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We use the covariant spectator theory with an effective quark-antiquark interaction, containing Lorentz
scalar, pseudoscalar, and vector contributions, to calculate the masses and vertex functions of, simulta-
neously, heavy and heavy-light mesons. We perform least-square fits of the model parameters, including
the quark masses, to the meson spectrum and systematically study the sensitivity of the parameters with
respect to different sets of fitted data. We investigate the influence of the vector confining interaction by
using a continuous parameter controlling its weight. We find that vector contributions to the confining
interaction between 0% and about 30% lead to essentially the same agreement with the data. Similarly, the
light quark masses are not very tightly constrained. In all cases, the meson mass spectra calculated with our
fitted models agree very well with the experimental data. We also calculate the mesons wave functions in a
partial wave representation and show how they are related to the meson vertex functions in covariant form.
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I. INTRODUCTION

A complete and detailed explanation of the meson
spectrum from QCD is still lacking. Fortunately, with
the strong activity at various experimental facilities
(LHCb, BABAR, BES, Belle), and even more high-accuracy
experiments scheduled to come online in the near future
(GlueX, SuperKEKB, PANDA), a steadily increasing
wealth of data on known and newly discovered meson
states is now available and should help us to improve our
understanding of these systems.
On the theoretical side, QCD calculations on the lattice are

speedily progressing with respect to managing finite volume
effects and decreasing pion mass (e.g. [1–5], and references
therein). For comprehensive reviews on the subject see [6,7].
In parallel to lattice calculations, a variety of non-

perturbative continuum approaches have provided impor-
tant information on the inner workings of mesons. They
include nonrelativistic effective field theories for heavy
quarkonia [8,9], the Dyson-Schwinger-Bethe-Salpeter
(DS-BS) framework [10–27], which takes dynamical
momentum-dependent quark masses into account and is
successful in particular in light quark systems, covariant
two-body Dirac equations [28], two-fermion calculations
in relativistic quantum mechanics [29], and the basis
light-front quantization approach [30,31] with an effective
confining Hamiltonian from light-front holographic QCD,
which was applied in studies of heavy quarkonia.

Our work uses the covariant spectator theory (CST) [32–
37]. This framework belongs to a class of three-dimensional
“quasipotential” equations which are derived from the Bethe-
Salpeter equation (BSE) by placing constraints on the
relative-energy component of a two-particle system.
The CST framework has attractive features that are worth

enumerating here: (i) It ismanifestly covariant, which allows
an exact calculation of boosts of two-particle amplitudes.
(ii) It possesses the correct one-body limit, i.e., it turns into
an effective one-bodyDirac orKlein-Gordon equationwhen
one of the two constituent particles becomes infinitely
heavy. (iii) It has a smooth nonrelativistic limit, in which
it reduces to the Schrödinger equation. (iv) It defines
“relativistic wave functions” which become proper non-
relativistic wave functions in the nonrelativistic limit. One
can identify wave function components of purely relativistic
origin and get a direct, intuitive picture of the importance of
relativity in different systems. (v) It implements dynamical
chiral symmetry breaking, satisfying the axialvector Ward-
Takahashi identity. This key feature was absent from
previous calculations of quark-antiquark bound states with
other 3D reductions of the BS equation [38–40], as well
as from the well-known “relativized” calculations with
Cornell-type potentials [41]. The implementation of chiral
symmetry constraints in CST calculations through an
Nambu–Jona-Lasinio mechanism was introduced in
[34,35,42], and extended more recently in [37,43].
(vi) The CST two-quark kernel, determined in the two-body
bound-state problem, can later be included consistently
in Faddeev-type three-quark calculations of baryons by
boosting two-quark rest-frame amplitudes appropriately.
Although genuine three-body calculations for baryons in
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CSThave not yet been carried out, the same principle applies
to two- and three-nucleon systemswhere CST has been used
extensively and with remarkable success [44–46].
CST is, in some aspects, close to the DS-BS approach,

in the sense that both aim at a unified, self-consistent
quantum-field-theoretical description of hadrons. But there
are also significant differences: DS-BS is formulated in
Euclidean space, whereas CSTworks in Minkowski space.
DS-BS implements confinement through the absence of
real mass poles of the quark propagators, whereas in CST
confinement is the consequence of a confining interaction
kernel.
Heavy and heavy-light mesons are very suitable systems

to test different mechanisms of confinement and to possibly
determine its Lorentz structure. A confining interaction
increases in strength with the distance between quarks, and
in higher excited states it should therefore become more
important than the short-range one-gluon-exchange (OGE)
interaction. The vector meson bottomonium spectrum is
particularly interesting in this regard because of the excep-
tionally high number of excited states below the open-
flavor threshold that have already been measured. So far,
lattice QCD and DS-BS calculations are having difficulties
describing higher excited states [47–56].
In [57], we reported on first results of CST calculations of

the heavy and heavy-light meson spectrum. We found that a
remarkably good description of the masses of mesons with at
least one charm or bottom quark can be obtained with a
simple covariant interaction kernel, which was chosen to
reduce to a Cornell-type potential in the nonrelativistic limit.
Only the three strength parameters for a (Lorentz scalar and
pseudoscalar) linear confinement, a OGE, and a constant
interaction were adjusted in the fits to the data, whereas
quark masses and a Pauli-Villars regularization mass were
fixed ad hoc at reasonable values. What is particularly
interesting about the results is that we performed global
least-square fits, such that the three parameters are the same
in all sectors when we calculate the whole spectrum, ranging
from the D mesons with masses below 2 GeV up to
bottomonium with masses above 10 GeV.
In this work we go beyond [57] in several aspects. In

addition to the previously used scalar þ pseudoscalar
Lorentz structure, we introduce a vector interaction, whose
relative weight can be altered through a continuous mixing
parameter y. This is done in a way that in the nonrelativistic
limit always the same linear potential is obtained. By letting
the parameter y be determined through a fit, we can
investigate to what extent the mass spectrum of heavy
and heavy-light mesons constrains the Lorentz structure of
the confining interaction.
We also devised a numerical method that makes it

feasible to treat the quark masses as adjustable fit param-
eters. Not only is it interesting to find out how much these
masses are constrained by the data, but also how much
improvement one can obtain in the quality of the fits when
more adjustable parameters are introduced.

Another interesting question is how sensitive the results
are with respect to the selection of the used experimental
data. In [57] we found that fits to a small number of
pseudoscalar states alone already yield a model that
predicts all other considered mesons with J ≤ 1 with
almost the same accuracy as more general fits, indicating
that the covariance of the kernel correctly determines the
spin-dependence of the interaction.
The CSTwave functions are then analyzed in detail. This

provides a means to determine its spin and orbital angular
momentum content, which is very useful for the identi-
fication of each calculated state. We also examine the wave
functions of excited states in dependence of the excitation
level and the size of wave function components of
relativistic origin with different quark masses.
In addition to these numerical results, we also present

details of the formalism, in particular the form of the CST
equations for the general case of unequal masses, the
reduction of the one-channel CST equation to partial-wave
form, and the relation between the radial wave functions
and the covariant form of the corresponding meson vertex
function.
This paper is organized as follows: in Sec. II we derive

the CST equations and two of its approximations, one of
which is then used in the numerical calculations presented
and discussed in Sec. III. In Sec. IV we summarize and
present our conclusions.

II. FORMALISM

A. The four-channel CST equation

The four-channel CST equation for bound-states of
equal mass quarks and antiquarks has been introduced in
Refs. [35,37]. In this work we are interested in cases with
unequal masses as well, so we have to generalize the CST
equation accordingly.
The CST equation can be derived from the BSE for the

vertex function ΓBS (also shown graphically in Fig. 1),

ΓBSðp1; p2Þ ¼ i
Z

d4k
ð2πÞ4 Vðp; k;PÞ

× S1ðk1ÞΓBSðk1; k2ÞS2ðk2Þ; ð1Þ

where SiðkiÞ is the dressed propagator of quark i [with
an imaginary factor ð−iÞ removed], P ¼ p1 − p2 the total
four-momentum, and p ¼ 1

2
ðp1 þ p2Þ is the relative

FIG. 1. Graphic representation of the BSE for the qq̄ bound
state vertex function Γ, where V represents the kernel of two-
body irreducible Feynman diagrams.
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momentum. The individual quark momenta pi in terms of
the relative and total momentum are p1 ¼ pþ P=2 and
p2 ¼ p − P=2. Analogous expressions relate the inter-
mediate individual quark momenta ki to the intermediate
relative momentum k and to the total momentum.
The kernel is of the form

Vðp; k;PÞ ¼ 3

4
F1 · F2

X
K

VKðp; k;PÞΘK
1 ⊗ ΘK

2 ; ð2Þ

whereΘK
1 and ΘK

2 are Dirac matrices, whose type is labeled
K, associated with the vertices involving quark 1 or 2,
respectively. We use Θs

i ¼ 1 for scalar, Θp
i ¼ γ5 for

pseudoscalar, and Θv
i ¼ γμ for vector coupling (the

Lorentz vector index μ carried by Θv
i is not explicitly

shown when we refer to ΘK
i in general). The VKðp; k;PÞ

are covariant scalar functions describing the corres-
ponding momentum dependence. However, the explicit
dependence of the kernel V and the functions VK on the
total momentum P will be suppressed from here on. The
color SU(3) generators, in terms of the Gell-Mann matrices,
are Fa ¼ 1

2
λa. All calculations of this paper are performed

for color singlet states, for which the color factor
becomes 3

4
hF1 · F2i ¼ 1.

Note that the multiplication with the kernel in (1) is an
abbreviation that should be interpreted as

Vðp; kÞS1ðk1ÞΓBSðk1; k2ÞS2ðk2Þ
≡X

K

VKðp; kÞΘK
1 S1ðk1ÞΓBSðk1; k2ÞS2ðk2ÞΘK

2 : ð3Þ

In this work we do not calculate the quark self-energies
and dynamical masses, but assume constant quark masses
mi instead. The propagators are then

SiðkÞ ¼
mi þ k

m2
i − k2 − iϵ

. ð4Þ

The CST equation is obtained by performing the inte-
gration over the energy component of the loop four-
momentum, but keeping only the contributions from the
poles of the quark propagators. The rationale for dis-
carding the poles in the kernel is mainly that the residues
of ladder and crossed-ladder diagrams tend to cancel, in
all orders of the coupling constant, in particular when one
of the two quark masses becomes large [32,33,36].
Details about how this integration is evaluated are given
in [37]. The only difference to [37] is that here we have to
keep S1 and S2 distinct because of the difference in the
quark masses.
In the following we work in the rest frame of the meson,

where P ¼ ðμ; 0Þ, and the quark three-momenta and
the relative three-momentum are equal, k1 ¼ k2 ¼ k.
We also define Eik ≡ ðm2

i þ k2Þ1=2, the four-momentum

k̂�i ≡ ð�Eik;kÞ of a quark on its positive- or negative-
energy mass shell, and the corresponding positive- or
negative-energy projector Λiðk̂�i Þ ¼ ðmi þ k̂�i Þ=2mi.
Closing the k0 integration contour in the lower half plane

and keeping only the residues from the quark propagator
poles yields

Γlowerðp1;p2Þ

¼−
Z
k1

Vðp; k̂þ1 −P=2ÞΛ1ðk̂þ1 ÞΓðk̂þ1 ; k̂þ1 −PÞS2ðk̂þ1 −PÞ

−
Z
k2

Vðp; k̂þ2 þP=2ÞS1ðk̂þ2 þPÞΓðk̂þ2 þP; k̂þ2 ÞΛ2ðk̂þ2 Þ;

ð5Þ

whereas closing it in the upper half plane gives

Γupperðp1;p2Þ

¼−
Z
k1

Vðp; k̂−1 −P=2ÞΛ1ðk̂−1 ÞΓðk̂−1 ; k̂−1 −PÞS2ðk̂−1 −PÞ

−
Z
k2

Vðp; k̂−2 þP=2ÞS1ðk̂−2 þPÞΓðk̂−2 þP; k̂−2 ÞΛ2ðk̂−2 Þ;

ð6Þ

where we have introduced the convenient shorthand

Z
ki

≡
Z

d3k
ð2πÞ3

mi

Eik
ð7Þ

for the covariant integration measure.
Γlowerðp1; p2Þ and Γupperðp1; p2Þ are not necessarily

equal, because only the residues of the quark propagator
poles were taken into account. The CST vertex function is
defined as the symmetric combination

Γðp1; p2Þ≡ 1

2
½Γlowerðp1; p2Þ þ Γupperðp1; p2Þ�: ð8Þ

In the equal-mass case, the charge-conjugation symmetry
of the BSE is preserved when this symmetrized combina-
tion of lower and upper half-plane contour integration is
used [35,37].
Before writing the equation for the CST vertex function

(8), it is convenient to simplify our notation by expressing
the negative-energy on shell momenta k̂−i in (6) in terms of
the positive-energy on shell momenta k̂þi : inverting the
integration three-momentum k → −k permits us to write
k̂−i → −k̂þi . Now we can drop the superscript � with the
understanding that all on shell momenta are on the positive-
energy mass shell, i.e. k̂i ≡ k̂þi .
With this notation, the symmetrized CST vertex

function is
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Γðp1; p2Þ ¼ −
1

2

X
η¼�

�Z
k1

Vðp; ηk̂1 − P=2Þ

× Λ1ðηk̂1ÞΓðηk̂1; ηk̂1 − PÞS2ðηk̂1 − PÞ

þ
Z
k2

Vðp; ηk̂2 þ P=2Þ

× S1ðηk̂2 þ PÞΓðηk̂2 þ P; ηk̂2ÞΛ2ðηk̂2Þ
�
: ð9Þ

It determines an (approximate) BS vertex function, where
both quark momenta, p1 and p2, are off shell, in terms of
four CST vertex functions, which always have one quark
momentum on mass shell. A diagrammatic representation
of Eq. (9) is given in Fig. 2.
These CST vertex functions can be calculated, once (9)

is converted into a closed set of equations. To do so,
one writes (9) for four combinations of external quark
momenta, where in each case either quark 1 or 2 is on its
positive or negative energy mass shell. We introduce the
shorthand

Γ1ρðpÞ≡ Γðρp̂1; ρp̂1 − PÞ;
Γ2ρðpÞ≡ Γðρp̂2 þ P; ρp̂2Þ ð10Þ

for the CST vertex functions, where ρ ¼ �.
The corresponding four external relative momenta that

appear as arguments of the kernel are p → fp̂1 − P=2;
p̂2 þ P=2;−p̂1 − P=2;−p̂2 þ P=2g, with p̂i ¼ ðEip;pÞ,
and we define abbreviations for the kernel matrix
elements

V1ρ;1ηðp; kÞ≡ Vðρp̂1 − P=2; ηk̂1 − P=2Þ;
V1ρ;2ηðp; kÞ≡ Vðρp̂1 − P=2; ηk̂2 þ P=2Þ;
V2ρ;1ηðp; kÞ≡ Vðρp̂2 þ P=2; ηk̂1 − P=2Þ;
V2ρ;2ηðp; kÞ≡ Vðρp̂2 þ P=2; ηk̂2 þ P=2Þ: ð11Þ

The same notation is adopted for the corresponding
functions VKðp; kÞ that are part of the respective
kernels.
Using (10) and (11) in (9) leads to a system of four

coupled equations, which we refer to as the “four-channel
CST equations” (4CSE),

ΓiρðpÞ¼−
1

2

X
η¼�

�Z
k1

Viρ;1ηðp;kÞΛ1ðηk̂1ÞΓ1ηðkÞS2ðηk̂1−PÞ

þ
Z
k2

Viρ;2ηðp;kÞS1ðηk̂2þPÞΓ2ηðkÞΛ2ðηk̂2Þ
�
;

ð12Þ

where i ¼ 1, 2, and ρ ¼ �. The set of Eqs. (12), also shown
graphically in Fig. 3, is the most general CST bound-state
equation valid for quark-antiquark systems with unequal
quark massesm1 ≠ m2, such as the heavy-light mesons that
are the subject of this work.
Our interaction kernel is chosen to be of the form

Vðp; kÞ
¼ ½ð1 − yÞð11 ⊗ 12 þ γ51 ⊗ γ52Þ − yγμ1 ⊗ γμ2�VLðp; kÞ
− γμ1 ⊗ γμ2½VOGEðp; kÞ þ VCðp; kÞ�; ð13Þ

where VLðp; kÞ is a covariant generalization of a linear
confining potential, VOGEðp; kÞ is the short-range one-
gluon-exchange interaction (in Feynman gauge), and
VCðp; kÞ a covariant form of a constant potential. The
OGE and constant kernels are Lorentz-vector interactions.
The Lorentz structure of the linear confining kernel in
(13) is a mixture of an equal-weight sum of scalar
and pseudoscalar coupling on one hand, and vector
coupling on the other hand. Our particular scalar þ
pseudoscalar combination ensures that the requirements
of chiral symmetry are satisfied [43]. The parameter y
allows us to vary the relative weight of these structures
continuously, with y ¼ 0 yielding a pure scalar þ
pseudoscalar coupling, and y ¼ 1 a pure vector coupling.
The signs are chosen such that always—for any value
of y—the same nonrelativistic limit is obtained, which
in coordinate space corresponds to the Cornell-type
potential VðrÞ ¼ σr − αs=r − C.
For a better understanding of the nature of confine-

ment, it is of great importance to establish the Lorentz

FIG. 2. The BS vertex function approximated as a sum of CST
vertex functions (crosses on quark lines indicate that a positive-
energy pole of the propagator is calculated, light crosses in a dark
square refer to a negative-energy pole).

FIG. 3. The four-channel CST equation. The solid rectangle
indicates the one-channel equation used in this work, the dashed
rectangle a two-channel extension with charge-conjugation
symmetry.
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structure of the confining interaction. In principle one can
do that by treating y as a free parameter that should be
determined by fitting the experimental data. In Sec. III
we discuss in some detail to what extend this approach
works in practice.

B. Four- and two-channel equations
for CST wave functions

To bring the 4CSE (12) into a form more suitable for
numerical solution, we begin by calculating matrix ele-
ments between ρ-spinors, which amounts to a separation
into positive- and negative-energy channels. Our ρ-spinors
are defined as

uþi ðp; λÞ≡ uiðp; λÞ; u−i ðp; λÞ≡ við−p; λÞ; ð14Þ

where u and v are the Dirac spinors in the convention of
Bjorken and Drell, which are given explicitly in Eqs. (A5)
and (A6), and λ is the helicity of quark i.

We can express the projectors and propagators in (12) in
terms of these ρ-spinors as

Λiðηk̂iÞ ¼ η
X
λ¼�1

2

uηi ðηk; λÞūηi ðηk; λÞ; ð15Þ

and

S1ðηk̂2 þ PÞ ¼ m1

E1k

X
ρ1¼�

X
λ1¼�1

2

uρ11 ðηk; λ1Þūρ11 ðηk; λ1Þ
ρ1E1k − ηE2k − μ − iϵ

;

S2ðηk̂1 − PÞ ¼ m2

E2k

X
ρ2¼�

X
λ2¼�1

2

uρ22 ðηk; λ2Þūρ22 ðηk; λ2Þ
ρ2E2k − ηE1k þ μ − iϵ

;

ð16Þ
respectively.
Multiplying in (12) Γ1ρ1 from the left by ūρ11 ðρ1p; λ1Þ and

from the right by uρ22 ðρ1p; λ2Þ, and Γ2ρ2 from the left by
ūρ11 ðρ2p; λ1Þ and from the right by uρ22 ðρ2p; λ2Þ, we get

ūρ11 ðρ1p; λ1ÞΓ1ρ1ðpÞuρ22 ðρ1p; λ2Þ

¼ −
1

2

X
Kηλ0

1
λ0
2
ρ0
1
ρ0
2

Z
d3k
ð2πÞ3

m1m2

E1kE2k
η

×

�
VK
1ρ1;1η

ðp; kÞūρ11 ðρ1p; λ1ÞΘK
1 u

η
1ðηk; λ01Þ

ūη1ðηk; λ01ÞΓ1ηðkÞuρ
0
2

2 ðηk; λ02Þ
ρ02E2k − ηE1k þ μ − iϵ

ū
ρ0
2

2 ðηk; λ02ÞΘK
2 u

ρ2
2 ðρ1p; λ2Þ

þ VK
1ρ1;2η

ðp; kÞūρ11 ðρ1p; λ1ÞΘK
1 u

ρ0
1

1 ðηk; λ01Þ
ū
ρ0
1

1 ðηk; λ01ÞΓ2ηðkÞuη2ðηk; λ02Þ
ρ01E1k − ηE2k − μ − iϵ

ūη2ðηk; λ02ÞΘK
2 u

ρ2
2 ðρ1p; λ2Þ

�
ūρ11 ðρ2p; λ1ÞΓ2ρ2ðpÞuρ22 ðρ2p; λ2Þ

¼ −
1

2

X
Kηλ0

1
λ0
2
ρ0
1
ρ0
2

Z
d3k
ð2πÞ3

m1m2

E1kE2k
η

×

�
VK
2ρ2;1η

ðp; kÞūρ11 ðρ2p; λ1ÞΘK
1 u

η
1ðηk; λ01Þ

ūη1ðηk; λ01ÞΓ1ηðkÞuρ
0
2

2 ðηk; λ02Þ
ρ02E2k − ηE1k þ μ − iϵ

ū
ρ0
2

2 ðηk; λ02ÞΘK
2 u

ρ2
2 ðρ2p; λ2Þ

þ VK
2ρ2;2η

ðp; kÞūρ11 ðρ2p; λ1ÞΘK
1 u

ρ0
1

1 ðηk; λ01Þ
ū
ρ0
1

1 ðηk; λ01ÞΓ2ηðkÞuη2ðηk; λ02Þ
ρ01E1k − ηE2k − μ − iϵ

ūη2ðηk; λ02ÞΘK
2 u

ρ2
2 ðρ2p; λ2Þ

�
; ð17Þ

where the notation for the functions VK
iρ;jηðp; kÞ follows the convention of Eq. (11). Note that repeated indices are not

automatically summed over.
Now we define CST wave functions,

Ψρ1ρ2
1;λ1λ2

ðpÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

E1pE2p

r
ūρ11 ðρ1p; λ1ÞΓ1ρ1ðpÞuρ22 ðρ1p; λ2Þ

ρ2E2p − ρ1E1p þ μ − iϵ
;

Ψρ1ρ2
2;λ1λ2

ðpÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

E1pE2p

r ūρ11 ðρ2p; λ1ÞΓ2ρ2ðpÞuρ22 ðρ2p; λ2Þ
ρ1E1p − ρ2E2p − μ − iϵ

; ð18Þ

and the spinor matrix elements of the vertices,
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ΘK;ρρ0
i;λλ0 ðp;kÞ≡ ūρi ðp; λÞΘK

i u
ρ0
i ðk; λ0Þ: ð19Þ

The 4CSE for the CST wave functions is then

ðρ2E2p − ρ1E1p þ μÞΨρ1ρ2
1;λ1λ2

ðpÞ ¼ −
1

2

X
Kηλ0

1
λ0
2
ρ0
1
ρ0
2

Z
d3k
ð2πÞ3N12ðp; kÞη½VK

1ρ1;1η
ðp; kÞΘK;ρ1η

1;λ1λ01
ðρ1p; ηkÞ

× Ψηρ0
2

1;λ0
1
λ0
2
ðkÞΘK;ρ0

2
ρ2

2;λ0
2
λ2
ðηk; ρ1pÞ þ VK

1ρ1;2η
ðp; kÞΘK;ρ1ρ01

1;λ1λ01
ðρ1p; ηkÞΨρ0

1
η

2;λ0
1
λ0
2
ðkÞΘK;ηρ2

2;λ0
2
λ2
ðηk; ρ1pÞ�

ðρ1E1p − ρ2E2p − μÞΨρ1ρ2
2;λ1λ2

ðpÞ ¼ −
1

2

X
Kηλ0

1
λ0
2
ρ0
1
ρ0
2

Z
d3k
ð2πÞ3N12ðp; kÞη½VK

2ρ2;1η
ðp; kÞΘK;ρ1η

1;λ1λ01
ðρ2p; ηkÞ

× Ψηρ0
2

1;λ0
1
λ0
2
ðkÞΘK;ρ0

2
ρ2

2;λ0
2
λ2
ðηk; ρ2pÞ þ VK

2ρ2;2η
ðp; kÞΘK;ρ1ρ01

1;λ1λ01
ðρ2p; ηkÞΨρ0

1
η

2;λ0
1
λ0
2
ðkÞΘK;ηρ2

2;λ0
2
λ2
ðηk; ρ2pÞ�;

ð20Þ

where we have introduced the shorthand

N12ðp; kÞ≡ m1m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1pE2pE1kE2k

p : ð21Þ

To avoid potential confusion we should point out that the
number of “channels”, e.g. the 4 in 4CSE, refers to the
number of different vertex functions Γiρ coupled in Eq. (12),
not to the total number of different ρ-spin components of the
wave function, which is 8 in the case of Eq. (20).

Equation (20) should be used when both positive-energy
poles of the quark propagators contribute at a comparable
level to the k0 loop integration and the system is symmetric
under charge conjugation. The most important example of
this case is the pion. When the total bound state mass μ is
not small compared to the masses of its constituents, one
pole dominates (by convention the one of particle 1), and
leaving the second one out becomes a good approximation.
The 4CSE (12) reduces then to the two-channel covariant
spectator equation (2CSE)

Γ1þðpÞ ¼ −
1

2

�Z
k1

V1þ;1þðp; kÞΛ1ðk̂1ÞΓ1þðkÞS2ðk̂1 − PÞ þ
Z
k2

V1þ;2−ðp; kÞS1ð−k̂2 þ PÞΓ2−ðkÞΛ2ð−k̂2Þ
�

Γ2−ðpÞ ¼ −
1

2

�Z
k1

V2−;1þðp; kÞΛ1ðk̂1ÞΓ1þðkÞS2ðk̂1 − PÞ þ
Z
k2

V2−;2−ðp; kÞS1ð−k̂2 þ PÞΓ2−ðkÞΛ2ð−k̂2Þ
�
; ð22Þ

which couples Γ1þ with its charge-conjugation counterpart Γ2−. A graphical representation of this set of equations is
indicated by the dashed rectangle in Fig. 3.
The corresponding 2CSE for the CST wave function is

ðρ2E2p − E1p þ μÞΨþρ2
1;λ1λ2

ðpÞ ¼ −
1

2

X
Kλ0

1
λ0
2
ρ0
1
ρ0
2

Z
d3k
ð2πÞ3N12ðp; kÞ½VK

1þ;1þðp; kÞΘK;þþ
1;λ1λ01

ðp;kÞ

× Ψþρ0
2

1;λ0
1
λ0
2
ðkÞΘK;ρ0

2
ρ2

2;λ0
2
λ2
ðk;pÞ − VK

1þ;2−ðp; kÞΘ
K;þρ0

1

1;λ1λ01
ðp;−kÞΨρ0

1
−

2;λ0
1
λ0
2
ðkÞΘK;−ρ2

2;λ0
2
λ2
ð−k;pÞ�

ðρ1E1p þ E2p − μÞΨρ1−
2;λ1λ2

ðpÞ ¼ −
1

2

X
Kλ0

1
λ0
2
ρ0
1
ρ0
2

Z
d3k
ð2πÞ3N12ðp; kÞ½VK

2−;1þðp; kÞΘK;ρ1þ
1;λ1λ01

ð−p;kÞ

× Ψþρ0
2

1;λ0
1
λ0
2
ðkÞΘK;ρ0

2
−

2;λ0
2
λ2
ðk;−pÞ − VK

2−;2−ðp; kÞΘ
K;ρ1ρ01
1;λ1λ01

ð−p;−kÞΨρ0
1
−

2;λ0
1
λ0
2
ðkÞΘK;−−

2;λ0
2
λ2
ð−k;−pÞ�:

ð23Þ
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C. The one-channel CST equation

If the total bound-state mass is not small, and we are
dealing with a system of particles with unequal masses,
then keeping only the positive-energy pole of the heavier
particle is a very good approximation. There is no need for
a symmetrization as in the case of the 2CSE because charge
conjugation is not a symmetry of the system. We arrive at
the one-channel covariant spectator equation (1CSE) for
the vertex function,

Γ1þðpÞ ¼ −
Z
k1

V1þ;1þðp; kÞΛ1ðk̂1ÞΓ1þðkÞS2ðk̂1 − PÞ;

ð24Þ
and the corresponding 1CSE for the CST wave function

ðρ2E2p − E1p þ μÞΨþρ2
1;λ1λ2

ðpÞ

¼ −
X

Kλ0
1
λ0
2
ρ0
2

Z
d3k
ð2πÞ3 N12ðp; kÞ

× VK
1þ;1þðp;kÞΘK;þþ

1;λ1λ01
ðp;kÞΨþρ0

2

1;λ0
1
λ0
2
ðkÞΘK;ρ0

2
ρ2

2;λ0
2
λ2
ðk;pÞ:

ð25Þ
The 1CSE is shown graphically inside the solid rectangle in
Fig. 3. It is particularly well suited for heavy-light mesons,
i.e. quark-antiquark systems with one light and one bottom
or charm quark. It should also work well for heavy
quarkonia, except that no definite C-parity can be assigned
to the solutions because of the missing charge-conjugation
symmetry. As we will argue in more detail in Sec. III, in
heavy quarkonia this is actually only a minor problem. It
turns out that the singularity structure of the kernel matrix
element in Eq. (25) is so much simpler than the ones that
appear in the 2CSE (23), that we consider the loss of
charge-conjugation symmetry a small price to pay for the
great advantages it brings with respect to its practical
solution. Therefore, in this work we perform all calcula-
tions of heavy and heavy-light mesons with the 1CSE.
In the calculations of this paper, the functions

VK
1þ;1þðp;kÞ that describe the momentum dependence of

the various pieces of the kernel are

VLðp̂1 − P=2; k̂1 − P=2Þ

¼ −8σπ
��

1

ðp̂1 − k̂1Þ4
−

1

Λ4 þ ðp̂1 − k̂1Þ4
�

−
E1p

m1

ð2πÞ3δ3ðp − kÞ

×
Z
k0
1

�
1

ðp̂1 − k̂1
0Þ4 −

1

Λ4 þ ðp̂1 − k̂1
0Þ4

��
; ð26Þ

for the linear confining kernel, assumed equal for scalar
(K ¼ s), pseudoscalar (K ¼ p), and vector coupling
(K ¼ v),

VOGEðp̂1 − P=2; k̂1 − P=2Þ

¼ −4παs
�

1

ðp̂1 − k̂1Þ2
−

1

ðp̂1 − k̂1Þ2 − Λ2

�
; ð27Þ

for the one-gluon exchange (in Feynman gauge), and

VCðp̂1 − P=2; k̂1 − P=2Þ ¼ ð2πÞ3 E1k

m1

Cδ3ðp − kÞ; ð28Þ

for the covariant generalization of a constant kernel, the
latter two both in vector coupling (K ¼ v). The three
constants σ, αs, and C are the adjustable coupling strength
parameters of the interaction model. The confining and
OGE kernels in (26) and (27) are shown in Pauli-Villars
regularized form, which introduces the cutoff parameter Λ.
Without regularization, the loop integration in (25) would
not converge.
To solve Eq. (25) numerically, we represent the wave

functions in a basis of eigenfunctions of the total orbital
angular momentum L and total spin S of the quark-
antiquark system. Although neither L nor S are conserved
quantum numbers, this is useful when we want to compare
our results to nonrelativistic approaches which classify
their states in terms of L and S. It is also interesting to get a
measure of the importance of relativistic effects by quanti-
fying the extent to which partial waves of purely relativistic
origin mix with the ones present in nonrelativistic theories.
For this purpose, the wave functions (18) and kernel

matrix elements (19) in (20) are written as matrix elements
of the two-component helicity spinors χλ, using the spinor
representation defined in Eqs. (A5) and (A6). In the
remainder of this section p and k refer to the magnitudes
of the three-vectors p and k, and should not be mistaken as
four-vectors.
We write the kernel vertex matrix elements as

ΘK;ρρ0
i;λλ0 ðp;kÞ ¼ NipNikχ

†
λM

K;ρρ0
i ðp;kÞχλ0 ; ð29Þ

where Nip ¼
ffiffiffiffiffiffiffiffiffiffiffi
Eipþmi

2mi

q
, and the 2 × 2 matrices MK

i depend

on the Lorentz structure of the vertex specified by the
superscript K. All matrix elements needed for the Lorentz
structure of the kernel (13) are listed in Appendix B.
Similarly, the wave functions are written as

Ψþρ
1;λλ0 ðpÞ ¼

X
j

ψρ
jðpÞχ†λKρ

jðp̂Þχλ0 ; ð30Þ

where p̂ is a unit vector in the direction of p, and the index j
distinguishes linearly independent matrices Kρ

jðp̂Þ, which
we choose such that each term in the sum (30) corresponds
to a quark-antiquark eigenstate of L and S. The matrix
representation (30) is interpreted as describing quark 2
entering the vertex and quark 1 coming out of it, as shown
in Fig. 1, whereas eigenstates of L and S refer to linear
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combinations of direct product states describing a quark
and an antiquark both leaving the vertex. The latter involve
sums over Clebsch-Gordan coefficients and spherical
harmonics, which will then appear in the matrices Kρ

jðp̂Þ
when the direct product representation is transformed into
the matrix representation. An example of the relation
between the two representations can be found in Ref. [58].
Equation (30) represents therefore a partial wave decom-

position of the CST wave function, where ψρ
jðpÞ are radial

wave functions, and the spin and angular dependence is
contained in the matrices Kρ

jðp̂Þ. For JP ¼ 0− mesons,
there is only one independent matrix for each value of ρ,
namely an S-wave for ρ ¼ −, and a P-wave for ρ ¼ þ. The
1− mesons have two different matrices Kρ

j for each value of
ρ, namely an S and a D wave for ρ ¼ −, and spin singlet
and triplet P waves for ρ ¼ þ. For 0þ and 1þ mesons, the
respective partial waves in ρ ¼ þ and ρ ¼ − are inter-
changed. The explicit expressions of Kρ

jðp̂Þ are given in
Appendix A.
After inserting the expansion (30) into Eq. (25), and

using the completeness of the χλ-spinors, the bound state
equation takes on the form

ðρE2p −E1p þ μÞ
X
j

ψρ
jðpÞKρ

jðp̂Þ

¼ −
Z

d3k
ð2πÞ3Nðp;kÞ

×
X
Kρ0j0

VKðp;kÞMK;þþ
1 ðp;kÞψρ0

j0 ðkÞKρ0
j0 ðk̂ÞMK;ρ0ρ

2 ðk;pÞ;

ð31Þ

with Nðp; kÞ≡ N1pN1kN2kN2pN12ðp; kÞ.
We can simplify Eq. (31) by using the fact that the kernel

VK depends only on the magnitudes of the three-vectors p
and k and on the angle between them, i.e.,

VKðp;kÞ ¼ VKðp; k; zÞ; ð32Þ

where p ¼ jpj, k ¼ jkj, and z ¼ p̂ · k̂. In general, if
fðp; k; zÞ is a function of this kind, one can determine

new functions AK;ρρ0
jj0 ðp; k; zÞ such that

Z
d3k
ð2πÞ3 fðp; k; zÞM

K;þþ
1 ðp;kÞKρ0

j0 ðk̂ÞMK;ρ0ρ
2 ðk;pÞ

¼
Z

d3k
ð2πÞ3 fðp; k; zÞ

X
j

Kρ
jðp̂ÞAK;ρρ0

jj0 ðp; k; zÞ: ð33Þ

Using this relation in (31), we obtain

ðρE2p − E1p þ μÞ
X
j

ψρ
jðpÞKρ

jðp̂Þ

¼ −
X
Kjρ0j0

Z
d3k
ð2πÞ3Nðp; kÞ

× VKðp; k; zÞKρ
jðp̂ÞAK;ρρ0

jj0 ðp; k; zÞψρ0
j0 ðkÞ: ð34Þ

Matrices Kρ0
j0 ðp̂Þ belonging to different orbital angular

momenta are orthogonal with respect to integration over
p̂, whereas spin singlet and triplet matrices are orthogonal
with respect to taking the trace of their product. One can
therefore extract an equation for the coefficients of these
matrices in (34), which can be written

ðE1p − ρE2pÞψρ
jðpÞ −

X
Kρ0j0

Z
d3k
ð2πÞ3Nðp; kÞVKðp; k; zÞ

× AK;ρρ0
jj0 ðp; k; zÞψρ0

j0 ðkÞ ¼ μψρ
jðpÞ: ð35Þ

This is a linear eigenvalue equation whose eigenvalues μ
are the bound state masses, and the corresponding eigen-
vectors are the radial partial wave functions ψρ

jðpÞ.
It is one of the great advantages of the 1CSE that the

integrand in (35) itself does not depend explicitly on μ.
Solving this equation yields the ground state and a tower of
excited states at once. A dependence of the integrand on μ
usually turns the equation into a nonlinear problem, where
one has to search for a self-consistent solution for each
eigenvalue separately. In the 1CSE this is the case, for
instance, when the fixed constituent quark mass of the off
shell quark is replaced by a dynamical mass function, and it
is unavoidable in the 2CSE and 4CSE even for fixed quark
masses.
We have solved Eq. (35) by expanding the wave

functions ψρ
jðpÞ in a basis of B-splines. The numerical

methods, and in particular the way how a linear confining
interaction and its covariant generalization can be treated in
momentum space, have been described in some detail in
Refs. [42,59,60].
Once the partial wave functions ψρ

jðpÞ have been
calculated, we can also construct the vertex functions
Γðp1; p2Þ. If Γðp1; p2Þ is written in terms of covariant
Lorentz tensors multiplied by functions of invariants
Glðp2

1; p
2
2Þ as in Appendix A 1, Eqs. (30) and (18) relate

the ψ’s with the G’s. In many applications, the vertex
function in this manifestly covariant form is more useful.

III. NUMERICAL RESULTS

In a recent Letter [57] we presented first results of our
calculations of the masses of heavy and heavy-light mesons
with J ¼ 0 and 1, based on the 1CSE (35). We performed
least square fits of the three kernel parameters σ, αs, and C,
while choosing fixed values for the constituent quark
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masses and an equal-weight scalar and pseudoscalar
coupling for the confining interaction (i.e., with y ¼ 0).
The Pauli-Villars cutoff parameter was fixed at Λ ¼ 2m1

(we also used this choice in the new results presented
below). We found that the obtained models describe the
experimental masses very well, with an rms difference
between calculations and data of the order of 30 MeV.
In this work we extend our previous study in several

aspects:
(i) The parameter y describing the mixing of scalar/

pseudoscalar and vector confining interaction is
promoted to an adjustable parameter. One of the
most interesting questions we want to investigate is
of course whether the meson mass spectrum can
determine y or at least yield useful constraints.

(ii) We also treat now the constituent quark masses as
adjustable parameters. This may seem a rather
straightforward way to improve the fits of [57].
However, it represents a serious complication in
the required numerical calculations: the interaction
kernel depends linearly on the constants σ, αs, C,
and y, and the most time-consuming part of the
calculation, namely the loop-momentum integration
in (35) needs to be carried out only once. On the
other hand, the kernel’s dependence on the quark
masses is much more complicated. When the quark
masses are allowed to vary, this numerical integra-
tion over the kernel has to be recalculated every time
the combination of masses is changed during the fits.

(iii) In [57] we found that a fit of the coupling constants
exclusively to pseudoscalar meson masses gives
overall results that are almost as good as when
additionally vector and scalar states are also used in
the fit. Here we explore how much our results
depend on the selection of the fitted data set in
the new, more general fits.

(iv) Although they are not observables, it is useful to
have a closer look at the relativistic “wave func-
tions”. They provide a means to identify the quan-
tum numbers of the corresponding bound states. In
the case of heavy mesons, we expect the dominant
component to closely resemble a corresponding
nonrelativistic wave function. The weight of the
wave function components of relativistic origin
should increase with decreasing quark mass. Their
sensitivity to changes in the model parameters will
be explored as well.

A. Interaction models and mass spectra

We calculated the pseudoscalar, scalar, vector, and
axialvector meson states that contain at least one heavy
(bottom or charm) quark, and whose mass falls below the
corresponding open-flavor threshold. As exceptions, a few
states located slightly above threshold but with very small
widths are considered as well. We restrict our analysis to

mesons with JP ¼ 0�; 1�, representing already the vast
majority of the experimental states.
There are two different ways how we quantify the

relation between the masses μiðfαkðMÞgÞ, calculated from
a theoretical modelM specified through a set of parameters
fαkðMÞg, and a certain set S of experimental masses
μexpi ðSÞ with NS elements. When S is the set of data used
in the least square fit of the model parameters, then the rms
difference

δrmsðSÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NS

X
i∈S

½μiðfαkðMÞgÞ − μexpi ðSÞ�2
s

ð36Þ

is the quantity that is being minimized, and its value is
therefore a measure of the quality of the fit.
On the other hand, we also want to be able to evaluate the

ability of a given model to predict states it was not fitted to.
For this purpose we also calculate rms differences with
respect to data sets S0 that are different from the set S a
model was fitted to. To distinguish these differences more
clearly from the minimized values we use the notation
ΔrmsðS0Þwhenever S0 ≠ S. Note that it is quite possible that,
for particular choices of S and S0, one model has a higher
δrms but a smaller Δrms than another.
We chose three different sets of data to fit our model

parameters to: the set called S1 consists of pseudoscalar
meson states only (it is identical to the one used in [57] to fit
the model named P1), the set S2 includes pseudoscalar,
scalar, and vector states, and the largest set, S3, adds a
number of axial vector states to the states contained in S2.
A list of these states and their masses is given in Table I.
We constructed several interaction models by fitting to

these three data sets while, in some cases, placing con-
straints on certain parameters. The results of our fits are
summarized in Table II. In all cases, the rms differenceΔrms
is given with respect to the data set S3, containing a total
of 39 states.
Models M0S1 and M0S2, previously denoted in Ref. [57]

by P1 and PSV1 respectively, were fitted with fixed values
for the constituent quark masses and mixing parameter
y ¼ 0 [57]. They should be compared to the new models
M1S1 and M1S2, in which the quark masses and y were
allowed to vary freely. We see that the addition of 5 free
parameters leads to a lower minimum in δrms, but the
overall rms difference Δrms changes by very little (it even
increases fromM0S1 to M1S1). Based on the data set S1, the
fit finds no improvement in varying y, such that the new
minimum is located again at y ¼ 0. This is not the case for
data set S2, which prefers a finite value of y of approx-
imately 0.25. At the same time, the quark masses change
quite considerably, decreasing by around 200 MeV (more
moderately for mb), which is in part compensated by a
similarly smaller constant C. To see that this compensating
effect makes sense, remember that qq̄ spinor matrix
elements of γμ1 ⊗ γμ2 are negative in the dominant channel
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with ρ0 ¼ −. Because of the overall minus sign in the
definition of VCðp; kÞ, lowering C makes the kernel on the
rhs of Eq. (34) smaller, and lowering the quark masses
reduces its lhs. The masses of the light quarks tend to go as
low as possible in these fits. The final value of 100 MeV is
actually the lower limit of the range in which they were
allowed to vary.
The bottomonium system is very rich in measured

excited states. This poses a bit of a challenge for our
calculations, because describing higher excited states
accurately requires a larger number of spline functions.
In particular, the Υð4SÞ appears in our calculations as the
fifth excited state in the vector bb̄ system, but increasing
the number of basis spline functions accordingly would be
too time-consuming to perform our 8-parameter fits. To test
whether the M1S2 fit might have been distorted by trying to
reproduce the Υð4SÞ mass with insufficient numerical
accuracy, we performed another fit where this state was
omitted from the fitted data set. To distinguish from the
previous one we denote it by S20. However, the resulting
model, M1S20 , turned out very similar to M1S2, and
produces the same value of Δrms.
Finally, we fitted two more models to our largest data set,

S3, which adds axial vector mesons to the set S2. The
parameters σ and αs of M1S3 are quite similar to those of
M1S2, but the quark masses are all higher, which is again
accompanied by an increase of the constant C. The mixing
parameter turns out a bit smaller, at y ¼ 0.20. To see how
sensitive the fit is to the precise value of y, we repeat the
calculation with the same data set, but with the restriction
y ¼ 0. The coupling strength parameters of this model,
M0S3, are almost unchanged compared to M1S3, only the
quark masses (and C) increase. It is reassuring that, in both
cases, the light quark masses have moved back into a more
realistic region, around 300 MeV.
The overall quality of these fits is slightly better than

the one of all previous models. We consider M1S3, with
Δrms ¼ 0.030 GeV, our best model. But the fact that for
M0S3 the rms differenceΔrms ¼ 0.031 GeV is only margin-
ally larger is a strong indication that the parameter y is not
significantly constrained by the heavy and heavy-light
meson spectrum, at least not by the states in the data sets
we used. We will study this point in more detail in the next
section.
Figure 4 compares the meson masses calculated with

models M1S1, M1S20 , M1S3, and M0S3, with the exper-
imental data [64]. The overall agreement is very good in all
cases. It is remarkable that model M1S1, whose parameters
were determined by fits to pseudoscalar states only, yields
results of almost the same quality as the other models. As
we discussed in [57], this implies that requiring the kernel
to be of covariant form correctly determines the spin-
dependent interactions, which are responsible for the
splitting between the different JPðCÞ channels. It is worth
emphasizing that ours are global fits, where the same

TABLE I. List of the mesonic states and experimental measured
masses used throughout this work. A bullet point in one of the
columns labeled S1, S2, and S3 indicates that the meson state is
included in the respective data set used in various fits. The masses
of B�;0, D�;0, B1ð5721Þþ;0, and D1ð2420Þ�;0 are averages of the
charged and uncharged states. The masses of Υð1DÞ and ηbð3SÞ
are estimates taken from Ref. [61]. There is weak evidence (at
1.8σ) that Υð1DÞ has been seen [62,63].

Data set

State JPðCÞ Mass (MeV) S1 S2 S3

Υð4SÞ 1−− 10579.4� 1.2 • •
χb1ð3PÞ 1þþ 10512.1� 2.3 •
Υð3SÞ 1−− 10355.2� 0.5 • •
ηbð3SÞ 0−þ 10337
hbð2PÞ 1þ− 10259.8� 1.2 •
χb1ð2PÞ 1þþ 10255.46� 0.22� 0.50 •
χb0ð2PÞ 0þþ 10232.5� 0.4� 0.5 • •
Υð1DÞ 1−− 10155
Υð2SÞ 1−− 10023.26� 0.31 • •
ηbð2SÞ 0−þ 9999� 4 • • •
hbð1PÞ 1þ− 9899.3� 0.8 •
χb1ð1PÞ 1þþ 9892.78� 0.26� 0.31 •
χb0ð1PÞ 0þþ 9859.44� 0.42� 0.31 • •
Υð1SÞ 1−− 9460.30� 0.26 • •
ηbð1SÞ 0−þ 9399.0� 2.3 • • •

Bcð2SÞ� 0− 6842� 6 •
Bþ
c 0− 6275.1� 1.0 • • •

Bs1ð5830Þ 1þ 5828.63� 0.27 •
B1ð5721Þþ;0 1þ 5725.85� 1.3 •
B�
s 1− 5415.8� 1.5 • •

B0
s 0− 5366.82� 0.22 • • •

B� 1− 5324.65� 0.25 • •
B�;0 0− 5279.45 • • •

Xð3915Þ 0þþ 3918.4� 1.9 • •
ψð3770Þ 1−− 3773.13� 0.35 • •
ψð2SÞ 1−− 3686.097� 0.010 • •
ηcð2SÞ 0−þ 3639.2� 1.2 • • •
hcð1PÞ 1þ− 3525.38� 0.11 •
χc1ð1PÞ 1þþ 3510.66� 0.07 •
χc0ð1PÞ 0þþ 3414.75� 0.31 • •
J=Ψð1SÞ 1−− 3096.900� 0.006 • •
ηcð1SÞ 0−þ 2983.4� 0.5 • • •

Ds1ð2536Þ� 1þ 2535.10� 0.06 •

Ds1ð2460Þ� 1þ 2459.5� 0.6 •

D1ð2420Þ�;0 1þ 2421.4 •

D�
0ð2400Þ0 0þ 2318� 29 • •

D�
s0ð2317Þ� 0þ 2317.7� 0.6 • •

D��
s 1− 2112.1� 0.4 • •

D�ð2007Þ0 1− 2008.62 •

D�
s 0− 1968.27� 0.10 • • •

D�;0 0− 1867.23 • • •
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TABLE II. Summary table of the kernel parameters of the different fitting models considered in this work. N is the number of states in
the data set used in fitting the model. δrms indicates the minimized root mean square difference with respect to the data set used in the fit,
and Δrms is the root mean square difference with respect to data set S3, including both fitted and predicted states. The values in boldface
were held fixed.

Model σ (GeV2) αs C (GeV) y mb (GeV) mc (GeV) ms (GeV) mq (GeV) N δrms (GeV) Δrms (GeV)

M0S1 0.2493 0.3643 0.3491 0.0000 4.892 1.600 0.4478 0.3455 9 0.017 0.037
M1S1 0.2235 0.3941 0.0591 0.0000 4.768 1.398 0.2547 0.1230 9 0.006 0.041
M0S2 0.2247 0.3614 0.3377 0.0000 4.892 1.600 0.4478 0.3455 25 0.028 0.036
M1S2 0.1893 0.4126 0.1085 0.2537 4.825 1.470 0.2349 0.1000 25 0.022 0.033
M1S20 0.2017 0.4013 0.1311 0.2677 4.822 1.464 0.2365 0.1000 24 0.018 0.033
M1S3 0.2022 0.4129 0.2145 0.2002 4.875 1.553 0.3679 0.2493 39 0.030 0.030
M0S3 0.2058 0.4172 0.2821 0.0000 4.917 1.624 0.4616 0.3514 39 0.031 0.031

FIG. 4. Masses of heavy-light and heavy mesons with JP ¼ 0� and 1�. The symbols represent the 1CSE results calculated with the
models M1S1 (open blue circle), M1S20 (open red triangle), M1S3 (open green square), and M0S3 (filled green square) of Table II. Solid
horizontal lines are the measured meson masses [64]. The two dashed levels are estimates taken from Ref. [61]. There is weak evidence
(at 1.8σ) that the Υð1DÞ has been seen [62,63]. All models predict a so far unobserved Υð2DÞ between Υð3SÞ and Υð4SÞ. Dashed
horizontal lines across the figure indicate open flavor thresholds.
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parameters are used in all sectors of the shown spectrum.
This is in contrast to other models frequently found in the
literature that adjust their parameters sector by sector in
order to achieve a better fit.
As already discussed, the 1CSE is ideally suited for the

description of heavy and heavy-light mesons, i.e. when at
least one constituent is a charm or bottom quark. However,
one drawback of the 1CSE is that it is not symmetric under
charge conjugation. Consequently we cannot assign a
definite C-parity to our solutions for heavy quarkonia.
This issue becomes relevant only in the case of axial

vector mesons, which come in both C-parities. The observed
splitting between these C-parity pairs is very small, about
5MeV in bottomonium and 14MeV in charmonium, and the
C ¼ þ state is always the one lower in mass. Our solutions
of the 1CSE yield also closely spaced pairs in the JP ¼ 1þ
channel. The problem is that, when performing a fit, we need
to know which calculated state should be compared to which
experimental one. It is quite possible that, when regions in
the parameter space far from the final minimum are probed,
the ordering of states in the calculated spectrum is not equal
to the experimental one, which could lead to incorrect
identifications and potentially drag the fit away from the
true minimum.
In practice there are mitigating circumstances that

essentially eliminate this problem. The first is that heavy
quarkonia are close to the nonrelativistic limit, especially

bottomonium. Relativistically, both spin singlet (S ¼ 0)
and spin triplet (S ¼ 1) configurations may contribute to a
state of definite C parity and orbital angular momentum L.
This is different from the nonrelativistic limit, where the
relation C ¼ ð−ÞLþS holds, implying that either one or
the other of the two spin states goes to zero for a given C
parity. For instance, if L ¼ 1, S ¼ 0 does not contribute
to the C ¼ þ state, and S ¼ 1 does not contribute to the
C ¼ − state in the nonrelativistic limit.
The CST equations have a smooth nonrelativistic limit;

therefore the axialvector quarkonium wave functions should
be dominated by P-wave components with either S ¼ 1 or
S ¼ 0, while S and D waves should be very small. This is
indeedwhat we find, such that by determiningwhether a state
has a dominant spin triplet or singlet wave function we can
decide which experimental state it should be compared to.
The second aspect is that the mass splitting between

the C ¼ þ and C ¼ − pairs is very small indeed, actually
even smaller than the numerical accuracy we estimate our
numerical solutions to have. This means that even if
calculated and experimental states were occasionally paired
incorrectly, it would hardly have a significant influence on
the fits.

B. CST wave functions

In this section we present the CST wave functions for a
selection of mesons. They will be used in the future to

FIG. 5. Wave function components calculated with the parameters of model M1S3 for the bb̄ ground states. The corresponding
meson names and quantum numbers JP are (a) ηbð1SÞ with JP ¼ 0−, (b) χb0ð1PÞ with JP ¼ 0þ, (c) Υð1SÞ with JP ¼ 1−, and
(d) χb1ð1PÞ with JP ¼ 1þ. Solid lines represent S-waves, dashed lines triplet P-waves, dashed-dotted lines singlet P-waves, and
dotted lines are D-waves.
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calculate electroweak form factors and decay rates, as well
as hadronic decay properties. They are also fundamental
ingredients in calculations of many other hadronic reactions
that involve the formation of these mesons. It is therefore
of great importance to understand their structure in detail.
All wave functions displayed here were calculated with
model M1S3 and are normalized according to (A18), (A23),
(A28), and (A33).
Figure 5 shows the ground-state wave functions of

bottomonium in the four channels JP ¼ 0�, 1�. The
pseudoscalar and vector mesons are almost pure S waves,
and the scalar and axial vector mesons are almost pure P
waves. The weight of the components of relativistic origin
is so small that their wave functions are difficult to
distinguish from zero in the plots. Because of the large
mass of the b quark the bottomonium behaves essentially
nonrelativistically.
One can then expect that the relativistic components are

more pronounced in systems with lighter quarks. Figure 6
shows the wave functions analogous to the ones in Fig. 5
for the lightest cq̄ mesons (q stands collectively for a light
u or d quark, with mu ¼ md ¼ mq). As expected, the
relativistic components are already quite significant, and a
nonrelativistic description is no longer adequate.
Comparing Figs. 5 and 6 one can also see that the

momentum-spacewave functions of bottomonium aremuch
more spread out, which means that in configuration space
they are more compact than the heavy-light cq̄ mesons.

Figure 5(d) contains another interesting detail: the 1þ
ground state is dominated not by one, but by a mixture of
two P waves, a spin triplet and a spin singlet. The role of
these two P waves is interchanged in the first excited state
(not shown in the figure). As already discussed in the
previous section, in a relativistic description both spin
triplets and singlets can contribute to either C-parity eigen-
state. However, the plot in Fig. 5(d)may give an exaggerated
impression of the weight of the singlet P-wave: its con-
tribution to the total norm is actually only about 7%.
Nevertheless, the fact that in the almost nonrelativistic
χb1ð1PÞ the singlet component is not smaller is probably
in part due to the lack of charge conjugation symmetry of
the 1CSE. We can speculate that this singlet wave function
will be more suppressed when a charge-conjugation sym-
metric two- or four-channel CST equation is solved. In
addition, the presence of a pseudoscalar confining kernel
also enhances its weight. When it is turned off, the norm
integral of the singletP-wave is reduced by roughly one half.
The vector meson spectrum of bottomonium is par-

ticularly interesting because of the large number of
excited states below or slightly above threshold that have
been measured. In Fig. 7 we show the wave functions of
the first six vector states of bottomonium. According to
the figure, the first two states are mostly S waves,
followed by alternating D and S states. The Υð1DÞ is
listed in [64] as a 2þþ state, but there is some evidence
that 1−− was also possibly seen. There is, however, no

FIG. 6. Wave function components calculated with the parameters of model M1S3 for the cq̄ ground states. The corresponding meson
names, where available, and quantum numbers JP are (a)Dwith 0−, (b) 0þ, (c)D� with 1−, and (d) 1þ. The cq̄ states (b) and (d) have not
yet been observed experimentally, but are predicted by our model M1S3 at 2.293 GeV (0þ) and 2.367 GeV (1þ). The lines have the same
meaning as in Fig. 5.
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experimental evidence yet for the predicted Υð2DÞ. The
figure shows that there is a small mixture of 2S in our
Υð1DÞ, and a small 3S component is present in the
Υð2DÞ. Apart from the increasing number of nodes, one
can also clearly see that the wave functions are the more
concentrated at lower momenta the higher excited a state
is, which means that they are increasingly spread out in
configuration space.
Whereas the structure of the ground state is determined

mostly by the OGE interaction, the higher excited states
should bemore sensitive to the confining interaction.Wehave
already seen in the previous section that the masses of these
states can be well described by our models. To test the
importance of the confining interaction for the description of
the bottomonium excitation spectrum, we performed fits
using the OGE and constant kernels only. The quality of
these fits turned out significantly worse, with rms differences
above 100 MeV, compared to about 30 MeV when the

complete kernel is used. Moreover, the sequence of S- and
D-wave dominated states is altered in the bottomonium
vector meson spectrum: the Υð2DÞ and Υð4SÞ swap places.
This finding suggests that, once the Υð2DÞ is observed,
finding its mass below or above the mass ofΥð4SÞ can tell us
whether a linear confining interaction is indeed needed or not.

C. Constraints on fit parameters

Our model fits of Table II show some variation in the
values of the best-fit parameters, depending on which data
set the model is fitted to. In this section we want to
investigate this sensitivity in more detail and determine
how well some of the parameters are actually constrained.
We begin with the parameter y that determines the

mixing between the scalar þ pseudoscalar and vector
confining interaction. We perform a series of fits, where
in each case y is held fixed at a different value while all
other parameters are allowed to vary. We restrict y to lie in

FIG. 7. Wave function components for the six lowest-mass states of bb̄ with JP ¼ 1−, calculated with the parameters of model M1S3.
The order of the panels from (a) to (f) corresponds to increasing mass of the state. The lines have the same meaning as in Fig. 5.
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the interval between 0 and 0.45. For higher values, the
equation becomes unstable and no physical solutions can
be found—a well-known phenomenon that was observed
with many different relativistic equations [59,65].
Figure 8 shows the obtained minima of δrms as a function

of y, using three different data sets. As already discussed
in Sec. III A, the data set with exclusively pseudoscalar
mesons prefers y ¼ 0, whereas optimum values of y
between 0.20 and 0.27 are obtained when more data are
included. However, Fig. 8 also shows that, except for the
smallest data set, the minima are very shallow. In fact, when
using data set S3, no particular value of y seems to be
clearly favored over any other. Instead of accepting the
value y ¼ 0.20 of the fit M1S3, we could choose arbitrarily
another value without deteriorating the fit significantly.
Figure 9 shows how the constituent quark masses adjust

when y is changed, and Fig. 10 displays the corresponding
variations of the couplings strengths parameters σ, αs,

FIG. 8. Variation of δrms in a series of fits where the parameter y
has been held fixed while all other parameters were fitted. The
solid line shows the result of fits to data set S1 of Table I, the
dashed and dotted lines refer to data sets S2 and S3, respectively.
The symbols represent the 1CSE results calculated with the
models M1S1 (open blue circle), M1S20 (open red triangle), M1S3
(open green square), and M0S3 (filled green square) of Table II.

FIG. 10. Variation of the fitted interaction strength parameters in a series of fits where the parameter y has been held fixed while all
other parameters were fitted. The panels show (a) the strength of the linear confining interaction σ, (b) the OGE coupling strength αs, and
(c) the constant C. The meaning of the lines and symbols is the same as in Fig. 8.

FIG. 9. Variation of the fitted constituent quark masses in a series of fits where the parameter y has been held fixed while all other
parameters were fitted. The panels show the masses of (a) the bottom, (b) the charm, (c) the strange, and (d) the light (up and down)
quarks, respectively. The meaning of the lines and symbols is the same as in Fig. 8.
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and C. For the larger data sets, a trend is visible that
connects smaller y with somewhat higher masses, whereas
the variations in the coupling strength parameters are rather
mild. Overall, the heavy quark masses stay within a range
of the size of about 50 MeV, while the lighter quark masses
vary by around 100 MeV. But the midpoint of that range
depends also on the data set of the model fit.
We can summarize that the fits to the heavy and heavy-

light mass spectra alone do not lead to a clear conclusion
whether the confining interaction is of pure Lorentz
scalar þ pseudoscalar nature or if it includes a Lorentz
vector component as well.

IV. SUMMARY AND CONCLUSIONS

In thiswork,we apply the covariant spectator theory (CST)
to describe mesons as relativistic quark-antiquark bound
states. We briefly review how the most general CST equa-
tions, the four-channel spectator equation (4CSE) can be
derived from the Bethe-Salpeter equation, and how the two-
and one-channel approximations (2CSE and 1CSE) are
obtained andmotivated. These are momentum-space integral
equations, formulated in Minkowski space, that can be cast
into the form of eigenvalue problems where the eigenvalues
yield the bound-state mass spectrum and the eigenvectors are
the corresponding relativistic wave functions. Our numerical
method to solve these equations uses a partial-wave expan-
sion. We provide explicit expressions that relate our partial
wave solutions to a manifestly covariant representation of
the corresponding meson vertex functions. This is very
practical when the vertex functions are used in the calculation
of elastic or transition meson form factors, decay properties,
or other reactions involving mesons.
Heavy and heavy-light mesons are bound states in which

one constituent is either a charm or bottom quark, whereas
the second can be either light or heavy. The 1CSE is ideally
suited to describe these systems, and it is also simple
enough to let us use least-square fits to determine the
optimal parameters of our models.
We have applied the 1CSE to construct models of the

quark-antiquark interaction with a kernel containing a
covariant generalization of a linear confining potential, a
one-gluon exchange (OGE) and a “covariantized” constant
interaction. The confining kernel has a mixed Lorentz
structure, namely an equal-weight scalar and pseudoscalar
part on one hand, and a vector part on the other. The
particular combination of scalar and pseudoscalar inter-
actions satisfies the requirements of chiral symmetry [43].
Its weight relative to the Lorentz vector interaction is
controlled by an adjustable mixing parameter, y. The OGE
and constant kernels are pure vector interactions.
In previous work [57], we have fitted only the three

coupling strength parameters to the spectrum of heavy and
heavy-light mesons with JP ¼ 0� and 1�, while the
constituent quark masses were held fixed and the mixing
parameter was set to y ¼ 0, corresponding to a scalar þ

pseudoscalar Lorentz structure without vector contribution.
Here we extend this work by letting y and all quark masses
be determined by the fit, the latter representing a significant
complication of the numerical calculations.
We find several models that reproduce the mass spectrum

of heavy and heavy-light mesons with very good accuracy,
as measured by the rms difference between calculated and
experimental masses. It is important to emphasize that we
perform global fits, i.e., our model parameters are the same
for all mesons, not varied sector by sector.
When we fit to pseudoscalar states only, y ¼ 0 is

obtained as the best value, and all other meson masses
are remarkably well predicted. But when the fit is based on
a more extended data set that includes pseudoscalar, scalar,
and vector mesons (and axial vector mesons in the most
complete cases), a 20%–25% contribution of vector cou-
pling is preferred. However, we found that the minima of
the corresponding rms differences as functions of y are very
shallow, such that a model with y ¼ 0 is not significantly
worse than one with the best fit value. The same can be said
about the dependence of the models on the quark masses.
When the light quark masses (mu ¼ md and ms) are varied
within an interval of about 100 MeV, and the heavy quark
masses (mc andmb) within an interval of about 50 MeV, no
particular values yield clearly better fits than others.
Our main conclusion from these calculations is that the

Lorentz structure of the confining interaction cannot be
determined very well through the heavy and heavy-light
meson mass spectrum alone, because the mixing parameter
y is not sufficiently constrained by these data. Nevertheless,
other physical observables of these mesons are likely to be
more sensitive to y, for instance the decay constants, which
probe details of their wave functions [66]. Similar consid-
erations apply to the constituent quark masses, where we
find that relatively large variations are compatible with the
experimental spectrum.
We also show radial wave functions for a selection of

meson states. Examiningwave functions is useful to identify
the quantum numbers of calculated states. Relativistic wave
functions contain also partial wave components which are
forbidden in a nonrelativistic framework. The norm integral
of these components of purely relativistic origin can be
interpreted as ameasure of the importance of relativity in the
description of a quark-antiquark system. As expected, we
find that the weight of these partial waves is very small in
heavy quarkonia, and increases when quark masses become
smaller, reaching about 9% in the case of the cq̄ system.
For higher excited states the momentum-space wave

functions concentrate at smaller momenta, which reflects
spatially more extended systems. The accurate description
of highly excited states requires considerable care with
the applied numerical methods. The fact that not only the
meson mass spectrum is well reproduced, but also the
shapes of our wave functions for the excited states look
reasonable and change as one would expect, is a good
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indication that our numerical methods to solve the 1CSE
are working reliably.
The work reported in this paper completes successfully

the first stage of our larger project of constructing a
self-consistent unifying framework for all mesons with a
quark-antiquark structure. Already at this stage, using the
one-channel CST equation, we obtain a remarkably good
description of both heavy and heavy-light sectors simulta-
neously. The obtained wave functions can now be used
as ingredients in the calculation of a wide variety of
hadronic processes and experimentally observable quan-
tities, for instance bottomonium, charmonium, and heavy-
light meson decay constants, charmonium electroweak
elastic and transition form factors, such as J=ψ → ηcγ

�,
J=ψ → χc0γ, χc1 → J=ψγ and hc → ηcγ.
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APPENDIX A: COVARIANT AND
PARTIAL-WAVE TENSOR BASES

In this Appendix, we present, for each type of meson
M ¼ p (pseudoscalar), s (scalar), v (vector), and a (axial-
vector), the relations between the Lorentz-invariant func-
tions GM

n ðp2
1; p

2
2Þ in the covariant expansion of the meson

vertex function and the radial wave functions ψρ
jðpÞ of the

partial-wave components.

1. Covariant basis

a. Spin-0 mesons

The invariant vertex function ΓMðp1; p2Þ connecting two
off shell quarks with momenta p1 and p2 can be written for
pseudoscalar and scalar mesons as

Γpðp1; p2Þ ¼ Gp
1 γ

5 þGp
2 γ

5Λ2 þ Λ1G
p
3 γ

5 þ Λ1G
p
4 γ

5Λ2

ðA1Þ

and

Γsðp1; p2Þ ¼ Gs
1 þGs

2Λ2 þ Λ1Gs
3 þ Λ1Gs

4Λ2; ðA2Þ

respectively. Here we have introduced the shorthand
(for the Lorentz-invariant functions) Λi ≡ Λið−piÞ ¼
ðmi − =piÞ=2mi and GM

n ≡GM
n ðp2

1; p
2
2Þ.

b. Spin-1 mesons

For vector and axialvector mesons, the covariant vertex
functions ~ΓMμðp1; p2Þ can be written in the general form

~Γvμðp1; p2Þ ¼ Gv
1γ

μ þGv
5p

μ þGv
9P

μ

þ ðGv
2γ

μ þ Gv
6p

μ þGv
10P

μÞΛ2

þ Λ1ðGv
3γ

μ þGv
7p

μ þ Gv
11P

μÞ
þ Λ1ðGv

4γ
μ þGv

8p
μ þ Gv

12P
μÞΛ2 ðA3Þ

and

~Γaμðp1; p2Þ ¼ Ga
1γ

μγ5 þ Ga
5p

μγ5 þGa
9P

μγ5

þ ðGa
2γ

μγ5 þ Ga
6p

μγ5 þ Ga
10P

μγ5ÞΛ2

þ Λ1ðGa
3γ

μγ5 þGa
7p

μγ5 þGa
11P

μγ5Þ
þ Λ1ðGa

4γ
μγ5 þGa

8p
μγ5 þGa

12P
μγ5ÞΛ2;

ðA4Þ
respectively. Massive spin-1 particles are transverse, satisfy-
ing Pμξμðλ; PÞ ¼ 0, where ξμ ≡ ξμðλ; PÞ are the spin-1
polarization four-vectors with λ ¼ 0;�1. Contracting
~Γvμðp1; p2Þ and ~Γaμðp1; p2Þ with ξμ removes the longi-
tudinal components proportional to Pμ, defining the (trans-
verse) invariant vertex functionsΓvðp1; p2Þ≡ ξμ ~Γvμðp1; p2Þ
and Γaðp1; p2Þ≡ ξμ ~Γaμðp1; p2Þ for vector and axialvector
mesons, respectively.

2. CST wave functions and the partial-wave
tensor basis

We use the standard representation for the Dirac matrices
and four-spinors uρi (in the convention of Bjorken-Drell)
given by

uþi ðp; λÞ≡ uiðp; λÞ ¼ Nip

� 1
σ·p

Eipþmi

�
⊗ χλ; ðA5Þ

u−i ðp; λÞ≡ við−p; λÞ ¼ Nip

�− σ·p
Eipþmi

1

�
⊗ χλ; ðA6Þ

where i ¼ 1 or 2 denotes the outgoing or incoming
quark, respectively, χλ are the two-component spinors,

and Nip ¼
ffiffiffiffiffiffiffiffiffiffiffi
Eipþmi

2mi

q
.

For the CST vertex functions, we introduce the short-
hand

GMρ1
n;1 ≡GM

n ðm2
1; ðρ1p̂1 − PÞ2Þ; ðA7Þ

GMρ2
n;2 ≡GM

n ððρ2p̂2 þ PÞ2; m2
2Þ; ðA8Þ

where quark 1 or quark 2 is on mass shell, respectively,
with positive (ρi ¼ þ) or negative (ρi ¼ −) energy.
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Inserting the expansions (A1)–(A4) for each type of meson into Eq. (18) gives the results listed in the sections below. In
the calculation of the corresponding spinor matrix elements of the vertex functions, we use the relations

ūρ11 ðρ2p; λ1Þ½m1 − ðρ2=̂p2 þ γ0μÞ� ¼ ūρ11 ðρ2p; λ1Þγ0ð−μþ ρ1E1p − ρ2E2pÞ;
½m2 − ðρ1=̂p1 − γ0μÞ�uρ22 ðρ1p; λ2Þ ¼ ðμ − ρ1E1p þ ρ2E2pÞγ0uρ22 ðρ1p; λ2Þ; ðA9Þ

which follow directly from the Dirac equations for ūρ11 ðρ2p; λ1Þ and uρ22 ðρ1p; λ2Þ.
In the following sections we present, for each meson, the expressions for the 4CSE wave functions in the partial-wave

tensor basis. We always work in the meson rest frame where P ¼ ðμ; 0Þ.

a. Pseudoscalar mesons

For the extraction of the P and S wave components from the CST wave function for a pseudoscalar meson we have to
distinguish between the two cases where the ρ-spins of the incoming and outgoing quarks are the same (ρ1 ¼ ρ2) or the
opposite (ρ1 ¼ −ρ2). Furthermore, we have to distinguish whether quark 1 or quark 2 is on mass shell. For ρ1 ¼ ρ2,
and quark 1 on mass shell, we obtain for the spinor matrix elements of the vertex function, after a short calculation,
the expression

ūρ11 ðρ1p; λ1ÞΓp
1ρ1

ðpÞuρ12 ðρ1p; λ2Þ ¼ N1pN2p

�
ρ1G

pρ1
1;1 ½ ~p2 − ~p1� þGpρ1

2;1

ρ1ðE1p − E2pÞ − μ

2m2

½ ~p2 þ ~p1�
�
χ†1σ · p̂χ2; ðA10Þ

where we have introduced ~pi ¼ p=ðEip þmiÞ and the shorthand χi ≡ χλi . The analogous expression when quark 2 is on
mass shell reads

ūρ21 ðρ2p; λ1ÞΓp
2ρ2

ðpÞuρ22 ðρ2p; λ2Þ ¼ N1pN2p

�
ρ2G

pρ2
1;2 ½ ~p2 − ~p1� þGpρ2

3;2

ρ2ðE1p − E2pÞ − μ

2m1

½ ~p2 þ ~p1�
�
χ†1σ · p̂χ2: ðA11Þ

The CST wave functions, as defined in Eq. (18) and for quark 1 on shell then become

Ψpρ1ρ1
1;λ1λ2

ðpÞ ¼ −
1

2
N 12p

�
Gpρ1

1;1

E1p − E2p − ρ1μ
½ ~p2 − ~p1� þ

Gpρ1
2;1

2m2

½ ~p2 þ ~p1�
�
χ†1σ · p̂χ2 ¼ ψpρ1

P;1 ðpÞχ†1σ · p̂χ2; ðA12Þ

where N 12p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E1pþm1

p ffiffiffiffiffiffiffiffiffiffiffiffi
E2pþm2

pffiffiffiffiffiffiffiffiffiffiffi
E1pE2p

p . For quark 2 on shell the analogous expression reads

Ψpρ2ρ2
2;λ1λ2

ðpÞ ¼ 1

2
N 12p

�
Gpρ2

1;2

E1p − E2p − ρ2μ
½ ~p2 − ~p1� þ

Gpρ2
3;2

2m1

½ ~p2 þ ~p1�
�
χ†1σ · p̂χ2 ¼ ψpρ2

P;2 ðpÞχ†1σ · p̂χ2: ðA13Þ

From these expressions one can read off the P-waves ψpρi
P;i ðpÞ when quark i is on mass shell with positive (ρi ¼ þ) or

negative (ρi ¼ −) energy. For the case of the 1CSE we identify ψþ
1 ðpÞ≡ ψpþ

P;1ðpÞ and Kþ
1 ðp̂Þ≡ σ · p̂.

For ρ1 ¼ −ρ2, and quark 1 or quark 2 on shell we obtain the expressions

ūρ11 ðρ1p; λ1ÞΓp
1ρ1

ðpÞu−ρ12 ðρ1p; λ2Þ ¼ N1pN2p

�
ρ1G

pρ1
1;1 ½1þ ~p1 ~p2� −Gpρ1

2;1

−ρ1ðE1p þ E2pÞ þ μ

2m2

½1 − ~p1 ~p2�
�
χ†11χ2; ðA14Þ

ū−ρ21 ðρ2p; λ1ÞΓp
2ρ2

ðpÞuρ22 ðρ2p; λ2Þ ¼ N1pN2p

�
−ρ2G

pρ2
1;2 ½1þ ~p1 ~p2� þ Gpρ2

3;2

−ρ2ðE1p þ E2pÞ − μ

2m1

½1 − ~p1 ~p2�
�
χ†11χ2: ðA15Þ

The corresponding wave functions then read

Ψpρ1−ρ1
1;λ1λ2

ðpÞ ¼ −
1

2
N 12p

�
Gpρ1

1;1

E1p þ E2p − ρ1μ
½1þ ~p1 ~p2� þ

Gpρ1
2;1

2m2

½1 − ~p1 ~p2�
�
χ†11χ2 ¼ ψpρ1

S;1 ðpÞχ†11χ2; ðA16Þ

Ψp−ρ2ρ2
2;λ1λ2

ðpÞ ¼ 1

2
N 12p

�
Gpρ2

1;2

E1p þ E2p þ ρ2μ
½1þ ~p1 ~p2� þ

Gpρ2
3;2

2m1

½1 − ~p1 ~p2�
�
χ†11χ2 ¼ ψpρ2

S;2 ðpÞχ†11χ2; ðA17Þ

from which one can read off the S-waves ψpρi
S;i ðpÞ. For the case of the 1CSE we identify ψ−

1 ðpÞ≡ ψp−
S;1ðpÞ and K−

1 ðp̂Þ≡ 1.
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The 1CSE wave-function components are normalized asZ
∞

0

dpp2½ðψp−
S;1ðpÞÞ2 þ ðψpþ

P;1ðpÞÞ2� ¼ 1: ðA18Þ

b. Scalar mesons

The treatment of the scalar mesons is very similar to the previous one of pseudoscalar mesons. For ρ2 ¼ ρ1, and quark 1
or quark 2 on mass shell the CST wave functions read

Ψsρ1ρ1
1;λ1λ2

ðpÞ ¼ −
1

2
N 12p

�
Gsρ1

1;1

E1p − E2p − ρ1μ
½1 − ~p1 ~p2� −

Gsρ1
2;1

2m2

½1þ ~p1 ~p2�
�
χ†11χ2 ¼ ψ sρ1

S;1ðpÞχ†11χ2; ðA19Þ

Ψsρ2ρ2
2;λ1λ2

ðpÞ ¼ 1

2
N 12p

�
Gsρ2

1;2

E1p − E2p − ρ2μ
½1 − ~p1 ~p2� þ

Gsρ2
3;2

2m1

½1þ ~p1 ~p2�
�
χ†11χ2 ¼ ψ sρ2

S;2ðpÞχ†11χ2: ðA20Þ

For the 1CSE we identify ψþ
1 ðpÞ≡ ψ sþ

S;1ðpÞ and Kþ
1 ðp̂Þ≡ 1. For ρ1 ¼ −ρ2, and quark 1 or quark 2 on mass shell we have

Ψsρ1−ρ1
1;λ1λ2

ðpÞ ¼ 1

2
N 12p

�
Gsρ1

1;1

E1p þ E2p − ρ1μ
½ ~p2 þ ~p1� −

Gsρ1
2;1

2m2

½ ~p2 − ~p1�
�
χ†1σ · p̂χ2 ¼ ψ sρ1

P;1ðpÞχ†1σ · p̂χ2; ðA21Þ

Ψs−ρ2ρ2
2;λ1λ2

ðpÞ ¼ 1

2
N 12p

�
Gsρ2

1;2

E1p þ E2p þ ρ2μ
½ ~p2 þ ~p1� þ

Gsρ2
3;2

2m1

½ ~p2 − ~p1�
�
χ†1σ · p̂χ2 ¼ ψ sρ2

P;2ðpÞχ†1σ · p̂χ2: ðA22Þ

For the 1CSE we identify ψ−
1 ðpÞ≡ ψ s−

P;1ðpÞ and K−
1 ðp̂Þ≡ σ · p̂.

The 1CSE wave function components are normalized asZ
∞

0

dpp2½ðψ sþ
S;1ðpÞÞ2 þ ðψ s−

P;1ðpÞÞ2� ¼ 1: ðA23Þ

c. Vector mesons

For vector mesons, the S, Ps, Pt, andDwave components are extracted from the CSTwave function in a similar way as in
the previous spin-0 meson cases. For ρ1 ¼ ρ2, and quark 1 or quark 2 on mass shell the CST wave functions read

Ψvρ1ρ1
1;λ1λ2

ðpÞ ¼ −
1

2
N 12p

�
−
�
p

�
−
ð1þ ~p1 ~p2ÞGvρ1

6;1

2m2

þ ρ1ð1 − ~p1 ~p2ÞGvρ1
5;1

ρ1ðE1p − E2pÞ − μ

�

þ
�
−
ρ1ð ~p1 − ~p2ÞGvρ1

2;1

2m2

þ ð ~p1 þ ~p2ÞGvρ1
1;1

ρ1ðE1p − E2pÞ − μ

��
ξ · p̂χ†11χ2

þ
�
−
ρ1ð ~p1 þ ~p2ÞGvρ1

2;1

2m2

þ ð ~p1 − ~p2ÞGvρ1
1;1

ρ1ðE1p − E2pÞ − μ

�
χ†1ðσ · ξσ · p̂ − ξ · p̂Þχ2

�

¼
ffiffiffi
3

p
ψvρ1
Ps;1

ðpÞξ · p̂χ†11χ2 þ
ffiffiffi
3

2

r
ψvρ1
Pt;1

ðpÞχ†1ðσ · ξσ · p̂ − ξ · p̂Þχ2; ðA24Þ

Ψvρ2ρ2
2;λ1λ2

ðpÞ ¼ 1

2
N 12p

�
−
�
p

�ð1þ ~p1 ~p2ÞGvρ2
7;2

2m1

þ ρ2ð1 − ~p1 ~p2ÞGvρ2
5;2

ρ2ðE1p − E2pÞ − μ

�

þ
�
−
ρ2ð ~p1 − ~p2ÞGvρ2

3;2

2m1

þ ð ~p1 þ ~p2ÞGvρ2
1;2

ρ2ðE1p − E2pÞ − μ

��
ξ · p̂χ†11χ2

þ
�
−
ρ2ð ~p1 þ ~p2ÞGvρ2

3;2

2m1

þ ð ~p1 − ~p2ÞGvρ2
1;2

ρ2ðE1p − E2pÞ − μ

�
χ†1ðσ · ξσ · p̂ − ξ · p̂Þχ2

�

¼
ffiffiffi
3

p
ψvρ2
Ps;2

ðpÞξ · p̂χ†11χ2 þ
ffiffiffi
3

2

r
ψvρ2
Pt;2

ðpÞχ†1ðσ · ξσ · p̂ − ξ · p̂Þχ2: ðA25Þ

From these expressions we can read off the spin-singlet and spin-triplet P waves ψvρi
Ps;i

ðpÞ and ψvρi
Pt;i

ðpÞ, respectively. For the
1CSE case we identify ψþ

1 ðpÞ≡ ψvþ
Ps;1

ðpÞ, ψþ
2 ðpÞ≡ ψvþ

Pt;1
ðpÞ, Kþ

1 ðp̂Þ≡
ffiffiffi
3

p
ξ · p̂, and Kþ

2 ðp̂Þ≡
ffiffi
3
2

q
ðσ · ξσ · p̂ − ξ · p̂Þ.
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For ρ1 ¼ −ρ2 and quark 1 or quark 2 on mass shell the corresponding wave functions are given by

Ψvρ1−ρ1
1;λ1λ2

ðpÞ ¼ 1

2
N 12p

��
ρ1ð3 − ~p1 ~p2ÞGvρ1

2;1

6m2

−
ð3þ ~p1 ~p2ÞGvρ1

1;1

−3ρ1ðE1p þ E2pÞ þ 3μ

þ ð ~p1 − ~p2ÞGvρ1
6;1

2m2

þ ρ1ð ~p1 þ ~p2ÞGvρ1
5;1

−ρ1ðE1p þ E2pÞ þ μ

�
χ†1σ · ξχ2

þ p
3

�
2 ~p1 ~p2

p

�
ρ1G

vρ1
2;1

2m2

þ Gvρ1
1;1

−ρ1ðE1p þ E2pÞ þ μ

�

þ ð ~p1 − ~p2ÞGvρ1
6;1

2m2

þ ρ1ð ~p1 þ ~p2ÞGvρ1
5;1

−ρ1ðE1p þ E2pÞ þ μ

�
χ†1ð3ξ · p̂σ · p̂ − σ · ξÞχ2

�

¼ ψvρ1
S;1 ðpÞχ†1σ · ξχ2 þ

1ffiffiffi
2

p ψvρ1
D;1ðpÞχ†1ð3ξ · p̂σ · p̂ − σ · ξÞχ2; ðA26Þ

Ψv−ρ2ρ2
2;λ1λ2

ðpÞ ¼ 1

2
N 12p

��
ρ2ð3 − ~p1 ~p2ÞGvρ2

3;2

6m1

−
ð3þ ~p1 ~p2ÞGvρ2

1;2

−3ρ2ðE1p þ E2pÞ − 3μ

þ −ð ~p1 − ~p2ÞGvρ2
7;2

2m1

þ ρ2ð ~p1 þ ~p2ÞGvρ2
5;2

−ρ2ðE1p þ E2pÞ − μ

�
χ†1σ · ξχ2

þ p
3

�
2 ~p1 ~p2

p

�
ρ2G

vρ2
3;2

2m1

þ Gvρ2
1;2

−ρ2ðE1p þ E2pÞ − μ

�

þ −ð ~p1 − ~p2ÞGvρ2
7;2

2m1

þ ρ2ð ~p1 þ ~p2ÞGvρ2
5;2

−ρ2ðE1p þ E2pÞ − μ

�
χ†1ð3ξ · p̂σ · p̂ − σ · ξÞχ2

�

¼ ψvρ2
S;2 ðpÞχ†1σ · ξχ2 þ

1ffiffiffi
2

p ψvρ2
D;2ðpÞχ†1ð3ξ · p̂σ · p̂ − σ · ξÞχ2: ðA27Þ

From these expressions we can read off the S and D waves ψvρi
S;i ðpÞ and ψvρi

D;iðpÞ, respectively. For the 1CSE we identify
ψ−
1 ðpÞ≡ ψv−

S;1ðpÞ, ψ−
2 ðpÞ≡ ψv−

D;1ðpÞ, K−
1 ðp̂Þ≡ σ · ξ, and K−

2 ðp̂Þ≡ 1ffiffi
2

p ð3ξ · p̂σ · p̂ − σ · ξÞ.
The 1CSE wave function components are normalized asZ

∞

0

dpp2½ðψv−
S;1ðpÞÞ2 þ ðψvþ

Ps;1
ðpÞÞ2 þ ðψvþ

Pt;1
ðpÞÞ2 þ ðψv−

D;1ðpÞÞ2� ¼ 1: ðA28Þ

d. Axial-vector mesons

The treatment of the axial-vector mesons is very similar to the previous one of vector mesons. For ρ1 ¼ ρ2, and quark 1 or
quark 2 on mass shell the CST wave functions read

Ψaρ1ρ1
1;λ1λ2

ðpÞ ¼ 1

2
N 12p

��
−
ρ1ð3þ ~p1 ~p2ÞGaρ1

2;1

6m2

−
−ð3 − ~p1 ~p2ÞGaρ1

1;1

3ρ1ðE1p − E2pÞ − 3μ

−
−ð ~p1 þ ~p2ÞGaρ1

6;1

2m2

þ −ρ1ð ~p1 − ~p2ÞGaρ1
5;1

ρ1ðE1p − E2pÞ − μ

�
χ†1σ · ξχ2

þ p
3

�
−
2 ~p1 ~p2

p

�
−
ρ1G

aρ1
2;1

2m2

þ −Gaρ1
1;1

ρ1ðE1p − E2pÞ − μ

�

−
−ð ~p1 þ ~p2ÞGaρ1

6;1

2m2

þ −ρ1ð ~p1 − ~p2ÞGaρ1
5;1

ρ1ðE1p − E2pÞ − μ

�
χ†1ð3ξ · p̂σ · p̂ − σ · ξÞχ2

�

¼ ψaρ1
S;1 ðpÞχ†1σ · ξχ2 þ

1ffiffiffi
2

p ψaρ1
D;1ðpÞχ†1ð3ξ · p̂σ · p̂ − σ · ξÞχ2; ðA29Þ
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Ψaρ2ρ2
2;λ1λ2

ðpÞ ¼ 1

2
N 12p

��
−
ρ2ð3þ ~p1 ~p2ÞGaρ2

3;2

6m1

−
ð3 − ~p1 ~p2ÞGaρ2

1;2

3ρ2ðE1p − E2pÞ − 3μ

−
ð ~p1 þ ~p2ÞGaρ2

7;2

2m1

þ ρ2ð ~p1 − ~p2ÞGaρ2
5;2

ρ2ðE1p − E2pÞ − μ

�
χ†1σ · ξχ2

þ p
3

�
−
2 ~p1 ~p2

p

�
−
ρ2G

aρ2
3;2

2m1

þ Gaρ2
1;2

ρ2ðE1p − E2pÞ − μ

�

−
ð ~p1 þ ~p2ÞGaρ2

7;2

2m1

þ ρ2ð ~p1 − ~p2ÞGaρ2
5;2

ρ2ðE1p − E2pÞ − μ

�
χ†1ð3ξ · p̂σ · p̂ − σ · ξÞχ2

�

¼ ψaρ2
S;2 ðpÞχ†1σ · ξχ2 þ

1ffiffiffi
2

p ψaρ2
D;2ðpÞχ†1ð3ξ · p̂σ · p̂ − σ · ξÞχ2: ðA30Þ

For the 1CSE we identify ψþ
1 ðpÞ≡ ψaþ

S;1ðpÞ and ψþ
2 ðpÞ≡ ψaþ

D;1ðpÞ, and Kþ
1 ðp̂Þ≡ σ · ξ and Kþ

2 ðp̂Þ≡
1ffiffi
2

p ð3ξ · p̂σ · p̂ − σ · ξÞ.
For ρ1 ¼ −ρ2, and quark 1 or quark 2 on mass shell they read

Ψaρ1−ρ1
1;λ1λ2

ðpÞ ¼ 1

2
N 12p

�
−
�
p
�
−
ð1 − ~p1 ~p2ÞGaρ1

6;1

2m2

þ ρ1ð1þ ~p1 ~p2ÞGaρ1
5;1

−ρ1ðE1p þ E2pÞ þ μ

�

− ρ1ð ~p1 þ ~p2Þ
Gaρ1

2;1

2m2

þ ð ~p1 − ~p2ÞGaρ1
1;1

−ρ1ðE1p þ E2pÞ þ μ

�
ξ · p̂χ†11χ2

þ
�
ρ1ð ~p2 − ~p1Þ

Gaρ1
2;1

2m2

þ ð ~p1 þ ~p2ÞGaρ1
1;1

−ρ1ðE1p þ E2pÞ þ μ

�
χ†1ðσ · ξσ · p̂ − ξ · p̂Þχ2

�

¼
ffiffiffi
3

p
ψaρ1
Ps;1

ðpÞξ · p̂χ†11χ2 þ
ffiffiffi
3

2

r
ψaρ1
Pt;1

ðpÞχ†1ðσ · ξσ · p̂ − ξ · p̂Þχ2; ðA31Þ

Ψa−ρ2ρ2
2;λ1λ2

ðpÞ ¼ −
1

2
N 12p

�
−
�
p

�
−
ð1 − ~p1 ~p2ÞGaρ2

7;2

2m1

þ ρ2ð1þ ~p1 ~p2ÞGaρ2
5;2

−ρ2ðE1p þ E2pÞ − μ

�

þ ρ2ð ~p1 þ ~p2Þ
Gaρ2

3;2

2m1

þ ð ~p1 − ~p2ÞGaρ2
1;2

−ρ2ðE1p þ E2pÞ − μ

�
ξ · p̂χ†11χ2

þ
�
−ρ2ð ~p2 − ~p1Þ

Gaρ2
3;2

2m1

þ ð ~p1 þ ~p2ÞGaρ2
1;2

−ρ2ðE1p þ E2pÞ − μ

�
χ†1ðσ · ξσ · p̂ − ξ · p̂Þχ2

�

¼
ffiffiffi
3

p
ψaρ2
Ps;2

ðpÞξ · p̂χ†11χ2 þ
ffiffiffi
3

2

r
ψaρ2
Pt;2

ðpÞχ†1ðσ · ξσ · p̂ − ξ · p̂Þχ2: ðA32Þ

For the 1CSE we identify ψ−
1 ðpÞ≡ ψa−

Ps;1
ðpÞ and

ψ−
2 ðpÞ≡ ψa−

Pt;1
ðpÞ, and K−

1 ðp̂Þ≡
ffiffiffi
3

p
ξ · p̂ and K−

2 ðp̂Þ≡ffiffi
3
2

q
ðσ · ξσ · p̂ − ξ · p̂Þ.
The 1CSE wave function components are normalized asZ
∞

0

dpp2½ðψaþ
S;1ðpÞÞ2 þ ðψa−

Ps;1
ðpÞÞ2 þ ðψa−

Pt;1
ðpÞÞ2

þ ðψaþ
D;1ðpÞÞ2� ¼ 1: ðA33Þ

APPENDIX B: VERTEX SPINOR MATRIX
ELEMENTS MK;ρρ0

i

Here we give the explicit expressions of the MK;ρρ0
i

functions as defined in Eqs. (19) and (29), for each Lorentz

structure K of the interaction kernel: K ¼ s (scalar), p
(pseudoscalar), and v (vector).
Θs

i ¼ 1:

MS;þþ
i ðp;kÞ ¼ 1 − ~pi

~kiσ · p̂σ · k̂ ðB1Þ

MS;þ−
i ðp;kÞ ¼ −~kiσ · k̂ − ~piσ · p̂ ðB2Þ

MS;−þ
i ðp;kÞ ¼ − ~piσ · p̂ − ~kiσ · k̂ ðB3Þ

MS;−−
i ðp;kÞ ¼ ~pi

~kiσ · p̂σ · k̂ − 1; ðB4Þ
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Θp
i ¼ γ5:

MP;þþ
i ðp;kÞ ¼ −1 − ~pi

~kiσ · p̂σ · k̂ ðB5Þ

MP;þ−
i ðp;kÞ ¼ ~kiσ · k̂ − ~piσ · p̂ ðB6Þ

MP;−þ
i ðp;kÞ ¼ −~kiσ · k̂þ ~piσ · p̂ ðB7Þ

MP;−−
i ðp;kÞ ¼ −1 − ~pi

~kiσ · p̂σ · k̂; ðB8Þ

Θv0
i ¼ γ0:

MV0;þþ
i ðp;kÞ ¼ 1þ ~pi

~kiσ · p̂σ · k̂ ðB9Þ

MV0;þ−
i ðp;kÞ ¼ −~kiσ · k̂þ ~piσ · p̂ ðB10Þ

MV0;−þ
i ðp;kÞ ¼ ~kiσ · k̂ − ~piσ · p̂ ðB11Þ

MV0;−−
i ðp;kÞ ¼ 1þ ~pi

~kiσ · p̂σ · k̂; ðB12Þ

Θvj
i ¼ γj (j ¼ 1, 2, 3):

MVj;þþ
i ðp;kÞ ¼ − ~piσ · p̂σj − ~kiσjσ · k̂ ðB13Þ

MVj;þ−
i ðp;kÞ ¼ −σj þ ~pi

~kiσ · p̂σjσ · k̂ ðB14Þ

MVj;−þ
i ðp;kÞ ¼ −σj þ ~pi

~kiσ · p̂σjσ · k̂ ðB15Þ

MVj;−−
i ðp;kÞ ¼ ~piσ · p̂σj þ ~kiσjσ · k̂: ðB16Þ
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