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Correlations between the momenta of the final state hadrons measured in proton or nucleus collisions
contain information that sheds light on the initial conditions and evolutionary dynamics of the collision
system. These correlation measurements have revealed the long-range rapidity correlations in p-p and p-Pb
systems, and they have also made it possible to extract the elliptic flow coefficient from hadron correlation
measurements. In this work, we calculate five- and six-gluon correlation functions in the framework of
saturation physics by using superdiagrams. We also derive the cumulant expansion of the gluon correlators
that is valid in the gluon saturation limit. We show that the cumulant expansion of the gluon correlators that
is used for counting the number of diagrams to be calculated does not follow the standard cumulant
expansion. We also explain how these findings can be used in obtaining experimentally relevant
observables such as flow coefficients calculated from correlations as well as ratios of the correlation
functions of different orders.
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I. INTRODUCTION

The measured correlations between the final state
hadrons in collisions involving protons and nuclei contain
information about the dynamics of the collision and
evolution of the produced particles [1]. In nucleus-nucleus
(A-A) collisions, it has been observed that the particle pairs
with the azimuthal angles ϕ1 and ϕ2 are maximally
correlated when ϕ1−ϕ2∼0 (collimation) and ϕ1−ϕ2∼π
(anticollimation) [2]. Also, this correlation is maintained
even if the pair is separated by several units of rapidity.
Such long-range azimuthal correlations in A-A collisions
have been ascribed to the collective radial flow of the
quark-gluon plasma [3]. Radial flow gives rise to collec-
tivity in the hadronic spectrum where the momenta of the
detected hadrons are not random but correlated.
In small systems such as p-p and p-A, the collectivity in

the produced hadrons had not been observed in experi-
ments or Monte Carlo simulations. Also, on the theory side
there was no such expectation of collectivity in p-p and p-A
collisions, since it had been thought that fluid behavior
would not emerge in such small collision systems.
However, the two-particle correlation measurements in
p-p collisions at

ffiffiffi
s

p ¼ 7 GeV at the LHC revealed for
the first time the existence of collimation and anticollima-
tion effects, which are long ranged in rapidity, appearing at
high-multiplicity events—the so-called double ridge [4–7].
Later, the same ridge has also been seen in p-A collisions
[8–15]. Afterwards, we predicted the existence of higher-
dimensional ridges that would appear in three-, four-, and
higher-dimensional particle correlation functions [16].

The observation of collectivity in p-p and p-Pb collisions
later sparked an interest in applying hydrodynamics to such
small systems [17–22]. An alternative program that we
pursue in this work, however, does not assume hydrody-
namical evolution. Instead, our approach here tracks the
origin of the collectivity in small systems to gluon
saturation in the target and projectile in p-p or p-A
collisions [23–31]. Gluon saturation is expected to increase
with increasing beam energy. Therefore, that ridge corre-
lations appear only at high-multiplicity events at top LHC
energies seems to be evidence supporting the onset of gluon
saturation. The way gluon saturation affects particle pro-
duction in proton or nucleus collisions is studied via glasma
diagrams. Such calculations indicate that the two-hadron
correlation function calculated from the glasma diagrams
explains the systematics of the ridge signal at the LHC
data [32–37].
Whether the origin of the collectivity observed in

experiments is due to hydrodynamic evolution of the
system or due to gluon saturation is still under discussion.
The two-hadron correlations alone are not enough to settle
this dispute. For this purpose, correlations between more
than two hadrons must be measured, and these measure-
ments need to be compared with the results from hydro-
dynamics and glasma diagrams separately [16,38].
Hadron correlation measurements are used to obtain the

flow coefficients vmfnPCg, where nPC refers to that
the flow coefficient is found from n-particle correlations
[39–41]. Currently, the elliptic flow coefficient v2 is
measured from n ¼ 2, 4, 6, and 8 particles in experiments
[42–45]. On the theory side, such coefficients can be
calculated from glasma diagrams. By using glasma*ozonder@uw.edu
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diagrams, one can calculate the correlations of n gluons,
and convolving these with the fragmentation functions
results in the hadronic correlation functions that can be
compared with the ones measured by the experiments. In
this work, we calculate five- and six-gluon correlation
functions from glasma superdiagrams towards this goal.
Another important result of this paper, in addition to the

derivation of these two correlation functions, is the cumu-
lant expansion of the gluon correlation functions in the
gluon saturation limit. An n-gluon correlation function is a
cumulant that can be expanded in terms of lower-order
cumulants and nth moment [see, for example, Eq. (1)].
However, the standard cumulant expansion needs to be
modified if one wants to use it to determine the number of
glasma diagrams to be calculated. This has been realized
for the first time in the calculation of four-gluon correlation
function in Ref. [16]. Here we derive the formula that
generates the modified cumulant expansion for the n-gluon
correlation function obtained from the glasma diagrams.
The importance of this modified cumulant expansion in the
context of this work is to find the number of glasma
diagrams to be calculated at a given order and use it to
verify independently that the number of terms in the general
formula that produces the correlation function at nth order
is correct.
In the next section, we derive for the first time the

formula that generates the modified cumulant expansion.
Then, we review the recipe developed in Ref. [38] that
yields the n-gluon correlation function. Following that, we
will derive the five- and six-gluon correlation functions and
verify by using the modified cumulant expansion that the
number of terms, each of which corresponds to a connected
glasma diagram, in these correlation functions is correct.

II. CUMULANT EXPANSION FOR RAINBOW
GLASMA DIAGRAMS

The three- and four-gluon azimuthal correlation func-
tions with full rapidity and transverse momentum
dependence have been calculated in Ref. [16] by using
16 and 96 glasma diagrams, respectively. The observable
to be calculated—and later compared to the experimen-
tally obtained correlation function—for n gluons is the
connected azimuthal correlation function Cn. Since this
function includes only the connected diagrams, it is a
cumulant, not a moment.
The number of connected diagrams to be calculated can

be determined via the cumulant expansion. An important
realization has been made that the glasma correlation
functions at higher orders, starting with the four-gluon
correlation function, obeyed the standard cumulant expan-
sion, but one had to modify this expansion if it was to be
used to determine the number of glasma diagrams at that
order [16]. Hence, the cumulant expansion should be
modified for the rainbow glasma diagrams when it is to
be used to count glasma diagrams. To illustrate via the

example of a four-gluon correlation function, we first write
the standard cumulant expansion at the fourth order:

κ4 ¼ μ4 − 4κ3κ1 − 3κ22 − 6κ2κ
2
1 − κ41; ð1Þ

where κ’s denote the cumulants (connected correlations)
and μ4 denotes the fourth moment, which includes all
connected and disconnected glasma diagrams involving
four gluons. The number of glasma diagrams that each term
contains is given by μ4 ¼ 209, κ3 ¼ 16, κ2 ¼ 4, and κ1 ¼ 1
[16]. From this, we find κ4 ¼ 72, which is incorrect, since
we know that one needs to calculate 96 connected rainbow
glasma diagrams instead of 72 as explained in detail in
Ref. [16]. This error occurs since in Eq. (1) the term 3κ22 ¼
3ðκup2 þ κlow2 Þ ⊗ ðκup2 þ κlow2 Þ mixes the upper and lower
glasma diagrams (see Fig. 1). The subtraction of the two
mixed terms, κup2 ⊗ κlow2 and κlow2 ⊗ κup2 , gives rise to wrong
counting, since in the leading rainbow glasma approxima-
tion such diagrams are already never considered.
In other words, the moment μ4 already does not contain

such correlations, so one should not attempt to subtract the
mixed diagrams (κup2 ⊗ κlow2 and κlow2 ⊗ κup2 ) from μ4. Only
the terms κup2 ⊗ κup2 þ κlow2 ⊗ κlow2 should be subtracted
from μ4. Considering that there are the same number of
mixed (up ⊗ low and low ⊗ up) and unmixed (up ⊗ up
and low ⊗ low) glasma diagrams and that we want to keep
only the unmixed ones, we can simply substitute 3κ22 in
Eq. (1) with 3κ22=2 and write the rainbow cumulant for
rainbow glasma diagrams as1

κ4 ¼ μ4 − 4κ3κ1 − 3
κ22
2
− 6κ2κ

2
1 − κ41: ð2Þ

This gives the correct counting κ4 ¼ 96, which matches the
number of connected diagrams calculated explicitly in
Ref. [16]. The rainbow cumulant in the fifth order is
written as

κ5 ¼ μ5−5κ4κ1−10
κ3κ2
2

−10κ3κ
2
1−15

κ22
2
κ1−10κ2κ

3
1− κ51;

ð3Þ

and at the sixth order it is written as

κ6 ¼ μ6 − 6κ5κ1 − 15
κ4κ2
2

− 15κ4κ
2
1 − 10

κ23
2
− 60

κ3κ2
2

κ1

− 20κ3κ
3
1 − 15

κ32
4
− 45

κ22
2
κ21 − 15κ2κ

4
1 − κ61: ð4Þ

1We shall not add any specific identifier index for the rainbow
cumulants to distinguish them from the standard ones; the
rainbow cumulants are recognized by the 2’s in the denominators
of some of its terms in the expansion.
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Now we will derive the formula for the rainbow
cumulants. The standard moment of the order of n in
terms of cumulants is given in terms of the partial Bell
polynomials Bn;k:

μn ¼
Xn
k¼1

Bn;kðκ1; κ2;…; κn−kþ1Þ; ð5Þ

and standard κn is found by solving this equation for κn.
From the discussions above, we can write the expression
for the rainbow moment as2

μn ¼ −κn1 þ 2
Xn
k¼1

Bn;k

�
κ1;

κ2
2
;…;

κn−kþ1

2

�
; ð6Þ

and the rainbow cumulant κn is found by solving this
equation for κn. The formula in Eq. (6) is the first result of
this paper.3 After we derive the five- and six-gluon
correlation functions later in this work, we will use the
rainbow cumulant expansion in Eq. (6) to check if the five-
and six-gluon correlation functions include the correct
number of terms, where each term corresponds to one
connected diagram.

III. FORMULA OF n-GLUON
CORRELATION FUNCTION

In Ref. [38], we derived the formula for the n-gluon
correlation function Cn with full momentum and rapidity
dependence by using the glasma superdiagrams we devel-
oped. Here we quote the formulas that we will use in the
next section to derive five- and six-gluon correlation
functions.
The n-gluon correlation function is given by

Cn ¼
αnsNn

cS⊥
π4nðN2

c − 1Þ2n−1
�Yn

i¼1

1

p2⊥i

�Z
d2k⊥
ð2πÞ2 ðN 1 þN 2Þ:

ð7Þ

Here αs is the QCD strong coupling constant, Nc ¼ 3 is the
gluon color factor, S⊥ is the transverse area of overlap
during the collision between the target and projectile, and
p⊥i are the transverse momentum variables of the gluons
produced. N 1;2, which include the unintegrated gluon
distribution (UGD) functions ΦA;pðp⊥Þ, are given by4

N 1 ¼ fnΦ2
1;p1

ðk⊥Þ
�Yn−3
j¼1

Φ1;pjþ1
ðk⊥Þ

��Xn−2
h¼1

2hΦ1;phþ1
ðk⊥Þ

�
Φ2;p1

ðp⊥1 − k⊥ÞN A2
; ð8Þ

N 2 ¼ fnΦ2
2;pn

ðk⊥Þ
�Yn−3
j¼1

Φ2;pn−j
ðk⊥Þ

��Xn−2
h¼1

2hΦ2;pn−h
ðk⊥Þ

�
Φ1;p1

ðp⊥1 − k⊥ÞN A1
; ð9Þ

2The Mathematica code for both the standard and rainbow cumulants are given in the Appendix.
3To emphasize, the nonstandard, rainbow cumulant expansion is developed here for correctly counting the glasma diagrams. The

correlation functions Cn still obey the standard cumulant expansion. This can be understood from the discussion following Eq. (46) in
Ref. [16]. Equation (46) therein is clearly in the form of a standard cumulant expansion at the order of n ¼ 4.

4The formulas for N 1;2 given in Ref. [38] included a typo and missed the prefactor fn, and the prefactor in the second brackets
mistakenly read 2h instead of 2h. These mistakes in Ref. [38] originated from the miscalculation of the κ5 therein.

FIG. 1. Rainbow approximation refers to that either the upper or lower part of the diagrams includes lines that connect the same
momentum labels (p ↔ p, q ↔ q, etc.). The four diagrams here separately satisfy this condition. Rainbow approximation, however,
also requires that, when separate diagrams are combined as in κ2 ⊗ κ2 in Eq. (1), all combined diagrams should have their rainbow parts
in either their upper or lower parts. The two disconnected diagrams on the left are for the term κlow2 ⊗ κlow2 , which is a rainbow diagram
altogether. Therefore, this pair of diagrams is required to be subtracted from the moment μ. However, the pair on the right (κlow2 ⊗ κup2 )
mixes lower and upper rainbow diagrams. Such terms are already nonexistent in the fourth moment μ4, so subtracting such diagrams
would lead to wrong counting.
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where

N A1ðA2Þ ¼
Yn
m¼2

½Φ1ð2Þ;pm
ðp⊥m − k⊥Þ þΦ1ð2Þ;pm

ðp⊥m þ k⊥Þ�:

ð10Þ

The indices of ΦA;pðp⊥Þ are as follows. A stands for the
target or projectile index (A ¼ 1, 2), p subscript is the
rapidity variable of the gluon, and p⊥ is the transverse
momentum variable of the gluon.
The coefficient fn is given by

fn ¼
�
1 if n < 5;

ðn − 3Þ! if n ≥ 5;
ð11Þ

where n here is the same n as in Cn, i.e., number of gluons.
It is important to note that the rapidity indices and that

which UGD appears with which prefactor in the formulas
above are nontrivial. The former is found by means of
superdiagrams, and the latter is found by means of the
rainbow cumulant expansion. In this work, we will show
only the relevant superdiagrams for C5 and C6, but we will
not explain how they are drawn, for which we refer the
interested reader to our earlier work [38].

IV. FIVE-GLUON AZIMUTHAL
CORRELATION FUNCTION

The five-gluon correlation function C5 can be written by
using the formulas given in Eqs. (7)–(10) as follows:

C5ðp; q; l;w; rÞ ¼
α5sN5

cS⊥
π20ðN2

c − 1Þ9
1

p2⊥q2⊥l2⊥w2⊥r2⊥

Z
d2k⊥
ð2πÞ2 ðN

ð5Þ
1 þN ð5Þ

2 Þ; ð12Þ

where

N ð5Þ
1 ¼ 2Φ2

1;pðk⊥ÞΦ1;qðk⊥ÞΦ1;lðk⊥Þ½2Φ1;qðk⊥Þ þ 4Φ1;lðk⊥Þ þ 6Φ1;wðk⊥Þ�Φ2;pðp⊥ − k⊥ÞN ð5Þ
A2
; ð13Þ

N ð5Þ
2 ¼ 2Φ2

2;rðk⊥ÞΦ2;wðk⊥ÞΦ2;lðk⊥Þ½2Φ2;wðk⊥Þ þ 4Φ2;lðk⊥Þ þ 6Φ2;qðk⊥Þ�Φ1;pðp⊥ − k⊥ÞN ð5Þ
A1
; ð14Þ

and

N ð5Þ
A1ðA2Þ ¼ ½Φ1ð2Þ;qðq⊥ − k⊥Þ þΦ1ð2Þ;qðq⊥ þ k⊥Þ�½Φ1ð2Þ;lðl⊥ − k⊥Þ þΦ1ð2Þ;lðl⊥ þ k⊥Þ�

× ½Φ1ð2Þ;wðw⊥ − k⊥Þ þΦ1ð2Þ;wðw⊥ þ k⊥Þ�½Φ1ð2Þ;rðr⊥ − k⊥Þ þΦ1ð2Þ;rðr⊥ þ k⊥Þ�: ð15Þ

The nth level moment μn includes both the connected
and disconnected glasma diagrams for n-gluon correlation
functions, and it is given by μn ¼ 2ð2n − 1Þ!! − 1. Using
Eq. (3) and that μ5 ¼ 1889, κ1 ¼ 1, κ2 ¼ 4, κ3 ¼ 16, and
κ4 ¼ 96, one finds κ5 ¼ 768. So, one needs to consider 768
connected glasma diagrams to calculate C5. Equation (15)
has 24 terms, so Eq. (13) contains 2 × ð2þ 4þ 6Þ × 24 ¼
384 terms. Similarly, Eq. (14) contains 384 terms as well.

So, C5 in Eq. (12) includes exactly 768 terms, which
matches with the number that we find from the rainbow
cumulant expansion.
It would be practically impossible to calculate such

number of diagrams separately without the superdiagrams,
where one needs only three superdiagrams for C5 (see
Fig. 2). For C6, one needs to calculate 7680 connected
glasma diagrams or only four superdiagrams.

pqlwr pqlwr pqlwr

FIG. 2. Superdiagrams for C5. These three superdiagrams give rise to N ð5Þ
1 in Eq. (13), particularly the rapidity indices of the

unintegrated distribution functions Φ. There are three other superdiagrams that are diagonally mirror images of these; i.e., they run

starting from the bottom left and end at the top right. Those diagrams give N ð5Þ
2 in Eq. (14).
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V. SIX-GLUON AZIMUTHAL CORRELATION FUNCTION

The six-gluon correlation function C6 can be written by using the formulas given in Eqs. (7)–(10) as follows:

C6ðp; q; l;w; r; sÞ ¼
α6sN6

cS⊥
π24ðN2

c − 1Þ11
1

p2⊥q2⊥l2⊥w2⊥r2⊥s2⊥

Z
d2k⊥
ð2πÞ2 ðN

ð6Þ
1 þN ð6Þ

2 Þ; ð16Þ

where

N ð6Þ
1 ¼ 6Φ2

1;pðk⊥ÞΦ1;qðk⊥ÞΦ1;lðk⊥ÞΦ1;wðk⊥Þ½2Φ1;qðk⊥Þ þ 4Φ1;lðk⊥Þ þ 6Φ1;wðk⊥Þ þ 8Φ1;rðk⊥Þ�
×Φ2;pðp⊥ − k⊥ÞN ð6Þ

A2
; ð17Þ

N ð6Þ
2 ¼ 6Φ2

2;sðk⊥ÞΦ2;rðk⊥ÞΦ2;wðk⊥ÞΦ2;lðk⊥Þ½2Φ2;rðk⊥Þ þ 4Φ2;wðk⊥Þ þ 6Φ2;lðk⊥Þ þ 8Φ1;qðk⊥Þ�
×Φ1;pðp⊥ − k⊥ÞN ð5Þ

A1
; ð18Þ

and

N ð6Þ
A1ðA2Þ ¼ ½Φ1ð2Þ;qðq⊥ − k⊥Þ þΦ1ð2Þ;qðq⊥ þ k⊥Þ�½Φ1ð2Þ;lðl⊥ − k⊥Þ þΦ1ð2Þ;lðl⊥ þ k⊥Þ�

× ½Φ1ð2Þ;wðw⊥ − k⊥Þ þΦ1ð2Þ;wðw⊥ þ k⊥Þ�½Φ1ð2Þ;rðr⊥ − k⊥Þ þΦ1ð2Þ;rðr⊥ þ k⊥Þ�
× ½Φ1ð2Þ;sðs⊥ − k⊥Þ þΦ1ð2Þ;sðs⊥ þ k⊥Þ�: ð19Þ

Using Eq. (4) and that μ6¼ 2ð2×6−1Þ!!−1¼ 20789,
κ1 ¼ 1, κ2 ¼ 4, κ3 ¼ 16, κ4 ¼ 96, and κ5 ¼ 768, one finds
κ6 ¼ 7680. C6 in Eq. (16) includes exactly 7680 terms, so
this verifies that Eq. (16) is correct. The superdiagrams
needed for calculating C6 are given in Fig. 3.

VI. CONCLUSION

In this paper, we derived themodified cumulant expansion
that was to be used for counting glasma diagrams correctly.
This expansion is essential in deriving the correlation
functions and verifying that they are found from the correct
glasma diagrams. We also derived the five- and six-gluon
correlation functions. The six-gluon correlation function,
particularly, can be used to calculate the elliptic flow v2f6g,
and then it can be comparedwith themeasurements. Another
use of the correlation functions we calculated could be
studying correlations between flow coefficients [46] as well

as obtaining other observables from the ratios of the
cumulants (Cn’s) [47]. These studies are under way.
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APPENDIX: CODES FOR THE CUMULANTS IN
MATHEMATICA

The Mathematica function which gives the standard
cumulant expansion of κn is [see Eq. (5)]

κ½n−� ≔ κn þ μn −
Xn
k¼1

BellY½n; k;Table½κm; fm; ng��;

ðA1Þ

pqlwrs pqlwrs pqlwrs pqlwrs

FIG. 3. Superdiagrams for C6. These four superdiagrams give rise to N ð6Þ
1 in Eq. (17). There are four other superdiagrams that are

diagonally mirror images of these; i.e., they run starting from the bottom left and end at the top right. Those diagrams give N ð6Þ
2 in

Eq. (18).
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and that which gives the rainbow cumulant expansion of κn is [see Eq. (6)]

κ½n−� ≔ κn1 þ κn þ μn − 2
Xn
k¼1

BellY

�
n; k; Join

�
fκ1g;Table

�
κm
2
; fm; 2; ng

���
: ðA2Þ
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