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We describe a strategy for constructing a neural network jet substructure tagger which powerfully
discriminates boosted decay signals while remaining largely uncorrelated with the jet mass. This reduces
the impact of systematic uncertainties in background modeling while enhancing signal purity, resulting in
improved discovery significance relative to existing taggers. The network is trained using an adversarial
strategy, resulting in a tagger that learns to balance classification accuracy with decorrelation. As a
benchmark scenario, we consider the case where large-radius jets originating from a boosted resonance
decay are discriminated from a background of nonresonant quark and gluon jets. We show that in the
presence of systematic uncertainties on the background rate, our adversarially trained, decorrelated tagger
considerably outperforms a conventionally trained neural network, despite having a slightly worse signal-
background separation power. We generalize the adversarial training technique to include a parametric
dependence on the signal hypothesis, training a single network that provides optimized, interpolatable
decorrelated jet tagging across a continuous range of hypothetical resonance masses, after training on
discrete choices of the signal mass.
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I. INTRODUCTION

The enormous center-of-mass energy of theLargeHadron
Collider (LHC) enables the production of particles at such
extreme velocities that the decay products of even massive
particles can become collimated. Rather than producing
distinct deposits of energy in the calorimeter, hadronic decay
products of such boosted objects can overlap, creating a
single large jet.Distinguishing between jets originating from
a single particle (such as a quark or gluon), and those which
contain two or three hadronic decay products, is known as jet
tagging, and has become an essential component of searches
for new physics at the LHC [1–5].
However, optimizing the LHC discovery potential

requires balancing the competing constraints of signal
discrimination and systematic uncertainties. We consider
the case posed in Ref. [6] in which a spectrum of jet masses
is examined for the presence of a signal-like resonance

peak. The background is dominated by QCD jets, while the
hypothetical signal is produced via the hadronic decay of a
boosted resonance.
On one hand, there has been intense theoretical work to

develop jet substructure tagging tools [7,8] with powerful
discrimination between these types of jets. On the other
hand, the processes that produce backgrounds to these
searches are often not well understood or are poorly
modeled by simulation tools. As a result, experiments in
practice rely on the assumption of a smooth background
spectrum in jet mass which can be interpolated under a
signal peak from observed sidebands in data. This allows
the background to be estimated without incurring large
systematic effects that would be difficult to control due to
the limited understanding of the background processes. The
existence of well-developed techniques designed to search
for a localized signal over a smooth continuum background
gives the jet mass a special importance as an observable;
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however, these techniques are only effective to the extent
that the background may be well described by a simple
functional form. Unfortunately, the jet-tagging discrimina-
tion quantities may be correlated with jet mass, resulting in
a distortion of the background shape [9] when used in the
analysis selection. Hence, the desire for optimal discrimi-
nation and reduced sensitivity to systematic uncertainties in
general (and jet mass interpolation in this particular
example) are naturally at tension with each other.
One solution, designing decorrelated taggers (DDT) [9],

uses a simple parametric function to construct a modified
version of one tagging variable (e.g. τ21), adjusted specifi-
cally to avoid distorting the mass spectrum. This has been
shown [10] to effectively balance the issues of discrimi-
nation and systematic uncertainty for the quantity τ21.
However, a multivariate classifier (such as a neural

network) utilizing the full suite of tagging variables will
have considerably greater discrimination power than any
individual variable, or pair of variables [11]. In principle,
the DDT approach could be generalized to handle multiple
variables, or even the output of a machine-learning-based
combination of these variables, but the more complex and
nonlinear response will require increasingly complex and
nonlinear corrections.
In this paper, we incorporate the decorrelation require-

ment directly into the machine learning strategy by modi-
fying the learning rule to include a constraint which
attempts to penalize solutions that distort the background
mass spectrum. The training strategy is adversarial [12–15],
in which a pair of networks, a classifier and an adversary,
are trained simultaneously with different objectives. The
classifier is trained in the traditional manner to maximize
classification accuracy. As proposed by Ref. [16], the
adversary is trained to infer the value of one of the classifier
inputs from the classifer response. In this scheme, the two
networks together perform a constrained optimization
which maximizes classification accuracy while minimizing
the dependence of the classifier response on the selected
input. Here, one network performs jet substructure classi-
fication, while the adversary attempts to infer the jet mass
solely from the classifier response.
Lastly, we generalize the adversarial decorrelation tech-

nique to include the case where both the classifier and its
adversary are parametrized by some external quantity, such
as a theoretical hypothesis for the mass of a new particle or a
field coupling strength. This is motivated by the fact that
resonance searches, such as the one described here, are often
performed as scan over a range of potential masses.
Generally the optimal classifier for each hypothesis will
differ. However, the signal simulations used for training can
usually only be sampled for a small number of hypotheses
values due to the computational expense of producing them.
Networks parametrized in this way [17,18] can inter-

polate to provide optimal classification for hypotheses
which were not included in the training, allowing

sensitivity to be evaluated without generating simulations
at those points. We show that a single adversarially trained
classifier, parametrized in the hypothesis signal mass,
remains decorrelated over the range of values upon which
it is trained.

II. BENCHMARK DATA

Simulated samples are used to model the kinematics of
the signal and background processes. As a benchmark
signal, we use the Z0 model from Ref. [6], which produces a
hadronically decaying resonance boosted by its recoil
against an initial state photon (Fig. 1). The same model
can be used to study recoil against initial-state gluons orW
bosons; we choose the photon channel due to the simpler
event topology.
Signal events in which a hypothetical Z0 boson decays to

quarks are simulated at parton level with MADGRAPH5 [19]
v2.2.3, with PYTHIA [20] v6.4.28 for showering and hadroni-
zation, and with DELPHES [21] v3.1.2 in the ATLAS-style
configuration for primitive detector simulation. The pri-
mary background is due to γ þ jets production, which is
generated with SHERPA [22] v.2.2.0 requiring one photon and
one to three additional hard partons.
The measurement of jet masses is sensitive to the

presence of additional in-time pp interactions, referred
to as pileup events. We overlay such interactions in the
simulation chain, with an average number of interactions
per event of hμi ¼ 15, which is comparable to the level
observed in ATLAS 2015 data, with the LHC delivering
collisions at a 25 ns bunch crossing interval. Effects due to
out-of-time pileup are not modeled or accounted for.
To mitigate the impact of pileup events on large-radius

jet reconstruction, we apply a jet-trimming algorithm
[23,24] which is designed to remove constituents of the
jet cluster originating from pileup interactions, while
preserving the two-pronged substructure characteristic of
boson decay. Jets are trimmed by reclustering into kT
subjets, with Rtrim ¼ 0.2, and dropping subjets with less
than 3% of the original jet pT. Only jets reconstructed with
mtrim > 20 GeV are considered in this analysis.
As the angular separation of the quarks may be quite

small in the case of a high-pT Z0, we reconstruct [24] a
single large-radius jet with distance parameter R ¼ 1.0. To

FIG. 1. Diagram of a hadronically decaying resonance (Z0)
produced recoiling against an initial state photon (γ).
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reflect the thresholds imposed by the ATLAS trigger, we
require pγ

T > 150 GeV and pjet
T > 150 GeV. In the case of

multiple large-R jets, the one with greatest pT is selected.
For the large-radius jets, we calculate various jet sub-

structure variables such as the N-subjettiness ratio τ21
[7,25], and the energy correlation functions [8,26].
Recent studies have shown that deep neural networks
applied to lower-level calorimeter information can match
the performance of several of these higher-level variables in
combination [11], but these higher-level variables capture
most of the discriminative information and are theoretically
well understood.
Distributions of the various kinematic quantities for jets

selected in signal and background processes are shown in
Fig. 2. The neural networks described below use eleven
variables:

(i) Jet pseudo-rapidity, azimuthal angle, transverse
momentum, and invariant mass;

(ii) Jet energy correlation variables, C2 and D2 [8];

(iii) Jet N-subjettiness (τ21) [7]; and
(iv) Photon energy, pseudo-rapidity, azimuthal angle,

transverse momentum.
For comparison with Ref. [9], we additionally apply the

DDT procedure to produce a modified variable, τ021, which
has reduced correlation with jet mass. However, no simple
linear relationship was seen between the profile of τ21 and
the jet mass, and a linear correction does not remove the
dependence; this may be due to the application of jet
trimming, which differs from the treatment in Ref. [9]. To
provide a fair comparison, we extend the DDT-style
approach to use a second-order correction, producing a
variable τ0021, which demonstrates reasonable independence
from the jet mass (Fig. 5).

III. NEURAL NETWORKS

The strategy outlined in Ref. [16] describes how to train
a classifier which is uncorrelated with a nuisance param-
eter. Here, we apply this strategy to the closely-related
problem of decorrelating the classifier with respect to the
jet invariant mass, as the nuisance parameter is not well
defined; further discussion of this issue is found below in
Sec. V. In Sec. VII, we extend this strategy to a problem
requiring a parametrized solution.
Two neural networks—a jet classifier and an adversary—

constitute two distinct segments of the feedforward archi-
tecture shown in Fig. 3. The loss of the tagger is defined as

Ltagger ¼ Lclassification − λLadversary;

where λ is a positive constant, and Lclassification and Ladversary
are the standard classification-error loss functions for each
segment. The two neural networks are trained concurrently;
the tagger’s objective is to minimize Ltagger, while adversary
minimizes onlyLadversary. The hyperparameter λ represents a
tradeoff between the two objective terms; we found that a
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FIG. 2. Distributions of jet variables in simulated Z0 þ γ signal
events, with mZ0 ¼ 100 GeV, as well as γ þ jet background
events. From top left to bottom right are shown the jet pseudor-
apidity, transverse momentum, energy correlation variables C2

and D2 [8], jet invariant mass, and N-subjettiness (τ21) [7]. There
are five additional input variables described in the text (not
shown).

FIG. 3. Architecture of the neural networks in the adversarial
training strategy. The classifying network distinguishes signal
from background using the eleven variables (X) described in the
text. The adversarial network attempts to predict the invariant
mass using only the output of the classifier, fcðXÞ; note that the
adversary has multiple binary classification outputs, correspond-
ing to bins in jet invariant mass, rather than a single regression
output.
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value of λ ¼ 100 was a good tradeoff for our task, but in
general this hyperparameter can be optimized like any other.
The classifier network in this experiment consisted of

eleven input features, three fully connected hidden layers
each with 300 nodes having hyperbolic tangent activation
functions, and a single logistic output node with the
binomial cross-entropy classification objective. The adver-
sarial network consisted of a single input, 50 nodes with
hyperbolic tangent activation functions, and a softmax
output layer with 10 classes corresponding to binned values
of the jet invariant mass (each bin representing one decile of
the background), and the multiclass cross-entropy classi-
fication objective.
Because the adversary is challenged with adapting to an

ever-changing input as the classifier is trained, and also
because its task is relatively easy, two strategies were used
to train the adversary faster than the classifier. First, the
adversary was given a head start at the beginning of training
with 100 updates while the classifier was fixed. Second, the
adversary was trained with a larger learning rate of 1.0
compared to 10−3 for the tagger objective.
The data set used for experiments was divided into

training (80%), validation (10%, used for hyperparameter
tuning), and testing (10%) subsets. Each classifier input
feature was log-scaled if the empirical skew estimate was
greater than 1.0, then standardized to zero mean and unit
variance. Model parameters were initialized from a scaled
normal distribution [27].
Training was performed using stochastic gradient

descent, applied to mini-batches of 100 examples from
each class. During training, the event weights were scaled
so that the average weight for each class was 1.0. However,
in the adversarial loss function Ladversary, the signal events
were given zero weight, rendering them invisible to the
adversary.
Updates were made using a training momentum term of

0.5; the learning rate decayed by a factor of 10−5 after each
update. Training was stopped after 100 epochs, where an
epoch was defined as a single pass through the background
samples (≈400 k training events). Models were imple-
mented in KERAS [28] and THEANO [29], and hyper-
parameters were optimized on a cluster of Nvidia Titan
Black processors.

IV. PERFORMANCE

We compare the discrimination power of five candidate
classifiers: the NN trained without an adversary, the
adversarially trained NN, the unmodified τ21, and the
two DDT-modified variables τ021, and τ

00
21. The performance

can be characterized by measuring the signal efficiency and
background rejection of various thresholds on these dis-
criminators (Fig. 4).
The variable τ021, which is modified to reduce correlation

with the mass, results in a modest decrease in its
classification power relative to the unmodified τ21 at

mZ0 ¼ 100 GeV, though note that these effects are mass
dependent for both τ021 and τ0021. Similarly, the adversarial
network does not match the discrimination power of the
traditional classification network, due to the additional
constraint imposed in its optimization. However, both NNs
are clearly able to take advantage of the combined power of
the substructure variables, and offer a large improvement in
background rejection for similar signal efficiencies com-
pared to classification based on τ21 alone.
The focus of this study, however, is to look beyond the

pure discriminatory power of these tools and study their
effect on the jet mass spectrum. In Fig. 5, it can be seen that
the adversarial network output for background events has a
profile which is largely independent of jet mass, while the
classifying network is strongly dependent on jet mass.
Similarly, τ021 and τ0021 have a lessened dependence on jet
mass, compared to τ21. Figure 7 shows the effect on the jet
mass distribution of successively stricter requirements on
these variables. Note that the adversarial network’s depend-
ence on jet mass is diminished, but not eliminated, as can be
seen in the contour plot of Fig. 5. This is a reflection of the
tradeoff inherent in balancing classification power with jet
mass dependence.
In Fig. 5, we also show the profile of the neural network

output versus jet mass, for various thresholds on the jet pT,
which shows some small pT-dependent effects, but no large
features. As an alternative strategy, we trained a network
using an adversarial strategy with respect to logðm=pTÞ,
which more closely mimics the approach used in Ref. [9];
the training succeeded in finding a network with a flat
response in logðm=pTÞ, but the distortion in jet mass was
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jet-tagging discriminants: traditional networks trained to optimize
classification, networks trained with an adversarial strategy to
optimize classification while minimizing impact on jet mass, the
unmodified τ21, and the two DDT-modified variables τ021, and τ
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21.

The signal samples have mZ0 ¼ 100 GeV for this example.
Generalization to other masses is shown in Sec. VII.
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much more significant. In principle, it is possible to use the
adversary to enforce a two-dimensional decorrelation, but
since the pT dependence is not severe here, we leave this for
future study.

V. STATISTICAL INTERPRETATION

The ability to discriminate jets due the hadronic decay of
a boosted object from those due to a quark or gluon is an
important feature of a jet substructure tagging tool, but as
discussed above it is not the only requirement. Due to the
necessity of accurately modeling the background, it is
desirable that the jet tagger avoid distortion of the back-
ground distribution. Simpler background shapes are espe-
cially preferred because they allow for robust estimates that
are constrained by the sidebands; backgrounds that can be
modeled with fewer parameters and inflections avoid
degeneracy with signal features, such as a peak.
Figures 5 and 6 shows qualitatively that the adversarial

network’s response is not strongly dependent on jet mass.

But a quantitative assessment is more difficult. Mass
independence is not in itself the goal; instead, we seek
reduced dependence on knowledge of the background
shape and reduced sensitivity to the systematic uncertain-
ties that tend to dilute the statistical significance of a
discovery.
However, our lack of knowledge of the true background

model in general also makes it nontrivial to rigorously
define and estimate the background uncertainty. In practice,
experimentalists use an assumed functional form, with
parameters constrained by background-dominated side-
bands to predict the background in the signal region.
These assumptions may be validated by examining control
regions in which the signal is not present, and the back-
ground processes are expected to exhibit physically similar
properties. For example, the tagger selection may be
inverted to yield a sample with high background purity
which may be used as a template. If the tagger selection
induces a distortion of the spectrum, these techniques are
ineffective. Moreover, when tagger-induced distortion
depletes data from the sidebands (as is typically the case),
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classification compared to an adversarial network trained to
optimize classification while minimizing dependence on jet mass.
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variable τ21 and the DDT-modified τ021 and τ0021 which attempt
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any background model becomes more difficult to constrain.
To demonstrate these effects on the overall statistical
performance of a search, we construct a simplified stat-
istical test which has the desired behavior of penalizing
discriminators which yield excessive distortion of the
background shape.
A threshold is placed on the discriminator output, after

which a likelihood fit is performed, binned in the distri-
bution of reconstructed large-radius jet masses using signal
and background templates from simulated samples.1 An
uncertainty on the rate of the background is included in
order to model our lack of knowledge of the background.
We calculate expected discovery significance using a
profile likelihood ratio [30] with the CLs technique
[31,32], marginalizing over the unknown background rate.
Any background model used (whether a template or

functional form) will necessarily incorporate nuisance
parameters corresponding to unknown properties of the
background; what is important in practice is that these
parameters can be effectively constrained in the observed
data. Though the shape of the background model consid-
ered here is fixed via the template, the uncertainty on the
rate provides the statistical behavior we seek. Specifically,
if the uncertainty in the rate of the background is large
enough, then the discovery significance is sensitive also to
the shape of the background distribution as follows. In the
case that the background is fairly flat, there are back-
ground-dominated sidebands which can constrain the rate
uncertainty. In the opposite case that the background is
distorted to mimic the signal, these sideband constraints
have reduced power, and the signal and background are
more difficult to distinguish statistically. Hence, the pres-
ence of rate uncertainties penalizes a solution which
distorts the background spectrum as desired. Although this
simple approach likely underestimates the true impact of
more realistic systematics, it is sufficient to illustrate the
effect on sensitivity. In the following, we take for the
small (large)-uncertainty case a relative uncertainty of 5%
(50%) on the overall background rate.
Examples of the final jet mass distribution are shown in

Figs. 8 and 9 for thresholds on the discriminants which
result in signal efficiency of 90% and 50% respectively.

VI. RESULTS

The discovery significance is measured for varying
thresholds on the discriminator outputs. While all of the
discriminators exhibit some degree of classification power,
this study explores the question of whether they provide
additional discovery significance.
Figure 10 shows the discovery significance as a function

of the signal efficiency of the discriminator threshold, for
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FIG. 7. Jet mass distributions for background events with
successively stricter requirements on different substructure dis-
crimination strategies, giving signal efficiencies of εsig ¼ 50%,
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1In principle, the most powerful approach is a likelihood
directly on the output of the discriminator, but this requires a valid
model of the background, which is lacking in this case.
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two choices of background uncertainty. In the case of the
small uncertainty (5% relative), applying a tighter threshold
on the discriminator improves the discovery significance,
despite lowering the signal efficiency, due to the heightened

background suppression. Even at fairly low signal effi-
ciencies of 50%, where the background is sculpted to look
like the signal (see Fig. 9), the discovery significance is
improved. This is as expected; if the background rate and
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shape are well known, then the lack of constraining
sidebands is not detrimental.
For the case of the larger background rate uncertainty,

thresholds on τ21 provide a smaller boost to the signifi-
cance. The large relative uncertainty on the background
will penalize configurations in which the background is
sculpted to resemble the signal, preventing the data
from constraining the background rate in the sidebands.
Thresholds on τ021 and τ

00
21 are slightly stronger, as expected,

due to their decreased correlation with jet mass. Thresholds
on the output of the classifier network, which has the
strongest discrimination power, only weakens the discov-
ery significance, due to the background mass distortion.
However, the adversarial network is still capable of power-
ful discrimination which improves the discovery power at
high signal efficiency, around 90%. Table I shows the
maximal discovery significance for each case. The quali-
tative results persist for other signal-to-background ratios.

VII. PARAMETRIZED NEURAL NETWORKS

The studies above demonstrate the application for the
case of a single example value of the hypothetical Z0 mass.
In this section, we show that the same approach can be
generalized to solve a set of closely related problems, jet
classification for different Z0 masses, using a single neural
network parametrized in mZ0 .
These parameterized neural networks [18] address a

common problem in physics: solving a classification task
multiple times for different values of an unknown latent
variable, like mZ0 . Simulations used to train jet classifiers
are generally performed for a small set of fixed Z0 mass
values. In the traditional approach, a separate neural

network classifier is trained for each Z0 mass value.
However, by treating mZ0 as just another input feature, a
single parametrized neural network can learn to solve the
related classification tasks all at once (Fig. 11).
Furthermore, the classifier can interpolate to other values
of mZ0 if the function is smooth.
For this experiment, some hyperparameters were tuned

to this more complex task. The classifier had three hidden
layers of 300 tanh nodes, with a learning rate of 10−4, a
momentum of 0.95, and an L2 weight decay factor of 10−3

in each layer. The adversary consisted of two hidden layers
of 100 tanh nodes each, with a learning rate of 10−2, a
momentum of 0.95, and an L2 weight decay factor of 10−4

in each layer. The parameter λ was set to 10.
The adversary was also parametrized by including the Z0

mass as an input along with the classifier output. The
resulting classifier predictions for background events are
mostly independent of mass when conditioned on each
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FIG. 10. Statistical significance of a hypothetical signal for
varying thresholds on the outputs of networks trained to optimize
classification compared to adversarial networks trained to opti-
mize classification while minimizing impact on jet mass. Shown
are two scenarios, in which the uncertainty on the background
level is negligible or large, both with Nsig ¼ 100, Nbg ¼ 1000.

TABLE I. Signal and background efficiencies at maximal
discovery significance at mZ0 ¼ 100 GeV for each method and
for scenarios of large (50%) or small (5%) relative systematic
uncertainty on the background rate. Uncertainties are approx-
imately 0.01 in all cases.

Signal Background Discovery
Method Efficiency Efficiency Significance (σ)

5% background uncertainty
Advanced trained NN 0.44 0.06 5.05
Traditional NN 0.39 0.03 4.97
τ21 0.44 0.19 4.00
τ021 0.50 0.29 3.97
τ0021 0.52 0.26 4.01

50% background uncertainty
Advanced trained NN 0.82 0.48 3.67
Traditional NN 1.00 1.00 2.82
τ21 0.60 0.32 3.00
τ021 0.70 0.50 3.19
τ0021 0.70 0.45 3.15

FIG. 11. Architecture of the neural networks in the parame-
trized adversarial training strategy. The classifying network
distinguishes signal from background using the eleven variables
described in the text (X) plusmZ0 . The classifying network output
is then a function of mZ0 . The adversarial network attempts to
predict the invariant mass using the output of the classifier,
fcðX;mZ0 Þ as well as mZ0 .
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theory mass (Fig. 12). Without this parametrization of
the adversary, the marginalized classifier predictions are
independent of mass, but not the conditional classifier
predictions.
As expected, the resulting classifier demonstrates better

performance than the single input features τ21, τ021 or τ
00
21 at

all signal mass hypotheses tested (Fig. 13). As in the

nonparametrized case, the traditional NN trained to maxi-
mize classification accuracy achieves the best separation.
Moreover, the lack of background distortion by the

adversarially trained network preserves the ability to
distinguish the background and signal mass distributions,
leading to improved discovery significance; see Fig. 14.
The statistical test is performed as for the previous case,
fitting a binned likelihood on the jet mass distribution after
applying a threshold on the discriminator output. As before,
the improved separation of the traditional NN does not
translate to improved discovery significance.
We note that while the performance shown here is

evaluated on hypothesized mass values used for training,
Ref. [18] demonstrates this architecture is able to success-
fully interpolate to other values of mZ0 .

VIII. DISCUSSION

We have demonstrated that an adversarial training
strategy may yield a jet classification tagger which lever-
ages the powerfully discriminating information obtained by
combining several input features, while decorrelating its
output from the variable of interest, the jet mass. This
allows the classifier to enhance signal to noise ratio while
minimizing the tendency of the background distribution to
morph into a shape which is degenerate with the observable
signal. When the background cannot be reliably predicted
a priori, as is often the case, it is important to be able to
constrain its rate in sidebands surrounding the signal
region. Therefore, avoiding such degeneracy is critical to
performing successful measurements.
We note that, from Fig. 9, it is clear that applying

sufficiently tight cuts to the adversarial classifier causes
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FIG. 12. Profile of the parameterized NN responses to back-
ground versus jet mass, where the parametrized network was
evaluated at different Z0 mass hypotheses. Top shows the response
of the adversarially trained classifier, which minimizes correlation
with jet mass; bottom shows the response of a network trained in
the traditional manner, to optimize classification accuracy.
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significant background morphing, particularly when com-
pared to the τ21-based discriminants. However, the solid
lines of Fig. 10 illustrate the case where the background rate
is uncertain and hence benefits from sideband constraints.
We see that the optimal significance is realized for the
adversarial classifier at a relatively high signal efficiency of
roughly 90%, where the background morphing is quite
limited (Fig. 8). Hence, the adversarial classifier achieves
its goal of optimizing the tradeoff between correlation and
discrimination power.
We also note that the decorrelation could potentially be

improved. The contour plot in Fig. 6 shows that while the
average NN output is independent of mass, there is certainly
still structure that results in the background sculpting still
observed. The residual pT dependence could also be
removed, possibly with a more sophisticated adversary
that is trained to predict multiple variables simultaneously.
These improvements we leave for future work.
Finally, we extend the strategy to the case of a para-

metrized network wherein the NN classifier is trained to tag

specific signal hypotheses, useful for scanning a range of
theoretical parameter space with a search. The resulting
combined approach should be readily applicable to exper-
imental measurements and searches, boosting their discov-
ery significance or search sensitivity.
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