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We solve the Faddeev equations for the bound state problem of three particles to study different three-
body systems containing open flavor heavy mesons: D̄NN, BNN, D̄ D̄ N and BBN. We use a coupled-
channel formalism considering the S-wave spin excitations of the constituent hadrons: D̄�, B�, and Δ when
deemed relevant. Our study comes motivated by the recent prediction of deeply bound states in different
two-body subsystems participating in the aforementioned three-body states. The existence of three-body
bound states with open flavor heavy mesons would open the door to exotic nuclei with heavy flavors. Our
results point against such possibility.
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I. INTRODUCTION

The possible existence of exotic deeply bound states
containing open flavor heavy mesons has been recently
revived by lattice QCD calculations [1,2]. Using the HAL
QCD method to extract the potential between two mesons,
the lattice QCD simulations of Ref. [1] obtained attractive
S-wave phase shifts for different isoscalar two-meson
systems with open-flavor heavy mesons. Although no
bound states or resonances were reported at the pion
masses used in Ref. [1], mπ ¼ 410–700 MeV=c2, the
authors noticed that the attraction becomes more prominent
as the pion mass decreases, particularly prominent in the
isoscalar state ū d̄ ccwith quantum numbers jp ¼ 1þ. Very
recently, the lattice QCD simulations of Ref. [2] using
nonrelativistic QCD to simulate the bottom quarks,
reported an unambiguous signal for a strong-interaction-
stable isoscalar udb̄ b̄ bound state with quantum numbers
jp ¼ 1þ with a binding energy of 189(10) MeV. Similar
findings were reported in Ref. [3] based on different
constituent quark models within a hyperspherical harmonic
formalism. The same results were later on obtained by
means of the solution of the Lippmann-Schwinger equation
in a coupled-channel approach [4]. Although expectations
are less clear for the charm sector, theoretical models also
suggest the existence of a doubly charm isoscalar four-
quark bound state with quantum numbers jp ¼ 1þ [5]. The
possible existence of such states due to the asymmetry of
the masses of the constituents was already anticipated in
simple potential model calculations in Ref. [6].

Although not so clear as the systems mentioned above,
there are predictions about possible bound states of N ’s
and Δ’s with D̄ or B mesons. The effective Lagrangian
approach to the BN system of Ref. [7] in a BN − B�N
coupled-channel calculation based on heavy quark sym-
metry with light quark chiral dynamics, finds a bound state
with quantum numbers ðiÞjp ¼ ð0Þ1=2− and a binding
energy of 9.4 MeV. In Ref. [8] the authors revisited the
same system with the inclusion of short-range interactions,
finding that the binding energy increases up to 19–23 MeV,
depending on the interacting model used. A bound state
with the same quantum numbers, ðiÞjp ¼ ð0Þ1=2−, and a
binding energy of 1.4 MeV was found in the D̄N system.
These systems were also studied in constituent quark model
approaches [9,10], highlighting the importance of coupled
channel effects for the bottom sector.1

Finally, it is well known the general attractive character
of the S-wave interaction of a two-baryon system with N’s
and Δ’s generating bound or quasibound states in the NN
[11], NΔ [12,13] and ΔΔ [14] systems. With all these
ingredients together, one may wonder if few-body systems
containing N’s, Δ’s, D̄’s and B’s could enhance the
attraction of the different two-body subsystems generating
three-body bound states. If this were the case one may think
about the possible existence of bound states with a larger
number of constituents. Thus, our aim in this paper is to
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1Note that going from the charm to the bottom sector, there is a
factor 3 in the mass difference between the pseudoscalar and
vector open flavor heavy mesons, which is directly translated to
the mass difference between thresholds: MðD̄�NÞ −MðD̄NÞ ¼
141 MeV, whereas MðB�NÞ −MðBNÞ ¼ 45 MeV, what makes
the coupled-channel effect much more important in the bottom
sector.

PHYSICAL REVIEW D 96, 074009 (2017)

2470-0010=2017=96(7)=074009(7) 074009-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.074009
https://doi.org/10.1103/PhysRevD.96.074009
https://doi.org/10.1103/PhysRevD.96.074009
https://doi.org/10.1103/PhysRevD.96.074009


study different three-body systems containing open flavor
heavy mesons: D̄NN, BNN, D̄ D̄ N, and BBN looking for
bound states. Unlike theDNN and B̄NN systems, the states
studied in this work would be stable against the strong
interaction, because the lower thresholds πYcN and πYbN
are closed.

II. FORMALISM

Let us start by describing the solution of the Faddeev
equations for the bound-state problem of a three-hadron
system with two identical fermions or two identical bosons.
The first case would apply to the D̄NN and BNN systems,
while the latter would represent the D̄ D̄ N and BBN states.
The Faddeev equations for the bound-state problem in the
case of three particles with total isospin I and total spin J, if
one restricts to configurations where all three particles are
in S-wave states, are

Tiiji
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where ti;iiji stands for the two-body amplitude of the pair jk
with isospin ii and spin ji. pi is the momentum of the pair
jk and qi the momentum of particle i with respect to the
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whereW is the Racah coefficient and τi, ii, and I (σi, ji, and
J) are the isospins (spins) of particle i, of the pair jk, and
of the three-body system. If one expands the two-body

amplitudes in terms of Legendre polynomials as described
in Ref. [15], Eq. (1) takes the form,
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The three amplitudes Tri1j1
1;IJ ðq1Þ, Tmi2j2

2;IJ ðq2Þ, and Tni3j3
3;IJ ðq3Þ

in Eq. (5) are coupled together. The number of coupled
equations can be reduced, however, since two of the
particles are identical. The reduction procedure for the
case where one has two identical particles has been
described before [16,17] and will not be repeated here.
With the assumption that particles 2 and 3 are the identical
ones, the three equations (5) reduce to a single equation for
the amplitude T2,
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The þ or − sign in Eq. (9) correspond to the case when the
two identical particles are bosons or fermions, respectively,
while the quantum numbers i1j1 (the identical pair) in the
last term of the equation are those allowed by the Pauli
principle in each case.
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III. RESULTS

Let us first of all discuss the systems with baryon number
two: D̄NN and BNN. The two-body subsystems containing
the heavy meson, D̄N and BN, do not present quark-
antiquark annihilation complications that may obscure the
predictions of a particular model under some nonconsidered
dynamical effects. Besides, they contain a heavy antiquark,
what makes the interaction rather simple. As said above,
there are different models in the literature dealing with the
D̄N and BN interactions based on effective Lagrangian
approaches [7,8] or constituent quark models [9,10]. It is
worth to note the general agreement that the ði; jÞ ¼
ð0; 1=2Þ is the most attractive channel among those not
containing Δ isobars, that will be discussed further below.
The smaller binding energy or unbound nature obtained in
quark-model calculations is a remnant of quark antisym-
metry effects, as it was shown in Fig. 10 of Ref. [9]. In this
work we make use of the two-body quark-model based
interactions [9,10,18]. They have the advantage of providing
parameter-free predictions for the interaction in a baryon-
meson system with charm −1 or bottomþ1, starting from a
coherent description of theNN system [18]. Besides, due to
the existence of identical light quarks in the two hadrons, the

quark-Pauli effects appearing in some particular channels
are fully considered. They give rise to short-range repulsion
in some particular channels due to lacking degrees of
freedom to accommodate the light quarks.
It is also worthwhile to note that the increase of the

hadron masses for heavy flavor meson reduces the kinetic
energy of the system due to the larger reduced mass, and
one would expect a priori to get more stable states.
However for those quantum numbers where several chan-
nels contribute the coupled channel dynamics may result
in no so simple considerations. The two-body thresholds
and the hadron-hadron interactions are modified when
changing the flavor of the heavy quark. This is due to
the degeneracy of pseudoscalar and vector open-flavor
mesons for large heavy quark masses, as predicted by the
chromomagnetic interaction [19]. This effect is the respon-
sible that the coupled channel dynamics is more involved
and predictions in the bottom sector might differ signifi-
cantly from those on the charm sector [20]. Thus, similarly
to the two-body problem, the pattern of states may change
when moving among different flavor sectors.
We show in Table I the two-body channels of the

different two-body subsystems, either D̄N, D̄�N, and
NN or BN, B�N, and NN, that contribute to a given

FIG. 1. (a) Fredholm determinant for the J ¼ 0 and J ¼ 1 ðI; JÞ D̄NN channels. (b) Fredholm determinant for the J ¼ 2 ðI; JÞD̄�NN
channels.

TABLE I. Two-body D̄N channels with a N as spectator ðiD̄; sD̄ÞN, D̄�N channels with a N as spectator
ðiD̄� ; sD̄� ÞN , NN channels with a D̄ as spectator ðiN; sNÞD̄, and NN channels with a D̄� as spectator ðiN; sNÞD̄� , that
contribute to a given D̄NN or D̄�NN state with total isospin I and spin J. The same channels would contribute to the
BNN and B�NN systems.

I J ðiD̄; jD̄ÞN ðiD̄� ; jD̄� ÞN ðiN; jNÞD̄ ðiN; jNÞD̄�

1=2 0 ð0; 1=2Þ; ð1; 1=2Þ ð0; 1=2Þ; ð1; 1=2Þ (1,0) (0,1)
1=2 1 ð0; 1=2Þ; ð1; 1=2Þ ð0; 1=2Þ; ð1; 1=2Þ; ð0; 3=2Þ; ð1; 3=2Þ (0,1) (0,1),(1,0)
1=2 2 � � � ð0; 3=2Þ; ð1; 3=2Þ � � � (0,1)
3=2 0 ð1; 1=2Þ ð1; 1=2Þ (1,0) � � �
3=2 1 ð1; 1=2Þ ð1; 1=2Þ; ð1; 3=2Þ � � � (1,0)
3=2 2 � � � ð1; 3=2Þ � � � � � �
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three-body D̄NN (D̄�NN) or BNN (B�NN) state, ðI; JÞ.
Note that J ¼ 2 channels can only be reached through a
vector meson D̄� or B�. All allowed internal couplings
between the different two-body subsystems contributing to
a three-body channel have been considered. From this table
one can construct the basis wave functions used for the
three-body calculation.
The results are presented in Fig. 1 for the D̄NN and

D̄�NN systems, and in Fig. 2 for the BNN and B�NN
systems. As can be seen none of the three-body
channels is a candidate to lodge a bound state or a
resonance. The Fredholm determinant is flat or it
increases when approaching the threshold, indicating
a general repulsive system. The situation is not
improved when going from the charm to the bottom
sector. The change in the hadron masses reduces the
kinetic energy contribution and the Fredholm determi-
nant becomes smaller, although the character of the
interaction is not modified.
We have also looked for metastable states that may take

advantage of stronger interactions in the baryonic sector
containing Δ’s. For this purpose we have singled out a
three-body system containing the quantum numbers of the
asymptotic ΔΔ state bound by nearly 100 MeV, ðiÞjp ¼
ð0Þ3þ [14]. This state was predicted by Dyson and Xuong
[21] already in 1964 and later on also by Goldman et al.
[22], who called it the inevitable dibaryon d�, due to its
unique symmetry features. The resonant structure was
advertised in the NN scattering data in the quark-model
calculation of Ref. [23]. The attractive character of the ΔΔ
interaction might be combined with the attraction of the
D̄�Δ interaction in the ði; jÞ ¼ ð1; 5=2Þ channel [9]. Thus,
we have considered the most promising candidate to show a
bound state, the D̄�ΔΔ ðI; JÞ ¼ ð1=2; 4Þ channel, that due
to angular momentum selection rules is not coupled to
lower channels containing N’s or pseudoscalar D̄ mesons.
We show in Table II the ΔΔ and D̄�Δ two-body channels
contributing to such state.

The Fredholm determinant for this state is shown in
Fig. 3. As can be seen, although both two-body subsystems
show a bound state, the three-body system is not bound. We
have done several trials, as for example neglecting the
ði; jÞ ¼ ð2; 5=2ÞD̄�Δ two-body channel, which is strongly
repulsive due to Pauli blocking effects [9], and the three-
body system remains unbound. Similarly, if the D̄� is
replaced by a B� meson, the system is not bound. When
moving to the bottom sector, the two-body state showing
the strongest attraction is the ði; jÞ ¼ ð2; 3=2Þ, due to
BΔ − B�Δ coupled channel effects [10]. However, all
three-body channels containing this two-body state, as
for example the three-body system with quantum number
ðI; JÞ ¼ ð1=2; 3Þ, may decay strongly to the lower B�NΔ
three-body system. Thus, one has a B�NΔ − BΔΔ − B�ΔΔ
coupled channel problem, the lowest threshold B�NΔ
being 247 MeV below the attractive coupled channel
system BΔΔ − B�ΔΔ state. Besides, there contribute
NΔ channels that are strongly repulsive [18], minimizing
any possibility of binding.
A similar study of the possible existence of exotic

dibaryons with a heavy antiquark in the three-body
systems: D̄NN, D̄�NN, BNN and B�NN has been done
in Ref. [24]. The authors used a one-pion exchange
potential between the heavy meson and the nucleon,
and the Argonne v08 potential for the nucleon-nucleon
interaction [25]. The three-body problem is solved by
means of a powerful Gaussian expansion method [26].
The authors obtained a bound state in the ðI; JÞ ¼ ð1=2; 0Þ

FIG. 2. (a) Fredholm determinant for the J ¼ 0 and J ¼ 1 ðI; JÞ BNN channels. (b) Fredholm determinant for the J ¼ 2 ðI; JÞB�NN
channels.

TABLE II. Different two-body channels contributing to the
ðI; JÞ ¼ ð1=2; 4ÞD̄�ΔΔ channel.

Interacting pair ði; jÞ Spectator

ΔΔ (0,3) D̄�

D̄�Δ ð1; 5=2Þ Δð2; 5=2Þ
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channel, with a binding energy of 5.2 MeV in the charm
sector and 26.2 MeV in the bottom sector. They also
reported Feshbach resonances in the ðI; JÞ ¼ ð1=2; 1Þ
channel for both heavy flavor sectors. The main responsible
for the bound states is the tensor force of the one-pion
exchange interaction between the heavy meson and the
nucleon. To understand the difference between our con-
clusions and those of Ref. [24] one might have a look to
Figs. 4, 7 and 10 of Ref. [9]. In Fig. 4 one observes how
there are important differences between a hadronic poten-
tial, without quark-exchange effects (quoted as Dir in the
figure) and the contributions coming from quark-exchange
effects (quoted as Ex). Such a difference was highlighted
in Fig. 10 obtaining a bound state when quark-exchange
effects are not considered, in agreement with Refs. [7,8].
Thus, as mentioned above, the smaller binding energy or
unbound nature obtained in quark-model calculations is a
remnant of quark antisymmetry effects. Besides, in Fig. 7
of Ref. [9], one observes how the coupling between the
different two-body systems with a nucleon and a heavy
meson, the responsible for the binding in the three-body

systems of Ref. [24], is generally not too strong. Such a
coupling comes reinforced by the vicinity of the different
two-body thresholds as it is clearly illustrated in Fig. 3 of
Ref. [20]. Therefore, this comparison makes evident the
great importance that quark-exchange effects may have in
the system under study and it also represents a sharp
example of a system where the quark-exchange dynamics
may have observable consequences. A future effort in the
study of two and three-body systems with heavy open
flavor mesons will provide us with evidence to learn about
the importance of quark-exchange dynamics.
Once the possible existence of bound states in systems

containing two baryons and a heavy meson was explored,
we were motivated by the lattice QCD prediction of a
deeply bound state in a system coupled to the quantum
numbers of two open flavor heavy mesons [1,2]. The
isoscalar jp ¼ 1þ state predicted by lattice QCD calcu-
lations in the doubly bottom sector and its partner in the
charm sector, appear as BB� − B�B� and D̄D̄� − D̄�D̄�
coupled channel states [3–5]. Having in mind the attractive
character of the ND̄ and NB interactions in some particular
channels [7–10], we have explored the possibility of
finding bound states of this exotic doubly heavy flavor
state in the presence of nucleons. For this purpose we have
selected the three-body channel with quantum numbers
ðI; JÞ ¼ ð1=2; 3=2Þ, that it is not coupled to the lower
D̄ D̄ N (BBN) channel.
We have indicated in Table III the two-body channels

contributing to the system studied. This channel contains in
the charm sector a D̄D̄� − D̄�D̄� bound state of 16.65 MeV.
In the bottom sector it presents a BB� − B�B� bound state
of 179.2 MeV, close to the lattice QCD results. The
Fredholm determinant of the three-body system is shown
in Fig. 4 by the solid line. As it can be seen there is no any
signal of a possible bound state or resonance. We have
performed a calculation neglecting the repulsive channels
appearing in Table III, thus just considering theND̄ ði; jÞ ¼
ð0; 1=2Þ channel and the D̄D̄� and D̄�D̄� ði; jÞ ¼ ð0; 1Þ

FIG. 3. Fredholm determinant for the ðI; JÞ ¼ ð1=2; 4ÞD̄�ΔΔ
system.

FIG. 4. (a) Fredholm determinant for the ðI; JÞ ¼ ð1=2; 3=2Þ D̄D̄�N − D̄�D̄�N state. (b) Fredholm determinant for the ðI; JÞ ¼
ð1=2; 3=2Þ BB�N − B�B�N state. See text for details.
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channels. The results are shown by the dashed line in Fig. 4,
and although the system becomes less repulsive is still far
from being bound.
Let us finally note the intricate bound state three-body

problem. The presence of a third particle generates additional
two-body channels and thresholds contributing to the three-
body systems that might avoid the existence of three-body
bound states. It seems that when the internal two-body
thresholds of the three-body system are far away, they
conspire against the possible binding of the three-body
system. This seems to be the reason why in spite of having
a largeBB� − B�B� binding,we donot get aBB�N − B�B�N
bound state. This was already observed in our previous
studies of the NΔΔ and NNΔ three-body systems [13,27].

IV. SUMMARY

In summary, we have solved the Faddeev equations for
the bound state problem of three-body systems containing

open flavor heavy mesons. In particular, we have studied
systems with two identical baryons or two identical
mesons. We have singled out three-body systems with
two-body subsystems presenting deeply bound states. The
existence of these states stems from different models,
as it can be lattice QCD studies, effective Lagrangian
approaches or constituent quark models. In spite of the
presence of strongly attractive two-body subsystems, the
three-body systems remain always unbound. In fact, they
present a rather important repulsive character. Thus, our
results point against the existence of exotic nuclei contain-
ing open flavor heavy mesons.
It is expected that in the near future the existence

of exotic nuclei with a variety of flavors could be explored
at hadron facilities such as the planned installation of a
50 GeV high-intensity proton beam at Japan Proton
Accelerator Research Complex (J-PARC) [28,29].
Particularly interesting is also the possibility of producing
exotic hadrons in high-energy heavy-ion collision [30,31].
A Super B collider offers similar possibilities [32]. Future
experimental results will help to scrutinize among the
different models, and in this way to improve our phenom-
enological understanding of QCD in the highly nonper-
turbative low-energy regime. The three-body systems
studied in this work provide a nice opportunity to dis-
criminate between predictions based on quark-exchange
dynamics or hadronic models. This challenge could only be
achieved by means of a cooperative experimental and
theoretical effort.
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