’<l’

16277,'4 p2 277;)d p2
4(N? -1 dk 1 1 k.p)* — k*p?
—9(24)/ dj2 2 2 24( P)z L. (A13)
1677 (2m)* k> —mi (p —k)* —mj3 p
The next step is to rewrite (A13) in spectral form, i.e. to extract the spectral density p( p?), making use of
2+ M3 A A
() =L - - (A14)

p4+M§p2+M§:p2+mi+p2+m3’

where we assume M3 < 4M3% as motivated from all lattice fits, so that the poles and residues are complex-conjugate
numbers. Using this decomposition into standard massive Feynman propagators, each propagator with mass m?% needs to be
combined with an accompanying propagator with complex-conjugate mass m?2 to assure a branch cut along the usual (real)
half-axis, consistent with a standard Kéllén-Lehmann integral [67]. This means that we need to take into account the
following contributions,

—-1) [ d%k [ A A_ A A k.p)* — k*p*
(Ku(p)K,(=p)) = 2 4 )/ 2 - 2 2 2 2 > 2 4( ) 2
6 @m)\&* +m? (p—k)* +m2 Tem (p—k)?+mk p
21 d 1 1 k.p)? = k*p?
2 4 )/ : k 2A+A— 2 2 2 2 4( p) 2 o . (Al15)
16 2z k> +m? (p—k)*+m* p

We will for the time being forget about the prefactor 24 A_ and will restore it at the end.
To continue, we temporarily look at a general massive propagator in Minkowski space, i.e. at

g*(N? —4 1) / (ddk 1 1 (k.p)* — k*p? . (A16)

4
16°% 27) k> —m3 (p—k)> —m3 p?
The reason is that, as discussed in [51], to compute the spectral density entering the Kéllén-Lehmann representation, we can
formally use the (Minkowski) Cutkosky cut rules [68] pretending to work with particles with on-shell real masses, and at the
end, move back to Euclidean space, simultaneously replacing the masses with their respective complex-conjugate values
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mi > m% =a+ib and m3 — m> =a—ib. (A17)

So, let us apply the Cutkosky rules via the usual replacement,

o~ 20Kk — m}) (A18)
e
and

5 = 270((p = K)°)3((p — k)> = m3). (A19)

(p=k)*=m3

We know that p(7)  DiscK(z) = 2ImK(7), thus

40n2 _ d N N 2
k(o) = 5 U= [ 000a@ = mot(p ~ 0005~ - ) (U542, (a0

We will work in the center-of-mass frame, i.e. p, = (p°,0) = (E,0), then

4(n2 d . 02 .
tk(£2) =3 TS [ i 000(@ P - o Jol(E - 00938 - 17 = i) (U -awep + )
40N2 _ d _ -
5T g OBE) = 61 = )8 (E = ) = ) 4 —4(47)? =45
A4(N2 _ d . g
= 2T [ e OUORE) = 0 JO(E = )00 = K = ) (A21)

with @ ; = 4/ o+ m?. Integrating over k” and changing for spherical coordinates, we obtain

2 GWN =) k] g, ]
F(%) 1627* (2m)4-2 Wy D)o

ImK(E2) = — S(E — ayy — w0k (A22)

Using the property 5(g(k*)) = \g/(lfcg)\ S(K* — k) = 2‘%”;’(%)‘ S(|k| = |ko|), where kg is such that g(kg) = 0, i.e.

9@) = E— /B +mt = /B +m3 =0

PRV T T

) A23
°E (A23)
(A22) gives us
4772 7 1d-372
g IN“=1) kol ko
ImK(E?) = — - . (A24)
2d+6”5/21—*(%) E
With conjugate masses parameterized as in (A17), (A23) can be rewritten as
- VE*—4b? — 4aE?
[ko| = (A25)

2F

and with the two last equations, we can write (A24) as
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VE'—4p—4ak” \ 973 (VE —4b?—4aE’ | 2
2F 2E

40 A72
g'(N"-1)

ImIC(Ez) = _2d+67[5/21ﬁ(%)
g'(N* = 1)

- 22d+5ﬂ.5/21—~(%)

Using E? — 7 and the equivalence p = 1ImK(7) we finally get

g'(N*=1)

py(r) = —24,A_

The threshold is given by [51]

.= (m, +m_)? =2(a+

We also restored the prefactor 24, A_.

22d+57[7/21—~(%)

E
E* — 4b? — 4qE2)(d-1)/2

( i ) . (A26)

E

2 _4p2 -4 (d-1)/2
G _ /zm) for 7 > z,. (A27)
T

a’ + b?). (A28)
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