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We investigate the ultraviolet and infrared fixed point structure of gauge-Yukawa theories featuring a
single gauge coupling, Yukawa coupling and scalar self-coupling. Our investigations are performed using
the two loop gauge beta function, one loop Yukawa beta function, and one loop scalar beta function. We
provide the general conditions that the beta function coefficients must abide for the theory to be complete
asymptotically free while simultaneously possessing an infrared stable fixed point. We also uncover special
trajectories in coupling space along which some couplings are both asymptotically safe and infrared
conformal.
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I. INTRODUCTION

The discovery of the Higgs-like particle, so far, crowns
the standard model, a gauge-Yukawa theory, as one
of the most successful theories of nature. It is therefore
imperative to gain vital information about these fascinating
theories.
A natural classification of gauge-Yukawa theories can be

made according to whether they admit UV complete (in all
the couplings) fixed points or they abide the full set of
compositeness conditions. The presence of a UV fixed
point guarantees the fundamentality of the theory since,
setting aside gravity, it means that the theory is valid at
arbitrary short distances. If, however, a given gauge-
Yukawa theory fails to be fundamental it can describe a
composite theory in disguise provided it abides a set of UV
compositeness conditions [1]. In this limit it is a gauge
theory augmented by four-fermion interactions [1].
If the UV fixed point occurs for vanishing values of the

couplings the interactions are asymptotically free1 in the
UV [2,3]. The fixed point is approached logarithmically2

and therefore, at short distances, perturbation theory is
applicable. Asymptotic freedom is a UV phenomenon that
still allows for several intriguing possibilities in the IR,
depending on the specific underlying theory [4]. At low
energies, for example, another interacting fixed point can
occur. In this case the theory displays both long and short
distance conformality. However the theory is interacting at
large distances and the IR spectrum of the theory is
continuous [5]. Another possibility that can occur in the
IR is that a dynamical mass is generated leading to either
confinement or chiral symmetry breaking, or both. Certain
subsets of theories including nonsupersymmetric vectorlike

fermionic gauge theories [6–19],3 chiral gauge theories
[20–23], gauge-Yukawa theories [1,24–27], and purely
scalar theories [28] have been investigated in the literature.
Long overdue is, however, a more general and systematic
classification of the dynamics of the gauge-Yukawa theo-
ries that began in [29].
An interesting class of gauge-Yukawa theories is made of

those displaying asymptotic freedom in all couplings.
These are known as complete asymptotically free theories
[30–32]. Here the ultraviolet dynamics of Yukawa and
scalar interactions is tamed by asymptotically free gauge
fields; see [33,34] for recent studies. This phenomenon is
quite distinct from the recently discovered setup of com-
plete asymptotic safety [35,36]. Here the theory was found
to flow to a nontrivial ultraviolet stable fixed point in a
completely controllable manner [35,36]. The result shows
that no additional symmetry principles, such as space-time
supersymmetry [37], are required to ensure well-defined
and predictive ultraviolet theories. Intriguingly complete
asymptotic safety it is not a feature, in perturbation theory,
of the gauge theory with either pure fermionic or scalar
matter. Neither does the ultraviolet fixed point exist for the
supersymmetrized version [38,39]. Tantalizing indications
that ultraviolet interacting fixed point may exist non-
perturbatively, and without the need of elementary scalars,
appeared in [10], and they were further explored in
[35,40].4 Exciting possibilities for asymptotically safe
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1Provided that it is UV attractive.
2Depending of the mass dimensions of the couplings.

3The first analysis of the conformal properties of baryonic
operators for nonsupersymmetric gauge theories relevant for
popular extensions of the standard model has been performed
in [19] while in [18] a consistent perturbative and scheme
independent method for calculating such quantities has been
studied.

4Nonperturbative techniques are needed to establish the
existence of such a fixed point when the number of colors and
flavors is taken to be 3 and the number of UV light flavors is large
but finite. Asymptotic safety was originally introduced by
Weinberg [41] to address quantum aspects of gravity [42–49].
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extensions of the standard model include the following: the
possibility that QCD itself could be completed at higher
energies by a safe extension [50], asymptotically safe dark
matter model building [51], and asymptotically safe infla-
tion [52,53].
These observations should make it clear that further

studies of gauge-Yukawa theories are to be carried out.
Here we take one step further and explore, within pertur-
bation theory, the novel infrared structure of a wide class of
complete asymptotically free theories [30–32].
The paper is organized as follows. In Sec. II we review

the conditions for complete asymptotic freedom for a wide
class of gauge theories also investigated in [32–34]. The
entirely novel part of our work resides in Secs. III and IV.
Here we first derive the general conditions for the presence
of interacting fixed points in all couplings and then classify
them. We conclude with the general conformal phase
diagram of complete asymptotically safe quantum field
theories.

II. COMPLETE ASYMPTOTIC
FREEDOM CONDITIONS

Since we are interested in the perturbatively calculable
structure of the phase diagram we consider generic gauge-
Yukawa theories with scalars that are also gauged under the
gauge group. We focus on three marginal couplings at the
classical level, i.e., the gauge, the Yukawa, and a scalar self-
coupling defined as follows:

αg ¼
g2

ð4πÞ2 ; αH ¼ y2

ð4πÞ2 ; αλ ¼
λ

ð4πÞ2 : ð1Þ

We first start with reviewing the conditions for the presence
of complete asymptotic freedom and then go beyond the
state of the art by systematically investigating the possible
infrared conformal structure of these theories.

A. Gauge and Yukawa subsystem

We begin by first investigating the pure gauge system
with a single gauge coupling and no Yukawa and self-
couplings. To one loop order the running of the gauge
coupling is dictated by the following renormalization group
equation:

μ
dαg
dμ

¼ b0α2g: ð2Þ

Its solution is simply

αg ¼
αg0

1 − b0αg0 ln
μ
μ0

; ð3Þ

where αg0¼αgðμ0Þ and μ0 is some fixed scale. If we choose

b0 < 0; ð4Þ

then the theory is asymptotically free. In the deep ultra-
violet the coupling approaches the trivial fixed point and
vanishes. Also note that technically the solution to the
running coupling also contains an unphysical branch below
the scale μ0 exp½ 1

b0αg0
�. Here the coupling is negative and

approaches the trivial fixed point in the deep infrared.
We now continue this section by adding to the pure

gauge system also a Yukawa coupling. To one loop
order the renormalization group equation for the Yukawa
coupling is

μ
dαH
dμ

¼ αH½c1αg þ c2αH� ð5Þ

where explicit computations [54,55] give in general c1 < 0
and c2 > 0. Consider first the simplest case in which there
is no gauge coupling. Here the running of the Yukawa is
easily found to be

αH ¼ αH0

1 − c1αH0 ln
μ
μ0

: ð6Þ

Again technically there are two branches to the running of
the coupling. In the deep infrared the coupling flows to the
trivial fixed point while at larger scales there is a Landau
pole. This is the physical branch since here the coupling is
positive. Beyond the Landau pole the coupling is negative
while approaching the trivial fixed point in the deep
ultraviolet. This is an unphysical branch. Hence a single
Yukawa coupling on its own and without the contribution
of any other couplings can never be asymptotically free.5

Switching on the gauge coupling we now must solve the
coupled set of renormalization group equations, Eqs. (2)
and (5). In order to do this we first combine the two
equations by forming the ratio βH

βg
to obtain

dαH
dαg

¼ 1

b0

αH
αg

�
c1 þ c2

αH
αg

�
: ð7Þ

The solution to this equation is

αH¼ αH0

ð1− c2
b0−c1

αH0

αg0
Þα

c1
b0
g0α

−c1
b0
þ1

g þ c2
b0−c1

αH0

αg; b0≠c1; ð8Þ

αH¼ αH0

ð1þc2
c1

αH0

αg0
lnαg0Þαg0−c2

c1
αH0 lnαg

αg; b0¼c1: ð9Þ

Hence the specific solution for the running of the Yukawa
coupling depends on the values of b0 and c1. We are
searching for solutions where the Yukawa coupling is

5In this work we consider only perturbative dynamics and
leave the analysis of nonperturbative effects for future studies. It
would be interesting to understand how nonperturbative effects
play a role in the flow of the couplings.
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asymptotically free. This implies that the Yukawa coupling
must be positive, vanish asymptotically, and contain no
Landau poles. Landau poles could potentially show up if
the denominator vanishes for some value of the gauge
coupling.
First we quickly discard the situation with b0 ¼ c1. As

the gauge coupling decreases asymptotically, barring any
potential Landau poles, the logarithmic term in the denom-
inator dominates and the Yukawa coupling tends to 0.
However since the coefficient c2c1 < 0 is always negative so
is the Yukawa coupling asymptotically. Hence it cannot be
asymptotically free.
We now examine the more interesting case with b0 ≠ c1.

There are two terms in the denominator contributing to the
running of the Yukawa coupling as the gauge coupling
decreases. If − c1

b0
þ 1 < 0 the first term dominates while if

− c1
b0
þ 1 > 0 the second term dominates. The former

constraint is equivalent to b0 − c1 > 0 while the latter
constraint corresponds to b0 − c1 < 0.
In the latter case the Yukawa coupling scales as c2

b0−c1
αg

and hence is negative. We therefore exclude this possibility.
In the former case however the Yukawa coupling can be
asymptotically free provided that the coefficient in front of
the leading term in the denominator is positive. Hence in
this case

αH ∼
αH0

ð1− c2
b0−c1

αH0

αg0
Þα

c1
b0
g0

α
c1
b0
g ;

αg0
αH0

>
c2

b0−c1
; b0−c1 > 0:

ð10Þ

Note that the Yukawa coupling tends to 0 faster than the
gauge coupling. Also whether or not the Yukawa coupling
is asymptotically free depends on the values of couplings in
the infrared. There is also the special case for which the
coefficient of the first term in the denominator vanishes,
i.e., where the values of the couplings in the infrared are
fine-tuned. Here the Yukawa coupling scales as the gauge
coupling with

αH ¼ b0− c1
c2

αg;
αg0
αH0

¼ c2
b0− c1

; b0− c1 > 0: ð11Þ

Following [34] we refer to this case as fixed flow. Lastly
there is the possibility where the values of the couplings in
the infrared do not satisfy the above constraints. This
corresponds exactly to the case where the Yukawa coupling
develops a Landau pole. Namely here the value of the
gauge coupling at the zero of the denominator is positive
and hence the Yukawa is bound to diverge as the gauge
coupling decreases and reaches this critical value.
In Fig. 1 we plot the flow of the couplings for a set of

representative values of b0, c1, c2. The green trajectory
corresponds to the fixed flow where the couplings scale

proportionally. Below the green trajectory the theory is
asymptotically free but with the Yukawa coupling vanish-
ing faster than the gauge coupling. Lastly above the green
trajectory the Yukawa coupling develops a Landau pole.
Which trajectory the system follows depends on the fixed
values of the couplings in the infrared.

B. The scalar self-interactions

To one loop order the beta function of a single self-
coupling is

μ
dαλ
dμ

¼ αλðd1αλ þ d2αg þ d3αHÞ þ d4α2g þ d5α2H; ð12Þ

where d1, d3, d4 ≥ 0 and d2, d5 ≤ 0. Together with Eqs. (2)
and (5) it describes the running of the gauge, Yukawa, and
self-coupling in a general gauge-Yukawa system at one
loop order. We begin slowly by first investigating the
behavior of the self-coupling assuming the absence of both
the gauge and Yukawa couplings (corresponding to
d2 ¼ d3 ¼ d4 ¼ d5 ¼ 0). Here the solution to the renorm-
alization group equation is

αλ ¼
αλ0

1 − d1αλ0 ln
μ
μ0

: ð13Þ

First note that in this approximation the beta function has
a degenerate fixed point at the origin. Since d1 ≥ 0 the

FIG. 1. Flow of the gauge and Yukawa couplings near the trivial
UV fixed point for b0 ¼ −1, c1 ¼ −2, and c2 ¼ 1. The green
flow trajectory is the fixed flow where the gauge and Yukawa
couplings scale the same way, Eq. (11). Below the fixed flow
trajectory are the trajectories for the remaining asymptotically
free theories, Eq. (10).
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self-coupling flows to the trivial fixed point in the deep
infrared while it exhibits a Landau pole at the scale
μ0 exp½ 1

d1αλ0
�. The positivity of d1 arises from the time-

honored one loop scalar contribution to its self-coupling.
There is also a second branch that lies beyond the scale of
the Landau pole. Here the self-coupling flows to the trivial
fixed point in the deep ultraviolet. However the value of the
coupling is negative and hence this situation must be
discarded since the system is unstable.
We now turn our attention to the general case with gauge

and Yukawa couplings included. We do not attempt to solve
the renormalization group equations in generality but only
solve them asymptotically in the large energy region.
Forming first the ratio βλ

βg
we obtain

dαλ
dαg

¼ 1

b0

αλ
αg

�
d1

αλ
αg

þd2þd3
αH
αg

�
þd4
b0

þd5
b0

�
αH
αg

�
2

: ð14Þ

We distinguish between whether the gauge and Yukawa
couplings are on a fixed flow or not. First if we assume that
they are not on their fixed flow then asymptotically we
found above that the Yukawa coupling tends to 0 faster than
the gauge coupling. This implies that we can discard the
two terms involving αH

αg
and ðαHαg Þ2. Hence we can simply

look for a solution to the differential equation

dαλ
dαg

¼ 1

b0

αλ
αg

�
d1

αλ
αg

þ d2

�
þ d4
b0

: ð15Þ

Note that the Yukawa coupling has disappeared from the
equation. If the gauge and Yukawa couplings are not on
their fixed flow the asymptotic running of the self-coupling
does not depend on the Yukawa coupling. The solution to
the above differential equation can be written as

αλ ¼
�
b0 − d2 þ

ffiffiffiffiffiffi
−k

p
tan

�
− arctan

�
k0ffiffiffiffiffiffi
−k

p
αg0

�

þ
ffiffiffiffiffiffi
−k

p

2b0
ln

αg
αg0

��
αg
2d1

; k < 0; ð16Þ

αλ¼

0
B@b0−d2−

ffiffiffi
k

p k0þ
ffiffiffi
k

p
αg0þðk0−

ffiffiffi
k

p
αg0Þ αgαg0

−
ffiffi
k

p
b0

k0þ
ffiffiffi
k

p
αg0− ðk0−

ffiffiffi
k

p
αg0Þ αgαg0

−
ffiffi
k

p
b0

1
CA αg
2d1

;

k> 0; ð17Þ

αλ ¼
4b0d1αλ0 þ k0ðb0 − d2Þ ln αg

αg0

2b0αg0 þ k0 ln
αg
αg0

αg
2d1

; k ¼ 0; ð18Þ

with

k ¼ ðb0 − d2Þ2 − 4d1d4; ð19Þ
k0 ¼ ðb0 − d2Þαg0 − 2d1αλ0: ð20Þ

We need to understand the behavior of this solution
asymptotically as the gauge coupling decreases from its
value in the infrared. Consider first the case k < 0. As we
continuously vary the gauge coupling the self-coupling
diverges due to the periodicity in tangent. Hence it
inevitably leads to the existence of Landau poles in the
self-coupling and we therefore discard this possibility.
Instead take k > 0. First consider the two limiting cases

with k0 þ
ffiffiffi
k

p
αg0 ¼ 0 or k0 −

ffiffiffi
k

p
αg0 ¼ 0. Here the self and

gauge couplings are on a fixed flow with

αλ ¼
b0 − d2 þ

ffiffiffi
k

p

2d1
αg or αλ ¼

b0 − d2 −
ffiffiffi
k

p

2d1
αg: ð21Þ

Positivity of the self-coupling then implies that it is

asymptotically free along both directions if b0−d2−
ffiffi
k

p
2d1

> 0,
asymptotically free along only the first direction if
b0−d2þ

ffiffi
k

p
2d1

> 0 and b0−d2−
ffiffi
k

p
2d1

< 0, and nonasymptotically free

along both directions if b0−d2þ
ffiffi
k

p
2d1

< 0. These two limiting
cases trace two straight trajectories in the gauge and self-
coupling plane.
Since we want to know whether there are other trajecto-

ries along which the self-coupling is asymptotically free we
must make sure that it has no poles as we vary the gauge
coupling. Poles show up if the denominator vanishes for a
non-negative value of the gauge coupling, i.e., if the
following equation has a solution,

�
αg
αg0

�
−
ffiffi
k

p
b0 ¼ k0 þ

ffiffiffi
k

p
αg0

k0 −
ffiffiffi
k

p
αg0

; ð22Þ

for some αg ≥ 0. We can quickly discard the case with a
vanishing value of the gauge coupling since this would
require k0 þ

ffiffiffi
k

p
αg0 ¼ 0, which we saw above leads to the

self-coupling and gauge coupling being on a fixed flow. In
other words the 0 is not there being canceled by a 0 in the
numerator. Poles however could exist for positive values of
the gauge coupling. This would require that the right-hand
side of Eq. (22) be larger than 0 implying that both its
numerator and denominator must be of the same sign.

Therefore since −
ffiffi
k

p
b0

> 0 there exists a pole in the self-
coupling in the ultraviolet (corresponding to αg < αg0) if
the right-hand side is less than unity and a pole in the self-
coupling in the infrared (corresponding to αg > αg0) if the
right-hand side is larger than unity.
First we worry about an eventual Landau pole in the

ultraviolet. As noted above for this to happen the right-hand
side should be less than unity. Since the denominator is
always less than the numerator (but should be of the same
sign) this can only occur provided the numerator is less than
0. Hence the self-coupling contains a Landau pole in the
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ultraviolet unless the numerator is positive k0 þ
ffiffiffi
k

p
αg0 > 0

corresponding to the following condition:

αλ0
αg0

<
b0 − d2 þ

ffiffiffi
k

p

2d1
: ð23Þ

If this condition is satisfied by the fixed values αg0 and αλ0
the self-coupling contains no Landau poles in the ultra-
violet and it vanishes asymptotically together with the
gauge coupling.
As noted above there might also be a pole in the self-

coupling in the infrared. At first it might seem that we
should not really worry about them since we are only
interested in asymptotically free theories. However these
infrared poles occur for a negative value of the self-
coupling destabilizing the system. This must necessarily
be so since for an infrared pole to exist the right-hand side
of Eq. (22) must be larger than unity implying that
denominator k0 −

ffiffiffi
k

p
αg0 > 0 must be positive. Hence as

we increase the gauge coupling from its fixed value αg0
towards the pole the self-coupling grows to negative
infinity. Therefore for the self-coupling not to have any
negative poles in the infrared we must demand that
k0 −

ffiffiffi
k

p
αg0 < 0 corresponding to

αλ0
αg0

>
b0 − d2 −

ffiffiffi
k

p

2d1
: ð24Þ

Therefore within the window marked by the conditions
(21), (23), and (24), namely,

b0 − d2 −
ffiffiffi
k

p

2d1
≤
αλ0
αg0

≤
b0 − d2 þ

ffiffiffi
k

p

2d1
; ð25Þ

the self-coupling flows to the trivial fixed point in the
ultraviolet and has no negative poles in the infrared. On the
boundaries of the window the gauge and self-couplings are
on a fixed flow. Lastly we need to make sure that at least a
single trajectory within the window is for a positive value of
the self-coupling at all scales. This is not automatically
satisfied but is ensured provided we take the upper end of
the window to be positive. In other words at least a single
trajectory along which the self-coupling is asymptotically
free exists if the following condition,

b0 − d2 þ
ffiffiffi
k

p
> 0; ð26Þ

is satisfied. In Fig. 2 we plot the flow of the gauge and
self-couplings at one loop order under the assumption that
k > 0 and that the gauge and Yukawa couplings are not on
their fixed flow. The green trajectories are the two exact
fixed flow solutions Eq. (21). They mark the boundary
within which the theory is asymptotically free.

Lastly we need to discuss the special case k ¼ 0. Again
we need to worry about potential poles appearing in the
running of the self-coupling. Poles appear if the denom-
inator vanishes for a non-negative value of the gauge
coupling, in other words if there exists a solution to

ln
αg
αg0

¼ −
2b0αg0
k0

ð27Þ

for some αg ≥ 0. If the fixed values αg0 and αλ0 are chosen
such that k0 < 0 (k0 > 0), then the self-coupling has an
ultraviolet (infrared) pole corresponding to αg < αg0
(αg > αg0). At the ultraviolet pole the self-coupling blows
to plus infinity while at the infrared pole the self-coupling
blows to minus infinity signaling an instability. It is
therefore only possible for the self-coupling to be asymp-
totically free if the fixed point values are chosen such that
k0 ¼ 0. Here on this specific trajectory the gauge coupling
and self-coupling are on a fixed flow with

αλ
αλ0

¼ αg
αg0

; k0 ¼ 0: ð28Þ

We plot the flow in Fig. 3 for a representative set of values
of beta function coefficients yielding k ¼ 0. It is only along
the green trajectory that the self-coupling is asymptoti-
cally free.
What we have learned so far is that asymptotic freedom

of the self-coupling is dictated by the value of k, which only
depends on the values of certain beta function coefficients

FIG. 2. Flow of the gauge and self-couplings for b0 ¼ −1,
d1 ¼ 2, d2 ¼ −4, and d4 ¼ 1

2
. This choice renders k ¼ 5. The

flow is illustrated at one loop in both the gauge and self-
couplings. The violet point is the ultraviolet fixed point.
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and the fixed values of the couplings at some scale. We can
imagine scanning the parameter space of coefficients and
hence varying k. If we increase the value of k the window
where the self-coupling is asymptotically free opens up
while it shrinks to a line for k ¼ 0. For negative k the self-
coupling cannot be asymptotically free.
What remains to be studied is the situation where the

gauge and Yukawa couplings are on their fixed flow. Here
αH ¼ b0−c1

c2
αg and we can write the differential equation

that governs the running of the self-coupling as

dαλ
dαg

¼ 1

b0

αλ
αg

�
d1

αλ
αg

þ d2 þ d3
b0 − c1

c2

�

þ d4
b0

þ d5
b0

�
b0 − c1

c2

�
2

: ð29Þ

One might have feared that not being able to neglect the
running of the Yukawa coupling would have complicated
the situation. However we see that the above differential
equation has the same form as the differential equation
governing the running of the self-coupling in the absence of
the Yukawa contribution. All we need to do is to replicate
our analysis above and make the following substitutions:

d2 → d02 ¼ d2 þ d3
b0 − c1

c2
; ð30Þ

d4 → d04 ¼ d4 þ d5

�
b0 − c1

c2

�
2

; ð31Þ

k → k0 ¼
�
b0 − d2 − d3

b0 − c1
c2

�
2

− 4d1

�
d4 þ d5

�
b0 − c1

c2

�
2
�
: ð32Þ

With these replacements the conclusions from above can be
taken directly over to the case where the gauge and Yukawa
couplings are on their fixed flow. Specifically within the
window

b0 − d02 −
ffiffiffiffi
k0

p

2d1
≤
αλ0
αg0

≤
b0 − d02 þ

ffiffiffiffi
k0

p

2d1
; k0 > 0; ð33Þ

the self-coupling has no poles and as long as the upper
boundary is positive b0 − d02 þ

ffiffiffiffi
k0

p
> 0 there exists at least

one trajectory along which it is asymptotically free. Finally
we have the case with k0 ¼ 0 for which there is a single
trajectory along which the self-coupling is asymptotically
free with the self and gauge (and therefore also Yukawa)
couplings being on a fixed flow with

αg
αg0

¼ αH
αH0

¼ αλ
αλ0

; k0 ¼ 0: ð34Þ

C. Summary of the CAF conditions

Here we briefly summarize the necessary conditions that
the beta function coefficients must satisfy in order for all
three couplings to be asymptotically free. If the gauge and
Yukawa couplings are not on their fixed flow these
conditions are

b0 < 0; b0 − c1 > 0; k ≥ 0;

b0 − d2 þ
ffiffiffi
k

p
> 0; conditionCAF1; ð35Þ

where k is given by Eq. (19). If the beta function
coefficients satisfy these constraints and the couplings
satisfy appropriate initial (infrared) conditions the theory
is completely asymptotically free. The first (second) con-
dition is necessary to ensure asymptotic freedom of the
gauge (Yukawa) coupling while the third and fourth
conditions are necessary to ensure asymptotic freedom
and positivity of the self-coupling.
On the other hand if the gauge and Yukawa couplings are

on their fixed flow then the necessary set of conditions that
the beta function coefficients must satisfy is

b0 < 0; b0 − c1 > 0; k0 ≥ 0;

b0 − d02 þ
ffiffiffiffi
k0

p
> 0; conditionCAF2; ð36Þ

where k0 and d02 are given by Eqs. (30) and (32). The
condition for asymptotic freedom of the self-coupling is in
this case different from the condition where the gauge and
Yukawa couplings are not on their fixed flow. This is

FIG. 3. Flow of the gauge and self-couplings for b0 ¼ −1,
d1 ¼ 2, d2 ¼ −4, and d4 ¼ 9

8
. This choice renders k ¼ 0. The

flow is illustrated at one loop in both the gauge and self-
couplings. The violet point is the ultraviolet fixed point.
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because the running of the Yukawa coupling can no longer
be neglected and has an influence on the running of the self-
coupling. If these conditions CAF2 are satisfied and the
couplings satisfy appropriate initial (infrared) conditions
the theory is completely asymptotically free.

III. INTERACTING IR FIXED POINT

In this section we study higher order corrections to the
beta functions and thereby reveal a more complicated phase
structure than the one visualized in Fig. 1. In particular, we
search for IR fixed points. In order to satisfy the Weyl
consistency conditions we, as a first step, use two loops in
the gauge coupling and one loop in the Yukawa coupling.6

To this order the beta functions read

βg ¼ α2gðb0 þ b1αg þ bHαHÞ; ð37Þ

βH ¼ αHðc1αg þ c2αHÞ: ð38Þ

Besides the trivial fixed point studied above the system now
possesses the following (non) trivial fixed points

αg;1� ¼
−b0
b1

; αH;1� ¼ 0; FP1; ð39Þ

and

αg;2� ¼
−b0
beff1

; αH;2� ¼
c1b0
c2beff1

; FP2; ð40Þ

where beff1 ¼ b1 −
c1
c2
bH. The first fixed point FP1 corre-

sponds to the usual Banks-Zaks fixed point of the
gauge coupling if the Yukawa coupling is switched off
while the existence of the second nontrivial fixed point FP2
is due to the interplay between both the gauge and Yukawa
coupling.
First we note that all nontrivial fixed point values are

proportional to the first gauge beta function coefficient b0.
For a specific theory b0 depends on the gauge fields as well
as the matter content charged under the gauge symmetry.
We can always imagine picking a theory for which b0 is
arbitrarily close to 0, making the above fixed points
perturbative and therefore reliable provided the condition
for asymptotic freedom b0 − c1 > 0 is satisfied.
For the fixed points to be physical we must require that

they occur for real and positive values of αg and αH since
both are the (absolute) square of the gauge and Yukawa
couplings, respectively. This yields the conditions

b1 > 0; FP1; ð41Þ

beff1 > 0; FP2: ð42Þ

Note that since bH, in principle, can be both positive or
negative the fixed points can exist simultaneously or
independently of each other.
In order to study the fixed points having included a self-

coupling we first make use of the gauge beta function to
two loops, and the Yukawa and self-coupling beta function
to one loop. Even though this loop counting does not satisfy
the Weyl consistency conditions it makes an easier start
than jumping straight into a study of the three loop gauge
beta function, two loop Yukawa beta function, and one loop
self-coupling. The set of beta functions we want to study is
therefore

βg ¼ α2gðb0 þ b1αg þ bHαHÞ; ð43Þ

βH ¼ αHðc1αg þ c2αHÞ; ð44Þ

βλ ¼ αλðd1αλ þ d2αg þ d3αHÞ þ d4α2g þ d5α2H: ð45Þ

Since the gauge and Yukawa beta functions do not depend
on the self-coupling to this order the fixed points are the
same as in the case without a self-coupling. We then need to
set to 0 the self-coupling beta function in order to find the
fixed point solutions for the self-coupling. Doing so we find

αg;1� ¼
−b0
b1

; αH;1� ¼ 0;

α�λ;1� ¼
b0ðd2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d22 − 4d1d4

p
Þ

2b1d1
; FP�1 ; ð46Þ

where � refers to the two possible 0’s for the self-coupling
fixed point. Whether they are physical depends on the
values of the beta function coefficients. There exists either
none, one, or two positive fixed points. Assuming that all
three couplings are asymptotically free they are positive
provided

b1 > 0; l1 ¼ d22 − 4d1d4 ≥ 0: ð47Þ

Note that if one fixed point is positive then the other is also
bound to be positive. One fixed point cannot be positive
while the other is negative and vice versa assuming
asymptotic freedom and positivity of αg�. There is also
the special case where l1 ¼ 0 and the fixed point solutions
collapse to a single solution FPþ1 ¼ FP−1 . Note that if these
two fixed points exist, then they exist independently of
whether the gauge and Yukawa couplings are on their fixed
flow or not, i.e., independent of whether the conditions
CAF1 or CAF2 are satisfied.

6Although counterintuitive this is, de facto, the only counting
one can use to rigorously organize perturbation theory [29]. It
stems from the fact that any gauge-Yukawa theory must pertur-
batively abide the Weyl consistency conditions [29,56] that derive
from the gradient flow equations [56,57].
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Switching off the scalar self-coupling and the Yukawa
coupling reduces the fixed points to the usual Banks-Zaks
fixed point for the gauge coupling. In the full theory with all
three couplings switched on the fixed point generally splits
into two distinct fixed points FP�1 located in the ðαg; αλÞ

plane. In the special case where FPþ1 ¼ FP−1 there is of
course only a single fixed point in the ðαg; αλÞ plane.
There are additional fixed points associated with FP2

above. Looking for 0’s of the self-coupling beta function at
FP2 we find in total two fixed points FP�2 ,

αg;2� ¼
−b0
beff1

; αH;2� ¼
c1b0
c2beff1

; ð48Þ

α�λ;2� ¼
b0ðc2d2 − c1d3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22ðd22 − 4d1d4Þ þ c21ðd23 − 4d1d5Þ − 2c1c2d2d3

p
Þ

2beff1 c2d1
; FP�2 : ð49Þ

The first reality of the fixed points amounts to requiring

l2 ¼ c22ðd22 − 4d1d4Þ þ c21ðd23 − 4d1d5Þ − 2c1c2d2d3 ≥ 0:

ð50Þ

Then the first fixed point FPþ2 is positive provided

beff1 > 0; c2d2−c1d3< 0; c22d4þc21d5 > 0; ð51Þ

while the second fixed point FP−2 is positive if either

beff1 > 0; c2d2 − c1d3 ≤ 0

or beff1 > 0; c22d4 þ c21d5 < 0: ð52Þ

Hence if FPþ2 exists, then also FP−2 exists. The opposite
might not be the case. Lastly there is of course the
special case where l2 ¼ 0 for which the two fixed points
coincide FPþ2 ¼ FP−2 provided c2d2 − c1d3 < 0. This con-
cludes our analysis of fixed points for a general gauge-
Yukawa theory. In the next section we investigate the flow
of the couplings and whether the fixed points are stable or
unstable.

IV. CONFORMAL PHASE DIAGRAM

Briefly summarizing we found above that there can exist
zero, one, two, three, or four fixed points for a complete
asymptotically free gauge-Yukawa theory with a gauge,
Yukawa, and scalar self-coupling depending on values of
the beta function coefficients. The conditions that the
beta function coefficients must satisfy are summarized in
Table I.
Having established the existence of all these distinct

fixed points we need to discuss along which directions they
are attractive or repulsive. First we start by considering only
the gauge and Yukawa couplings and then later study the
inclusion of a self-coupling. In order to do this we linearize

the beta functions around the fixed points and study the
eigenvalues and eigenvectors of the matrix7

M ¼
0
@

∂βg
∂αg

∂βg
∂αH

∂βH∂αg
∂βH∂αH

1
A

jαg¼αg�;αH¼αH�

: ð53Þ

The signs of the eigenvalues ofM then indicate whether the
associated fixed point is attractive or repulsive along a
given eigendirection. Diagonalizing M at the fixed point
FP1 for which b1 > 0 we find that the eigenvalues and
eigenvectors are

eigenvalues ðMFP1Þ ¼
�
b20
b1

;−
c1b0
b1

�
ð54Þ

v1 ¼ ð1; 0ÞT ð55Þ

~v1 ¼
�
−
c2ðb1 − beff1 Þb0
b1c1ðb0 þ c1Þ

; 1
�

T

: ð56Þ

The first eigenvalue is always positive. Hence FP1 is
attractive in the v1 direction, i.e., in the αg direction. It
is the fixed point to which the theory flows in the infrared if
we also switch off the Yukawa coupling. In this sense it is
just the ordinary Banks-Zaks fixed point. The second
eigenvalue is always negative. Therefore FP1 is repulsive
along the direction ~v1 in the (αg, αH) plane.
Turning to the second fixed point FP2, for which

beff1 > 0, we evaluate the matrix M at this fixed point
and study its eigenvalues and eigenvectors. They are

7To the perturbative order we are analyzing these are the only
marginally relevant couplings emerging at a potential IR inter-
acting fixed point. Of course, if other couplings become marginal,
which is excluded by the perturbative requirement, one would
need to take them into account.
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eigenvalues ðMFP2Þ ¼
�
b20
beff1

;
beff1 c1b0 þ ðb1 − beff1 Þb20

beff1
2

�

ð57Þ

v2 ¼
�ð−beff1 c21 þ beff1 c1b0 − ðb1 − beff1 Þb20Þc2

beff1 c31
; 1

�
T

ð58Þ

~v2 ¼
�ðb1 − beff1 Þðb0 þ c1Þc2b0

beff1 c31
; 1

�
T

: ð59Þ

The first eigenvalue is positive and therefore the fixed point
is attractive along v2. In general the second eigenvalue can
be either positive or negative. The first term proportional to
b0 is always positive but the second term proportional to b20
can be of any sign. However we generally assume that we
are investigating a theory for which b0 is a small number
such that the theory sits just below criticality where
asymptotic freedom of the gauge coupling is lost. This
then ensures that our theory is perturbative and that our
analysis in perturbation theory is reliable. We can therefore
neglect the order b20 squared term and the second eigen-
value is also positive such that the fixed point is attractive
along the eigendirection ~v2.

We choose to plot the flow of the couplings in Fig. 4 for
three different sets of beta function coefficients, one for
which only FP1 exists, one for which only FP2 exists, and
one where both FP1 and FP2 exist simultaneously. The
choice of coefficients as well as the eigenvalues and
eigendirections of the stability matrix at the fixed points
are FP1:

b0 ¼ −
1

2
; b1 ¼ 2; bH ¼ −2;

c1 ¼ −2; c2 ¼ 1; beff1 ¼ −2; ð60Þ

eigenvalues ðMFP1Þ ¼
�
1

8
;−

1

2

�
; v1 ¼ ð1; 0ÞT;

~v1 ¼
�
1

5
; 1

�
T
; ð61Þ

FP2:

b0 ¼ −
1

2
; b1 ¼ −1; bH ¼ 2;

c1 ¼ −2; c2 ¼ 1; beff1 ¼ 3; ð62Þ

eigenvalues ðMFP2Þ ¼
�
1

12
;
2

9

�
; v1 ¼

�
1

3
; 1

�
T
;

~v1 ¼
�
5

24
; 1

�
T
; ð63Þ

FP1 and FP2:

b0 ¼ −
1

2
; b1 ¼ 2; bH ¼ 1

5
;

c1 ¼ −2; c2 ¼ 1; beff1 ¼ 12

5
; ð64Þ

FIG. 4. The flow of the gauge and Yukawa couplings in the case where there is no scalar self-coupling. The left panel shows the
coupling flow of a theory in which only FP1 exists; the middle panel shows the coupling flow of a theory in which only FP2 exists; and
the right panel shows the coupling flow of a theory in which both FP1 and FP2 exist simultaneously.

TABLE I. Conditions for the existence of fixed points where
beff1 ¼ b1 −

c1
c2
bH , l1 ¼ d22 − 4d1d4, and l2 ¼ c22ðd22 − 4d1d4Þþ

c21ðd23 − 4d1d5Þ − 2c1c2d2d3.

Fixed point Conditions

FP�1 b1 > 0, l1 ≥ 0

FPþ2 beff1 > 0, l2 ≥ 0, c2d2 − c1d3 < 0, c22d4 þ c21d5 > 0

FP−2 beff1 > 0, l2 ≥ 0, c2d2 − c1d3 ≤ 0

or
beff1 > 0, l2 ≥ 0, c22d4 þ c21d5 < 0
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eigenvalues ðMFP1Þ ¼
�
1

8
;−

1

2

�
; v1 ¼ ð1; 0ÞT;

~v1 ¼
�
−

1

50
; 1

�
T
; ð65Þ

eigenvalues ðMFP2Þ ¼
�
5

48
;
115

288

�
; v2 ¼

�
71

192
; 1

�
T
;

~v2 ¼
�

5

192
; 1

�
T
: ð66Þ

From these three plots we see an intriguing phase
diagram emerging. Both fixed points FP1 and FP2 are
marked by red points with FP1 located on the gauge
coupling axis and FP2 located out in the ðαg; αHÞ plane.
The trivial fixed point is located at the origin and is colored
violet.
First consider the left plot. Here all the trajectories that

lie within the boundary marked by the two green and red
trajectories (except the red trajectory itself) are the com-
plete asymptotically free trajectories. If both couplings are
switched on they will blow up as the infrared regime is
approached. If the Yukawa coupling is switched off the
gauge coupling just flows to the (Banks-Zaks) fixed point
denoted with a red point on the gauge coupling axis. For the
trajectories that approach the Banks-Zaks fixed point
somewhat closely the gauge coupling shows characteristics
of an almost scale invariant system at intermediate scales
(i.e., walking dynamics) before blowing up in the infrared
(similar behavior has been observed in semisimple fer-
mionic gauge theories [17]). We also note the special red
trajectory for which the fixed point on the gauge coupling
axis now acts as an ultraviolet fixed point. Along this red
trajectory the Yukawa coupling is asymptotically free while
the gauge coupling is asymptotically safe. This is an
example of a safety-free renormalization group trajectory
first observed to exist for semisimple fermionic gauge
theories in [17].
In the middle plot the Banks-Zaks fixed point for the

gauge coupling no longer exists but instead a nontrivial
fixed point due to the interplay between the Yukawa and
gauge couplings has been generated. The trajectories that
lie within the boundary of the two green trajectories are
completely asymptotically free and all flow to the fixed
point in the deep infrared. Only if the Yukawa coupling is
switched off does the gauge coupling blow to large values
in the infrared.
Finally there is the right plot, which shows the flow for a

theory for which both fixed points exist simultaneously.
Again the trajectories that lie within the boundary marked
by the two green and red trajectories (except the red
trajectory itself) are the complete asymptotically free
trajectories. Here the couplings flow to the nontrivial fixed
point in the infrared. Only if the Yukawa coupling is

switched off does the gauge coupling flow to the fixed point
FP1 on the gauge coupling axis. The trajectories that lie
close to FP1 exhibit near scale invariant behavior for the
gauge coupling at intermediate scales before settling at FP2
in the deep IR. Along the special red trajectory the Yukawa
coupling is asymptotically free while the gauge coupling is
asymptotically safe. Again this a safety free trajectory. As
the couplings are evolved toward the infrared they both are
drawn to the nontrivial infrared fixed point and become
again scale invariant.
Let us now turn our attention to the more involved

situation where also the scalar self-coupling is switched on.
Now in order to study the stability of the fixed points FP�1
and FP�2 we should linearize the beta function and study the
eigenvalues of the matrix

M ¼

0
BBB@

∂βg
∂αg

∂βg
∂αH

∂βg
∂αλ

∂βH∂αg
∂βH∂αH

∂βH∂αλ
∂βλ∂αg

∂βλ∂αH
∂βλ∂αλ

1
CCCA

jαg¼αg�;αH¼αH�;αλ¼αλ�

: ð67Þ

The sign of the three eigenvalues of M determines whether
a given fixed point ðαg�; αH�; αλ�Þ is attractive or repulsive
along an eigendirection. Since both the gauge and Yukawa
beta functions do not depend on the scalar self-coupling to
this order in perturbation theory the first two eigenvalues of
M are identical to the case where the scalar self-coupling is
switched off as above.
The first fixed points FP�1 are positive provided the

constraints in Table I are satisfied. At these two fixed points
the eigenvalues of M are

eigenvalues ðMFP�
1
Þ ¼

�
b20
b1

;−
c1b0
b1

;�
ffiffiffiffi
l1

p
b0

b1

�
; ð68Þ

v�1 ¼ ðr�1 ; 0; 1ÞT; ð69Þ

~v�1 ¼ ð~r�1 ; ~s�1 ; 1ÞT; ð70Þ

v̂�1 ¼ ð0; 0; 1ÞT; ð71Þ

where r�1 , s�1 , and t�1 depend on the beta function
coefficients and can be found in the Appendix. The first
and second eigenvalues are positive and negative, respec-
tively, and hence the fixed points FP�1 are attractive and
repulsive along the associated eigendirections v�1 and ~v�1 ,
respectively. The third eigenvalue is negative at FPþ1 and
hence the fixed point is repulsive along the direction v̂þ1
while it is positive at FP−1 and hence the fixed point is
attractive along the direction v̂−1 . Finally we remind
ourselves that if the fixed points FP�1 exist they exist
simultaneously.
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We now move on to study FP�2 . Here the eigenvalues and
eigenvectors are rather complicated expressions of the beta
function coefficients so we here provide them to first
nonvanishing order in b0,

eigenvalues ðMFP�
2
Þ ¼

�
b20
beff1

;
c1b0
beff1

;�
ffiffiffiffi
l2

p
b0

c2beff1

�
; ð72Þ

v�2 ¼ðr�2 ; s�2 ; 1Þ; ð73Þ

~v�2 ¼ð~r�2 ; ~s�2 ; 1Þ; ð74Þ

v̂�2 ¼ð0; 0; 1Þ; ð75Þ

where the coefficients r�2 , s
�
2 , ~r

�
2 , and ~s�2 are given in the

Appendix. The first two eigenvalues are always positive
making FP�2 attractive along both v�2 and ~v�2 . The third
eigenvalue is negative at FPþ2 and positive at FP−2 .
Therefore, FPþ2 is repulsive along v̂þ2 while FP−2 is attractive
along v̂−2 . Note that this makes FP−2 attractive in all
directions.
There are five different possibilities for these four fixed

points to coexist. They are (1) FP�1 exist, (2) FP�2 exist,

(3) FP−2 exists, (4) FP�1 and FP−2 exist, and (5) FP�1 and
FP�2 exist.
We now plot the flow of the couplings for a set of

illustrative values of the beta function coefficients in the
specific case of (5) where all four fixed points FP�1 and FP�2
exist simultaneously. The flow can be seen in Fig. 5 for
which the values of the beta function coefficients have been
chosen to be

b0 ¼ −
1

2
; b1 ¼ 1; bH ¼ 1;

c1 ¼ −1; c2 ¼ 1; beff1 ¼ 2; ð76Þ

d1 ¼ 1; d2 ¼ −1; d3 ¼
1

2
;

d4 ¼
1

20
; d5 ¼ −

1

25
: ð77Þ

When all three couplings are switched on the flow in
coupling space is three dimensional. Since this is difficult
to visualize we have plotted only the flow projected into the
following planes: (i) ðαg; αHÞ for the fixed point value of

FIG. 5. Flows of the gauge, Yukawa, and scalar self-couplings projected in the ðαg; αHÞ plane (upper left plot), ðαg; αλÞ plane (upper
middle and right plots), and ðαH; αλÞ plane (lower left and right plots).
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the scalar self-coupling α�λ , (ii) ðαg; αλÞ for the fixed point
value of the Yukawa coupling α�H, and (iii) ðαH; αλÞ for the
fixed point value of the gauge coupling α�g.
Since the gauge and Yukawa beta functions do not

depend on the scalar self-coupling to this loop order the
coupling flows are identical at the various fixed point
values α�λ;1� and α

�
λ;2� of the scalar self-coupling. Therefore,

there is only a single plot in the ðαg; αHÞ plane for an
arbitrary value of the self-coupling. This is upper left plot
in Fig. 5. The fixed point located on the αg axis is FP�1
while the fixed point located out in the plane is FP�2 . We
have not marked the origin with a violet mark since the
depicted flow is for an arbitrary value of the self-coupling.
It is not necessarily for a vanishing value of the self-
coupling.
For the flow projected into the ðαg; αλÞ there are two

plots located respectively at αH;1� and αH;2�. These are the
upper middle and upper right plots in Fig. 5, respectively.
Since αH;1� ¼ 0 we have marked the origin in the upper
middle plot with a violet mark, which is the ultraviolet
trivial fixed point. This is not the case in the upper right plot
since this is the flow in the plane at αH;2� ≠ 0. In the upper
middle plot the lower fixed point close to the αg axis is FP

þ
1

while the fixed point located further out in the plane is FP−1 .
In the upper right plot the nontrivial fixed point located
close to the αg axis is FP

þ
2 while the nontrivial fixed point

located further out in the plane is FP−2 . By closer inspection
of the upper right plot it seems as if there is an additional
fixed point located in the lower left corner on the αλ axis
that we have missed. However at this point only the gauge
and self-couplings are at a 0 of their beta functions while
the Yukawa coupling is not at a 0. In other words there is
still a flow out of the plane and hence it is not a real fixed
point of the combined gauge, Yukawa, and self-coupling
system.
The flow projected into the ðαH;αλÞ plane at the two

different locations αg;1� and αg;2� is plotted in the lower left
and right plots, respectively. Again we have not marked the
origin violet since in both cases the flow is plotted for a
nonvanishing value of the gauge coupling. In the lower left
plot the lower fixed point is FPþ1 while the upper fixed point
is FP−1 . In the lower right plot the fixed point located close
to the αH axis is FPþ2 while the fixed point located further
out in the plane is FP−2 . Again it seems as if we have missed
two fixed points in the two lower plots. However similar to
the above these only correspond to 0’s of the Yukawa and
self-coupling beta functions but not simultaneously to the
gauge beta function. Hence at these locations there is still a
flow in a direction out of the plane.
There are a number of important conclusions that arise

by close inspection of the possible flows. First there is the
type of flow that we originally set out to study. This is the
flow where all couplings are asymptotically free and then
flow to a nontrivial infrared stable fixed point. This is the

fixed point FP−2 that is infrared attractive in all directions (as
noted above).
However there is an additional phase structure that we

can uncover. For instance in the upper left plot there is a
special trajectory that connects the lower fixed point with
the fixed point located out in the plane. Along this
trajectory the lower fixed point now acts as an ultraviolet
fixed point while the other fixed point is an infrared fixed
point. For the Yukawa coupling the ultraviolet fixed point is
trivial while for the gauge coupling it is nontrivial. Hence
the Yukawa coupling is asymptotically free while the gauge
coupling is asymptotically safe. The scalar self-coupling
along this flow is constant and does not run.
Also along the trajectory connecting the lower red fixed

point with the upper red fixed point in the upper middle and
upper right plots the lower fixed point acts now as a
nontrivial ultraviolet fixed point while the upper fixed point
is a nontrivial infrared fixed point. In the upper middle plot
the Yukawa coupling vanishes along the entire flow while
in the upper right corner it assumes a constant nonvanishing
value along the entire flow. The gauge coupling assumes a
constant nonvanishing value along both flows. Hence only
the scalar self-coupling runs between two fixed points
while the gauge and Yukawa couplings are constant.
Similar types of dynamics can be observed in the lower
left and right plots where there are trajectories that connect
the two nontrivial fixed points where one acts as an
ultraviolet fixed point while the other acts as an infrared
fixed point. Along these special trajectories only the scalar
self-coupling runs.
We therefore conclude that there are trajectories in

coupling space in which (1) all three couplings flow
nontrivially between two fixed points, (2) only two
couplings flow nontrivially between two fixed points with
the remaining coupling being constant, and (3) only a
single coupling flows nontrivially between two fixed points
with the remaining two being constant.

V. CONCLUSIONS

The analysis performed here elucidates the immense
richness of the conformal structure of gauge-Yukawa
theories. We focused here on a time-honored class of such
theories known as completely asymptotically free. Here
gauge, Yukawa, and scalar couplings achieve an ultraviolet
noninteracting fixed point. Our work, for the first time,
investigated the important infrared conformal structure of
these theories. We revealed the occurrence of several novel
conformal phenomena associated with the emergence of
different types of interacting fixed points. The applications
to beyond standard model physics are limitless ranging
from the construction of potential new classes of dark
matter to inflationary models as well as (composite)
dynamics featuring elementary scalars that are fundamental
according to Wilson.
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APPENDIX: EIGENDIRECTIONS

Here we provide the coefficients that enter in the expression for the various eigendirections

r�1 ¼ 2d1ðb0 ∓ ffiffiffiffi
l1

p Þ
l1 � d2

ffiffiffiffi
l1

p ; ðA1Þ

~r�1 ¼ b0c2ðb1 − beff1 Þ 2d1ðc1 �
ffiffiffiffi
l1

p Þ
ðb1c21d3 þ b0ðb1c1d3 ∓ b1c2

ffiffiffiffi
l1

p � beff1 c2
ffiffiffiffi
l1

p ÞÞðd2 �
ffiffiffiffi
l1

p Þ ; ðA2Þ

~s�1 ¼ −b1c1ðb0 þ c1Þ
2d1ðc1 �

ffiffiffiffi
l1

p Þ
ðb1c21d3 þ b0ðb1c1d3 ∓ b1c2

ffiffiffiffi
l1

p � beff1 c2
ffiffiffiffi
l1

p ÞÞðd2 �
ffiffiffiffi
l1

p Þ ; ðA3Þ

r�2 ¼ −
2c2d1

c2d2 − c1d3 �
ffiffiffiffi
l2

p
�
1 ∓ c22d2 þ c1ðd23 − 4d1d5Þ − c2ðc1d3 þ d2d3 ∓ ffiffiffiffi

l2
p Þ ∓ d3

ffiffiffiffi
l2

p
ðc2d2 − c1d3 �

ffiffiffiffi
l2

p Þ ffiffiffiffi
l2

p b0

�
; ðA4Þ

s�2 ¼ 2c1d1
c2d2 − c1d3 �

ffiffiffiffi
l2

p
�
1� ðc2d22 þ c21d3 − 4c2d1d4 − c1ðc2d2 þ d2d3 �

ffiffiffiffi
l2

p Þ � d2
ffiffiffiffi
l2

p Þb0
ðc2d2 − c1d3 �

ffiffiffiffi
l2
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