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In this paper we study the dependence of Bose-Einstein correlations on the multiplicity of an event. We
find that events with large multiplicity stem from the production of several-parton showers, while the
additional production of small multiplicity in the central rapidity region (central diffraction) gives a
negligible contribution due to emission of soft gluons, which leads to the Sudakov suppression of the
exclusive production of two-gluon jets. Hence, the Bose-Einstein correlation is the main source of the
azimuthal angle correlations which generate vn with odd and even n. We find that without this suppression,
the measurement of an event with given multiplicity yields vn;n < 0 for odd n. It appears that in hadron-
nucleus and nucleus-nucleus collisions, the Bose-Einstein correlations do not depend on multiplicity, while
for hadron-hadron scattering such dependence can be considerable. We propose a simple Kharzeev-Levin-
Nardi type model to describe the dependence of azimuthal angle correlations on the centrality of the event
in ion-ion collisions.
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I. INTRODUCTION

In this paper we continue to discuss the Bose-Einstein
correlations of gluons as being the main source of the
strong azimuthal angle (φ) correlations that have been
observed experimentally in nucleus-nucleus, hadron-
nucleus, and hadron-hadron collisions [1–11]. It has been
known for some time in the framework of Gribov-Pomeron
calculus that the Bose-Einstein correlations which stem
from the exchange of two Pomerons lead to azimuthal
angle correlations [12] (see also Ref. [13]), which do not
depend on the rapidity difference between measured
hadrons [large range rapidity (LRR) correlations]. In the
framework of QCD, these azimuthal correlations originate
from the production of two-parton showers, and have been
rediscovered in Refs. [14–18] (see also Refs. [19,20]). In
Ref. [21] it was demonstrated that Bose-Einstein correla-
tions generate vn with even and odd n, with values which
are close to the experimentally observed ones.
The goal of this paper is to answer three questions:

(i) Is the symmetry φ → π − φ an inherent property of
QCD, or of the color glass condensate (CGC) approach,
which is the effective theory of QCD at high energies,
or it is based on the model assumptions? (ii) What is
the multiplicity dependence of the azimuthal angle cor-
relations which stem from the Bose-Einstein ones?
(iii) Is it possible to build a simple Kharzeev-Levin-Nardi

(KLN)-type [22–28] approach to describe azimuthal cor-
relations in nucleus-nucleus collisions?
The following are our answers to these questions:

The symmetry φ → π − φ is not a general feature of the
QCD (or CGC) approach. It does not stem from the
Bose-Einstein correlations of identical gluons, and can
only appear in measurements that mix events with
different multiplicities. In the case of hadron-hadron
collisions, for example, such symmetry exists in the
Born approximation of perturbative QCD, and could only
be measured, if experimentally the central diffraction
production and the event with double multiplicity
(n ¼ 2n̄, where n̄ is the average multiplicity in inclusive
production) are measured and summed. However, the
emission of soft gluons for the central exclusive pro-
duction in the double log approximation of perturbative
QCD leads to a Sudakov form factor which suppress this
contribution. Therefore, the Bose-Einstein correlations
prevail, leading to vn ≠ 0 for odd n, even in totally
inclusive measurements, without selection of an event
with given multiplicities.
We expect a very mild dependence of vn on the

multiplicity of the observed events. We suggest a model
for the Bose-Einstein correlations in heavy ion collisions in
the spirit of the KLN approach, which is based on the
concept of constructing the simplest model that takes
into account the discussed phenomena: in our case, the
saturation of the gluon density and the Bose-Einstein
correlations.
The double inclusive cross section of two identical

gluons has the following general form:
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d2σ
dy1dy2d2pT1d2pT2

ðidentical gluonsÞ

¼ d2σ
dy1dy2d2pT1d2pT2

ðdifferent gluonsÞ

× ð1þ CðLcjpT2 − pT1jÞÞ ð1Þ

where CðLcjpT2 − pT1jÞ denotes the correlation function
and Lc the correlation length.
In Eq. (1) we denote as identical gluons, two gluons with

momenta pT1 and pT2 that have the same color and the same
helicity. The two gluons with the same momenta, but for
which we do not impose any restrictions on their colors and
helicities, we call “different” gluons. Equation (1) is in
accord with the Hanbury Brown and Twiss formula (see
Refs. [29,30])

d2σ
dy1dy2d2pT1d2pT2

ðidentical gluonsÞ∝ h1þ eirμQμi ð2Þ

where averaging h…i includes the integration over rμ ¼
r1;μ − r2;μ. There is only one difference: Qμ ¼ p1;μ − p2;μ

degenerates to Q≡ pT;12 ¼ pT2 − pT1, as the production of
two gluons from the two-parton showers does not depend
on rapidities.
Equation (2) allows us to measure the typical rμ of the

interaction, or in other words, Lc in Eq. (1) is determined
by the typical volume of the interaction. Therefore, we
expect several typical Lc: the size of the nucleus RA; the
nucleon size RN ; and the typical size, related to the
saturation scale (rsat ¼ 1=Qs, where Qs denotes the satu-
ration scale [31]). Indications of all these sizes have been
seen in Bose-Einstein correlations (see Refs. [17,21]).
Using Eq. (1), we can find vn, since

d2σ
dy1dy2d2pT1d2pT2

∝ 1þ 2
X
n

vn;nðpT1; pT2Þ cos ðnφÞ;

ð3Þ

where φ is the angle between pT1 and pT2. vn is determined
from vn;nðpT1; pT2Þ

ðaÞ vnðpTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vn;nðpT; pTÞ

q
;

ðbÞ vnðpTÞ ¼
vn;nðpT; pRef

T Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vn;nðpRef

T ; pRef
T Þ

q ; ð4Þ

Equations (4a) and (4b) depict two methods of how the
values of vn have been extracted from the experimentally
measured vn;nðpT1; pT2Þ. pRef

T denotes the momentum of
the reference trigger. These two definitions are equivalent
if vn;nðpT1; pT2Þ can be factorized as vn;nðpT1; pT2Þ ¼
vnðpT1ÞvnðpT2Þ.

II. SYMMETRY φ → π −φ (vn = 0 FOR ODD n)
FOR DIFFERENT MULTIPLICITIES

OF PRODUCED HADRONS

A. The Bose-Einstein correlation function for deuteron-
deuteron scattering with the correlation length Lc ∝ RD

First, we consider the simplest diagram in the Born
approximation of perturbative QCD, which we have dis-
cussed in Ref. [17] [see Fig. 1(a)]. This diagram describes
the interference between two identical gluons in the process
of multiparticle production, or in other words, in the
processes of the production of two-parton showers. In this
diagram QT ∝ 1=RD and jQT − p12;T j ∝ 1=RD, where RD

denotes the deuteron radius, which is much larger than the
size of the proton, RN . Momenta kT , lT , p1;T , and p2;T in
this diagram are of the order of 1=RN ≫ 1=RD, and
therefore we can neglectQT as well as p12;T in the diagram.
Bearing this in mind, we see that the correlation function
CðLcjp12;T jÞ is equal to

CðLcjp12;T jÞ ¼
1

N2
c − 1

R
d2QTGDðQTÞGDðQT − p12;TÞR

d2QTGDðQTÞGDðQTÞ
with GDðQTÞ ¼

Z
d2reir·QT jΨDðrÞj2; ð5Þ

where r denotes the distance between the proton and the
neutron in the deuteron.
Equation (5) displays no symmetry with respect to

φ → π − φ. However, we can add a different diagram of
Fig. 1(b), which describes the central diffraction production
of two different gluons in a colorless state.1 This diagram
depends on p1;T þ p2;T and generates the correlation
function

~CðLcjp1;T þ p2;T jÞ

∝
1

N2
c − 1

R
d2QTGDðQTÞGDðQT − p1;T − p2;TÞR

d2QTGDðQTÞGDðQTÞ
ð6Þ

since in this diagram QT and QT − p1;T − p2;T are of the
order of 1=RD, while kT , lT , p1;T and p2;T in this diagram
are of the order of 1=RN ≫ 1=RD, therefore, we can neglect
QT as well as p1;T þ p2;T in the diagram or, in other words,
we can put p1;T ¼ −p2;T . After this substitution, both
diagrams have the same expressions.
Therefore, if diagrams of Figs. 1(a) and 1(b) have the

same weight, the sum will have the symmetry with respect
to p2;T → −p2;T , restoring the symmetry with respect to
φ → π − φ. At first sight, this is the case since all integra-
tions over kT and lT look the same. However, in these two
diagrams this is certainly not the case due to different
integration with respect to k− and l− (or kþ and lþ).

1In the approach seen in Ref. [16] this diagram restores the
symmetry ϕ → π − ϕ.
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This integration generates 1=4 suppression of the diagramof
Fig. 1(b) with respect to the diagram of Fig. 1(a). It is a well-
known fact first discussed in the Abramovsky-Gribov-
Kancheli (AGK) paper of Ref. [32], as well as in most
reviews and books that are devoted to high energy scattering
(in particular, thosewhere one of us is an author [31,33,34]).
For completenesswe discuss this integration inAppendixA.
However, we found it instructive to discuss the contri-

bution of these two diagrams in the framework of the AGK
cutting rules, which is the technique that we will use in
considering the dependence of the correlation function on
multiplicity of produced particles. First, accounting for
emission of the gluons with rapidities larger than y1 and
smaller than y2, and considering ᾱSjy1 − y2j ≪ 1, we
can describe the two-partonic shower contribution in

deuteron-deuteron scattering by the diagrams of Figs. 2(a)
and 2(b).
The AGK cutting rules describe the relative contributions

of different processes that stem from two–BFKL Pomeron
[36,37] exchange. Figure 3(a) describes the elastic scatter-
ing, Fig. 3(b) the one-parton shower production, which is
screened by the BFKL Pomeron exchange. Figure 3(c) is
the production of two-parton showers. The AGK cutting
rules state that the cross sections of these three processes
are related as 1∶ − 4∶2. The sum of these processes is equal
to −1, leading to the negative contribution to the total cross
section of two-Pomeron exchange. These rules have a
rather general origin based on the unitarity constraints and
physical properties of the Pomerons. Indeed, the unitarity
constraint has the following form:

G (Q )D T G (Q )D T

k l

  k−  p1

Y

− k + Q T

0

p
1

− l − QT

p
2

 − k−  p + Q2

T −l+ p  − Q1

 −l+ p2

G (Q   −  p  − p )D T 1 2

k

l  k−  p1

Y

− k + Q T

0

p
1

− l − QT

p
2

  l −  p2

T −l+ p  − Q1

 −k+ p  + Q2 T

G (Q   −  p   )D T 12

(a) (b)

T

FIG. 1. Deuteron-deuteron scattering in the Born approximation of perturbative QCD: Fig. 1(a) describes the interference diagrams in
the production of two identical gluons in the process of multiparticle generation that gives rise to the correlation function
CðLcjp12;T ¼ p1;T − p2;T jÞ; Fig. 1(b) corresponds to the central diffraction of two gluons with different color charges in the colorless
state.

(a) (b) (c)

(y ,p )1 1

(y ,p )2 2
(y ,p )2 2

(y ,p )1 1

(y ,p )2 2

(y ,p )1 1

(y ,p )2 2

FIG. 2. Mueller diagrams [35] for two-parton shower production of gluons: Fig. 2(a) describes the interference diagrams in
the production of two identical gluons in the process of multiparticle production that generates the correlation function CðLcjp12;TÞ;
Fig. 2(b) corresponds to central diffraction of two gluons with different color charges in the colorless state; Fig. 2(c) describes the central
diffractive production with a different final state, where one deuteron remains intact. The wavy line stands for the BFKL Pomeron [36].
Helical lines correspond to gluons. The vertical dashed lines show the cuts.
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2ImAelðs; b; iÞ ¼ jAelðs; b; iÞj2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
elastic cross section

þ Gðs; b; iÞ|fflfflfflfflffl{zfflfflfflfflffl}
contribution of inelastic processes

ð7Þ

where W ¼ ffiffiffi
s

p
denotes the energy of the collision, b is

impact parameter, and i the set of other quantum numbers
that diagonalize the interaction matrix.
For the BFKL Pomeron, the elastic cross section is much

smaller than the exchange of a single Pomeron, and Eq. (7)
takes the form

2ImPBFKLðs; b; iÞ ¼ GBFKLðs; b; iÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
cut Pomeron

ð8Þ

Using Eq. (8), one can see that

σel ∝ jPBFKLðs; b; iÞj2;
σone parton shower ∝ −2PBFKLGBFKLðs; b; iÞ;

σtwo parton showers ∝ −
1

2
GBFKLðs; b; iÞGBFKLðs; b; iÞ; ð9Þ

where 1
2
in the last term stems from the fact that the two cut

Pomerons are identical. Using Eq. (8), one reproduces the
AGK cutting rules of Figs. 3(a)–3(c).
The central diffraction production of two gluons is

shown in the diagram of Fig. 3(a) (elastic scattering),
while the interference diagram, which generates the Bose-
Einstein correlations, originates from Fig. 3(c) with the
extra factor 2, which reflects the fact that the gluon with
rapidity—say, y1—can be produced from two different
parton cascades [see Fig. 3(e)]. The processes of central
diffractive production are suppressed by a factor of 4
compared to the Bose-Einstein correlations.

To complete the discussion of the possible restoration of
φ → π − φ symmetry due the processes of the central
diffraction, we note that in these processes there can be
a final state in which one or two deuterons remain intact
[see, for example, Fig. 2(c)], which leads to different
correlation functions. For example, for Fig. 2(c) the
correlation function has the form

CFig: 2ðcÞðLcjp1;T þ p2;T jÞ

∝
1

N2
c − 1

R
d2QTGDðQTÞG2

DðQT − p1;T − p2;TÞR
d2QTGDðQTÞGDðQTÞ

ð10Þ

which differs from Eq. (6).
A comment regarding the status of the AGK cutting rules

in QCD. For deuteron-deuteron scattering, the cutting rules
shown in Figs. 3(a)–3(c), have been proved on general
grounds [38], using unitarity and the wave nature of the
colliding particles. In the framework of perturbative QCD
these cutting rules were proven in Refs. [33,39]. For the
inclusive cross sections, the AGK cutting rules were
discussed and proven in Refs. [40–46]. However, in
Ref. [47] it is shown that the AGK cutting rules are
violated for double inclusive production. This violation
is intimately related to the enhanced diagrams [46,47], and
reflects the fact that different cuts of the triple BFKL
Pomeron vertex lead to different contributions. Recall, that
we do not consider such diagrams.
Therefore, the contribution of the central diffraction

process is suppressed by a factor of 4 due to the longi-
tudinal momenta integration. However, we need to compare
the values of the vertices for gluon inclusive production
[see Fig. 3(d)] and the vertex for two gluon production from
the BFKL Pomeron. From Fig. 4 we can see that this vertex
is two times larger than the vertex for gluon inclusive
production. Indeed, the contribution of Fig. 4(a) is the same

1

(a)   Elastic scattering

(d)  Central diffraction production of two different gluons

1

(e)  Two parton showers production of two identical gluons

2

+
(y   p   )2 T2 (y   p   )2 T2

(y , p    )1 T1 (y , p    )1 T12x2=4

(b)   One parton shower

−4

(c)   Two parton showers

2

FIG. 3. AGK cutting rules for the exchange of two BFKL Pomerons [Figs. 3(a)–(c)] and the contributions of the central [Fig. 3(d)] and
two-parton shower production [Fig. 3(e)] of two gluons.
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as for inclusive production, but we have to add Fig. 4b.
In Appendix B we show that these two diagrams, Figs. 4(a)
and 4(b), are the same. Adding these diagrams, we note
that for deuteron-deuteron scattering we expect the sym-
metry φ → π − φ in the measurements with no selection
on multiplicity. This observation supports the claim of
Refs. [15,16].
In this paper as well as in Refs. [15–17] we discuss the

case ᾱSjy1 − y2j ≤ 1. Let us consider this restriction more
carefully. We start with writing the expression for the two
diagrams of Fig. 3(d). The inclusive cross section for
production of the gluon with rapidity y1 and transverse
momentum p1;T due to the exchange of one BFKL
Pomeron has the following form:

dσ
dy1d2pT1

∝
ᾱS
p2
1;T

Z
d2kTϕBFKLðY − y1; kTÞ

×
ΓμðkT; p1;TÞΓμðkT; p1;TÞ

k2TðkT − p1;TÞ2
ϕBFKLðy1; kTÞ:

ð11Þ

The interference diagram in which the parton shower
with a gluon with y1 and p1;T in the amplitude is squared
with the parton shower in which a gluon with y2 and p2;T is
produced takes the form

dσ
dy1d2pT1

∝
ᾱS
p2
1;T

Z
d2kTϕBFKLðY − y1; kTÞ

×
ΓμðkT; p1;TÞΓνðkT; p2;TÞ

k2TðkT − p2;TÞ2
ϕBFKLðy2; kTÞ:

ð12Þ

In Eqs. (11) and (12) we neglected p12;T ∝ 1=RD as we
have explained above.
In Eqs. (11) and (12) ϕ is the solution of the BFKL

equation

∂ϕBFKLðy;kTÞ
∂y

¼ ᾱS

Z
d2k0T
π

1

ðkT−k0TÞ2
ϕBFKLðy;k0TÞ−2ωGðkTÞGðy;kTÞ;

ð13Þ

where

ωGðkTÞ ¼
1

2
ᾱSk2T

Z
d2k0T
2π

1

k02TðkT − k0TÞ2

¼ ᾱSk2T

Z
d2k0T
2π

1

ðk02T þ ðkT − k0TÞ2ÞðkT − k0TÞ2
:

ð14Þ

Comparing Eqs. (11) and (12), one can see that to
neglect the difference between y2 and y1 in ϕBFKLðy2; kTÞ
we need to assume that 2.8ᾱSjy1 − y2j ≪ 1 (2.8ᾱS is the
intercept of the BFKL Pomeron). However, the actual
restriction turns out to be even more severe. Indeed, in all
interference diagrams as well as in double gluon production
between rapidities y1 and y2, we have the exchange in the t
channel of two gluons in the octet state. This means that we
have the additional emission of gluons with rapidities
between y1 and y2 [see Fig. 4(c)]. This emission leads
to the extra Sudakov form factor [48] in Eq. (12), which
takes the form:

dσ
dy1d2pT1

∝
ᾱS
p2
1;T

Z
d2kTe−Sðδy;kT ;p1;TÞϕBFKLðY − y1; kTÞ

×
ΓμðkT; p1;TÞΓνðkT; p2;TÞ

k2TðkT − p2;TÞ2
ϕBFKLðy2; kTÞ;

ð15Þ

where δY ¼ jy1 − y2j. We recall the structure of the one-
parton shower that is described by the BFKL Pomeron in
Fig. 4(e) [36]; the one-parton shower is given by

k
−k

p , y
2

p , y
1 1

2

 k − p −p
1 2

k

k − p
1

−k

p , y
2

p , y
1 1

2

 k − p −p
1 2

k

k − p
1

−k

p , y
2

−k − p
2

p , y
1 1

2

(a) (b) (c) (d) (e)

p , y
1 1

p , y
2 2

 k p , y
i ii

2 2

k
−k

−k − p
2

 q
p , y
2 2

p , y
1 1

 q’

FIG. 4. Vertex for emission of two gluons by the BFKL Pomeron. Fig. 4(c) shows the emission of soft gluons whose suppression leads
to the Sudakov form factor. Fig. 4 shows the emission of the gluon in the DLA approximation of perturbative QCD, which leads to the
Sudakov form factor in the vertex of two gluons emission.
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Yn
i¼1

Γμðki;T ; pi;TÞ
eωGðki;TÞðyi−yi−1Þ

k2i;T
; ð16Þ

which being squared leads to the parton density ϕðy; k1;TÞ.
In simple terms, the BFKL cascade is the ladder diagram
with specific vertices of gluon production, and with the
exchange of the Reggeized gluons with trajectories which
are given by Eq. (14). Absorbing the terms in ϕðy; kTÞ for
Eq. (15), we see that

Sðδy; kT; p1;TÞ ¼ ðωðkT − p1;TÞ þ ωðkTÞÞδy
¼ ᾱS

2
ðln ððkT − p1;TÞ2=μ2Þ þ ln ðk2T=μ2ÞÞδy;

ð17Þ
and it has a typical Sudakov form factor structure. μ is the
typical dimensional parameter which in the DGLAP
evolution is of the order of the soft scale in the hadron,
and in CGC it is a saturation scale Qsðy1 ≈ y2Þ.
For the diagrams of Figs. 4(a) and 4(b) we need to

introduce the same suppressions. These Sudakov suppres-
sions result from the fact that in the approximation for
ᾱSδy ≪ 1 we take into account only simple diagrams with
two gluons, and without extra gluon emissions, and they
stipulate the size we need to take for δy. However, the two-
gluon production has an additional suppression of the
Sudakov type, which applies even at y1 ¼ y2, where S
of Eq. (17) is equal to zero; the emission of gluons that are
shown in Fig. 4(d) has been discussed in detail in
Ref. [48,49].
This emission leads to the value of S in the double log

approximation of perturbative QCD that has the form:

Sðp1;T ; kTÞ ¼
ᾱS
π

Z
M=2

kT

d2qT
q2T

Z
M=2

qT

dq0
q0

¼ ᾱS
4
ln2

�
M2

4k2T

�
;

ð18Þ
where M denotes the mass of the produced dijet, which is
given by M2 ¼ 2p2

Tð1þ coshðy1− y2ÞÞ considering p1;T ¼
−p2;T ¼ pT . The limits in integration over q0 can easily be
understood in the rest frame of the two-gluon jets. In this
frame the minimal q0 ¼ qT . The lower limit in qT

integration stems from the fact that at distances less than
1=qT , the emission with two t-channel gluons has a
destructive interference canceling the emission since the
total color charge is zero. For qT ≥ qT the emission of
gluons comes from the t-channel gluon, which carries
color, and leads to the color coefficient in Eq. (18).
Finally, the contribution of the diagram of Fig. 4(b) has

the following for y1 ¼ y2:

dσ
dy1d2pT1

ðFig:4ðbÞÞ

∝
ᾱS
p2
1;T

Z
d2kTe−SðM;kT ÞϕBFKLðY − y1; kTÞ

×
ΓμðkT; p1;TÞΓνðkT − p1;T ; p2;TÞ

k2TðkT − p1;TÞ2
ϕBFKLðy1; kTÞ:

ð19Þ
The integration over kT of the parton densities is

concentrated in the vicinity of the saturation scale, since
in coordinate space ϕ ∝ ∇2Nðr; yÞ [50], deep in the
saturation region it tends to zero. Of course, we consider
not only one BFKL Pomeron, but a more complicated
structure of the single -parton cascade (see Fig. 5).
Therefore, substituting Qs instead of kT in the Sudakov
form factor, we find that Eq. (19) takes the form:

dσ
dy1d2pT1

ðFig: 4ðbÞÞ ∝ ᾱS
p2
1;T

exp
�
−
ᾱS
4
ln2

�
p2
Tð1þ cosh ðy1 − y2ÞÞ

2Q2
sðy1 ≈ y2Þ

��

×
Z

d2kTϕBFKLðY − y1; kTÞ
ΓμðkT; p1;TÞΓνðkT − p1;T ; p2;TÞ

k2TðkT − p1;TÞ2
ϕBFKLðy1; kTÞ: ð20Þ

However, for discussing the current experimental data, especially for hadron-hadron interactions, for the parton densities,
we can use the experimental data for DIS structure function, which is well described [51] by the Dokshitzer–
Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations [52]. In this case, we need to put the value of Q0 ¼
Qsðy1 ¼ Y0 ≈ 3Þ from the color glass condensate motivated fit of HERA data [53,54]. This value turns out to be in the range
Q0 ¼ 0.2–0.5 GeV [53,54].

(a) (b) (c)

FIG. 5. The double inclusive production for dense-dense
parton system scattering: the central diffraction production [see
Fig. 5(a)] and the Bose-Einstein correlation of the identical
gluons [Fig. 5(b)]. The wavy lines denote the BFKL Pomerons.
Figure 5(c) shows the diagrams that do not contribute for the
inclusive production of two gluons. The green blobs show the
Mueller vertices for two-gluon production, while the circles stand
for the triple-Pomeron vertices. The produced gluons are denoted
by red helical lines.
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Finally, we obtain the resulting correlation function,
which is the sum of Eqs. (6) and (10):

CðφÞ ¼ CðEq:ð6Þ;Lc2pT sinðφÞÞ

þ e
−αS

2
ln2ðp

2
T
ð1þcosh ðy1−y2ÞÞ

2Q2
s

Þ
CððEq:ð10Þ;Lc2pT cosðφÞÞ;

ð21Þ
where we assume that jp1;T j ¼ jp2;T j ¼ pT .
The general expectation from Eq. (21) indicates that vn

with odd n will peak at pT ≈ 4Q0, where the second term
will be approximately three times smaller that the first one.
The experimental data for vn in proton-proton collisions
[55] show that vn reaches a maximum at pT ≈ 3 GeV, and
this value is independent of the energy. Such a behavior
qualitatively supports Eq. (21) with Q0 ≈ 0.6 GeV.
Concluding this section, we would like to summarize our

results: (i) We showed that at small transverse momenta the
processes of exclusive (diffractive) in the central rapidity
region (CED) of two gluons are equal to the interference
contributions of two-parton showers, confirming the results
of Refs. [15,16]; this fact leads to vn ¼ 0 for odd n in the
total inclusive measurements without any selection on
multiplicity of produced hadrons. (ii) We found the
mechanism of suppression of CED of two-gluon jets for
large transverse momenta due to the Sudakov form factor,
which leads to the correlation function of Eq. (6), and to
vn ≠ 0 for odd n in the experiments without selection on
multiplicities. (iii) Only the correlation function of Eq. (5)
can be measured in the processes of multiparticle gener-
ation with the multiplicities N ≥ n̄, where n̄ is the average
multiplicity in the collisions. The process of the central
diffraction which generates the correlation function of
Eq. (6) corresponds to the event with low multiplicity
N < n̄. The last item is the best motivation for study of the
identical particle correlations vn with even n, and with
different multiplicities, which we will consider below.

B. Bose-Einstein correlation function for heavy ions
scattering with the correlation length Lc ∝ RA

1. Inclusive measurements

Concluding the previous subsection, we claim that for
deuteron-deuteron scattering, we see how the processes of

the central diffraction in the measurements that sum proc-
esses with all possible multiplicities of produced particles
can lead to the symmetry φ → π − φ for pT ≤ Qs. In this
section wewould like to examine if such symmetry could be
possible for ion-ion interactions, which can be described by
the Glauber [56] formula [see Fig. 6(a)]:

AAAðs; bÞ ¼ ið1 − exp ð−Ωðs; bÞÞÞ with

Ωðs; bÞ ¼ g2AP
BFKLðs; bÞTAAðbÞ; ð22Þ

where TAAðbÞ is the optical width and given by

TAAðbÞ ¼
Z

d2b0SAðb − b0ÞSAðb0Þ with

SAðbÞ ¼
Z þ∞

−∞
dzρðz; bÞ

Z
d2bSAðbÞ ¼ A; ð23Þ

where ρðz; bÞ denotes the nucleon density in the nucleus and
z the longitudinal coordinate of the nucleon. In Eq. (22) gN
denotes the impact factor that describes the interaction of the
BFKL Pomeron (whose Green function is PBFKL), with the
nucleon.
We wish to stress that Eq. (22) in the framework of

perturbative QCD (pQCD) has a region of applicability.
Indeed, the contribution of one BFKL Pomeron in
pQCD, in Eq. (22), is proportional to g2NP

BFKLTAAðbÞ ∝
ᾱ2SA

4=3 exp ðΔBFKLYÞ where ΔBFKL ∝ ᾱS, where ΔBFKL

denotes the BFKL Pomeron intercept. The first “fan”
diagrams lead to corrections to the Glauber formula, which
are shown in Fig. 6(b) and are of the order

g2NP
BFKLðYÞTAAðbÞ

Z
Y

0

dy0G3IPgNPBFKLðy0ÞSAðbÞ

∝ ᾱ4SAðPBFKLðY; bÞÞ2: ð24Þ
Comparing Eq. (24) with the exchange of two BFKL
Pomerons, we see that the contribution of the fan diagrams
will be smaller than 1 for ΔBFKLY ≪ 1

2
ln ð1=ðᾱ4SAÞÞ,

while the contribution of the BFKL Pomeron in Glauber
formula will be larger than 1. In other words, for Y ≤
ð1=ð2ΔBFKLÞÞ ln ð1=ðᾱ4SAÞÞ we can describe the ion-ion
collisions using the Glauber formula of Eq. (22).
In this formula the contributions of n-BFKL Pomeron

exchanges to the total cross section is equal to

12n−1n 12n−1n

(a) (b)

A

A

A

A

Y

0

y’

FIG. 6. Nucleus-nucleus scattering in the Glauber [56] approach [Fig. 6(a)], and the first corrections to this approach due to triple–
BFKL Pomeron interactions [Fig. 6(b)]. The wavy lines denote the BFKL Pomerons. The blobs show the triple-Pomeron vertices.
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σðnÞtot ¼
2ð−1Þn−1

n!
Ωnðs; bÞ: ð25Þ

According to the AGK cutting rules, the relative weight of
the process with m cut Pomerons (n −mþ 1 of them are
not cut) is equal to

σðmÞ
n

σðnÞtot

¼ ð−1Þ−1−m n!
m!ðn −mÞ! 2

n−1 for m ≥ 1;

σð0Þn

σðnÞtot

¼ 1 − 2n−1; ð26Þ

To find the contribution of all possible processes
of different multiplicities2 related to the production of
m-parton showers, we need to calculate the following
sum (see Fig. 7):

d2σ
dy1dy2d2pT1d2pT2

¼ CAðLcjp12;T jÞ
dσBFKL

dy1d2pT1

dσBFKL

dy2d2pT2

×
X∞
n¼2

Xn
m¼2

mðm − 1Þ σðmÞ
n

Ω2ðs; bÞ

¼ 4CðLcjp12;T jÞ
dσBFKL

dy1d2pT1

dσBFKL

dy2d2pT2
:

ð27Þ

In Eq. (27) we use Eqs. (26) and (25), and the function CA
is determined by an equation which is similar to Eq. (5).
Neglecting all correlations inside the nucleus, its wave
function can be written as ΨAðfrigÞ ¼

Q
A
i¼1ΨiðriÞ, where

ΨðriÞ denotes the wave function of ith nucleon. In this
approach

CAðLcjp12;T jÞ ¼
1

N2
c − 1

R
d2QTG2

AðQTÞG2
AðQT − p12;TÞR

d2QTG4
AðQTÞ

with GAðQTÞ ¼
Z

d2beib·QT SAðbÞ; ð28Þ

where SAðbÞ denotes the number of the nucleons at fixed
impact parameter b.
Equation (28) can be rewritten in the impact parameter

representation using Eq. (23), viz.

CAðLcjp12;T jÞ ¼
1

N2
c − 1

R
d2 ~bei~b·p12;T T2

Að ~bÞR
d2 ~bT2

Að ~bÞ
where TAðbÞ ¼

Z
d2b0SAðb0ÞSAðb − b0Þ: ð29Þ

The production of gluons by the BFKL Pomerons given
by the Mueller diagrams in Fig. 7 generally has a more
complicated form than we used in Eq. (27) [see Eq. (38) of
Ref. [17]] and cannot be reduced to the production of single
inclusive cross sections. However, in the case of deuteron
scattering, we can consider p1;T ¼ p2;T since the difference
p12;T ∼ 1=RD ≪ 1=RN or ≪ Qs, where 1=RN and Qs are
typical momenta in the BFKL Pomeron. Bearing this in
mind, we can replace the contribution of the Mueller
diagram by the single inclusive production of the gluon
with that of the BFKL Pomeron.
The contribution to the central diffraction productions is

shown in Fig. 8, and takes the following form:

d2σ
dy1dy2d2pT1d2pT2

¼CAðLcj p1;T þ p2;T jÞ
dσBFKL

dy1d2pT1

dσBFKL

dy2d2pT2

�Xn−2
2

n!
2!ðn− 2Þ!

σð0Þn

Ω2ðs;bÞþ
X∞
n¼1

Xn−2
m¼1

n!
2!ðn−m− 2Þ!

σðmÞ
n

Ω2ðs;bÞ
�

¼CAðLcj p1;T þ p2;T jÞ
dσBFKL

dy1d2pT1

dσBFKL

dy2d2pT2
⟶
Ω≫1

2CAðLcj p1;T þ p2;T jÞ
dσBFKL

dy1d2pT1

dσBFKL

dy2d2pT2
: ð30Þ

2

3mm+1 2n 1

(y , p )1 1

(y , p )1 1

(y , p )2 2
(y , p )2 2

FIG. 7. The contribution of different processes of production of the number of parton showers (more than two), to the Bose-Einstein
correlation. The wavy lines denote the BFKL Pomerons. The blobs show the Mueller vertices for two-gluon production. The produced
identical gluons are denoted in red helical lines.

2Starting to discuss the multiplicity of the event, we note that we consider the multiplicity in the entire kinematic region in rapidity.
However, in theGlauber approach of this section, all our results can be applied for multiplicity in rapidity windows of sizes larger than y12.
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In Eq. (30) we use Eqs. (26), (25), and the function CAðLcjp1;T þ p2;T jÞ from Eq. (29), as well as p1;T ¼ −p1;2 for
deuteron-deuteron scattering. Actually, these estimates are correct only in the region of large Ω. The general expression for
the correlation function has the following form:

CAðLcj p1;T þ p2;T jÞ

¼ 1

N2
c − 1

R
d2 ~bei~b·ðp1;Tþp2;T Þ R d2B

R
d2bSAðBþ 1

2
~bÞSAðB − 1

2
~bÞSAðbþ 1

2
~bÞSAðb − 1

2
~bÞð2 − exp ð−Ωðbþ BÞÞÞR

d2 ~b
R
d2B

R
d2bSAðBþ 1

2
~bÞSAðB − 1

2
~bÞSAðbþ 1

2
~bÞSAðb − 1

2
~bÞð2 − exp ð−Ωðbþ BÞÞÞ : ð31Þ

We also make use of the fact that the Mueller vertex for
production of two gluons by the BFKL Pomeron (see
Fig. 8) is equal to the Mueller vertex for inclusive
production of a single gluon (see Fig. 7).
Comparing Eqs. (27) and (30), we see that the contri-

bution of the central diffraction production is twice as large
(at small pT) than the contribution of the Bose-Einstein
correlations. Therefore, the dominant contribution comes
from Eq. (30), leading to the negative values of vn;n for odd
n. This prediction contradicts experimental observations.
Such a situation could result for two reasons: (1) the
measured pT are larger than typical momentum Q0, and
this contribution is suppressed, as has been discussed in
Eq. (21); and (2) the measurements were not made in an
inclusive type of the experiment, in which all events were
summed without selection on multiplicities of the secon-
dary hadron, but rather only events with large multiplicity
were measured.

2. Measurements with fixed multiplicity N =mn̄

First, we would like to examine what happens to the
symmetry φ → π − φ in an event with given multiplicity.
We need to compare the production of m-parton showers
which generate the event with multiplicity N ¼ mn̄, with
the event with the same multiplicity, but in which we
produce, in addition, the low multiplicity events by central
diffraction production. From the point of view of the AGK
cutting rules, the first process is the process with m-cut
Pomerons, while the second is the process with the same
m-cut Pomerons plus two Pomerons which are not cut. At
first sight, the second case could have a larger cross section
since it has an additional factor ðσinTAðbÞÞ2, which can be
large for nucleus-nucleus scattering. We need to estimate
this contribution since it is suppressed by factor exp ð−2ΩÞ
in Eq. (39). In Fig. 9 we plot the b dependence of σðmÞðbÞ of
Eq. (39), together with the coefficient from the AGK

2

1mm+1 n−1n−2 n

FIG. 8. The contribution of different processes of production of the number of parton showers to the central diffraction production.
The wavy lines denote the BFKL Pomerons. The blobs show the Mueller vertices for two-gluon production. The produced gluons are
denoted by red helical lines.
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(a) (b) (c)
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FIG. 9. Comparison of the inelastic events with the multiplicity N ¼ mn̄: for the production of two identical gluons from them-parton
showers, and central diffraction production in the event: Fig. 9(a) for m ¼ 2 and Fig. 9(b) for m ¼ 3. Fig. 9(c) shows the same
contribution as Fig. 9(a) after all integrations.
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cutting rules. From this figure we see that the process of
central diffraction in the inelastic environment is dominant,
except for the process with N ¼ 2n̄ which needs additional
consideration. This fact is a bit surprising since

Inelastic production∶

N ¼ mn̄σðmÞ
in ∝

mðm − 1Þ
m!

ð2ΩðbÞÞm−2 exp ð−2ΩðbÞÞ;
Inelastic productionþ CED∶

N ¼ mn̄σðmÞ
CED ∝

2

m!
ð2ΩðbÞÞm exp ð−2ΩðbÞÞ: ð32Þ

The survival probability exp ð−2ΩðbÞÞ is very small at all b
less than 2RA and determines the value for 2ΩðbÞ ≤ 1.
Therefore, the extra factor ð2ΩÞ2 is not an enhancement but
a suppression [see Fig. 9(c)]. Nevertheless, it turns out that
together with numerical coefficients this kind of suppres-
sion does not work.
However, we need to consider the contribution to the

correlation function, which includes the additional integra-
tions over impact parameters,

Cðp1;T � p2;TÞ ¼
Z

d2 ~beiðp1;T�p2;T Þ·~b ~cð~bÞ;

~cð~bÞ ¼
Z

d2Bcð~b;BÞ

cð~b;BÞ ¼
Z

d2bSA

�
Bþ 1

2
~b

�
SA

�
B−

1

2
~b

�
SA

×
�
bþ 1

2
~b
�
SA

�
b−

1

2
~b
�
σðmÞ
in;CEDðBþ bÞ:

ð33Þ

Integration over all impact parameters shows that in the
event with N ¼ 2n̄, the process with dijet production is also
larger than the Bose-Einstein correlations [see Fig. 9(c)].

One can see that the multiparticle production accom-
panied by exclusive production of two-gluon jets prevails,
leading to negative vn;n for odd n. For nucleus-nucleus
collisions, it is well known that this statement contradicts
the experimental data [6,7,11].

3. Measurements with multiplicity N ≥ mn̄

Hence, for nucleus-nucleus scattering the inclusive
experiments, as well as the measurements with fixed
multiplicity in the leading logð1=xÞ approximation of
perturbative QCD, generate negative vn;n for odd n, which
contradicts the experimental data. In this subsection we
examine the situation when events with multiplicities larger
that m0n̄ (N ≥ m0n̄) are measured, as has been done in
most experiments. Summing Eq. (32) over all m ≥ m0, we
obtain

σm0

in ðY;BÞ ¼ 1 −
Γðm0 − 2; 2ΩðB;YÞÞ

Γðm0 − 2Þ ⟶
Ω≫1

1

−
ð2ΩðB;YÞÞm0−3

ðm0 − 3Þ! e−2ΩðB;YÞ; ð34Þ

σm0

CEDðY;BÞ ¼ 2

�
1 −

Γðm0; 2ΩðB;YÞÞ
Γðm0Þ

�
⟶
Ω≫1

2

×

�
1 −

ð2ΩðB;YÞÞm0−1

ðm0 − 1Þ! e−2ΩðB;YÞ
�
: ð35Þ

One can see that at large Ω, the inelastic event with
additional dijet production is larger that the inelastic event
that generates the Bose-Einstein correlations. In Fig. 10(a)
we plot the function ~cð ~bÞ of Eq. (33), which also shows that
the inelastic contribution with dijet production prevails.
Figure 10(b) shows the correlation functions of Eqs. (6) and
(10). Note that the Bose-Einstein correlations are smaller
than the correlations due to the diffractive production of
dijets.
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FIG. 10. Comparison of the inelastic events with the multiplicity N ≥ m0n̄ in gold-gold collision atW ¼ 7 TeV: for the production of
two identical gluons for larger thanm0-parton showers, and central diffraction production in the event with multiplicity not smaller than
m0n̄. Figure 10(a) shows the contribution of inelastic events and inelastic even plus central diffraction, form0 ¼ 4. In Fig. 10(b) we plot
the correlation functions C�ðjp1;T � p2;T jÞ [see Eqs. (6) and (10)]. p�

T ≡ jp1;T � p2;T j.
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Hence, the experimental results are in direct contra-
diction with the theoretical predictions based on the leading
logð1=xÞ approximation of perturbative QCD. The only
explanation that we can suggest is that the Sudakov form
factor suppresses the dijet production.
We believe that the p measured pT turns out to be much

larger than Q0, and double log suppression results in a
small contribution of the process of central diffraction.
Indeed, for the exchange of the BFKL Pomeron our value
for Q0 ≈Qsðy1Þ appears to be overestimated. Our con-
clusion is that typical kT ≈Qs is based on the diagrams of
Figs. 5(a) and 5(b), in which the same diagrams contribute
to central diffraction and the inclusive cross section.
However, for the exclusive central production there no
AGK cutting rules, and the diagrams of Fig. 5(c) should be
taken into account. If we remove the integral in Eq. (19) for
the Sudakov form factor, the remaining expression takes
the form of Eq. (20). For the BFKL Pomeron, it is just the
contribution to the total cross section. The typical trans-
verse momenta in the BFKL Pomeron both increase and
decrease as function of rapidity (see Ref. [57]), and at large
y2 or Y − y1 the typical kT is as small as the nonpertubative
soft momentum, which could be of the order of ΛQCD. If we
replace the emission of gluons by Eq. (20), the diagrams of
Fig. 5(c) reduce to the contribution to the total cross
section, supporting the idea that Q0 is of the order of
typical soft momentum. Therefore, we expect that
Q0 ≈ μsoft ≈ ΛQCD. Bearing this in mind, we concentrate
our efforts below on calculating the Bose-Einstein corre-
lations and their dependence on multiplicity of events.

III. DEPENDENCE OF BOSE-EINSTEIN
CORRELATIONS ON THE MULTIPLICITY

OF THE EVENT

In this section, we consider the dependence of Bose-
Einstein correlations on the multiplicity of the event, using
the Glauber formula for the total cross section. In accor-
dance with the AGK cutting rules, the multiplicity of the
event (N) is intimately related to the number of parton
showers (m) that are produced, where N ¼ mn̄.
In the framework of this approach, the Bose-Einstein

correlations in the event with multiplicity N ¼ mn̄ is
determined by the following expression [see also Eq. (33)]:

d2σ
dy1dy2d2pT1d2pT2

∝ CAðLcjp12;T jÞ
dσBFKL

dy1d2pT1

dσBFKL

dy2d2pT2
;

ð36Þ

CAðLcjp12;T jÞ ¼
1

N2
c − 1

IðLcjp12;T jÞ
Ið0Þ ;

IðLcjp12;T jÞ ¼
Z

d2 ~bei~b·p12;TIð ~bÞ ð37Þ

Ið ~bÞ ¼
Z

d2Bcð~b;BÞ ð38Þ

σðmÞðBþ bÞ ¼
X∞

n¼m;m≥2
mðm − 1Þ σðmÞ

n

Ω2ðs;BÞ

¼ ð2Ωðs;BÞÞm−2

ðm − 2Þ! e−2Ωðs;BÞ: ð39Þ

If we assume SAðbÞ to have a Gaussian form, i.e.,
SAðbÞ ¼ ðA=ðπR2

AÞÞ exp ð−b2=R2
AÞ, then Eq. (38) takes

the form

Ið ~bÞ ¼
�

A
πR2

A

�
4

e
− ~b2

R2
A

�Z
d2Bd2be

−2ðB
2þb2Þ
R2
A

σðmÞ
n ðBþ bÞ

Ω2ðs;Bþ bÞ
�

ð40Þ
and the correlation function does not depend on m, or in
other words, it does not depend on the multiplicity of the
event. However, this result is the specific property of the
Gaussian approximation, which cannot be correct even for
hadron-hadron collisions, since it does not lead to the
correct exponential behavior of the scattering amplitude at
large impact parameters b. Considering the Glauber model
for the description of the proton-proton scattering at high
energies, we replace SA and TA in Eqs. (28) and (29) with

SNðbÞ ¼
m2

2π
K0ðmbÞ;

TN ¼
Z

d2b0SNðb0ÞSNðb − b0Þ;

Ω ¼ σ0eΔYTNðbÞ; ð41Þ
where σ0 ¼ 4 1=GeV2, m ¼ 1 GeV, and Δ ¼ 0.1 were
chosen to describe the value and energy behavior of the
total cross section for the proton-proton interaction at high
energy. In Fig. 11(a) the behavior of IðbÞ is shown for
events with different multiplicities. We see that the corre-
lation length Lc decreases as a function of the multiplicity.
In other words, the typical momentum in the correlation
function CðLcp12;TÞ increases with N, as can be seen from
Fig. 11(b), where the value of the correlation function
CðLcp12;TÞ is plotted.
The correlation length of the correlation function in

nucleus-nucleus collisions shows only mild dependence on
the multiplicity of events [see Fig. 12(b)], while the value of
I crucially depends on N [see Fig. 12(a)]. Figure 12(c)
shows that the correlation function CAðLcp12;TÞ does not
depend on the multiplicity of the event.
For completeness of presentation we calculated both

IðbÞ and CpAðp12;TÞ for proton-gold scattering.
The results of these calculations are plotted in Fig. 13.

The first observation is that the correlation length does not
depend on the size of the nucleus and is determined by the
typical impact parameter in proton-proton scattering. The
dependence on multiplicity of the event is rather mild.
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Concluding this section, we would like to emphasis that
the dependence on multiplicity due to the production of
several parton showers turns out to be mild, except for
the case of hadron-hadron collisions. For this collision

the larger the multiplicity of the event, the shorter is the
correlation length Lc, or in other words, the typical
momentum increases in events with large multiplicities.
On the other hand, such an increase is not very pronounced,

(a) (b)

FIG. 11. Figure 11(a) shows IðbÞ for proton-proton scattering, with the parameters that are given in Eq. (41), as a function of b for
events with different multiplicities normalized to 1 at b ¼ 0. In Fig. 11(b) the correlation function Cðp12;TÞ is plotted versus p12;T . The
average multiplicity in the single inclusive production is denoted by n̄.

(a) (b)

FIG. 12. IðbÞ for nucleus-nucleus (gold-gold) scattering with SAðbÞ given in Eq. (28) as a function of b for events with different
multiplicities. In Fig. 12(a) IðbÞ are normalized to their values at b ¼ 0. The average multiplicity in the single inclusive production is
denoted by n̄. The correlation function Cðp212;TÞ is plotted in Fig. 12(b).

(a) (b)

FIG. 13. Fig. 13(a) shows IðbÞ for proton-gold scattering with the parameters that are given in Eq. (28), and with the typical
b ¼ 1 1=GeV in proton-proton scattering as a function of b for events with different multiplicities, normalized to 1 at b ¼ 0. In
Fig. 13(b) the correlation function CpAðp12;TÞ is plotted versus p12;T . The average multiplicity in the single inclusive production is
denoted by n̄.
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and even for hadron-hadron collisions we can expect that
the main source of the multiplicity dependence is from the
structure of one-parton showers. In the next section, we
discuss the saturation of the parton density in the one-
parton shower for nucleus-nucleus collisions, and we
develop a simple model in the spirit of the KLN approach.

IV. A SIMPLE KLN-TYPE MODEL FOR THE
STRUCTURE OF ONE PARTON CASCADE IN CGC

A. Momentum dependence of the BFKL
Pomeron in a nucleus

As we have seen, the diagrams in which the structure of
the one-parton shower is described by the BFKL Pomeron
lead to a correlation length of azimuthal angle correlations
Lc ∝ 1=RA, or in other words, to the typical transverse
momentum which is very small (see Fig. 12). Therefore, we
need to discuss a more complicated structure of the single-

parton shower, which is related, for example, to “fan”
diagrams shown in Fig. 5(b). We expect that the interaction
of the BFKL Pomeron will lead to the value of
Lc ∼ 1=Qs;A, where Qs;A denotes the nucleus saturation
momentum. In particular, we consider the diagrams of
Figs. 14(a) and 14(b). The diagram of Fig. 14(a) is the first
diagram that leads to a correlation function which depends
on the saturation momentum of the nucleon, as shown in
Refs. [17,21]. We will show that the interaction of the
BFKL Pomerons with the nucleus, examples of which are
shown in Fig. 14(b), will lead to Lc ∝ 1=Qs;A.
The general equation for the propagator of the BFKL

Pomeron in a nucleus is shown in Fig. 15. The simplest
form this equation has is in the framework of Gribov-
Pomeron calculus [58] with α0P ¼ 0 and the Pomeron
intercept Δ. Denoting the dressed (resulting) propagator
of the Pomeron and the solution of the nonlinear Balitsky-
Kovchegov equation of Fig. 15(c) by TAðY;QT ;Y 0Q0

TÞ and

(y ,p  )
  1    2T (y ,p  )

  1    1T 
(y ,p  )
  1    1T 

(a) (b) (c)

Y

Y’

0

FIG. 14. The double inclusive production for ion-ion collisions which lead to azimuthal correlations with the correlation length
Lc ∝ 1=Qs: the first diagram is displayed in Fig. 14(a), while Fig. 14(b) shows the interaction of the BFKL Pomerons which results in
Lc ∝ 1=Qs;A, where Qs;A denotes the saturation momentum of the nucleus. The wavy lines denote the BFKL Pomerons. The red blobs
show the Mueller vertices for two-gluon production, while the gray circles stand for the triple Pomeron vertices. The white circles show
the vertices of the interaction of the BFKL Pomeron with the nucleon in the nucleus. The produced gluons are denoted by red helical
lines. For simplicity we draw the diagrams at y1 ¼ y2.

T(Y,Q  )

T(Y’,Q’  )
−

T(Y,Q  )

T(Y’,Q’  )

Y’’

+

T(Y,Q  )

T(Y’,Q’  )

Y’’

−

T(Y,Q  )

T(Y’,Q’  )

T(Y,Q  )

T(Y’,Q’  )

= −

T(Y,Q  = 0)
T(Y,Q  = 0) T(Y,Q  = 0)

Y’’

=

T(Y,Q  )

T(Y’,Q’  )

=

T(Y,Q  )

T(Y’,Q’  )

(a)

(b)

(c)

FIG. 15. Equations for BFKL Pomeron propagator in the nucleus. Figure 15(a) shows the first simple diagrams; Fig. 15(b) presents
the equation for the propagator; Fig. 15(c) describes the Balitsky-Kovchegov equation. Wavy lines describes the BFKL Pomerons. The
double wavy lines denote the resulting propagator. The bold wavy lines stand for the solution of the Balitsky-Kovchegov equation in the
nucleus. The blobs denote the triple-Pomeron vertices.
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GAðY;QTÞ, respectively, the equations take the forms

TAðY;QT ;Y 0Q0
TÞ ¼ TðY − Y 0; QTÞ − Δ

Z
Y

0

dY 00d2Q00
TTðY − Y 00; QTÞGAðY 00;QT − Q00

TÞTAðY 00; Q00
T ;Y

0Q0
TÞ; ð42Þ

∂TAðY;QT ;Y 0Q0
TÞ

∂Y ¼ Δ
�
TAðY;QT ;Y 0Q0

TÞ −
Z

d2Q00
TGAðY;QT − Q00

TÞTAðY;Q00
T ;Y

0Q0
TÞ
�
; ð43Þ

TðY − Y 0; QTÞ ¼ gðQTÞ exp ðΔðY − Y 0ÞÞ; TAðY ¼ Y 0; QT ;Y 0Q0
TÞ ¼ gðQTÞ; ð44Þ

GAðY;QTÞ ¼ GðY − Y 0; QTÞ − Δ
Z

Y

0

dY 00d2Q00
TG

0ðY − Y 00; QTÞGAðY 00;QT − Q00
TÞGAðY 00; Q00

T ;Y
0Q0

TÞ; ð45Þ

∂GAðY;QTÞ
∂Y ¼ Δ

�
GAðY;QTÞ −

Z
d2Q00

TGAðY;QT − Q00
TÞGAðY;Q00

TÞ
�
; ð46Þ

G0ðY − Y 0; QTÞ ¼ exp ðΔðY − Y 0ÞÞ; GAðY ¼ 0; QTÞ ¼ SAðQTÞ with SAðQTÞ ¼
Z

d2beiQT ·bSAðbÞ: ð47Þ

The main idea of solution is the observation that in
GAðY;QTÞ the typical QT ∼ 1=RA ≪ 1=RN or Qs, where
RN is the nucleon size. Therefore, in Eqs. (42)–(47) we can
replace GAðY;QTÞ with

R
d2QTGAðY;QTÞδ2ðQTÞ. At

Y ¼ 0,
R
d2QTGAðY;QTÞ ¼ SAðb ¼ 0Þ ∝ 2ρRA, where ρ

denotes the density of the nucleons in a nucleus. Plugging
this expression into the above equations, they reduce to the
following form:

dTAðY;QT ;Y 0Q0
TÞ

dY
¼ ΔðTAðY;QT ;Y 0Q0

TÞ
− ~GAðYÞTAðY;QT ;Y 0Q0

TÞÞ; ð48Þ

d ~GAðYÞ
dY

¼ Δð ~GAðYÞ − ~G2
AðYÞÞ

where ~GAðYÞ ¼
Z

d2QTGAðY;QTÞ: ð49Þ

Solving Eqs. (49) and (48), we obtain

~GAðYÞ¼
SAðb¼ 0ÞeΔY

1þSAðb¼ 0ÞðeΔY −1Þ ;

TAðY;QT ;Y 0QTÞ¼ gðQTÞeΔðY−Y 0Þ1þSAðb¼ 0ÞðeΔY 0 −1Þ
1þSAðb¼ 0ÞðeΔY −1Þ :

ð50Þ

In the general case, the equations have a more compli-
cated structure and include the dependence on the trans-
verse momenta, which are the Fourier images of the dipole
sizes. However, in the vicinity of the saturation scale, the
scattering amplitude displays a geometric scaling behavior
[59] and depends only on one variable, Q2

s=p2
T . In the

vicinity of the saturation scale the equations take the form
[60]:

dTAðz; z0Þ
dY

¼ ð1 − γcrÞðTAðz; z0Þ − ~GAðzÞTAðz; z0ÞÞ; ð51Þ

d ~GAðzÞ
dz

¼ ð1 − γcrÞð ~GAðzÞ − ~G2
AðzÞÞ: ð52Þ

Solutions of these equations have the following forms:

~GAðzÞ ¼
ϕ0eð1−γcrÞz

1þϕ0ðeð1−γcrÞz− 1Þ ;

TAðz; z0Þ ¼ gðQTÞeð1−γcrÞðz−z0Þ
1þϕ0ðeð1−γcrÞz0 − 1Þ
1þϕ0ðeð1−γcrÞz− 1Þ ; ð53Þ

where ϕ0 denotes the value of the scattering amplitude at
z ¼ 0 and

z ¼ ln

�
Q2

s;AðYÞ
p2
T

�
with Q2

s;AðYÞ ¼ SAðb ¼ 0ÞQ2
sðYÞ;

ð54Þ

where QSðYÞ denotes the proton saturation momentum.
The principle feature of all these solutions is that the

interaction with the nucleus, which is shown in Fig. 14(b)
and in Fig. 15, does not affect the dependence onQT , which
determines the angular correlations. The only diagrams that
could depend on the nuclear saturation momentum are
shown in Fig. 14(c). Generally, the BFKL Pomeron from
rapidity 0 to rapidity Y 0 should be replaced by the dressed
BFKL Pomeron (see Fig. 16).
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B. The model

1. The general formulas

The diagram for the interference of two-parton showers
is shown in Fig. 16, and can be written in the form

d2σinterference diagram

dy1dy2d2p1;Td2p2;T

∝
ᾱ2SV

2ðp1;T ; p2;T ; y1 − y2Þ
p2
1;Tp

2
2;T

×
Z

z1≈z2

0

dz0GAðzY − z1ÞGAðzY − z2ÞTAðz1 − z0ÞTA

× ðz2 − z0ÞΓ3IPðQT ;Qs;AðY 0ÞÞGAðz0Þ: ð55Þ

Assuming ᾱSðy1 − y2Þ ≪ 1, Vðp1;T ; p2;T ; y1 − y2Þ takes
the simple form

Vðp1;T ; p2;T ; y1 − y2Þ ¼ Γμðp1;T ; kTÞΓμðp2;T ; kTÞ ð56Þ

with integration over kT. Since this function does not
depend on QT , we are not interested in its exact structure.
The only function which determines the QT is the triple-
Pomeron vertex (see Ref. [17]). However, we recall that in
inclusive production, the contributions of the BFKL
Pomerons with rapidities Y − y1ðy2Þ and y1ðy2Þ − Y 0 van-
ish in the deep saturation region, as they are proportional to
∇2Nðr;…Þ (where r denotes the dipoles size [31,50]), and
N → 1 in the saturation region. This means that the
contributions of these Pomerons have maxima at z → 0.
Therefore, we can use the solutions of Eq. (53) to estimate
the value of the cross section.
To specify the QT dependence, we need to find which

values of z0 (or Y 0) contribute to the integral. Plugging in TA
from Eq. (54), we can take the integral over z0, resulting in
the following expression:

d2σinterference diagram

dy1dy2d2p1;Td2p2;T
∝ e2ð1−γcrÞz

1

ð1þ ϕ0ðe2ð1−γcrÞz − 1ÞÞ2

×

�ð1 − ϕ0Þ
1 − γcr

þ ϕ0z1

�
: ð57Þ

The two terms in Eq. (57) stem from different regions of
integration over z0. The first one originates from z0 → 0 or
Y 0 ∝ 1=ᾱS. The second term comes from the region of
integration in the entire kinematic region. The typical
saturation momentum for such an integration is equal

to Q̄2
s;A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

s;AðY0ÞQ2
s;Aðy1 ≈ y2Þ

q
.

The dependence on QT only comes from the triple-
Pomeron vertex. Since GA ∝ SAðbÞ, the typical QT along
two upper BFKL Pomerons is equal to zero QT ∼ 1=RA ≪
1=Qs, and the dependence on azimuthal angle φ stems from
p2
12;T ¼ 4p2

T sin ðφ=2Þ. Finally, the general formula for the
angular correlations has the form

d2σ
dy1dy2d2p1;Td2p2;T

∝
�ð1 − ϕ0Þ

1 − γcr
Γ3PðQT ¼ 0; Qs;AðY0ÞÞ þ ϕ0z1Γ3PðQT ¼ 0; Q̄s;Aðy1 ≈ y2ÞÞ

�

þ 1

N2
c − 1

�ð1 − ϕ0Þ
1 − γcr

Γ3PðQT ¼ p12;T ; Qs;AðY0ÞÞ þ ϕ0z1Γ3PðQT ¼ p12;T ; Q̄s;Aðy1 ≈ y2ÞÞ
�
: ð58Þ

The triple-Pomeron vertex has been calculated in
Ref. [17], and at large QT it has the form [see Eq. (45)
and Eq. (A12) of Ref. [17]]

Γ3PðQT;Qs;AÞ⟶
QT≫Qs;A

�
1

ðkT − 1
2
QTÞ2γcrðQ2

TÞ1−2γcr
�

2

⟶
QT≫kT≈Qs;A 1

ðQ2
TÞ2ð1−γcrÞ

; ð59Þ

where kT denotes the momentum inside of the triple-
Pomeron vertex, which is of the order of the typical
saturation momentum of the lower BFKL Pomeron in
Fig. 16. To specify dependence of the triple-Pomeron
vertex, we recall that at large impact parameters, the
scattering amplitude should decreases exponentially [61].
Bearing this in mind, we suggest that

Γ3PðQT;Qs;AÞ ¼
�

Q2
s

Q2
T þQ2

s

�
2ð1−γcrÞ

; ð60Þ

(y ,p  )
  1    1T 

(y ,p  )
  1    1T 

Y

Y’

(y ,p  )
  2    2T 

0

FIG. 16. Double inclusive cross section. The double wavy lines
denote the propagator of the dressed BFKL Pomeron. The bold
wavy lines stand for the solution of the Balitsky-Kovchegov
equation in the nucleus. Helical lines denote gluons.
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which reproduces Eq. (59) at large QT and has the exponential decrease at large b.
Plugging Eq. (60) into Eq. (58), we obtain the correlation function in the form

CAðp12;TÞ ¼
1

N2
c − 1

�
ð1−ϕ0Þ
1−γcr

Γ3PðQT ¼ p12;T ; Qs;AðY0ÞÞ þ ϕ0z1Γ3PðQT ¼ p12;T ; Q̄s;Aðy1 ≈ y2ÞÞ
�

�
ð1−ϕ0Þ
1−γcr

Γ3PðQT ¼ 0; Qs;AðY0ÞÞ þ ϕ0z1Γ3PðQT ¼ 0; Q̄s;Aðy1 ≈ y2ÞÞ
� : ð61Þ

The multiplicity dependence stems from Eq. (61), where we replace QS;A with the value of the saturation momentum,
which corresponds to the given number of participants, this in the spirit of the KLN approach [27,28]. In Fig. 17 the
correlation functions are shown for W ¼ 5.02 TeV, and for the choice Y0 ¼ ln ðW0=mÞ with W ¼ 130 GeV and
m ¼ 1 GeV. This function has an essential dependence on Npart, or on centrality.
vn can be calculated for jp1;T j ¼ jp2;T j as

vn ¼
�Z

dφ cos ðnφÞCNpart
ð2pT sin ðφ=2ÞÞ=

�
2π þ

Z
dφCNpart

ð2pT sin ðφ=2ÞÞ
��1

2

: ð62Þ

2. The choice of parameters

The formulas of Eqs. (61) and (62) depend only on the
value of the saturation momentum, and consequently, it
depends on rapidity and Npart. We follow the KLN
approach [23,26,27] in finding these dependences. We
assume that

Q2
sðY;NpartÞ ¼

ρpart
2

Q2
0e

λðY−Y0Þ: ð63Þ

The value of Q0 we fix from the gold-gold scattering at
W ¼ 130 GeV and for centrality 0–5% Q2

sðY ¼ Y0Þ ¼
2.02 GeV2. Y ¼ ln ðW=W0Þ and Y − Y0 ¼ ln ðW=130Þ.
ρpart have been calculated in Ref. [23] for the LHC energies,
and in Ref. [27] for W0 ¼ 130 GeV. The choice Y0 ¼
ln ðW0=mÞ in Eq. (61) is not theoretically determined; note
that the value of typical ΔY 0 in the integral over Y 0, is about
ΔY ∼ 1=ᾱS, and for ᾱS ¼ 0.2, this results in a value which
is close to the chosen Y0. Finally, we take λ ¼ 0.25 as is
done in Refs. [23–27].

3. Comparison with the experimental data

Using the parameters discussed above, we evaluate the
correlation function (see Fig. 17 and the values of vn which
are plotted in Figs. 18, 19, and 20). First, we note that the
correlation function depends strongly on the centrality,
leading to a correlation length which increases for large
centralities.
However, vn show only mild dependence on centralities

(compare Figs. 18 and 19). Such a behavior at first sight is
not in accordance with the experimental data. v2 turns out
to be smaller that the experimental values for both central-
ities. On the other hand, the value for v2, as well as for other

FIG. 17. The correlation function CNpart
ðp12;TÞ at different

centralities: 0–5% and 30–40%, versus p12;T .
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FIG. 18. Experimental data for vn versus pT [7] at two different
centralities: 0–5% in the upper figure and 30–40% in the
lower one.
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even n, is not very decisive, since in QCD there are many
other sources of vn with even n besides Bose-Einstein
correlations. However, we have not found the other sources
for vn with even n. Figure 20 presents our estimate for v3
together with the experimental data. We see that our
predictions for v3 describe the experimental data fairly
well—not extremely well, but the model that we develop
here is very simple. These estimates encourage us to
develop a more complete description of vn for even n,
with different multiplicities, based on the Bose-Einstein
correlations.

V. CONCLUSIONS

We summarize the main results of this paper. The main
goal of this paper is to investigate the dependence of Bose-
Einstein correlations on the multiplicity of events. We view
these correlations as the major source of the azimuthal angle
correlations and the only known origin of vn with odd n in
the framework of the color glass condensate. Indeed, the
correlation of identical gluons produces the correlation
function that depends on jp1;T − p2;T j, which gives vn with
odd n. However, in Refs. [15,16] it was noted that the
diffractive central production of two different gluons in the
colorless state leads to dependence on jp1;T þ p2;T j. If these
two sources have the same strength, the totally inclusive
experiments without any selection onmultiplicities will give
vn ¼ 0 for oddn. In this paper, we showed that in the leading
logð1=xÞ approximation of perturbative QCD the amplitude
of two-gluon exclusive production turns out to be equal to
the interference diagram, which is the source of the Bose-
Einstein correlation, in accordance with Refs. [15,16].
However, the emission of soft gluons for the central
exclusive production in the double log approximation of
perturbative QCD leads to the Sudakov form factor which
suppresses this contribution. Therefore, the Bose-Einstein
correlations prevail, leading to vn ≠ 0 for odd n. It should be
stressed that without this suppression, the measurement of
an event with given multiplicity yields vn;n < 0 for odd n.
We demonstrated that the Bose-Einstein correlation

function does not depend on the number of produced
parton showers for hadron-nucleus and nucleus-nucleus
collisions, but for hadron-hadron collisions such depend-
ence turns out to be considerable.
Finally, we developed a simple KLN-type model to

describe the Bose-Einstein correlation in one-parton cascades
as a functionof centralities. Thepredicted dependence reflects
the main features of the observed data and reproduces the
value of vn with odd n, but much work is still needed to
develop amore complete approach. This paper encourages us
to search for such an approach.
We view this paper as an argument that the description of

vn is possible due to interactions in the initial state, and that
these interactions should not be neglected.
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FIG. 19. Our model for vn versus pT for different centralities:
0–5% in the upper figure and 30–40% in the lower figure.

FIG. 20. Comparison of the estimates from our model for v3
with the experimental data of the ALICE Collaboration [7].
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APPENDIX A: INTEGRATION OVER LONGITUDINAL MOMENTA

In this appendix we recall the calculation that results in Eq. (8). For simplicity we restrict ourselves to calculate both the
scattering amplitude at high energies [Pomeron, see Figs. 21(a) and 21(b)] and the contribution of the inelastic processes
[cut Pomeron, GðsÞ in Eq. (8), see Fig. 21(c)] in the Born approximation of pQCD. Gðs; t ¼ 0Þ takes the following form
[see Fig. 21(c)]:

Gðs; t ¼ 0Þ ¼ g4C4s2
Z

dkþdk−d2kT
ð2πÞ4i

1

ðkþk− − k2T − iϵÞ2 2πδððP1 − kÞ2Þ2πδððP2 þ kÞ2Þ

¼ 16Cα2Ss
2

Z
dkþdk−d2kT

1

ðkþk− − k2T − iϵÞ2 δð−P1
þk− − k2TÞδðP2;−kþ − k2TÞ

¼ 32Cα2Ss
Z

d2kT
k4T

: ðA1Þ

In Eq. (A1) C is the color coefficient which is the same for all diagrams, factor 4s2 [s ¼ ðP1 þ P2Þ2 ¼ 2P1;μP
μ
2 at high

energy] stems from the summation over polarization of the t-channel gluon of the gluon current of quarks 2P1;μ (2P2;μ).
αS ¼ g2=4π. Integrating the δ functions, one can see that kþk− ≪ k2T .
The scattering amplitude is equal to

Aðs; t ¼ 0Þ ¼ g4C4s2
Z

dkþdk−d2kT
ð2piÞ4i

1

ðkþk− − k2T − iϵÞ2
1

−P1
þk− − k2T − iϵ

×

�
1

P2;−kþ − k2T − iϵ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Fig:21ðaÞ

þ 1

−P2;−kþ − k2T − iϵ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fig:21ðbÞ

�
: ðA2Þ

For kþ > 0 we can take the integral over the pole: k0− ¼ −k2T−iϵ
Pþ
1

closing around this pole, the contour of integration in the

lower semiplane in the complex k− plane, since the integral over a large circle decreases at large k−. The other pole

k1− ¼ k2Tþiϵ
kþ is located in the upper semiplane. For kþ < 0 all singularities are situated in the lower semiplane leading to

vanishing of the integral. Bearing this in mind, we reduce Eq. (A2) to the following expression:

Aðs; t ¼ 0Þ ¼ 8α2S
π

Cs2
Z

∞

0

dkþd2kT
1

k4T

1

ð−Pþ
1 Þ

�
1

P2;−kþ − k2T − iϵ
þ 1

−P2;−kþ − k2T − iϵ

�

¼ 8α2S
π

Cs2
Z

∞

−∞
dkþd2kT

1

k4T

1

ð−Pþ
1 Þ

1

P2;−kþ − k2T − iϵ
: ðA3Þ

Taking the integral over kþ using contourC in Fig. 21(d), and taking into account that the integral over a large circle is equal
to iπ, we obtain

Aðs; t ¼ 0Þ ¼ i16α2SCs
Z

d2kT
k4T

: ðA4Þ

P1

P2

k

P−k1

P−k2

P1

P2

k

P−k1

P +k2

2
k+

k+
0

C

P1

P2

k

P−k1

P +k2

(a) (b) (c) (d)

FIG. 21. Born Approximation of pQCD: longitudinal momenta integration. Figs. 21(a) and 21(b) are the diagrams for the scattering
amplitude at high energy in the ᾱ2S order of pQCD. Fig. 21(c) is the cross section for two-quark production (cut Pomeron). Fig. 21(d)
shows the contour of integration over kþ. Helical lines denote gluons; the solid lines indicate quarks.
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The diagram Fig. 21(c) gives the same contribution
as the imaginary part of the diagram of Fig. 21(a),
multiplied by a factor of 2, since in this diagram we
have 2πδðP2;−kþ − k2TÞ. Therefore, we obtain that
2ImAðs; t ¼ 0Þ ¼ G (Fig. 21(c)) which proves Eq. (8) in
the Born approximation of pQCD.
For the amplitude of the two-gluon production [see

Figs. 22(a) and 22(b)] as well as for the cross section of the
one-gluon production, which is shown in Fig. 22(c), we
have the following hierarchy of the longitudinal momenta:

Pþ
1 ≫ pþ

1 ∼ pþ
2 ≫ kþ;

P2;− ≫ p1;− ∼ p2;− ≫ k−; ðA5Þ

assuming that both gluons are produced with almost
equal rapidities (y1 ≈ y2) in the central rapidity region
(y1 ≈ y2 ≪ 1) in c.m.f.

Using Eq. (A5), we can reduce the amplitude to the
following expression:

AðFig:22ðaÞ þ Fig:22ðbÞÞ

¼ 32πα3SCs
2

Z
∞

0

dkþd2kT
1

k4T

Γμðp2;T ; kTÞ
ðp2;T þ kTÞ2

Γνðp1;T ; kTÞ
ðp1;T − kTÞ2

1

ð−Pþ
1 Þ

�
1

P2;−kþ − k2T − iϵ
þ 1

−P2;−kþ − k2T − iϵ

�

¼ 32α3SCs
2

Z
∞

−∞
dkþd2kT

1

k4T

Γμðp2;T ; kTÞ
ðp2;T þ kTÞ2

Γνðp1;T ; kTÞ
ðp1;T − kTÞ2

1

ð−Pþ
1 Þ

1

P2;−kþ − k2T − iϵ

¼ 32πiα3SCs
Z Γμðp2;T ; kTÞΓνðp1;T ; kTÞd2kT

k4Tðp2;T þ kTÞ2ðp1;T − kTÞ2
: ðA6Þ

In Eq. (A6) we use the same contour of integration
over kþ [see Fig. 21(d)] as calculating the elastic ampli-
tude [see Eq. (A3)]. The Lipatov vertices Γμ for the
gluon emission depend only on transverse momenta
and do not influence the integration over longitudinal
momenta.
The cross section of Fig. 22(c) differs from the amplitude

by a factor of 2, which has the same origin as has been
discussed above [see Eq. (A1)].

APPENDIX B: VERTICES FOR TWO-GLUON
PRODUCTION IN THE CENTRAL

RAPIDITY REGION

In this appendix we clarify why diagrams Figs. 4(a)
and 4(b) are equal. The vertex in the diagram of Fig. 4(a)
has the form

VðFig:4ðaÞÞ ¼ ΓμðkT; p1;TÞΓνð−kT; p2;TÞ
k2TðkT − p2;TÞ2

; ðB1Þ

while for Fig. 4(b) it can be written as

VðFig:4ðbÞÞ ¼ ΓμðkT; p1;TÞΓνðkT − p1;T ; p2;TÞ
k2TðkT − p2;TÞ2

: ðB2Þ

We need to calculate these vertices for p1;T ¼ −p2;T,
since jp1;T þ p2;T j ∝ 1=RD ≪ 1=RN .
The vertices Γμ have the following expressions:

ΓμðkT;p1;TÞ¼
1

p2
1;T

ðk2p1;T−p2
1;TkTÞ;

ΓνðkT−p1;T ;p2;TÞ¼
1

p2
2;T

ððk−p1;TÞ2p2;T −p2
2;TðkT −p1;TÞÞ:

ðB3Þ

We need to convolute these vertices with ΓμðlT; p1;TÞ and
ΓνðlT − p1;T ; p2;TÞ for the different Pomerons, where the
integration is over lT. In such convolution the terms that are

P1

P2

k
−k

p
2

p
1

p−k
1p+k

2

P1

P2

k
p
2

p+k
2

−k

p
1

p−k
1

(a) (b) (c)

P1

k −k
p
2

p+k
2 p

1

p−k
1

P2

P−p −k1 2
P−p −k1 2

P+k2 P−k2

FIG. 22. Born Approximation of pQCD: longitudinal momenta
integration. Figs. 22(a) and 22(b) are the diagrams for the
amplitude for the production of two gluons with momenta p1

and p2, in ᾱ3S order of pQCD. Fig. 22(c) is the cross section for
two -quark and two-gluon production (cut Pomeron). Helical
lines denote gluons, the solid lines indicate quarks. The blobs
denote the Lipatov vertices for gluon production (Γν).
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proportional to p1;T · kT or to p1;T · lT vanish due to angular
integrations. Only the term which is proportional to
ðkT · lTÞ2 survives and yields 1

2
l2Tk

2
T . It is easy to see that

this term is the same in both vertices of Eqs. (B1) and (B2).
Now we need to compare

ΓμðkT; pTÞ · pT ¼ 1

p2
T
ðk2pT − p2

TkTÞ · pT ðB4Þ

with

ΓνðkT − pT; pTÞ ¼
1

p2
T
ððk − pTÞ2pT þ p2

TðkT − pTÞÞ · pT;

ðB5Þ

where we denote p1;T ¼ pT ¼ −p2;T .
The direct calculations give the same expression for both

terms,

1

2
p2
TððkT − pTÞ2 þ k2T − p2

TÞ: ðB6Þ

Therefore, both diagrams give the same contribution.
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