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Triple collinear emissions in parton showers
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A framework to include triple collinear splitting functions into parton showers is presented, and the
implementation of flavor-changing next-to-leading-order (NLO) splitting kernels is discussed as a first
application. The correspondence between the Monte Carlo integration and the analytic computation of
NLO DGLAP evolution kernels is made explicit for both timelike and spacelike parton evolution.
Numerical simulation results are obtained with two independent implementations of the new algorithm,
using the two independent event generation frameworks PYTHIA and SHERPA.
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I. INTRODUCTION

Parton showers solve the leading-order Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi ~ (DGLAP)  equations
[1-4] using Markovian Monte Carlo (MC) algorithms
[5]. As such they work at much lower computational
precision than many other calculational tools used in high-
energy physics to date [6]. Due to their importance for
both experimental analyses and phenomenological sur-
veys, a limited set of the most important higher-order
effects has been included in parton showers over time,
such as angular ordering [7], and soft-gluon enhancement
[8]. The numerical size of the remaining theoretical
uncertainties is unclear, especially since parton showers
are tuned to match the most relevant experimental observ-
ables. The net effect of this tuning is that their predictions
are most often accurate, yet imprecise, and that the level
of imprecision is difficult to quantify numerically. As fully
exclusive, high-precision simulations are mandatory
in order to perform reliable measurements of Standard
Model parameters and/or searches for physics beyond the
Standard Model, the extension of parton showers to higher
formal accuracy would benefit large parts of the high-
energy physics community.

The possibility of including next-to-leading-order (NLO)
corrections in parton showers was explored early on [9—12]
and was revisited recently [13,14]. NLO splitting functions
have been recomputed using a novel regularization scheme
[15,16]. The dependence of NLO matching terms on the
parton-shower evolution scheme has been investigated in
detail [17]. In addition, the first solutions to incorporate
effects beyond the leading-color approximation into parton
showers have been found [18,19], and threshold logarithms
have been included in a fully automated approach [20].

In this publication, we construct a framework for the
simulation of triple collinear parton splittings, which
contribute to the next-to-leading-order corrections to
DGLAP evolution [21-24]. Triple-collinear splitting func-
tions have been known for a long time [25], but they have
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not been included in parton showers to date.! We start with
the simplest case of the flavor-changing splitting kernels.
We use these 1 — 3 kernels to recompute the timelike
and spacelike NLO splitting functions P, in the MS
scheme, and we show how the result can be implemented
straightforwardly in its differential form in a Markovian
Monte Carlo simulation, such that the integral matches
P,y up to momentum-conserving effects. Our algorithm
depends crucially on the usage of a weighted parton
shower, a technique that was presented in Refs. [26,27].
We see an opportunity to extend our new method to more
complicated triple collinear splitting functions, and to
include virtual corrections, such that all NLO kernels
may eventually be calculated on the fly, similar to the
computation of a fixed-order result in the dipole subtraction
method [28].

The outline of this publication is as follows. Section II
highlights the correspondence between the formalisms for
parton-shower evolution and DGLAP evolution. The main
components of parton showers are the splitting kernels and
the kinematics mapping, which define the probability and
kinematics in the transition from an n-parton final state to an
n + 1-parton final state. Section III therefore presents the
recomputation of the timelike and spacelike NLO splitting
kernels qu/ and, based on the individual terms identified in
the analytical calculation, the construction of a formalism to
include 1 — 3 branchings in the parton shower. We present a
validation of our numerical implementation and a test of the
numerical impact of ¢ — ¢’ and ¢ — g splittings in Sec. V.
The kinematical mappings introduced to simulate 1 — 3
splittings are an integral part of the new algorithm, but
their presentation is rather technical and has therefore been
included in the Appendix. Section V contains some con-
cluding remarks.

'First ideas to include 2 — 4 branchings in final-state evolu-
tion were presented in Ref. [14].
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II. PARTON-SHOWER FORMALISM

Parton showers implement QCD evolution equations,
most commonly the DGLAP equation [1-4], which gov-
erns the evolution in the limits of collinear initial- and final-
state parton branchings. The main components of a parton
shower are thus the evolution or splitting kernels and the
kinematics mapping which defines how an n-parton final
state transitions to an n + l-parton final state. Modern
parton showers implement local four-momentum conser-
vation during this transition, which requires the presence of
a parton (or a set of partons) that compensate the missing
energy when the parton undergoing evolution is taken off
its mass shell. Most commonly this so-called recoil partner
is identified with the color-connected parton in the large-N,.
limit. In order to construct a parton shower implementing
triple collinear splitting functions we are thus left with two
main tasks. One is to show that such a shower will
implement the NLO DGLAP evolution kernels that pertain
to the triple collinear parton branchings. The other is to
define kinematics mappings that allow us to generate 1 — 3
transitions in the presence of a recoil partner. We will
address the problem of the connection of the parton-shower
formalism to the DGLAP equation in this section, while the
definition of the kinematics and a derivation of the related
phase-space factorization in D dimensions is presented in
the Appendix. We will make use of both results in Sec. III.

The evolution of parton densities and fragmentation
functions in the collinear limit is governed by the
DGLAP equations [1-4]. While they are schematically
similar for initial and final states, the implementation in
parton-shower programs is radically different between the
two, owing to the fact that Monte Carlo simulations are
typically performed for inclusive final states. Nevertheless
parton showers do solve the DGLAP equations both in
timelike and in spacelike evolution. We will start with
the evolution equations for the fragmentation functions
D"(x, Q%) for a parton of type a to fragment into a hadron
h, and we will suppress the index & for brevity,

-

X [2Pap(2)] 2Dy (7, 1)8(x = 72). (1)

dlnt

In this context, P, are the unregularized DGLAP evolution
kernels, which can be expanded into a power series in the
strong coupling. The plus prescription can be used to
enforce the momentum and flavor sum rules:

[2Pap(2)]1 = limzP (2, €), (2)

where
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(3)

For finite &, the end-point subtraction in Eq. (2) can be
interpreted as the approximate virtual plus unresolved real
corrections, which are included in the parton shower
because the Monte Carlo algorithm naturally implements
a unitarity constraint [29]. The precise value of € in this
case is defined in terms of an infrared cutoff on the
evolution variable, using four-momentum conservation.
For 0 < ¢ < 1, Eq. (1) changes to

1 dD,(x, t) I—¢
D,(x.t) dlnt CZM / dCC ~Puc(¢)
—edz oy Dy(x/z.1)
DN s

(4)
Using the Sudakov form factor

/ I Jas Pac(o} (5)

c=q.9

(t07 - exp{
one can define the generating function for splittings of
parton a as

Dy(x, 1. 4%) = Dy(x, 1) Ay (1, ). (6)

Equation (4) can now be written in the simple form

dInD,(x,t,4%) I—edza, Dy (x/z,1)

T3 [T raa s L )
ns e w2 a(x.1)

The generalization to an n-parton state, @ = {ay, ..., a,},

with jets and incoming hadrons resolved at scale ¢ can be
made in terms of parton distribution functions (PDFs), f,
and fragmenting jet functions, G [30,31]. We define the
generating function for this state as Fz(x, ¢, u?). It obeys
the evolution equation

dInF(x.t,4%) :Z Z /l‘edZ % ‘(Z)fb(xi/z»t)

ba
din? i€lS b=q.g 2 2m fa,(xi,1)
1= édzat gb(x /Z t)
#3 [TraG
JEFSb=q,9” ~i 7

(8)

This equation can be solved using Markovian Monte Carlo
techniques known as parton showers [5]. In most cases,
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parton showers implement final-state branchings in uncon-
strained evolution. Since Eq. (4) also applies to G [30], we
can use Eq. (4) to remove the dependence of G from Eq. (8),
thus leading to the differential branching probability

d ln< Fa(X,t,u?) )
dins \[TjersYq, (%) 1)

B 18dza fo(xi/z, 1)
_ZZ/ Z271' )fa(xnt)

i€lS b=q.g

D3P JaE ! ©)

A direct consequence of this relation is that the Sudakov
factor, Eq. (5), must be used in final-state parton showers
that implement splitting kernels beyond the leading order,
or else the sum rules will be violated [29]. However, at
leading order the additional factor { in the integral of
Eq. (5) can be replaced by a symmetry factor, because the

leading-order DGLAP splitting functions, P(a%), obey the
symmetries

1-¢
bZ /) dzzP{y)(2)

9.9

_ [ 50
= dzPgq (2) + O(e),
1—¢
Z / dzng,))(z)
b=q.9”0

N [_8 dz BP§2>(Z) +n P (2)| + Oe).  (10)

This relates the branching formalism employed for our new
parton shower to the conventional technique for final-state
parton evolution [5], where the factor { is replaced by 1/2.
The new formalism has a convenient physical interpreta-
tion: the factor ¢ identifies the final-state parton undergoing
evolution in the same way that the initial-state parton is
identified in initial-state evolution. We will make use of this
result in Sec. III C, where we show how to implement the
differential form of the integrated splitting kernels com-
puted in Sec. IIT A.

III. INCORPORATION OF 1 — 3 BRANCHINGS

In this section we detail the formalism used to implement
triple collinear splitting functions, both in the spacelike and
in the timelike case. The main result is given by Eq. (32),
which unsurprisingly bears a remarkable similarity to the
formulation of a fixed-order NLO calculation in the
subtraction method. Our algorithm must satisfy the con-
straint that the integral over the splitting function evaluates
to the corresponding NLO evolution kernel first computed
in Refs. [21-24] and rederived in Refs. [32,33]. To verify
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this, we recompute the flavor-changing timelike and space-
like kernels P, in Sec. III A. We then identify the relevant
components to be implemented in the Monte Carlo sim-
ulation and comment on the appropriate transformation of
the MC integration variables listed in the Appendix. We
also comment on the possibility to extend this method to
splitting functions with leading-order contributions and
virtual corrections.

In the triple collinear limit of partons a, i and j, any QCD
(associated) matrix element squared factorizes as [25]

|Ma,i$j,.‘.,k,...(paa PisPj» )‘2
_ 8ru*tay) 2 _—
Saij @i

where the superscripts denote the spin dependence of both
the splitting function and the reduced matrix element. We
will implement the spin-averaged splitting functions,
(Puij)(Pa» Pis pj), together with related counterterms that
are identified in Secs. IIIB and IIC. The factor in
parentheses in Eq. (11) is common to all terms. The two
powers of the strong coupling are both evaluated at the
parton-shower evolution variable, 7. One factor s,;; will be
combined with the last term in Eqgs. (A10), (A30), (A43)
and (A58), while the other cancels after transformation of
the s, integration using Eqgs. (39) and (44). We will
comment on this in Sec. III C.

(Paijs )P (pas pinpy), (1)

A. Fixed-order calculation

We use the method outlined in Ref. [34] to compute both
the timelike and the spacelike flavor-changing NLO split-
ting kernels for massless partons

8
Pi,? (z) =CrTg <+(1 +2)log?(z) - (gzz —l—9z+5) log(z)

56 2 20
47-8——
+—= 7% +4z— 9Z>

8
P((I‘:), (z)=CpTg (—(1 +2)log?(z) - (gzz +5z+ 1) log(z)

56 , 20
——z7°4+6z-2+—|. 12
g% Tz +9z> (12)

The timelike splitting functions can be extracted from the
term proportional to &(s) in the two-loop matching of the
fragmenting jet function, G, while the spacelike splitting
function is obtained similarly from the &(s) term in the
matching condition of the beam function. In the timelike
case, the matching condition reads
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Go? (s.2.1) = T (5.2, 1)
Ldx i
+3 [Tz e
j Z
+6(s) Dy (z. ). (13)

The perturbative fragmentation function at O(a?) is

given by

2 [eR 1 0
®(zu) = 5,;6(1 —z) _ﬁgpﬁ‘i)(z)
a\2[ 1 Po 0
HE) e+ B
1 Ldx
Y30 PP (/). (14)

In the timelike case we employ the phase-space para-
metrization of Ref. [35]. We factor out the two-
particle phase space, the integration over the three-particle
invariant y,;; = S,;/ g*> and the corresponding factors
(Vaij(1 = yaij)) 7% as well as the integration over one of
the light-cone momentum fractions, which is chosen to be
2= 5u4/4q*/(1 = yuj). We also remove the square of the
normalization factor (4z)¢/(167°T'(1 —¢€))(¢*)'~¢. The
remaining one-emission phase-space integral reads

[oolt) = a-g=ze [Macter- o)
1 Q1 —2¢)
X A do(v(1 = v)) 02-20)
8 Al dr2(4x(1 =)~ (15)

where Q(n) = 22"/?/T'(n/2). The variables 7 and v are
given by the transformation

2
~ ~ sik/q
— =D -

aij

=(1-2)7. (l16)

Sai = saij(l

The azimuthal angle integration is parametrized using y,
which is defined as s;; = s;; _ + y(s;;4 — 5;—), with s;; ¢
being the two solutions of the quadratic equation
cos? ¢k = 1, cf. Eq. (A17) [35].

We can now integrate the only diagram contributing to
the timelike NLO DGLAP kernel, P( )( ), which is given

by the triple collinear splitting functlon [25]

*Note that we define 7 ; = (1 =Z2)z, while the corresponding
transformation in Ref. [35] reads z — (1 —Z;)z.
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P]—)'& _CFTR Salj |:_ tzztl] + 42] + (Za - 2[)2
e 2 Sai salstllj Za + zi
- - S,
+(1—2£)<za+zi— ‘”)}, (17)
Saij
where (Z, + 21’)%‘,/ = Z(Zasij - zisaj> + (Z4 = 2i)S4i- The
result is
1 / (F) p1-3
do P =
CFTR +1

:_é<2(1+2)log2+(1‘z) ;z(l_z ))

—4(1 +2)(Lix(2) — &) +3(1 + 2)log’z

—%6(1—1) 322(1_ )+<38Z+z+3>10g2
+ (fz (1-7%) +2(1 —z)) log(1 —=2) + O(e).

(18)

Upon including the propagator term from Eq. (11) and the
phase-space factor y!=2 ¢, the leading pole will receive an
additional factor —5(y,,;)/2¢e. The 1/& coefficient thus
generated is removed by the renormalization of the frag-
mentation function. As required, it agrees up to a sign with
the corresponding second-order 1/€? coefficient in
Eq. (14), which we write as

~ Idx
Par® = [ PP /)
Z

= CFTR<2(1 +2)logz+ (1-2) +3i2(1 —23)>.
(19)

Equation (13) can now be employed to extract the NLO
DGLAP kernel P;? (z) from the finite remainder of
Eq. (18). We subtract the corresponding convolution of

the one-loop matching coefficient with the one-loop frag-
mentation function, which is given by

I;Z,)(Z) = Z/I%CF (Mlog(x(l —-x)) +x>
x Py (2/%). (20)

Using this technique, we finally obtain the result in
Eq. (12).

We now proceed to perform the integral over the triple
collinear splitting function in the spacelike case. We use the
phase-space parametrization from Ref. [33]. The azimuthal
angle integral is most conveniently parametrized using

074017-4



TRIPLE COLLINEAR EMISSIONS IN PARTON SHOWERS

Eq. (A15), which gives dd’?f =d(pip;)/(PiLllPjol
sin gb;‘,}h ), where p | is the transverse momenta with respect
to the (anti)collinear directions defined by p, (and p;). We
can use a transformation identical to the timelike case [35].
We define s;; = s;;_ + y(s;j+ —s;;-), where s;; . are

the two solutions of the quadratic equation cos ¢“ b= 1.

(sin’ ¢i, j )
2dy(4y(1 — »))~'/?>=¢. We remove the normalization factor
(47)% /(167°T(1 — €))?s,;7*. The full phase space relevant
to our computation is then given by

/ch><+ ‘1+£Aldx(l—x)_£(x—2)_e

The related angular integral is d¢i7 ;

X 1 v(v(l = ‘879(1_28)

[ art - 5555

< [ a2 - ) (1)
0

Using Eq. (17) and the crossing relation

P, (21.22: 23, S12: 13- 523)
=21Py,(1/21,=22/%1,=23/21, —=S12: =513. 523),  (22)

we can integrate the only contribution to the spacelike NLO
DGLAP kernel PEI?, (z). The result can be expressed in terms
of Eq. (18) (see also Refs. [21,36])

/dq)() Pl—>3 /dq)( )Pl—>3
= [1X L0 pl0) 2
—2logz [ 7qu (x)Pgq (2/x) + O(e).
z
(23)

As in the timelike case, the 1/ coefficient will eventually be
removed by the renormalization of the PDF. It agrees with the
corresponding  second-order 1/&* coefficient P, (Z) of
Eq. (19) and with the corresponding coefficient in the timelike
calculation. The finite remainder of Eq. (23) can be employed

to extract the NLO DGLAP kernel P;‘f} (z). In order to do so,
we must subtract the corresponding convolution of the one-

loop matching coefficient with the first-order renormalization
term of the PDFs, which is given by

70,3) = 2f d%TR((l — 2x(1 = x)) log(1 — )

+2x(1 - x))PY (3 /x). (24)

Using this technique, we finally obtain the result in Eq. (12).

The above computations allow us to obtain the NLO
DGLAP splitting functions using the triple collinear split-
ting functions as an input. The drawback of this method is
that the calculation must be performed in D =4 —2¢
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dimensions, and that the cancellation of the singularities
occurs between the integrals. In the next section we will
therefore construct a local subtraction scheme that allows to
cancel singularities at the integrand level and implement the
computation in a manner similar to standard subtraction
[28], more precisely modified subtraction [37].

B. Definition of a local subtraction procedure

We will now proceed to define a scheme for the fully
numerical computation of the kernels in Eq. (12). This
method allows us to evaluate the integrals leading to
Eq. (12) in four dimensions, which in turn allows us to
use standard Monte Carlo techniques to evaluate them
numerically. Our method can be likened to a standard NLO
calculation using modified subtraction techniques [37]. In
this context, it is crucial that divergences of the triple
collinear splitting functions cancel locally against the
subtraction terms. We therefore compute the differential
radiation pattern using the triple collinear splitting func-
tions of Ref. [25], subtracted by the spin-correlated iterated
leading-order splitting functions of Ref. [38]. We then add
the finite remainder of the integrated leading-order splitting
functions and the renormalization and matching terms as an
end-point contribution. The details of this procedure are
described in the following.

Using the phase-space parametrizations in Eqs. (15)
and (21) we can compute the integrals of the iterated
leading-order splitting kernels corresponding to Eq. (22).
This approximate kernel reads

1—>
P (ZarZi:2j+ Sais Sajs Sif)

_ Saij p(0) P<>< Za )
Sui qg( ) 99 +Z

1+z 2 ZaZ;
—C T (ll] —8 1—~‘ 1— % .
FoR (1 -z ( Zj))( 1—8(Zu+2i)2>
(25)

Its integrals are given by
19(z) = /d(l)( [Pl @)

d<I> Pl"3(z ®,) - AL, (Z) + O(e),

@\ 2P (1/2.0.,) — Al (2) + O(e),

1)~ AT IR -
11.(2) = /dq><+iz1>;,q3(1/z,q>+l)

(26)

where

Al (2) = CpTr(5(1 = 2) +2(1 +2)logZ). (27)

074017-5



STEFAN HOCHE and STEFAN PRESTEL

Asrequired, the 1 /¢ poles agree with the integrals of the triple
collinear splitting function, Eqgs. (18) and (23). The dif-
ference in the finite part is identical in the timelike and the
spacelike case. This suggests that the approximate kernel
(25) can be used as a subtraction term for the full triple
collinear splitting kernel (22). It is not, however, a local
subtraction term, as the 1/& pole generated by the v-integral
cancels only after azimuthal integration. In order to construct
a local subtraction term, we employ the spin-dependent
splitting function, P4, computed in Ref. [38], together with
the standard spin-dependent LO splitting function, Pf,

’ 2z Kk
Pyg(z,ky) = Cr [_1——2 K2
+—1 i ( O s P”””)],
pn
aw , kﬂ kv
Pog(z, k) = - 4 4z(1 = 7) = 2 (28)
1

Their scalar product generates an additional contribution to
Eq. (25), which reads

AP] 3(ZQ,Z,,Z1, ansa/vst/)
Saij 42422
Sai (1 _Z,/)

The modified approximate kernel exactly cancels the 1/s,;
poles present in the triple collinear splitting function, such
that their difference can be integrated in four dimensions,
leading to the expected result

= CpTg = (1 —2cos? P ) (29)

F 43 Blo =153/~ -
/ dol)(P1=3—PL3 — APL?)(2.0,,) = AL, (3),
1)~ - Hl— pl— ~ ~
/ 0| Z(P1=3 Pl —APL?)(2.@0,,) = AL, (2). (30)

We now define the functions

(Z @),

(Z D) +AP 3(Z D,1),
zPl_’3(1/Z,(I)+1),
P (1/2,0,) + IAPL(1/2,0.),

(31)

F)/~
Réq?(z’q)ﬂ
F)/~

I) /~
qu)/(27®+1

I) /~
SUTER. 3%

)=
)
)
)=

This allows us to write the NLO kernel as

(F/D)
P9 (z) = <+ P- I) e
q9

/ do/"R-9)"M ¢z @,,).  (32)

This equation bears similarity to the definition of standard
and hard events in the MC@NLO method [37] without the
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related shower evolution. However, in our case it is imple-
mented not as a matching coefficient, but in the exponent of
the all-orders Sudakov form factor.

In fact, the parton shower that is added explicitly in
MC@NLO is already present in our case, as we also
include the leading-order simulation, which schematically
generates the additional contributions at O(a?)

/ VP . @) (0(G.®.y) - 0(2)),

/ d@|2PL3(1/2.0,,)(0(E.@,1) - 0().  (33)

In this equation, O stands for an arbitrary observable,
which picks up the real-emission phase-space dependence
in the emission term of the parton shower, and the Born
phase-space dependence in the corresponding approximate
virtual correction implemented through the Sudakov form
factor. As in the case of an MC@NLO, Eq. (33) provides
the necessary counterterms to generate the correct observ-
able dependence on the real-emission phase space in
Eq. (32). This allows to generate events which are distrib-
uted according to the fully differential radiation pattern, as
given by the triple collinear splitting function.

In this context it is important to note that our leading-order
parton shower does not yet include the spin-correlation term
given by Eq. (29). Therefore, the cancellation generated
between terms from Eq. (33) and Eq. (32) is nonlocal in the
azimuthal angle. However, this effect will be suppressed in
practice, due to the fact that Eq. (33) is large only in the soft
region g i~ 1, which is most often not resolved in exper-
imental and phenomenological analyses. We will address the
implementation of Eq. (29) in the leading-order simulation
in a future publication.

The form of Eq. (32) suggests that our method general-
izes to the case with a Born contribution and virtual
corrections, and that the generic structure will be that of
a computation using the NLO dipole subtraction method
[28], except that the subtraction terms are evaluated in the
real-emission phase space, as required for generating
parton-shower input configurations in MC@NLO [37].
A complete set of local counterterms for the real-emission
contribution could then be obtained from Ref. [38].3

*We note that in the general case the implementation will
depend on the parton-shower evolution variable, as the phase-
space factors in Egs. (A21) and (A48) will contribute additional
logarithmic terms when expanded to O(¢) and combined with the
leading pole arising from the soft gluon singularity. In addition,
the functions P and 7 are renormalization scheme dependent.
A change of renormalization scheme can be accommodated by
redefining these terms.
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C. Implementation in the parton shower

This section describes the implementation of the local
subtraction procedure outlined above in a Monte Carlo
event generator. As opposed to a leading-order simulation,
where all splittings have 2 — 3 kinematics, the new
simulation includes an integral over 2 — 4 configurations,
and end-point contributions arising from (I+ P/e— 7).
We first explain how the 2 — 4 branchings are generated
and how the integration variables are connected to the
kinematic variables introduced in the Appendix. The
generation of end-point contributions is a simple extension
|

4z

PHYSICAL REVIEW D 96, 074017 (2017)

of the generation of 2 — 4 branchings, and is described
later on.

1. Differential contributions

The splitting kernels that are differential in the 2 — 4-
particle phase space are defined by the subtracted triple
collinear splitting functions of Ref. [25]. As shown in
Sec. IIIB we only need their four-dimensional values.
There are two independent flavor-changing contributions,
which are given by [cf. Eq. (17)]

j+

2
CFTR sal] |:_ tai,j

F 1
R< >(Zule’Z17 ulvsu]’sl]) 2

Sai SaiSaij
P

a9

(F)
R (Za,Zl,Z],sansa]’ 1])

NC Sai Saij

Their corresponding local subtraction terms are given by

o (Zas ZisZjs Sais Sajs Sij)
~2 ~
- —CFTR Jaij {—ZSU + L+ 2 2%

1-z

= =2

Za — i) T
— + 1z, +z -],
Zq + < saij

1+z 27,%: 42,2:2; ,
S(F,)Z,E,»,Z-,s4,s > Si CrT [ <1— — >+ (1 = 2cos? ”k,],
qq ( a JrPairPaj ]) F R sdl 1 Z] (Za + Zi)2 (1 _ Zj)3< ¢a.])
Y P .
qq (le’zt’zjvsazvsapszj) = O4q (Za, Z,,ZJ,S,U,SW,S,]) + (l <~ J) ( )

Note that the subtraction term for P,

7 18 the simple sum of two subtraction terms for P

4q» 1-€. the interference contribution

on the last line of Eq. (34) does not create a new singularity. The fully differential initial-state 2 — 4 splitting kernels are

defined by crossing [cf. Eq. (31)]

R(I) (2(1’ Ei’ zj’ Sais saja sij) - EaR(

DNiw =~ =~ -
S( )(Zw iy Zjvsaiﬂsaj’sij) - les(

The kinematics for 2 — 4 branchings in our parton-
shower implementation is described in the Appendix, and
the kinematics for 2 — 3 branchings can be found in
Ref. [39]. For a numerical implementation of Eqgs. (34)—
(36) it is important to match the definition of splitting
variables in Ref. [25], or else the local cancellation of
singularities will fail. We describe in the following how
these variables are chosen in practice, based on the phase-
space variables in the Appendix. We note that in our
Monte Carlo implementations all four-momenta of the
2 — 4 parton final state are known at the time the splitting
kernel is evaluated. We could therefore simply use the
formal definitions in Ref. [25]. However, we find it
instructive to write the arguments of the splitting kernels
explicitly in terms of the variables used in the Appendix.

In the case of a final-state emitter with a final-state
spectator, we have the evolution and splitting variables (see
subsection I of the Appendix)

F)(l/za’ _zi/zaﬂ _Zj/za’ )
F)<1/Za’ _zi/zaﬂ _Zj/za’ —s

ais _Saj7sij>7
ais _Saj’sij)- (36)

[

4p;PaiPaiPk 2paPk
= LIZW’ g = a2 and s,
q q
x, = Lalk (37)
PaiPk

We can thus identify the variables in Egs. (34) and (35) as
follows:

z _ Zq Z _ fa —Za
¢ l_saij/qz, l _Suij/qz’
7zj=1-2,—7% where
Saij = t/éa + S4i (38)

The scalar products s,; and s;; are computed explicitly. We
transform the s,; 1ntegrat10n to obtain a value in the
physical region s,; < s,4;:
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dv - Sy
where v = .

ds,; = msaija

(39)

Saij

The factor s,;; on the right-hand side cancels one of the
denominators in the term in parentheses of Eq. (11). In the
case of a final-state emitter with an initial-state spectator,
we have the evolution and splitting variables (see
subsection 2 of the Appendix)

2D :iPaiPai
f— p]pazpapb 24 = PaPb and S0
PaijPb PaijPb
x, = Labb (40)
PaiPb

We identify the variables in Egs. (34) and (35) as follows:

Za = Za> Zizga_za’ Zj: l_ga' (41)
The scalar products s,; and s;; are computed explicitly, and
the s,; integration is transformed as in Eq. (39). In the case
of an initial-state emitter with a final-state spectator, we
have the evolution and splitting variables (see subsection 3

of the Appendix)

,_2PiPabare o =q®
PaPijk ¢ zpapijk “
x, = PuiPrk ] (42)
PaPijk

We identify the variables in Egs. (36) as follows:

_zj —1- E =Z _ 2pipi

Z & . ¢*/C’

—=1 —Z,-—Zj, where

Za

1 t/Xg = Sai

— =1 e Tar 43

The scalar products s,; and s;; are computed explicitly.
. . 2

Using the relation s,;; = —t/x, + 54 +m ;> we transform

the s,; integration to obtain a value in the physical region

Sai < Saij/fa:

dv - Sai
where 7 =¢&,-%

ds i = T——=>=S,ii .
ai 1_0/5 aij Saij

(44)

Note that in this case the v integral is limitedto 0 < v < &,.
The factor s,;; on the right-hand side cancels one of the
denominators in the term in parentheses of Eq. (11). In the
case of an initial-state emitter with an initial-state spectator,
we have the evolution and splitting variables (see sub-
section 4 of the Appendix)

PHYSICAL REVIEW D 96, 074017 (2017)

2DiPaiPaiPb 2
f=—r 7, = and s,
Palb “ 2paps “
xa:paipb‘ (45)
PaPb

We identify the variables in Eqgs. (36) as follows:

1 ¢ -3 1- -z

- =—, ~Z,___xa’ ~Z/=1—£, where
Za  Zg Za z4/C Zq ¢a

1 t/xa_sai

— =14 46

The scalar products s,,; and s;; are computed explicitly, and
the s,; integration is transformed as in Eq. (44).

We use the Sudakov veto algorithm to select the
evolution variable ¢, based on an overestimate that is given
by the soft enhanced term of the leading-order g — ¢
splitting function. The variable z, is selected accordingly,
and the variable x,, is generated logarithmically between z,,
and 1. The variable v is generated uniformly between 0
and 1.

Negative values of the splitting kernels are handled using
the weighting technique presented in Refs. [26,27]. If we
assume for the moment that the splitting function is given
by f, and we use the overestimate g, then we can introduce
an auxiliary overestimate 4 which is adjusted such that the
probability f/h to accept a splitting conforms to
f/h €[0,1]. This implies that 2 may have a similarly
complex functional dependence on the phase-space varia-
bles as f itself. The fact that f/h is used as accept
probability in the Monte Carlo implementation is corrected
by a multiplicative weight, which ensures the proper
exponentiation of the desired branching probability:

h 9=f
w=—X { h=f
g 1 if the splitting was accepted.

if the splitting was rejected,
p g ) (47)

2. End-point contributions

In order to implement Eq. (32) in a parton shower, we
find it convenient to perform the integration of (I+P/e—7)
numerically using the method outlined in Sec. II. This will
eventually allow us to match the phase-space coverage of
the real-correction and the local subtraction terms in the
corresponding integrated MC counterterms. Note that the
phase-space coverage is restricted in the region 7 > 0, as
the z, integration range is limited by momentum conserva-
tion, cf. Sec. II. This phase-space restriction is the main
difference between the algorithm proposed here and the
analytic calculation in Sec. III A. In addition, a fully
numerical evaluation of (I + P/e —Z) allows us to extend
the calculation to splitting functions that we have not
previously computed analytically, such as the flavor-
changing contributions P,;. Note that this kernel in
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particular does not require any new end-point contributions
beyond those that can be obtained from crossing relations.
Thus, the full benefit of our method will become apparent
only when implementing the more complicated triple
collinear splitting functions.

The procedure for the MC integration of (I+P/e —T)
is as follows. We generate configurations in the 2 — 4-
parton phase space as described in the Appendix, which are
subsequently projected onto s,; = 0, while the dependence
on x, and &, is retained. This corresponds to singling out
the pole term in the expansion

PHYSICAL REVIEW D 96, 074017 (2017)

1 1 =~ ¢" (log" v
F“;“”)*Zn—z( ; )

i=0

(48)

The 1/& poles that are generated in this manner will cancel
between the integrated subtraction term, I, and the renorm-
alization term, P. In order to compute the finite remainder
of (I+P/e—1), we simply need to implement the O(e)
terms in the expansion of the differential forms of the
subtraction and matching terms. They are given by

F) e o~ o~ ~ e e - e~~~
Aé}&mzh@)::Q¢@mzh@u@)—1g¢&mth»@-+&%

I/~ ~ =~ ~ |7 1 _zi _Zj Za ot 1 _zi _Zj _za
AI(q;/(Za?Zt’Z1>:Za Iqq/ ~ T~ T~ s~ ~ _Iqq/ ~ 2T~ T~ 9~ ~ )
2a % Z2a Z2aTZ 20 %4 Za Z2aTZI

where

- 1+73

Iqq/(Za,Zi,Zj,X):CFTR 1—2j+ 1—(20

~ 1+z2
=2Cr [1 - Ej log(xz;) + (1

Iqq’(2a72[92j5x> ]

J

The end-point contributions for g — g transitions are
obtained as a sum of two terms of ¢ — ¢’ type:

Alyg(24:2i.2)) = Alyy (Za: 2. 25) + (P & ). (51)

3. Symmetry factors

Finally, according to Sec. II, we multiply each term in
Eq. (32) by an additional factor z, in branchings with a
|

2132

(49)
2Z+ZZ)Q> <1 5+ ifj) (log(2:%,) - 1)],
_ gj)] Pl (Zi 2,»)' (50)

|
final-state emitter, independent of the type of spectator.
This can be interpreted as an identification of the parton for
which the evolution equation is constructed. The extension
to 1 — 3 splittings requires a similar factor for one of
the two radiated partons, if the two are indistinguishable. In
the case of the simulation presented here this applies to the
flavor-changing splittings of type ¢ — g. The correspond-
ing extension of the symmetry relation, Eq. (10), reads

1-¢ 1-¢
Z / dZ]/ dZ21 @(I—Zl —Zz)Pa_mhi,(ZhZz,...)
b=q.g 0 0 — 2
1-¢ 1-z
= Z / le / dZ2Sahl_7Pu—>abl_7<Zl’ 22, ) + O(E)’

b=q.9

1-¢ 1-¢
S [T [T
b=q.9 40 0 1

b#a

2122
-7

1-¢ -z
- Z/ le / dZZSabl_)Paebal_J(Zl, 22, ) + (’)(5),

b=q.9
b#a

9(1 -1 = 22)(Pa—>bai_7(zl’z27 .

) + Pa—»bl_m(zl’ 22 ))

(52)

where S,,; = 1/ (chq.gnc !) (where n, is the number of partons of type c¢) is the usual symmetry factor for the final-state
abb. Thus, all terms in Eq. (32) are multiplied by the following overall symmetry factors:

S(F):Z fa_Za,
a 1_Za

1 =%
-2z,

(53)
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Jet resolution at parton level (Durham algorithm) Jet resolution at parton level (kt algorithm, Breit frame)
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FIG. 1. Validation of the simulation of triple collinear parton splittings in final-state (top row) and initial-state (bottom row) branchings
with a final-state (left panels) or initial-state (right panels) spectator. We show Durham k;-jet rates in e™e~ — hadrons at LEP I, k,-jet
rates in neutral current DIS at HERA II with O > 100 GeV?, and k;-jet rates in pp — e*v, at the 8 TeV LHC (top left to bottom right).
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FIG. 2. Impact of the simulation of triple collinear parton splittings on final-state (top row) and initial-state (bottom row) evolution
with a final-state (left panels) or initial-state (right panels) spectator. The top panels show the ratio between the leading-order result and
the leading-order simulation including triple collinear branchings. The middle and bottom panels show a comparison between the
simulations of up to one triple collinear splitting and arbitrarily many (both not including the leading-order result). For details, see Fig. 1.
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IV. NUMERICAL RESULTS

In this section we present numerical cross-checks of our
algorithm, and we compare the magnitude of the correc-
tions generated by the flavor-changing triple collinear
splitting functions to the leading-order parton-shower
result. We have implemented our algorithm in the DIRE
parton showers, which implies two entirely independent
realizations within the general-purpose event generation
frameworks PYTHIA [40,41] and SHERPA [42,43]. We
employ the CT10NLO PDF set [44], and use the corre-
sponding form of the strong coupling. Following standard
practice to improve the logarithmic accuracy of the parton
shower, the soft enhanced term of the leading-order
splitting functions is rescaled by 1+ a,(¢)/(27)K, where
K = (67/18 —2%/6)C, — 10/9T gy [8].

Figure 1 shows comparisons between the results from
DIRE+PYTHIA and DIRE+SHERPA for a single triple
collinear splitting. Each simulation contains 10° events.
The lower panels present the deviation between the two
predictions, normalized to the statistical uncertainty of
DIRE+SHERPA in the respective bin. If both imple-
mentations are equivalent, this distribution should
exhibit statistical fluctuations only. We validate final-state
emissions with a final-state spectator in the reaction
eTe™ — hadrons [Fig. 1 upper left], final-state emissions
with an initial-state spectator and initial-state emissions
with a final-state spectator in the reaction e™p — etjet
[Figs. 1 upper right and 1 lower left], and initial-state
emissions with a initial-state spectator in the reaction pp —
e'v, [Fig. 1 lower right]. As required, the two implemen-
tations agree perfectly. Each panel shows the predictions
for the leading two differential jet rates, which are both
populated by the simulation of a single triple collinear
parton branching. Note that their numerical values can be
both positive and negative, since the triple collinear
splitting functions are not positive-definite. While the
subleading jet rate receives contributions from the simu-
lation of R — S in Eq. (32) only, the leading jet rate also
receives contributions from I — Z. It can be seen that in all
cases I —7 is much larger on average than R —S. The
feature around —2.5 in Fig. 1 upper left and around 0.7 in
Fig. 1 upper right is due to the onset of b-quark production,
which we include in the simulation only if 7 > m3. Similar,
yet less pronounced, features are present in Figs. 1 lower
left and 1 lower right.

Figure 2 shows the impact of triple collinear parton
branchings on the full evolution. We compare the ratio of
leading-jet rates with and without the simulation of 1 — 3
splittings (upper panels), and we analyze the impact of
multiple 1 — 3 splittings compared to a single one (middle
and lower panels). The edge in the ratio plots is related to
the parton-shower cutoff, where the 1 — 3 splittings have a
different behavior compared to the leading-order ones due
to the different evolution variable. It is apparent that the
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effect of multiple triple collinear branchings is marginal,
even more so when compared to the leading-order results,
which are by themselves much larger in magnitude than the
correction from a single 1 — 3 branching. We note again
that the largest part of the 1 — 3 results is due to the
subtraction terms 7 ad' which is in fact a leading-order like
contribution. The impact of the 1 — 3 flavor-changing
splittings is particularly small for eTe~ — hadrons. For
et p — eTjet scatterings, the hard-emission regions show
the largest impact, while for pp — e*v,, the soft- and
collinear-emission regions are enhanced.

V. CONCLUSIONS

We have presented a new scheme to include triple
collinear splitting functions in parton showers. As a proof
of principle we have recomputed the timelike and spacelike
flavor-changing NLO DGLAP kernels P, and matched
each component of the integrand to the relevant parton-
shower expression. The implementation in two entirely
independent Monte Carlo simulations, based on the gen-
eral-purpose event generation frameworks PYTHIA and
SHERPA has been cross-checked to very high numerical
accuracy. The impact of the flavor-changing triple collinear
kernels P,, and P,; has been studied in timelike and
spacelike parton evolution as a first application. We found
that the numerical impact of the kernels investigated here
is marginal, with effects of up to ~1% on differential jet
rates in e"e” — hadrons at /s =91.2 GeV (LEP I),
neutral-current deep inelastic scattering (DIS) with Q? >
100 GeV? at /s = 300 GeV (HERA 1II), and pp — e*v,
at 8 TeV (LHC I).
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APPENDIX: KINEMATICS AND PHASE-SPACE
FACTORIZATION FOR 1 — 3 SPLITTINGS

In this appendix we give the phase-space parametriza-
tions employed in our implementation of 1 — 3 parton
branchings. We construct kinematic mappings that allow us
to relate the splitting and evolution variables to manifestly
Lorentz-invariant quantities. In order to cover all possible
applications, we list formulas for arbitrary external particle
masses. While this is not strictly needed in the course of this
work, it may be useful to include higher-order effects
involving heavy quark splitting functions in the future. The
main results are Eqs. (A10), (A30), (A43) and (A58), as
well as the corresponding D-dimensional phase-space
factors, Egs. (A21) and (A48).
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FIG. 3. Kinematics mapping for final-state splittings with a final-state spectator.

1. Final-state emitter with a final-state spectator

The kinematics for the case of a final-state radiator with a final-state spectator are derived from an iteration of the massive
dipole kinematics in Ref. [45]. This is sketched in Fig. 3. The evolution and splitting variables are defined as

4P D aiPai 2
f— zpjpazzpalpkz ’ Za = > P;Pk > and Suis X, = PaPk ) (Al)
q - — Mgy —m q- —my;; — my PaiPk

We generate the first branching (@i}, k) — (ai, j, k) with the mass of the pseudoparticle ai set to the virtuality s,;. The new
momentum of the spectator parton k is determined as

~ 2 2 2 2
= (-T2 ) g (2

Py~ q"
¢ q Mg mgij’ my) 247
with ¢ = p,;j + Py and A denoting the Killen function A(a,b,c) = (a —b —c)* —4bc. s,; is given in terms of the
evolution and splitting variables as s,;; = y(q* — mg) + (1 = y)(s4 + m3), where
2_ 2 2
Za/xa q- — my;; — My . (A3)

2 2
l1-ygq — Sqi — M —my

X4/ 24

2 2 2’
q" = Sai — My — My

y: Z:

The new momentum of the emitter parton, p,;, is constructed as

7(G% Saijs Q) Plai; = Sais P Sai + K3 Pk — M/ 7(G%, Saijs M3) Plai; N

B(G*. $4j. m) Zai B(G?, 417 m7)
where f(a, b, c) = sgn(a — b —c)\/4(a, b, c),2y(a,b,c) = (a = b —c) + f(a, b, c) and pl,;; = ¢* — p). The parameters
Zqi and k3 = —k3 of this decomposition are given by

KL, (A4)

l,{ _ =
Pai = Zai

2 2 2 2
_ q° = Saij —my | my; Saij T Sqi — M5 5. ~ _ _
j— - , K =7.(1-%2.)s::—(1=%.)s.:—7 .m>. A5
Cai B(G*. 54, m7) [Z 7(G%. Saijs m3) G* — Sqi; — mj, 1= Zai(1 = Zai)Saij = (1 = Zai)Sai = Zait; (A5)

The transverse momentum is constructed using an azimuthal angle, ¢,;

I n
n . I -~ ~ =~
kli = kL <COS ¢ai |nl| + sin ¢ai |ZL|> ) where nﬁl_ = £O#l/ﬂpl¢/1ijpi’ l/j_ = gﬂyﬂﬂpZijpin(j_' (A6)

In kinematical configurations where j;m»j = j:f;k, n, in the definition of Eq. (A6) vanishes. It can then be computed as
nl = eV pv. ;» where i may be any index that yields a nonzero result.

The first branching step, which generates the final-state momentum p; and the intermediate momentum p,,; is followed
by a second step, constructed using the same algorithm. As p,; has been generated with virtuality s,, no momentum

reshuffling is necessary in this case, and p;, serves as the defining vector for the anticollinear direction only. The customary
variables y and 7z are determined by
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2 2 27-1
—me..—m
e TR T (A7)

Xa Sqi — My — N

Equations (A4) and (AS5) are employed to construct the momenta p, and p; using the replacements q* = (pai + Pr)%

2 2 2
Saij = Sai> Sai = Mg and m; — mj.

The phase-space factorization for final-state splittings with a final-state spectator can be derived similarly to the 2 — 3
case described in Appendix B of Ref. [46]. We perform an s-channel factorization over p,;; and subsequently over p,;. This
gives

dsa,~
/dq)(Pa,Pi,Pj,PkVI) _/—J/dq)(Paij,PkW)/dq’(Pa,Pi,PﬂPaij)

al/\/T/dq) pul]9pk|q /dq)(p(l’pl7p]|pul])
alj’

:/dq)(ﬁaipi?km)/[dq)(PavPi’Pﬂi?aij’i’k)]- (A8)

We define the auxiliary variable ¢, =z,/x, and use the relations z, = (s, —mg—m;)/(q* —m; —my}),
2

o= (Saik = Sai —m3)/(q* = mgy; —mg) and t = &,(54i; — S4i — m7) to write

l(q29saij7m%) dsal

/[dq)(pa’pivpﬂﬁaij’ﬁk)] /dq) pat’p1|pal])/d(b(pu’p |pul)

aij» Mg
dsaz] / dsaz / dsazkd¢a1 / 1 dsakd¢a
2 2
27 \/ q mm] 2”) /I(Saik’ Sai m%)
1 q - malj - mk / / /
= dr | d d
4(27)? % | 9

az]’

2
— My

d¢at : (A9)

2
Saiks Sai» mk)

d
ds,; fa

The final result is

/[dCD(Pa’Pi,Pﬂl;aij’Pk = 1J6FF2/dt/ /d¢] [167[ / /dé&“ d(ﬁl ]—a, (A10)

where we have defined the Jacobian factors

2 _ me.. — m2 L — — m2
JO = 4 TR T g g@) - Saik T Sai T (A1)
ﬂ(‘lzamizj’m%) A(Saikasai’m%)
The extension of Eq. (A10) to D = 4 — 2¢ dimensions is straightforward. We obtain an additional factor of
. o MG?, sqijym3)\ 7 L
ADp(py. pis PjlPaijs Pr) = (—’ A®gi(py. Pis Pj| Paijs Pr)- (A12)
e Mg miij’mi) e
where
- - Q(1 -2
A(I)FF(pa’ Pis pj|paijﬂpk> = <ﬁ> (pal] sin 91;1] sin ¢j) ( : Sln ek Sln ¢ ) (A13)
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The n-dimensional sphere is defined as Q(n) = 27"/ /T'(n/2). We can write the magnitudes of the momenta as

(845, m2, mlz)

Al4
4Slli ( )

l_’é,i =
The polar angles are given by

ko _
cost,; =

(A15)

(s’” + m — m2)( Sai T m% B saik) <1 — zsai papk)
2 2 .
\//1 Sair M l(sal’ m%, atk) Sai T My = M; PaiPk

The splitting functions in our algorithm are independent of ¢ ;, and hence we can average over one azimuthal angle, leading
to the familiar volume factor

(sin? ;) —%. (A16)

Q(2-2¢) QI -2¢) / dg;
(27)'=2  (2xz)7% 2

ai,k

4
a; » Where

The azimuthal angle ¢, is parametrized as ¢; = ¢

cos ¢?,’jb _ Sap(3ia3jp + 5ip3ja = 5ij8ap) = (Sa5ip5 jp + p5iaSja — Eijsasb>. (A7)
VR PilPas PV (P11Par )50t 00 51) /4
Note that we have defined 5;; = p;p; to simplify the notation. The transverse momentum squared is given by
k2 <p|p p ) _ 2§uh§iu§ib - sagizb - SbEIZa - Siizb + SiSaSp (Alg)
LR E l(sab’savsb)/zl'
For massless partons, Eq. (A15) can be written in the simple form
it Sai Saii 2
cos Ok, = 1= 2x,,cos Ok, = T 0l g o Pei 4| (A19)
Saij = Sai Saij + Sai @7 — Saij
The magnitudes of the momenta in this case are given by
_ r /¢ _
4p%, = ——1>4 4p% . =5 .. A20
paz,] 50 l‘/fa 4 Sai pa,z Sai ( )
In the iterated double collinear limit, we thus obtain the expected result
2(2m)%
A(I)F(‘S‘aij’sah Za>Xa» i) :m(sm/smx ( )ga(l _fa) sin ¢azk) . (A21)

This result is used in Eq. (49) of Sec. III to derive the logarithmic contributions related to the phase-space integral. It shows
that our choice of variables correctly identifies z, and x, with light-cone momentum fractions in the collinear limit.

2. Final-state emitter with an initial-state spectator

Final-state splittings with an initial-state spectator are treated in the same manner as final-state splittings with a final-state
spectator, with the sole exception of the construction of the new spectator momentum in the first branching step, if the

4Although we do not use this method in practice, it is instructive to show that we can use the technique of Ref. [35] to parametrize the
azimuthal angle integration by an auxiliary variable, y, defined as s;; = s;; _ + x(s;; = — 8;;—), where s;; , are the values of s;; at the

phase-space boundaries, cos c/)‘” % — +1. We obtain sin ¢“’ K= d(sy = s ) (174 — i)/ (sij = 8ij-)* = 4x(1 = x). The Jacobian
factor related to this transformation is given by d(,b‘” K /dy = 2csc ¢‘” K — (1 =) V2
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spectator is massive. The evolution and splitting variables are defined as

200D
t— pJpalpalpb . 2, = PaPb and S i x, = PaPb ) (A22)
PaijPb PaijPb PaiPb
The new spectator momentum is defined as
- q- Py /1(6] Sz’mb> 4mbp il q2+m2—s~
Py = (pﬁ — T2 qﬁ) 2 : 4 ot zbz 4. (A23)
q] (¢ ’maij’mb) mbpaijL q]

where q = in pat/’ q” =9 + paljJ_ and Salj (x - 1)/x(q —-m ) + (Sai + m?)/x’ where

t -1 ”
T {1 -l 2} TR (A24)
q~ = Sai —mj —my

The remaining construction proceeds as in Sec. A 1, except that m; — m,, and p;, — —p,;. This is sketched in Fig. 4. The
customary variables y and z in the second branching step are given by

5 7 =x,. (A25)

2 2 2\1 —
y/: |:1+t_za/xa(q _*;ai_mj_mb):| 1’ ~
Sqi — Mg — N

The phase-space factorization for final-state splittings with an initial-state spectator can be derived similarly to the 2 — 3
case described in Appendix B of Ref. [46]. We perform an s-channel factorization over p,;; and subsequently over p,;. This
gives

ds. ...
/dq)(pmpi’pij|pb7pC) :/2—://dq)(paiijpbvpC)/dq)<pavpi’pj|paij)

- / dx / 40 (B, K|y pe) / 4D (po. pr. 13| Py Do )] (A26)

where X = (¢> — miij —m;)/(q* = Saij — mj) and

p ai mal +m dsal ds aid¢ai
[AO(py. pis pi|Pbs Per q)] = 2L 2= b i d®(p,, pilpai)
271'

2” \/ ’I(Saij’ mi9 qz)

1 Lll
phm ]+mb /dsbai/d¢ai/[dq)(pa’ pi|paia Pb> q)] (A27)

\/ at]!mb q

To simplify this expression, we have used the definition [46]

T Paij

—— (O

Po q Py q

FIG. 4. Kinematics mapping for final-state splittings with an initial-state spectator.
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(Pt o)
Pbai — . A28
b \/ W(ps + oo md) (828)

We use the relation z, = (s, — m3 — m3)/(g* — s,; — m}) to write

dsai Sqij + m
/[dq)(pavpilpai’pb’ ('I>] :/ /dq)(pwpi'pm = /dsat/dza/d¢a ! b . (A29)
27 \/ A(Sais Spai m127>

Using the auxiliary variable &, = z,/x, = (Spai — Sui — m3)/(g* — s4i; — m3), the final result can be written as

J dg; e, [ dg;
/[d@(pavpi’pj|phapu = 161212/ / / |:1677,' / / ¢ JFI:| Saz] +mb 2)9 (ASO)

where we have defined the Jacobian factors

2
pb(u Sal/ + mb Sai + mb — Shai

and J 1(;21) =

(1 _
Je = - .
alj’mh q ﬂ(sai’mwsbai)

(A31)

According to Eq. (A22), s,;; (and therefore X and p;,;) depends on both 7 and s,;, and hence Jf;ll) is not independent of the

second branching for nonzero m,. The evolution variable could be redefined as t = s,;;54,/(2p4i;pp) to solve this
problem. As we deal with massless initial-state partons only, we defer this discussion to a future publication.
The extension of Eq. (A30) to D = 4 — 2¢ dimensions is straightforward. We obtain an additional factor of

R Q(1 —2e¢ . e
Aq)FI(pavpivpjlpvaWQ) = (W) (pw]Sln QZ”SHI ¢j) (ptllSln Qb Sln2¢i) : (A32)

The momenta and polar angles are defined as in Egs. (A14) and (A15), and the azimuthal angle ¢; is parametrized as

¢; = ¢ij’-b, using Eq. (A17). As in the case of a final-state emitter with a final-state spectator, the splitting functions are
independent of ¢;, and hence we can average over one azimuthal angle. For massless partons, the polar angles can be

written in the simple form

_ Saij T+ Sai

b b
cosf,; =1—2x,, cosby, ; =

{1 —2¢, (A33)

aij — Sai Sal] =+ saz:|
The magnitudes of the momenta in this case are given by Eq. (A20). In the iterated collinear limit, Eq. (A32) can be
simplified to give Eq. (A21).

3. Initial-state emitter with a final-state spectator

The kinematics in initial-state branchings with a final-state spectator is typically constructed by mapping the process to
final-state branchings with an initial-state spectator [28]. This mapping requires specml care in the case of 2 — 4 dipole
splittings. Our algorithm is sketched in Fig. 5. We combine an initial-final branchlng during which the spectator is shifted
off mass shell with a 1 — 2 decay of the newly defined pseudoparticle with momentum p j;.

We use the following evolution and splitting variables:

b —? ‘
t— PjPaiPaiPk 2, = q and S0 x, = PaiPk (A34)

PaPijk ' B 2papijk PaPijk

where ¢ = p, — p; — p; — pr- We begin by constructing the initial-state branching. As the spectator parton changes its
virtuality, the shift in Eq. (A.9) of Ref. [39] must be modified to

’Both the global and the local recoil scheme, as defined in Ref. [39], can be used. We describe only the global scheme in this
publication.
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A =

—>U—> -— _  —

Pa Daij q Pa Puai

FIG. 5. Kinematics mapping for initial-state splittings with a final-state spectator.

= 2 2
w (= 4Dk ,,) MG Sain i) @° + Sjx— Sai u
Pi=1Pi— q + q". (A35)
ik ( [ ﬂ(qz,mﬁ,»j,m%) 24

where q = i?k - i)aij and Sik = q2(1 - xa/za) + t/xu — Sai-
Next we construct the momentum of the emitted particle, p;, as

(q Sais ]k)pal_l_salpjk ms; +k2 p}k+sjk/y( Sais ]k)paz

o
Pi =% + K. (A36)
B(G* s4ivSit) Zi B(a*. SairSjx) +
The parameters z; and k3 = —k3 of this decomposition are given by
2 2 2
_ 4= Sai— S |x—1 Sk Sqi +m; —my - - -
;i = - k| = Zz(] - Zz)sat - (] Zi)m — Zimy, (A37)
ﬂ(qzv Sais sjk) xX—U y(q27 Sai» sjk) q2 — Sai — sjk +

where u = —(s,; —m? —m2)z,/q* and x = u + x, — 12,/ (¢*x,).

We now boost p, and all final-state particles into the frame where p,, is aligned along the beam direction, with p,, the
opposite-side beam particle, unchanged. Eventually we must construct the decay of the two-parton system defined by p ;.
This can be achieved by using the same technique as in Sec. A 1, i.e. we construct a decay with the customary variables y
and 7 defined as

r— 1= t/xa - qzxa/za - = t/x“ A38
Y= S —,/,12_,/’12 ’ 2 _t/.x _ 2 : ( )
kT My = N =9 %a/Za

At the same time, we need to make the replacement p, — —p,;, m; — s,; and use the appropriate final-state masses. This
technique is sketched in Fig. 4.

The phase-space factorization for initial-state splittings with a final-state spectator can be derived similarly to the 2 — 3
case described in Appendix B of Ref. [46]. We first perform the s-channel factorization over p;j. Using

2o = =¢*/(sij + m2 — ¢*), this gives
_ ds,-jk
d‘b(pivpj’pk9K|pa’ph) - o dé(pijk’K‘pavph) d(D(pl’p]’pk|p”k)

_/dza/dq)([)k?Kuaa’pb)/[dq)(pi’pj?pk|pa’pb’Q)] (A39)

where

1 Pi aq dS ik dsmd¢l
/[d®(p,-,pj,pk|pa,pb,q =—- / . 1020)? d®(p;. pelpjx)

2 22 i g

1 Ppija si'k_ma—q
" 4(27) zi ] /dsai/d¢i/[d®(p,»pk|p,-k,pa,q)}. (A40)

}“(sijk’ mi’ qZ)

To simplify this expression, we have used the definition [46]
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- \/ﬂ((pa,,w,,) m2,m})
ija —

/1((]7“ + Pb) mav mb)

(A41)

where p/; is given by momentum conservation using Eq. (A35).° We make use of the relations Xo = 24(q* — Sg = Sj Tt
mjz')/fl2 and 1 = —x,(S4; = Sai — mf) to write

ds dx, —q°/ 2,
/[d@(pj,pklpjk,pm / ’k/dd> Py pelpi) = 3/ /dt/d¢, -/ . (A42)
271') /1(6' )

jk? air 9

The final result is

/[dé(pnp,,pklpmph q)] ljéFz/dt/d¢’ {16” / /dx /dd)’ Lu (A43)

where we have defined the Jacobian factors

_2
Jg:) pt}a Sljk + ma and Jﬁ? _ q xa/za ) (A44)
@\ Asijmi g A s Sais 47)
Note that s, = q*(1 = 1/z,) — m2, and therefore both p; ja and Jg:) are unaffected by the intrinsic branching.
The extension of Eq. (A43) to D = 4 — 2¢ dimensions is straightforward. We obtain an additional factor of
- - Q(1 —2¢
A‘I)IF(P,',PpPk\Pa,Pb,Q) = (ﬁ) (P,ksm gaksm 4’/) (P”k sin” ¢ ijk sin” ¢b;) = (A45)

The momenta and polar angles are defined as in Eqgs. (A14) and (A15), and the azimuthal angle ¢; is parametrized as
¢; = ¢Zf}.’k , using Eq. (A17). As in the case of a final-state emitter with a final-state spectator, the splitting functions are
independent of ¢;, and hence we can average over one azimuthal angle. For massless partons, the polar angles can be

written in the simple form

2z,(1 - ; , 1 =22,/ (24t — g*x2
costy =1-— ; Zal tza)sa, , cos 0 = 2t/ (Zal = 4°%a) . (A46)
q ( - )Ca) * Za/xa ~ Zatai \/1 - 4saisjk/<q2xa/za - t/xa)z
The magnitudes of the momenta in this case are given by
2 2
- —q Z‘/xa — Sai - X {
4p2 = |l —x, S 42 = 2(1——>+——S-- AdT
ik = (= 2,) ¢ ] Pix=1 2 « (A47)
In the iterated double collinear limit, we thus obtain the expected result
2(2x
Aq)l( Saijs anzavxa7¢) ((lf)zg)(saijsai(l )(1 _§a>S1n ¢a”k) . (A48)
|
This result is used in Eq. (49) of Sec. Il to derive 4. Initial-state emitter with an initial-state spectator

the logarithmic contributions related to the phase-space
integral. It shows that our choice of variables correctly
identifies z, and x, with light-cone momentum fractions in
the collinear limit.

Similar to the case of initial-state splitters with a final-
state spectator, the kinematics in initial-state branchings
with an initial-state spectator requires special care in the
case of 2 — 4 dipole splittings. Our algorithm is sketched
in Fig. 6. We combine an initial-initial branching during

6 " .
Note that p,; depends on the recoil scheme [39], and therefore which the final-state virtuality is promoted to (Pj + C])2

Pija 1s generally scheme dependent. However, in the most relevant ) )
case of m, = m,;; = 0, i.e. for massless initial-state partons, we with a 1 — 2 decay of the newly defined pseudoparticle

obtain p;;, = z,. into p; and q.
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Pa pai]' Py Da

FIG. 6. Kinematics mapping for initial-state splittings with an initial-state spectator.

Our evolution and splitting variables are defined as

2

20:p D . 4
f— p/pazpazpb’ Z,= q and S i xa:pazpb.
PaPb 2paps PaPs
(A49)
We first determine the new momentum of the initial-state parton as
m; A(Sqp, m2, m3) m>
uo_ | p aij H ab>"ta> "p a H
Pa = | Puij ~ - p - Pl (A50)
‘ ( 7 oy(g? miij’ mi) b) A mgzij’ mi) 7 (Saps M3 mi) ’

where ¢ = p, + p, — pi — pjand s, = q*/zq +m? + m%). Next we construct the momentum of the emitted parton, p;, as

' “ ﬂ(sab7mgvmi) 1 _Zai ﬂ(sabvmg’mlz) +
The parameters Z,;; and k% = —k? of this decomposition are given by
2 2 2 2 2
_ Sap — My — My, my, S, +m; —m: _ _ B B
Zai = ﬂa(s . n:z mi) |: a ]/(S Y m2 mlz)) Sa; — mg — mlzj| s kf_ = Zai(l - Zai)’"% - (1 - Zai)sai - Zaimzz' (A52)

In a second step, we branch the new final-state momentum p; + p;, into p; and g, using the spectator p,; and satisfying the
constraint g> = §°, where § = p; ; + pp- We employ the kinematics mapping of Sec. A 1. The customary variables y and Z
in this case are defined as

2 2 . -1
q xa/zu + Sai :| ) ZI t/xu (A53)

y/: |:1+ 0 5 2 :2—
q (xa/za - 1) + Sai + My, —mj q°Xa/ 74 + 284

At the same time, we make the replacement p; — p,;, m; — s, and use the appropriate final-state masses. Finally we boost
all remaining final-state particles into the frame defined by ¢, using the algorithm defined in Sec. 5.5 of Ref. [28]. The
Lorentz transformation, A, is computed as

2(¢+9)"(g+4), , 29"q,
(¢ +q)? 7
The phase-space factorization for initial-state splittings with an initial-state spectator can be derived similarly to the

2 — 3 case described in Appendix B of Ref. [46]. We first perform the s-channel factorization over p;j. Using
Za = q2/(sijq —m3 —m2), this gives

A(Z], q)ﬂy = g'uz/ - (A54)

ds,--
/dCD(pi,p,»qlpa,pb) =/ 2:/d<1>(pijq|pa’pb)/dﬂb(pi,p,nqlpijq)

- / &z, / 4D o p1) / 4D (pi. pj 1P P (AS5)

where
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dsmd(ﬁl
/[dq)(pi7pj7q|paapb Z”Za/ / 2” /dQ P],Q|p]q)

ma,mb
1 7’/ za
= 4(2 )3 dsat d¢z d(I) p]’ Q|p]q’ Pas pb)] (A56)
T Als b,ma,mb
We make use of the relations x, = z,(s;, — S — m})/q* and 1 = —x,(s,;; — 5 — m7) to write
jq dx, g%/ 7,
[dq)(p], Q|]7]q, Pas Pb d(I) pj’ ‘I|qu 2 dt d¢]— (A57)
zr 2
]q9 az’mb)
The final result is
/[dd)( 1Pas )] = Ty /dt/dgb l/ds /dx"/dg{) Jo| L (A58)
Pi>Pj>49|Pa> Pb _4<27[)3 t J 4(27[)3 ai X, (A1 xa’
where we have defined the Jacobian factors
2 0 e 2
ngl) _ Sap — My — My, and J§I2) _ S/q Sqi — My, ’ (A59)
/I(sab’mg»mlza) /I(qu’ sai’mlz;)

and where s;, = ¢*x,/2, + S, + mj,
The extension of Eq. (A58) to D = 4 — 2¢ dimensions is straightforward. We obtain an additional factor of

L Q(1-2¢)\2 _, . ;o /- -
ADy(pi, pjrq|Pa- Py) = (W) (pi‘q sin? o0y, sin® ) S(pijq sin? ¢, sin’ ;) 7. (A60)
The momenta and polar angles are defined as in Eqs. (A14) and (A15), and the azimuthal angle ¢; is parametrized as
¢, = qbe}:”’, using Eq. (A17). As in the case of a final-state emitter with a final-state spectator, the splitting functions are

independent of ¢;, and hence we can average over one azimuthal angle. For massless partons, the polar angles can be
written in the simple form

258, L St Sa S t/x
cos@. =1+ . , cos 94 —”—<1 24 = ) (A61)
wa (1 - xa)qz/za — Sai 4 Sjqg — Sai Siqg — q2 qzxu/Za + 25,

The magnitudes of the momenta in this case are given by

457, _z {1 —xa—zas—a;r, 452 (q —+sa,> {1—%]2. (A62)
/4 Za q i Za xa/za +Sai/q

In the iterated collinear limit, Eq. (A60) can be simplified to give Eq. (A48).
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