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In a matrix model of pure SU(2) Yang-Mills theory, boundaries emerge in the space of Mat3ðRÞ and the
Hamiltonian requires boundary conditions. We show the existence of edge localized glueball states that can
have negative energies. These edge levels can be lifted to positive energies if the gluons acquire a London-
like mass. This suggests a new phase of QCD with an incompressible bulk.
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I. INTRODUCTION

Quantum chromodynamics or QCD describing strong
interactions is an interacting non-Abelian gauge theory.
Non-Abelian gauge theories of high energy physics are
based on compact gauge groups. They generally contain a
Lie group, like SU(3) or SU(2) that modulo their discrete
centers, and are simple. The self-coupling of the gauge field
in such a gauge theory is expected to lead to bound states
called glueballs. In the presence of matter (say, quarks),
these particle excitations interact with hadrons. It is for such
reasons that glueballs remain an interesting topic of
investigation, despite the fact that they have eluded
experimental verification until now.
In a non-Abelian gauge theory, it is impossible to do a

global gauge fixing. In particular, Gribov [1] showed that in
all such theories, the Coulomb gauge does not fully
eliminate the gauge freedom: there are gauge related copies
of the connection in this gauge. It was later proved
rigorously by Singer [2] and by Narasimhan and
Ramadas [3] that there exists, in fact, no condition to
eliminate the gauge ambiguities, with the gauge bundle on
the configuration space being twisted.
Narasimhan and Ramadas, in their work on SU(2),

reduced the considerations to a family of connections
parametrized by 3 × 3 real matrices. The essential topo-
logical complexities of exact pure Yang-Mills theory are
already captured by this model. Here too, the appropriate
SUð2Þ=Z2 ¼ SOð3Þ bundle is twisted, with the twist being
inherited from the full pure Yang-Mills theory.
The work of Narasimhan and Ramadas can be extended

to SU(3) and other non-Abelian groups. That is because it is
based on Maurer-Cartan forms that have a certain universal
character. Recently, in [4,5], a matrix model of the SUðNÞ
Yang-Mills theory was proposed that successfully captures
the nontrivial nature of the gauge bundle. There, the
Hamiltonian formalism for these matrices as configuration

spaces was deduced from the full Yang-Mills theory. The
matrix model is constructed by compactifying the spatial
R3 to S3. The Maurer-Cartan form of SUðNÞ is pulled back
on the S3 to obtain a particular subspace of the space of
all gauge fields. In this subspace, the gauge fields are
3 × ðN2 − 1Þ real matrices and the result is the (0þ 1)-
dimensional matrix model of SUðNÞ.
In [4,5], the Hamiltonian formalism for these matrices as

configuration spaces was deduced. The colorless eigen-
states of the Hamiltonian are interpreted as “glueballs,” and
it is shown that the glueball spectrum for the SU(2) gauge
group has a mass gap. The presence of this gap is often
regarded as a signal for confinement. There, the QCD θ-
angle is also discussed, and the Dirac operator is con-
structed. In a numerical study [6], the authors obtained the
estimates for glueball masses in the SU(3) matrix model
and found an excellent agreement with those obtained from
lattice QCD simulations [7], despite the numerics being far
simpler and less time consuming in the matrix model. This
indicates that the matrix model might emerge as an efficient
tool for QCD computations with fair accuracy. This
motivates us to further investigate various other aspects
of the matrix model in detail, as they can carry useful
implications about the full pure Yang-Mills theory.
In this paper, we study certain “singular” boundaries of

the 3 × 3matrix model of SU(2) Yang-Mills and the special
states localized at these boundaries. Such boundary states
exist also for SU(3) and other gauge groups, being a
reflection of states localized at degenerate connections in
exact QCD.
In the space Mat3ðRÞ of 3 × 3 real matrices, boundaries

and stratification emerge as follows. A matrix M ∈
Mat3ðRÞ has the singular value decomposition

M ¼ LDRT; L; R ∈ SOð3Þ ð1:1Þ

D ¼

0
B@

a1 0 0

0 a2 0

0 0 a3

1
CA; a1 ≥ a2 ≥ a3 ≥ 0. ð1:2Þ
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When all the ai’s are unequal, ai ≠ aj if i ≠ j, we get the
open and dense stratum. At the boundaries, either a pair of
ai or all ai are equal.
The boundaries ∂D of the spatial manifold D have

physical consequences. The Laplace and Dirac operators
are subject to boundary conditions at ∂D for self-
adjointness. The latter can induce anomalies [8]. They
can also create edge-localized states [9] that are of parti-
cular interest for topological insulators as discussed pre-
viously [10]. For the Dirac operator, when the boundary
conditions are of Atiyah-Patodi-Singer type, they lead to the
η-invariant, which has an impact on axial anomaly [11].
Such boundary conditions can also make or break
supersymmetry or Becchi-Rouet-Stora-Tyutin invariance
[12,13].
These known results are the incentives to study the

boundaries of Mat3ðRÞ. As for spatial manifolds with
boundaries, here too the Hamiltonian requires boundary
conditions. Considering various boundary conditions, we
explore the possibility of “edge” localized glueball states
[localized near the boundary associated with Mat3ðRÞ].
They are expected to be novel glueball states and might
imply the existence of new phases of QCD. This work
focuses on these aspects. It can be extended to Mat8ðRÞ,
which is appropriate for color SU(3). As shown in [6], the
glueball spectrum of the matrix model matches excellently
with the physical masses predicted by lattice QCD.
Similarly, these edge states might also be present in the
full pure Yang-Mills theory.
We here confirm first that there do exist such edge states.

The energy of these edge states can be negative. Such states
are physical only if the gluons acquire mass. This suggests
the possibility of new phases in which the gluons become
massive just as the photon acquires a London mass in a
superconductor. When matter fields are coupled to the
matrix model, similar edge states emerge naturally [14].
Here, we demonstrate that the emergence of such edge
states is due to the presence of nontrivial boundary
conditions on Mat3ðRÞ. Further, these “superconducting”
phases share features with earlier models of quark-gluon
plasma [15,16].
The first step in the analysis is the partial wave decom-

position of wave functionsΨ∶Mat3ðRÞ → Cwith regard to
the two SO(3)’s appearing in (1.1). The Laplacian for the
matrix model then separates as shown by Iwai [17]. We
discuss this in Sec. II where we also clarify the meaning of
the transformation M → L0MR0T , L0, R0 ∈ SOð3Þ, which
commutes with the Laplacian. In this manner, we arrive at
the SOð3ÞL × SOð3ÞR invariant S-wave sector of glueballs.
The eigenvalue problem is singular at the boundaries

where two or more ai becomes equal. It is of the same kind
as the singularity at r ¼ 0 of radial eigenvalue problem on
Rd (d ¼ dimension). In the latter, as is known, it appears in
the volume form rðd−1ÞdrdΩSðd−1Þ , which becomes zero at

r ¼ 0. We can transfer the rðd−1Þ factor to the Hamiltonian.

Then the new volume form drdΩSðd−1Þ is well behaved at the
origin, while the transformed radial Laplacian,

−∂2
r þ

ðd − 3Þðd − 1Þ
4r2

þ lðlþ d − 2Þ
r2

; ð1:3Þ

has acquired the singular potential ðd−3Þðd−1Þ
4r2 for d ≠ 1, 3.

For all other values of d, the singularity at r ¼ 0 calls for
special boundary conditions that can be found using Weyl’s
“limit point-limit circle” theorems [18]. Notice that for
1 < d < 3, the potential is attractive, whereas for all other
values, it is repulsive. In a similar way, in our glueball
problem, a potential with singularities of the formQ

i>jða2i − a2jÞ−1 appears. Fortunately, they are amenable
to Weyl’s approach. These matters are discussed in Sec. III,
where we also bring the eigenvalue problem to a stage that
can be treated by variational methods.
Section IV reports on the variational calculation. The

singularity at the boundary ∂Mat3ðRÞ is of the “limit circle”
type so that the self-adjoint extensions are characterized by
the phases eiθ. The Dirichlet boundary condition has
eiθ ¼ −1, while the Neumann boundary condition has
eiθ ¼ 1. For the Robin boundary conditions that are near
Dirichlet, just as the spatial boundary, edge localized
glueball states exist. For certain choices of the boundary
condition, these states have positive energy, while some
lead to negative energy. In Sec. V, we give the interpretation
of the negative energy states in terms of a new QCD phase
with an incompressible bulk, in close analogy to super-
conductivity on a spatial domain D [9]. In the latter, there
are localized low-lying states at the boundary ∂D, whereas
the bulk states are gapped. In the new QCD phase, the
gluons are massive. Such masses can be generated when
matter fields are coupled to the matrix model [14].
In Sec. VI, we highlight certain observations of Iwai

[17].1 Namely, the Hamiltonian does not have a divergent
centrifugal barrier term near the boundaries when the
wave functions transform nontrivially under SOð3ÞL or
SOð3ÞR. This is in striking contrast to the Laplacian on
Rd, which does have a centrifugal potential for nonzero
angular momentum, that is for nonsinglet SO(d) repre-
sentations. That suggests that edge states exist regardless
of SOð3ÞL or SOð3ÞR angular momentum. The QCD
potential from angular momentum and color excitations
does depend on these excitations and change with
SOð3ÞL;R representations (although it is finite when the
boundary is approached) so that the glueball excitations
need not be degenerate.
In a different project [6], the glueball masses in the

same matrix model have been estimated using the
harmonic oscillator eigenstates. Low lying glueball spec-
tra obtained there are remarkably similar to the ones from
lattice QCD.

1Their significance was pointed out to us by Sachindeo Vaidya.
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II. THE HAMILTONIAN AND ITS PARTIAL
WAVE REDUCTION

The origin of the matrix model for QCD comes from the
well-known “Gribov ambiguity” [1,2]. We explain how that
is so in this section, focusing on the SU(2) gauge group. We
consider SU(2) and not SU(3), as our numerical work has
been on SU(2). Theoretical considerations on SU(3) can be
found in [4,5].
The “Gribov ambiguity” can be summarized in the

statement that the gauge bundle in any non-Abelian gauge
theory that involves a compact semi-simple Lie group is
twisted. Therefore, there is no global gauge fixing con-
dition in any such theory.
The full space of connections on Rd in any gauge theory

is infinite dimensional. Narsimhan and Ramadas [3] proved
that the exact gauge theory twist is reflected in the
following finite-dimensional submanifold of connections
parametrized by matrices:

Ω ¼ Tr

�
τa
2
u−1du

�
Mabτb: ð2:1Þ

Here we consider spatial dimension 3 and SU(2) gauge
group and τa’s are Pauli matrices. M is a real 3 × 3 matrix
and u is given by the Skyrme ansatz [19]:

uðx⃗Þ ¼ cos θðrÞ þ iτix̂i sin θðrÞ; θð0Þ ¼ π;

θð∞Þ ¼ 0; x⃗ ∈ R3; r ¼ jx⃗j; ð2:2Þ

θ being a monotonic function of r.
There are two group actions of interest on M:
(1) The first comes from the color SU(2) transformation

Ω → gΩg−1; g ∈ SUð2Þ: ð2:3Þ

Since

gτbg−1 ¼ τcAdgcb; ð2:4Þ

where g → Adg is the 3 × 3 adjoint representation of
SU(2), the transformations

M → MAdgT ð2:5Þ

are SU(2) color transformations. Observables are all
color singlets.
Only global color acts on Ω: it is partially “gauge

fixed” to eliminate space-time dependent transfor-
mations.

(2) Under the transformation

u → us; s ∈ SUð2Þ; ð2:6Þ

we have

u−1du → s−1ðu−1duÞs: ð2:7Þ

Or since

sτbs−1 ¼ τcAdscb; Ads ∈ SOð3Þ; ð2:8Þ
this gives the transformation

M → AdsM: ð2:9Þ

Now s−1ðu−1duÞs is also achieved by the trans-
formation

u → s−1us; ð2:10Þ
and that, as (2.2) shows, is a spatial rotation. Hence,
(2.9) corresponds to spatial rotation.
In brief, the matrix model is constructed by

compactifying the spatial R3 to S3 of radius R
and pulling back the Maurer-Cartan form on
SUðNÞ to obtain a particular subspace of the space
of all gauge fields. In this subspace, the gauge fields
are 3 × ðN2 − 1Þ real matrices, yielding a (0þ 1)-
dimensional matrix model of SU(N) Yang-Mills
theory.
We use [4,5] for the matrix model Hamiltonian

and the transformation properties of the states. The
Hamiltonian is invariant under color SU(2) and
spatial rotations. The Hamiltonian: The exact pure
Yang-Mills action is

SQCD ¼ −
1

2g2

Z
d4xFμνðxÞFμνðxÞ;

Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν�: ð2:11Þ
It gives the gluon Hamiltonian

HQCD ¼ 1

2

Z
d3xTr

�
g2EiEi −

1

g2
F2
ij

�
; ð2:12Þ

where the electric field Ei is conjugate to Ai.
The matrix model Hamiltonian follows from

(2.12). We introduce

Eiα ¼ −i
∂

∂Miα
ð2:13Þ

as conjugate operators to Miα and write the matrix
model Hamiltonian

H ¼ −
1

R

�
g2

2

X
i;α

∂2

∂M2
iα
− VðMÞ

�
;

VðMÞ ¼ −
1

2g2
TrF2

ij: ð2:14Þ

R is the radius of the S3.
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The above Hamiltonian only takes into account
the classical zero-mode sector of the full field theory.
To account for the contribution from the zero-point
energy of all the higher, spatially dependent modes
in the full quantum field theory, we need to add a
constant CðRÞ to the above Hamiltonian.

H ¼ −
1

R

�
g2

2

X
i;α

∂2

∂M2
iα
− VðMÞ þ CðRÞ

�
: ð2:15Þ

The R dependence comes from the fact that CðRÞ
is the renormalized total zero-point energy (see
for example [20]). The numerical values of R
and CðRÞ can be obtained phenomenologically as
described in [6].
The curvature Fij is

Fij ¼ ðdΩþ Ω ∧ ΩÞðiXi; iXjÞ;
Xi ¼ angular momentum generators: ð2:16Þ

Since the Skyrme ansatz effectively works on S3,
Xi’s replace the spatial translations in Fij. This
curvature is computed in [4,5]:

Fij ¼ iϵijkMkα
τα
2
− iϵαβγMiαMjβ

τγ
2
;

i ¼ 1; 2; 3; α ¼ 1; 2; 3: ð2:17Þ

In this way, we get

VðMÞ¼ 1

2g2
½MiaMia−ϵijkϵαβγMiαMjβMkγ

þ1

2
ϵα1β1γϵα2β2γMiα1Mjβ1Miα2Mjβ2 : ð2:18Þ

The scalar product of the functions Ψ for the
Hilbert space on which H operates is

ðΨ1;Ψ2Þ ¼
Z Y

i;α

dMiαΨ̄1ðMÞΨ2ðMÞ ð2:19Þ

Using the singular value decomposition

M ¼ RAST; A≡
0
B@

a1 0 0

0 a2 0

0 0 a3

1
CA;

a1 ≥ a2 ≥ a3 ≥ 0; ð2:20Þ

we get the simple expression

VðMÞ ¼ 1

2g2
½ða21 þ a22 þ a23Þ − 6a1a2a2

þ ða21a22 þ a22a
2
3 þ a23a

2
1Þ�: ð2:21Þ

The next step for SU(2) or more precisely SO(3), is the
separation of variables for SOð3ÞL × SOð3ÞR, which act on
the left and right of M respectively. This work has been
done by Iwai [17]. As he shows, if dΩL;R are the SO(3)-
invariant volume forms of SOð3ÞL;R, then
Y
i;α

dMiα ¼ ϕðaÞ
Y
i

daidΩLdΩR;

ϕðaÞ ¼ ða21 − a22Þða22 − a23Þða21 − a23Þ ≥ 0;

dΩL;R ¼ SOð3ÞL;R invariant volume forms: ð2:22Þ

Also, when acting on SOð3ÞL;R singlet wave functions,
which are our subject of numerical investigations, the
Laplacian −

P ∂2
∂M2

iα
reduces to

−
X ∂2

∂M2
iα
→Δ¼−

� ∂2

∂a21þ2a1

�
1

a21−a22
þ 1

a21−a23

� ∂
∂a1

þ ∂2

∂a21þ2a2

�
1

a22−a21
þ 1

a22−a23

� ∂
∂a2

þ ∂2

∂a23þ2a3

�
1

a23−a21
þ 1

a23−a22

� ∂
∂a3

�
:

ð2:23Þ

Since, dΩL;R only supply overall factors in the scalar
product of singlets, we will ignore them.
It is convenient to change the volume form to

Q
dai by

changing Δ to

2R
g2

Ĥ0 ¼
ffiffiffiffi
ϕ

p
Δ

ffiffiffiffi
ϕ

p
ð2:24Þ

and hence H to

Ĥ ¼ Ĥ0 þ VðMÞ: ð2:25Þ

The expression for 2R
g2 Ĥ0 is

2R
g2

Ĥ0 ¼ −
X3
i¼1

∂2

∂a2i þUðaÞ ð2:26Þ

UðaÞ ¼ 1

2

�
1

ϕ

∂2ϕ

∂a2i
�
ðaÞ − 1

4

�
1

ϕ

∂ϕ
∂ai

�
2

ðaÞ; ð2:27Þ
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In more explicit form,

UðaÞ ¼ 1

2

�
1

ða1 − a2Þ2
þ 1

ða1 þ a2Þ2
þ 1

ða1 − a3Þ2

þ 1

ða2 − a3Þ2
þ 1

ða1 þ a3Þ2
þ 1

ða2 þ a3Þ2
�

¼ a21 þ a22
ða21 − a22Þ2

þ a21 þ a23
ða21 − a23Þ2

þ a22 þ a23
ða22 − a23Þ2

: ð2:28Þ

III. ON BOUNDARY CONDITIONS

The new potential UðaÞ is singular as ai → aj due to the
stratified structure of the matrix orbit space. The bulk
corresponds to the orbits of irreducible gauge fields,
whereas the boundary contains the orbits of reducible
gauge fields. In the pure gauge theory, there are natural
boundary conditions for the quantum Hamiltonian. When
the gauge theory is coupled to matter fields, some more
general conditions can be considered see e.g. [21–28].
Therefore, one needs to consider the possibility of more
general boundary conditions to treat these singularities.
The analogous problem for boundary conditions in one

variable was treated by Weyl [29], and it goes by the name
of “limit point, limit circle” theorem [18,30]. The gener-
alization of Weyl’s approach to several variables is due to
Harish-Chandra and is described by Knapp [31].2

Fortunately, because of certain simplicities, we can treat
the domain of self-adjointness of (2.26) without the full
machinery in Knapp. The approach we follow is due to
[25–28,32].
The general method here for finding all boundary

conditions is as follows. Let us consider the asymptotic
zero modes Ψazm of Ĥ0 that are square integrable in a
neighborhood of the singularities of the effective potential,
that is

Ĥ0Ψazm ¼ O
�

1

Λ2

�
; ð3:1Þ

with

Z
ϕðaÞ≤Λ

Y
i

daijΨazmðaÞj2 < ∞; ð3:2Þ

Λ ≪ 1 being an arbitrary small cutoff. In general there is an
infinity of such asymptotic zero modes [26]. However, they
can be parametrized by a separation of variables in a way
similar to what is done in the one-dimensional case (1.3).
We can choose a system of coordinates on the surface
ϕðaÞ ¼ Λ and one extra radial coordinate given by ϕðaÞ13.
The Hamiltonian Ĥ0 then splits into two parts: one radial

term Hϕ and one angular term HΛ. The asymptotic zero
modes can then be split according to the different eigen-
values λn ≥ 0 of angular part. Our focus here is on the zero
eigenvalue and, hence, on the zero mode of Ĥ0. In this case
there are the two independent zero modes,

Ψ1 ¼
ffiffiffiffi
ϕ

p
; Ψ2 ¼

ffiffiffiffi
ϕ

p
logϕ: ð3:3Þ

Notice the asymptotic zero modes corresponding to the
higher modes ΔΛ vanish at the singular points where ϕðaÞ
vanishes, and they do not require extra parameters to fix the
boundary condition. In some sense, the simple structure of
the singularity simplifies the analysis of the boundary
conditions [26].
We can understand the origin of zero modes very simply

before the transformation (2.24): they are just the constant
function and logϕ. They correspond to the

ffiffiffi
r

p
and theffiffiffi

r
p

log r zero modes of (1.3) for l ¼ 0 and d ¼ 2.
From the boundary condition it follows that the functions

in the domain of the Hamiltonian Ĥ0 have an asymptotic
behavior similar of Ψθ, i.e.,

Ψ ∼ cos θΨ1 þ sin θΨ2 as ϕðaÞ → 0: ð3:4Þ

In fact, it is the relative coefficient tan θ (which can also
be infinite) between Ψ1 and Ψ2 is what matters.
Equation (3.4) refers only to the behavior of Ψ as

ϕðaÞ → 0. For a large ai and/or a large ϕðaÞ, square
integrability requires that Ψ → 0. For example, the wave
function

Ψ ¼ ðΨ1 þ tan θΨ2Þe−ϕðaÞ
P

3

i¼1
a2i ; ð3:5Þ

which is globally defined for any a with ϕðaÞ > 0, belongs
also to the domain of the Hamiltonian Ĥ0.
As emphasized, these zero modes appear naturally in the

theory, and there is nothing mysterious about them.
Working with the volume form ϕðaÞQidai instead ofQ

idai, Ψ1 corresponds to a constant zero mode and, of
course, it is a zero mode of the Laplacian. The numerical
computation to glueball masses in [6] corresponds to a
variational calculation around this mode, which then
also brings in nonconstant functions. Therefore, that is
the θ ¼ 0 case.
When nothing special happens at the ϕðaÞ ¼ 0 boun-

dary, we only consider Ψ1. Instead, if we consider both Ψ1

and Ψ2 with a nonzero value θ, there can be nontrivial
physical effects at the ϕðaÞ ¼ 0 boundary, like the emer-
gence of edge localized states. We demonstrate these in the
following section.

IV. EDGE STATES: NUMERICAL RESULTS

In this section, we calculate an upper bound of the
ground state energy of

2We thank Professor M.S. Narasimhan who helped us in
understanding this work and for these references.
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H ¼ Ĥ0 þ VðMÞ; ð4:1Þ

[where Ĥ0 and VðMÞ are defined in (2.26) and (2.21),
respectively] using variational calculations, and we show
the existence of edge states as described in the previous
section.
For certain choices of θ to be discussed below, energy

becomes negative, making the system unstable. Such θ
have to be rejected, without further physical inputs. Of
course, as we are doing only a variational calculation, we
can only numerically check that the energy is positive. That
carries the uncertainties of numerical estimates.
As a variational ansatz for the ground state, we consider

ζk ¼ ðΨ1 þ tan θΨ2Þe−kϕðaÞ
P

3

i¼1
a2i ; k > 0; ð4:2Þ

which has the asymptotic behavior (3.4) and is square
integrable in a1 ≥ a2 ≥ a3 ≥ a3 ≥ 0. Here, k is the varia-
tional parameter.
For fixed values of tan θ, we numerically compute

EðkÞ ¼
R
0
∞da1

R a1
0 da2

R a2
0 da3ζ

†
kðHζkÞR

0
∞da1

R a1
0 da2

R a2
0 da3ζ

†
kζk

ð4:3Þ

as a function of the variational parameter k. This provide us
by the Rayleigh-Ritz theorem, an upper bound of the
ground state energy E of the system:

E < Eðk0Þ; where
dEðkÞ
dk

����
k¼k0

¼ 0: ð4:4Þ

We also evaluate

E0ðkÞ ¼
R
0
∞da1

R a1
0 da2

R a2
0 da3ζ

†
kðĤ0ζkÞR

0
∞da1

R a1
0 da2

R a2
0 da3ζ

†
kζk

ð4:5Þ

and show that there exist certain choices of tan θ for
which E0ðk0Þ < 0.

Near ϕðaÞ ¼ 0, as both ζk → 0 and Hζk → 0, the
contribution to the integrals in (4.3) is very small from
this region. Consequently, we can deform EðkÞ,

EðkÞ ¼
R
2ϵ

∞da1
R
a1−ϵ
ϵ da2

R a2−ϵ
0 da3ζ

†
kðHζkÞR

2ϵ
∞da1

R
a1−ϵ
ϵ da2

R a2−ϵ
0 da3ζ

†
kζk

; ð4:6Þ

where ϵ is very small. This is done for the following reason.
The integral in the numerator involves ∂iϕðaÞ, which does
not have the same zeros as ϕðaÞ, and ∂iϕðaÞ can be large
even near ϕðaÞ ¼ 0. The integral involves the product of
ϕðaÞ and ∂iϕðaÞ’s, and the numerical evaluation might
be erroneous because of multiplying a very small number
(the zero of the computer) with a very large number.
We checked that as ϵ is reduced, the integrals converge,

and that it is enough to consider ϵ ¼ 0.01 for a good
estimation of EðkÞ.
For tan θ ¼ 0, E0ðkÞ is monotonic and positive, while for

cotθ ¼ 0, E0ðkÞ is monotonic and negative. Consequently,
when we choose 0 < jθj ≪ π

2
, the energy functional EðkÞ

can be positive and have a minima. On the other hand, for
0 ≪ jθj < π

2
, there might be minima, but EðkÞ might be

negative.
In the following, we study the two regimes separately.

A. 0 < jθj ≪ π
2:

First, we consider 0 < jθj ≪ π
2
and estimate E0ðkÞ and

EðkÞ numerically. For various values of θ and g, we have
plotted EðkÞ as a function of k in Fig. 1. The minima of
EðkÞ (as in the plots) give upper bounds of the total energy
Eðk0Þ, which are positive such choices of θ. For various
values of θ, Eðk0Þ as a function of the coupling constant g is
shown in Fig. 2.
For such choices of θ, due to the exponential factor in the

modes ζk0 , they might localized near the ϕðaÞ ¼ 0 boun-
dary. That can be demonstrated by plotting jζk0 j2ða1; a2; a3Þ
as a function of a1, a2, and a3 for fixed θ and g. In Fig. 3, we
have shown the contour plots of jζk0 j2ða1; a2; a3Þ for fixed
a1’s in the range a2 ∈ ½0; a1� and a3 ∈ ½0; a2�. The darker
regions denote higher values of jζk0 j2.
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FIG. 1. Plot of EðkÞ as a function of k for various values of g with a fixed θ (left) and for various values of θ with a fixed g (right).
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From the figures, we can see that when a1 is small, a1 ≥
a2 ≥ a3 ≥ 0 is the region close to the vertex of the
wedgelike region spanned by a1, a2, and a3. We see that
jζk0 j2 is significantly larger in this region. For a larger a1,
jζk0 j2 is localized near the a2 ¼ a3 boundary (the diagonal
lines in the boxes), the a1 ¼ a2 boundary (the right-hand
limits of the boxes), and near the a1 ¼ a2 ¼ a3 boundary
(the top-right corners of the boxes), while in the interior
region, where the ai’s are distinctly different, jζk0 j2 is
significantly damped. Thus, we conclude that ζk0 describes
states localized near the ϕðaÞ ¼ 0 boundary.
As jθj decreases, the value of k0 decreases, which can be

seen from Fig. 1. As a result, the exponential factor decays
slowly for smaller a jθj, and jζk0 j2 spreads more into the
bulk. This is consistent with the fact that there is no edge
state at θ ¼ 0.
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FIG. 3. Plot of jζk0 j2 as a function of a2 and a3 for fixed values of a1 and θ ¼ −0.01 radian. Here, we used g ¼ 0.8 and k0 ≈ 2.35,
which is obtained from the minima in Fig. 1 with θ ¼ −0.01 radian.
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FIG. 2. Plot of Eðk0Þ as a function of g.
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B. 0 ≪ jθj < π
2:

For a large value of jθj, we indeed find that EðkÞ is
negative. For various values of θ and g, we have plotted
EðkÞ as a function of k in Fig. 4.
Again, the minima gives the upper bound of the total

energy Eðk0Þ. We have plotted Eðk0Þ as a function of the
coupling constant g for various values of θ in Fig. 5.
Again, if we plot jζk0 j2 as a function of a1, a2, and a3

(as in Fig. 3) for a fixed θ and g, we will find that the modes
are localized near the ϕ ¼ 0 boundary, so these are edge
states but with a negative hH0 þ VðMÞi.
As jθj increases towards π

2
, k0 decreases (as can be seen

from Fig. 4). Consequently, the modes spread more into
the bulk.
When 0 > hH0 þ VðMÞi ≥ −CðRÞ, the total energy of

these edge states are positive, and such edge states are
physical.
On the other hand, when hH0 þ VðMÞi < −CðRÞ, the

total energy is negative. As glueballs are bosons, if such
negative energy states exist, there is no Pauli exclusion
principle to prevent states with an arbitrary number of such
edge localized glueballs with negative energies. Therefore,
the energy will be unbounded from below, and the vacuum
will be unstable. Therefore, these edge states should be
considered unphysical.

V. NEGATIVE ENERGY EDGE STATES AND
INDICATIONS OF PHASE TRANSITION

In the previous section, we have shown that the total
energy of the edge states in the matrix model can be
negative [i.e., hH0 þ VðMÞi < −CðRÞ]. In a pure gauge
theory, these negative energy states are unphysical.
However, as we argue below on the inclusion of matter
fields, these states can have positive energy and, therefore,
can exist.
A similar situation has been treated by Asorey et al.

[9,10] for spin-zero (and one) fields on a spatial diskDwith
boundary ∂D. If n̂ is the outward-drawn unit, normal at ∂D,

and ∂n denotes n̂ · ∇⃗ at ∂D, the scalar Laplacian Δ ¼
−
P

i
∂2

∂x2i is (essentially self-adjoint for the Robin boundary

conditions)

ðΨþ i∂nΨÞj∂D ¼ eiθðΨ − i∂nΨÞj∂D; ei~θ ∈ Uð1Þ:
ð5:1Þ

When ei~θ ¼ 1, (5.1) gives the Neumann boundary con-

dition ∂nΨj∂D ¼ 0, while if ei~θ ¼ −1, it gives the Dirichlet
boundary condition Ψj∂D ¼ 0. Near the Dirichlet point,
there are Robin boundary conditions

Ψj∂D ¼ λ∂nΨj∂D: ð5:2Þ

It is an important result of [9] that the Laplacian −
P

i
∂2

∂x2i
has edge-localized negative energy states if λ > 0. Hence,
the free Laplacian −

P
i
∂2
∂x2i cannot be second quantized.

However, it was proved [10] that −
P

i
∂2
∂x2i has a lower

bound:

−
X
i

∂2

∂x2i ≥ −m2
0ðλÞ: ð5:3Þ

Hence,
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FIG. 4. Plot of EðkÞ as a function of k for various values of g with a fixed θ (left) and for various values of θ with a fixed g (right).
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−
X
i

∂2

∂x2i þm2
0ðλÞ ≥ 0; ð5:4Þ

and the Lagrangian density

L ¼ −ϕ�
� ∂2

∂x20 −
X
i

∂2

∂x2i −m2
0ðλÞ

�
ϕ ð5:5Þ

allows a consistent quantization.
In addition, (5.5) is the Lagrangian for a superconductor.

(For the latter, ϕ should be a vector field, but that is not
important here). Further the field ϕ in the ground state
decays as it enters D due to Meissner effect:

ϕ ¼ ϕ0e−ðr0−rÞm
2
0
ðλÞ ð5:6Þ

near ∂D, with r decreasing away from the boundary. From
(5.6), we get

ðϕ −m2
0ðλÞ∂rϕÞj∂D ¼ 0: ð5:7Þ

This is (5.2) for λ ¼ m2
0ðλÞ.

Thus, the negative energy levels signify the transition to
the superconducting phase.
The wave functionsΨ vanishing at ∂D have nonnegative

energies even without m2
0ðλÞ:

�
Ψ;−

X
i

∂2

∂x2i Ψ
�

¼
�X

i

∂
∂xi Ψ;

X
i

∂
∂xiΨ

�
≥ 0 for Ψj∂D ¼ 0: ð5:8Þ

Hence, with the addition of m2
0ðλÞ, the edge states get lifted

to positive energies (which can be adjusted to be low lying),
while bulk states get gapped, with bulk energies > jm0ðλÞj.
The possibility of “superconducting” phases has been

considered in the quark-gluon plasma phase of QCD
[15,16]. Such color superconductivity is expected to be
the ground state when the temperatures are low and the
baryon chemical potential is high.Whenmassless quarks are
coupled to the pure Yang-Mills theory, indeed color-flavor
locked phase or 2SC (when one quark does not participate in
the condensation) phases can emerge [33–35]. The super-
conducting phases emerge when the global symmetries
SUð3ÞF and Uð1ÞB are broken. In the quark-gluon plasma
phase, the symmetry group is SUð3ÞC×SUð3ÞF×Uð1ÞB

Z3×Z3
. In the

superconducting phase, the pairing of two quarks of the
same helicity is dominant, and the presence of this diquark
condensate spontaneously breaks the symmetry to SUð3Þ×Z3

Z3×Z3
.

This spontaneous breaking of the flavor symmetry and
Uð1ÞB naturally leads to a phase of massive gluons.
In the matrix model too, we can consider gluons coupled

to the flavor symmetry breaking diquark condensate. In that
case, the matrix model is constructed by pulling back the
Maurer-Cartan one forms of SUð3Þ×Z3

Z3×Z3
instead of

SUð3ÞC×SUð3ÞF×Uð1ÞB
Z3×Z3

. In this matrix model, the gluons are
massive. The mass term lifts the edge levels to positive
energies, and at the same time, it creates a gap in the bulk
levels, making them incompressible. Thus, in such a
massive gluon phase, the aforementioned edge states
do exist.

VI. EDGE STATES: ANGULAR MOMENTUM
AND COLOR

The Schrödinger Hamiltonian on R3, on the separation

of variables, acquires the centrifugal term lðlþ1Þ
r2 . This term

eliminates the boundary condition ambiguities at r ¼ 0
from all except the S-wave.
However, it is a surprising result of Iwai (Secs. III. 3,

V. 2, V. 3 in [17])3 that the induced potential in the
Hamiltonian H ¼ Δþ VðMÞ [see (2.23)] for color or
angular momentum states is finite as ϕðaÞ → 0. That means
that edge states are also present with angular momentum
and color excitations.
Their energies will depend on angular momentum and

color, because the induced potential depends on them. It
will be interesting to study this energy dependence on
angular momentum and color.

VII. DISCUSSIONS

In a matrix model of SU(2) Yang-Mills theory, the
Hamiltonian requires boundary conditions on the bounda-
ries of Mat3ðRÞ. We have shown that for certain choices of
these boundary conditions, there are glueball states local-
ized near the boundaries. The energy of these edge states
can be negative, in which case they can only be physical, if
a London-like mass term is added to lift the total energies to
a positive value. In the presence of matter, such a mass term
can indeed be generated, and there, these edge states
comprised of massive gluons constitute a superconducting
phase of QCD.
In this matrix model, one can construct colored states of

the Hamiltonian as well. However, as shown in [4,5], all
observables are color singlet functions of M. Thus, the
colored states naturally decouple from the color singlet
theory.
Also, the colored states are mixed, while the colorless

ones are pure [4,5]. That is why it is not possible to evolve

3This point was emphasized to us by Sachindeo Vaidya.
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from a colorless state to the tensor product of colored states
by unitary time evolution.
Under Mia → −Mia, the singular values are invariant:

ai → ai. Consequently, the ground state obtained by the
variational computation has even parity, as expected.
Here, we used the zero modes of H0 to construct the
variational ansatz. For a better approximation, we can,
in principle, include nonzero modes as well in the
variational ansatz. However, there will be additional
computational complexity owing to many nonvanishing
terms.

Although, we have demonstrated the presence of these
edge states in a SU(2) Yang-Mills theory, the analysis and
the conclusions can be readily extended to N > 2.
However, for a large N, the singular value decomposition
becomes difficult, because under color, the gauge fields
transforms as M → MðAdðhÞÞT , h ∈ SUðNÞ.
To study the large N limit, we should start with the

observation: our matrix model is very similar to a three-
matrix model describing N-coincident D-branes coupled to
a Ramond-Ramond 4-form field [36]. In particular, the
potential of our matrix model

VðMÞ ¼ 1

2Rg2
Tr

�
MiMi þ iϵijkMi½Mj;Mk� −

1

2
½Mi;Mj�2

�
; Mi ≡MiaTa; ð7:1Þ

(Ta’s are generators of SUðNÞ in the fundamental repre-
sentation) has extrema describing N × N fuzzy sphere
algebras (similar to [36]). Here, the difference between
N ¼ 2 and N > 2 appears: for N ¼ 2, only the nontrivial
extremum is described by the fuzzy sphere algebra in a two-
dimensional irreducible representation, while for N > 2,
the algebra can be N-dimensional irreducible or any
possible reducible representation of SU(2).
The vacua corresponding to the irreducible and the

reducible representations are degenerate, and transitions
between them occur by quantum tunneling (as discussed in
[37]), which we intend to study in the future.
One can also obtain the quantum states of these fuzzy

spheres (both reducible and irreducible) by a Gelfand-
Naimark-Segal construction and compute the von
Neumann entropy associated with the fuzzy spheres (as
in [38]) to study the evolution of the system.

The setting in the previous paragraph is perfect to extend
the study of the our matrix model to a large N limit and
discuss its possible equivalence to the Calogero model in
the light of [39]. This will be the future direction of our
investigation.
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