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We investigate the universality of truncation schemes for Dyson-Schwinger equations developed for
quantum chromodynamics in theories which differ from quantum chromodynamics only in the gauge
group. Our specific choices are the gauge groups SU(2) and G,, for which lattice calculations at
nonvanishing chemical potential are possible. Thus, corresponding calculations can provide benchmarks
for testing calculations with functional equations. We calculate the quark and gluon propagators and
determine the chiral and dual chiral condensates at vanishing density to determine the confinement/
deconfinement and chiral transitions, respectively. We can reproduce the expected type of transitions in the
quenched and unquenched cases. In general, all three theories react very similarly to modifications of the

employed model for the quark-gluon vertex.

DOI: 10.1103/PhysRevD.96.074002

I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
contains a plethora of interesting physics. Correspondingly
much effort is devoted to its investigation both with
experiments and from the theory side. However, the phase
structure at nonvanishing chemical potential, where a
critical point and additional phases are expected, is still
elusive, since we are lacking a method that is based on first
principles and works reliably in that regime. In particular,
the otherwise very successful method of Monte Carlo lattice
simulations is plagued by the complex action problem that
makes standard simulations at nonzero chemical potential
unfeasible [1]. Many different approaches are being pur-
sued to overcome this problem, e.g., [2-6].

A method complementary to lattice simulations is func-
tional equations like equations of motion of correlation
functions [7-11] and the functional renormalization group
[12-14]. Since they form infinitely large systems of
equations, only a subset of equations can be solved. The
choice of such a subset requires to specify how to treat
the correlation functions not included in the subset. In the
following we refer to the specification of which subset of
equations is calculated and the definitions of the missing
correlation functions as truncation. The corresponding
models are constrained by various requirements like their
known asymptotic behavior or by results from other
methods. A particularly useful source of information is
results of correlation functions from lattice simulations. For
example, quantitative results for the gluon propagator can
be provided by lattice simulations and provide benchmarks
for functional calculations.
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The interplay between functional and lattice methods has
led to the development of some useful hybrid methods. They
exploit the fact that some objects can be obtained more easily
or that systematic errors are better under control in one
method than in the other. For example, vertices are still a
challenge for the lattice approach. The amount of statistics
required is limiting to some extent and typically only
restricted kinematic configurations are investigated. On
the other hand, the quenched vacuum gluon propagator is
by now well studied on the lattice [15-20], while for
functional equations a large effort is required to obtain a
quantitative description due to the coupling to higher
correlation functions, see, e.g., [21-26]. Additionally,
respecting gauge covariance is challenging [24,27,28].

At non-zero temperature also lattice results for the
quenched [29-35] and unquenched [36-38] gluon (and
ghost) propagators are available. These results can be used
as input for functional equations to avoid the quantitative
uncertainties (and technical complexities) when solving for
the gluon propagator directly. Using an approximated
equation for the gluon propagator, also unquenching effects
can be included [39-41]. With this method, the transitions
between the quark-gluon plasma and the hadronic phases
have been investigated in a series of papers for two flavors
[40,41], three flavors [41,42] and four flavors [42]. First
results of the effects of baryons were also obtained [43]. In
addition, this approach was applied to low temperatures
and high densities [44]. In that parameter space also the
existence of inhomogeneous phases was investigated [45].
Alternatively, phenomenologically motivated effective
interactions combining the gluon propagator and the
quark-gluon vertex into a single quantity are also used
to study the phase diagram of QCD, e.g., [46-49].

A result of all these investigations was that the critical
point, where the crossover turns into a first order transition
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line, is at a quark chemical potential larger than the
temperature. This is in agreement with corresponding
extrapolations from lattice results. However, in order to
obtain reliable quantitative values for its location, we would
need to know if the applied approximations are still well
justified in this region of the phase diagram. For example,
how well is the quark-gluon interaction modeled and what
influence do hadronic degrees of freedom have? To inves-
tigate this, we make a detour to QCD-like theories that do
not suffer from a complex action problem. Thus, lattice
results at non-vanishing chemical potential can serve as
benchmarks for functional results. Specifically, we will
investigate QC,D and G,-QCD which correspond to QCD
with the gauge group SU(3) replaced by the gauge groups
SU(2) [50] and G, [51,52]. These theories have been and
are still investigated on the lattice, e.g., [53—65] and with
continuum methods, e.g., [66-71]. A direct application of
corresponding lattice results at nonzero chemical potential
is, for example, the study of the mass-radius relation of
neutron stars in G,-QCD [72].

QGC,D and G,-QCD have many properties in common
with QCD. In particular, they are all three asymptotically free
and they feature dynamical chiral symmetry breaking and
confinement. The transitions related to the last two phenom-
ena coincide in the quenched case [55,73,74] and are at
least close when they become smooth transitions for the
unquenched case [57,75,76]. This last property is not
automatic, as the example of QCD with adjoint fermions
shows [77-79]. The similarities go even further and extend to
the level of the underlying correlation functions. This is
shown by lattice results for the SU(2) Yang-Mills propa-
gators in the vacuum [17,80], but also at nonvanishing
temperature [30,31]. In the latter case, differences occur
below the phase transition which reflect the different orders of
the transitions in SU(2) and SU(3). For G, we know at least
in the vacuum in two and three dimensions [81] that the Yang-
Mills propagators are qualitatively similar. In functional
equations, the different gauge groups are reflected by differ-
ent Casimir operators of the groups. Differences to QCD are,
for example, an extended flavor symmetry in QC,D, the so-
called Pauli-Giirsey symmetry, and the existence of diquarks
for both G,-QCD and QC,D. Also, at non-vanishing density
QGC,D atransition from a Bose-Einstein condensate (BEC) to
a Bardeen-Cooper-Schrieffer (BCS) phase.

As a first step towards comparisons between QCD and
QCD-like theories, we investigate here the case of vanish-
ing chemical potential to study how universal the appli-
cability of the one and same truncation scheme for all three
theories is. Using the chiral and dual chiral condensates to
distinguish the hadronic and quark-gluon plasma phases,
we will consider the quenched and unquenched situations
and test the sensitivity of the systems on the modeled part
of the input. First results for G, have been presented in [82].

Our setup is detailed in Sec. II. The results are presented
in Sec. III and we summarize in Sec. IV. Two appendices
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contain details on the fits for the SU(2) gluon propagator
and a study of the importance of the dressing function
D(p,w,) of the quark propagator.

II. SETUP

The truncated system of equations considered here
consists of the Dyson-Schwinger equations (DSEs) of
the quark and gluon propagators. We will discuss these
equations in turn and then the model employed for the
quark-gluon vertex. Finally, the definitions of the observ-
ables employed for distinguishing the phases are given.

A. Quark propagator

At nonvanishing temperature the quark propagator has
four components. Its inverse can be parametrized by

s (ﬁvwn> = lﬁfA(ﬁ:wn) =+ iwny4c(ﬁ7wn) +B(ﬁvwn)
+iw,y4pyD(p,@y). (1)

The dressing functions A(p, »,), B(p,»,), C(p,w,), and
D(p,w,) contain the nonperturbative information. In the
following we drop D(p,w,). In various limits (vacuum,
perturbation theory, chirally symmetric phase) it is zero. In
Appendix B we show explicit results for D(p, w,) which
confirm that for nonvanishing chemical potential D(p, ®,,)
is extremely small and thus irrelevant. The DSE of the
quark propagator, diagrammatically shown in Fig. 1, reads

S P w,) = 2,8, (. @,) = Z(p. @), (2)

_ dq
Z(P’ (I)”) = _ZIFCFQZZ/ (2”)3 YMS(q)
qa

Xru(p —4q;—D, Q)D/w(p - q) (3)

Cr is the Casimir of the gauge group from the color trace.
Z, and Zp are the quark wave function and the quark-
gluon vertex renormalization constants, respectively. The
bare quark propagator is given by

So(P.w,) = (ip7+iw,ys + mg)~", (4)

where my = Z,mgr is the bare quark mass, mp the
renormalized quark mass and Z,, the quark mass renorm-
alization constant. For brevity, we sometimes use the four-
momentum, although the frequency has to be treated
separately at non-vanishing temperature: Gluons have
discrete Matsubara frequencies p, = w, = 2znT and

—1 -1 é@’@%%;)\
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FIG. 1. Quark propagator DSE. Quantities with a blob are fully
dressed, as are internal propagators. Continuous/wiggly lines
denote quarks/gluons.
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FIG. 2. The gluon propagator DSE is split into a quenched part
(gray blob) and the quark loop. The former is determined from
quenched lattice results.

quarks p, = w, = (2n + 1)zT. Equation (2) depends on
two external quantities, the gluon propagator D, (p) and
the quark-gluon vertex I', (k; p, ¢), which will be discussed
in the following sections.

B. Gluon propagator

The gluon propagator has its own DSE, which, however,
is more complicated due to the appearance of two-loop
terms and quadratic divergences. To obtain a quantitative
description of the propagator but avoid these issues as far
as possible, we apply the following approximation: We
employ a fit to quenched lattice data for the gluon dressing
functions and add unquenching effects via the quark loop,
as is shown diagrammatically in Fig. 2. This method was
developed in a series of works. Initially, only the perturba-
tive contributions from the quark propagators were taken
into account [39,83]. The most advanced variant includes
the full quark propagator in the gluon propagator DSE and
employs a model for the quark-gluon vertex [41].

This hybrid approach has the advantage that the
full gluon propagator DSE does not need to be solved,
but the full nonperturbative result from lattice calculations
can be used. An equivalent solution from DSEs constitutes a
considerable complication, since not only two-loop dia-
grams would need to be calculated to obtain a similar level
of quantitative reliability, but also three- and four-point
functions would need to be known at nonvanishing temper-
atures. To our knowledge, only some first results for these
quantities are available in lattice [84] and continuum
approaches [85,86]. Results for the propagators from
continuum approaches were obtained, for example, by
the functional renormalization group [87] and a perturbative
analysis of a massive extension of Yang-Mills theory [88].

The drawback of this hybrid method is that no back-
coupling effects of unquenching on the Yang-Mills sector
can be taken into account. Nevertheless, the agreement with
available lattice results when including only the direct
effects via the quark loop is reasonable [42]. As a check of
our setup, we calculated the gluon propagator also for a
higher quark mass to compare to lattice results, see Fig. 3.'
Although we could in principle use fits of unquenched

"This calculation is similar to Ref. [42], except that here we
adjust the interaction strength parameter d;, see Eq. (10), such
that the transition temperature matches that of the N, = 2 lattice
calculations [89]. Furthermore, we use the Gell-Mann—QOakes—
Renner relation to fix the quark mass, whereas in Ref. [42] the
Bethe-Salpeter equation for the pion was solved.
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lattice data for the gluon propagator, we will use the hybrid
method to allow for extensions to nonvanishing chemical
potential later. Furthermore, such data is not available for
all gauge groups considered here.

The fit function for the gluon dressing functions is [30]

()
+x<%iﬁ‘)1n(x + 1)>y>, (5)

where x = p?/A%. We only fit the lowest Matsubara
frequency. Dressings at higher Matsubara frequencies
are evaluated by Z/t(p?, p3) = ZT/E(p* = p> + p3,0),
which is a good approximation according to lattice results
[30]. The subscripts 7" and L refer to the splitting of the
transverse gluon propagator at nonzero temperature:

ZT/L(p2> =

ZT(PZ)

2u07) | pr ) FENNC

D;w(p) = Pﬁu(p) pz

where P.,(p) and P%,(p) project transversely and longi-
tudinally to the heat bath, respectively:

PT(p) = (1= 8,0)(1 - 6,1 (5,” . ””f;”), @)

p
Pﬁv(p) = P;w - P;D(p)’ (8)
PuPv
Puuzéﬂu_ ;2 . (9)

Equation (5) is used to parametrize the quenched
gluon propagators. The parameters ¢ = 11.5 GeV? and
A = 1.4 GeV are kept fix. a(u) = ¢ /4x, which is also the
value used for the strong coupling in the calculations, is
fixed for the fits. y = (=13N, +4N;)/(22N. — 4N ) and
Po are the anomalous dimension of the gluon propagator
and the lowest coefficient of the f-function, respectively. In
our calculations we inherit the scale from the fits.

For the gauge group SU(2) we obtain the fit parameters
ar, and by, from the lattice results of Refs. [30,31]. Due
to various uncertainties from the lattice input, the obtained
values do not show a smooth behavior in temperature. To
ameliorate that, the parameters themselves can be fitted. An
equivalent procedure can be done for SU(3) and the
corresponding fit functions for can be found in [43]. For
SU(2) the fit functions are given in Appendix A. The
resulting dressing functions for SU(2) are shown in Fig. 4
for selected temperatures.

For the gauge group G, we do not have any lattice data
for the gluon propagator available. However, in two and
three dimensions the quenched propagators were calculated
in the vacuum [81]. It was seen there that qualitatively the
gauge groups SU(2), SU(3) and G, behave the same and
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Chromoelectric (left) and chromomagnetic (right) unquenched gluon dressing functions for SU(3) compared to unquenched

lattice results corresponding to a pion mass of m, = 315(MeV) [38]. For the comparison with lattice results, the renormalized quark mass
is fixed via the Gell-Mann—Oakes—Renner relation as my = 5.97 MeV at 80 GeV. For the interaction strength d; = 7 GeV? was used.

even quantitatively they are very similar. Of course, already
in perturbation theory deviations are expected but they are
subleading for the effects considered here. Since G,-Yang-
Mills theory has a first order transition, we use the SU(3)
results to construct an approximation for the G, gluon
propagator: We use the SU(3) fits for ar/, and by, with
the corresponding value f, of G, and rescale the temper-
ature to match the known critical temperature of G,. The
different /3, is compensated in Eq. (5) by a modification of
the coupling constant at the renormalization point to
maintain the form of the fits: a(u) = 0.45. The parameters
for the different gauge groups are summarized in Table I.

C. Quark-gluon vertex

Information on the quark-gluon vertex at nonvanishing
temperatures is much scarcer than for the other correlation
functions considered here. Thus, in the following we will
rely on a model.

The model employed in the following is given by [83]

Fv(q; p, l) = yyrmod(x)

x <A(p2) ;A(zz)gﬂ,i + - 5”’4>’

(10)

i s (0 (3
(11)

TABLE 1. Differences between the gauge groups. Transition
temperatures from [30] for SU(2) and SU(3) and from [54,58]
for Gz.

Ca Cr Po="5 c[GeV?] a(u) T [MeV]
su3) 3 3 11 115 03 277 MeV
su 2 3 z 115 03 303 MeV
G, 2 1 z 1.5 045 255 MeV

p and [ are the antiquark and quark momenta, respectively,
and ¢ is the gluon momentum. To guarantee multiplicative
renormalizability, the choice for x depends on the equation in
which the vertex model is used. In the gluon propagator
DSE, it is (p? + [?) and in the quark propagator DSE ¢2. A
and a(u) are chosen as for the gluon propagator fit. § is the
anomalous dimension of the ghost given by § = —9N_./
(44N, — 8N). The model is constructed such that the quark
and the gluon propagator DSEs yield the correct anomalous
dimensions. However, the model itself has twice the anoma-
lous dimension of the quark-gluon vertex. This renormali-
zation group motivated modification is necessary due to
missing higher perturbative contributions.

The tensor structure of the model is restricted to the tree-
level tensor of the vertex. Since it is known that the other
seven transverse dressing functions are not negligible
[90-94], their contributions must be effectively captured
in the nonperturbative part of the vertex dressing which is
characterized by the parameters d; and d,. We fix d, =
0.5 GeV and discuss the determination of d; below. The
resulting values for d; are summarized in Table II. The
dependence on the quark dressing functions stems from the
tree-level part of the Ball-Chiu construction [95] general-
ized to nonvanishing temperature.

D. Derived quantities

The observables to determine the transition temperatures
will be the chiral condensate and the dual chiral condensate
and suitable derivatives thereof. For a self-contained pre-
sentation we repeat the definitions of these quantities.

TABLE II. Parameters used for the quenched and N, =2
computations.

Nf =0 G((ﬂ) dl (GCVZ) Nf =2 (X(/l) dl (GCVZ)
SU(3) 0.3 4.5 SU(3) 0.3 7
SU(2) 0.3 7.3 SU(2) 0.3 15

G, 0.45 3.62 G, 0.45 6.78
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FIG. 4. Fitted quenched gluon dressing functions Z; (left) and Z; (right) for the gauge group SU(2) compared to [31].

The chiral condensate is calculated as

) =—Caziz,1Y [ nista)

— —4CAZQZm T

" & B(q)
Eq;/(2ﬂ)3A2(Q)672+CZ(Q)qi+BZ(Q)'

(12)

We recall that a nonzero value means that chiral symmetry
is broken. Although nonzero renormalized quark masses
explicitly break chiral symmetry, its value at high temper-
atures is still considerably smaller than at small temper-
atures so that it can be used as an order parameter. The
condensate is UV divergent. It is renormalized by sub-
tracting a quark condensate with a heavier renormalized
mass m, from a condensate with a light renormalized
mass m;:

Agj = =)+ (). (13)

For the confinement/deconfinement transition we study
the dual chiral condensate which is related to the Polyakov
loop [96,97] and has the same qualitative behavior, viz., it
vanishes in the limit of infinitely heavy quark masses in the
confined phase and obtains a nonzero value in the decon-
finement phase. For finite quark masses the value at low
temperatures is still very small and allows us to distinguish
the two phases.

To compute the dual quark condensate X, we introduce
generalized U(1) valued boundary conditions for the
quarks w(x, 1/T) = ey (x,0) where the physical condi-
tion is given by ¢ = x [83]. The dual quark condensate
projects out the loops with winding number 1. It is thus also
called dressed Polyakov loop as it contains all loops
winding around the time direction exactly once:

A iy
x= [TSre e, do. (14)
0 T

The chiral condensate with the boundary angle ¢ is
calculated with Eq. (12) using generalized Matsubara
frequencies depending on the boundary angle: ), =
(2n+ @/n)xT.

Since QCD does not have a phase transition at vanishing
chemical potential but a crossover, various transition
temperatures can be defined. This needs to be kept in
mind when comparing results. We use here the maxima of
the following derivatives:

- 8A1.h
Xch = oT ) (15)
o))
Xdec = 8—T (16)

III. RESULTS
A. Quenched results

We first consider the quenched case. For this calculation,
the renormalized quark mass is set to mp =3 MeV at
80 GeVas in [98] for all gauge groups. Results for the chiral
and dual chiral condensates are show in Fig. 5.

The results for both SU(3) and G, are compatible with a
first order phase transition, while those for SU(2) indicate a
second order transition. The small decrease of the SU(2)
chiral condensate at the lower end of the shown temperature
interval could be an artifact of the employed fit for the
gluon dressing function. We explicitly checked that for low
temperatures the chiral condensate stays close to the
vacuum chiral condensate. The nonzero dual chiral con-
densate below the critical temperature, which was already
observed in earlier works, e.g., [83,98], is due to the
sensitivity of the dual chiral condensate to the quark-gluon
vertex model: For different values of d; the deviation from
Zero varies.

Various schemes have been tested in the literature to set
the values of d; and the quark masses, ranging from tuning
them to lattice results for the chiral condensate to adjusting
them to reproduce physical quantities like pion mass and
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decay constant. Here, we choose the value for d; in SU(3)
as in [98], which is close to the value used in [30]. For
SU(2), the value for d; was taken such as to reproduce the
dual chiral condensate below the critical temperature with a
behavior similar to that of SU(3). The value of d; for G,
was determined such as to obtain the SU(3) vacuum chiral
condensate times 2/3. Although this is motivated by the
overall color factor in the chiral condensate, in general this
relation is not expected to hold and was taken due to the
lack of any clear observable to use in the case of G,. The
values of d; are summarized in Table II.

The positions of the phase transitions are identical to the
ones from the lattice input, see Table I, and determined
directly by the behavior of the gluon propagators. The
orders of the phase transitions, on the other hand, depend
on the IR strength in the quark-gluon vertex model. By
changing d; drastically, the order can be changed. In
general, however, results look similar for small variations
of d,. The highest sensitivity we found for SU(2) where we
also saw some sensitivity to the detailed form of the gluon
propagator fits. This and the behavior of the chiral con-
densate below the critical temperature mentioned above
require a more detailed analysis in the future. For now, the
nontrivial finding is that the expected behavior at both the
chiral and deconfinement phase transitions can be repro-
duced with the same vertex model parameters.

B. Unquenched results

The system is unquenched following the procedure
described in Sec. II B. We consider two light flavors with
a renormalized mass of my = 1.18 MeV. The renormali-
zation point is chosen as 80 GeV. This ensures that we are
in the perturbative regime. The value of the quark mass at
other points can be inferred from the mass function
M(p?*) = B(p?)/A(p?) shown in Fig. 6 for the vacuum.
From the Gell-Mann—Oakes—Renner relation we obtain a
pion mass of 140.9 MeV corresponding to this choice of
the quark mass. The effect of unquenching the gluon

PHYSICAL REVIEW D 96, 074002 (2017)

(T)
A (0)
0.25
0.20
Gz
0.15F = SU@)
TS
0.10f U@
'
0.05 f |,(
- ¢ T
L T,

0.85 0.90 0.95 1.00 1.05 1.10

Chiral (left) and dual chiral (right) condensates normalized to the vacuum chiral condensates for the quenched theories.

propagators is shown for SU(2) and G, in Fig. 7 and
Fig. 8, respectively. For SU(3), the unquenched gluon
dressing functions are compared to lattice results in Fig. 3,
where we adapted the quark mass to mz = 5.97 MeV to
match the pion mass used in the lattice calculations via the
Gell-Mann—Oakes—Renner relation. It should be noted that
the chosen value for d; produces a transition temperature of
199 MeV which is close to the value of 202 MeV calculated
on the lattice, but using a different definition of the
transition temperature [89].

As expected, the phase transitions become now cross-
overs as can be seen in Fig. 9. The resulting crossover
temperatures are summarized in Table III. The confine-
ment/deconfinement crossover temperatures for SU(3),
SU(2) and G, lie between 27% and 40% below the critical
temperatures of the quenched systems. The chiral crossover
temperatures are close to the confinement/deconfinement
crossover temperatures.

As explained in Sec. IIC, the employed quark-gluon
vertex model encodes all nonperturbative information in
the dressing function of the tree-level tensor, which has to
be considered an effective dressing including also the
dependence on the quark mass. Furthermore, effects of
mesons and baryons are subsumed in the model. While the

M(p?) (GeV)
0.8r
\\
0.6+ N\
\
................... \
S
0.4+ "\ \ Ge
. \\ ----- SU(2)
Y\
0.2t s\ SU®)
n“‘
. ‘ T - p(GeV)
0.01 0.10 1 10 100

FIG. 6. The quark mass function M(p?) = B(p?)/A(p?) as a
function of momentum in the vacuum.
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FIG. 7. Chromoelectric (left) and chromomagnetic (right) gluon dressing functions for SU(2). The dashed lines represent the
quenched dressing functions.

3.0 NN T=63 MeV T=63 MeV
'll \\ \\\
25 \‘:\“ —— T=96 MeV —— T=96 MeV
NS
S — T=129 MeV — T=129 MeV
2.0
— T=163 MeV TV — T=163 MeV

1.5

-
~~~.
bt
--~--__
——

1.0

0.5

1 p(GeV) oo p(GeV)
3.0 .0

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 3

FIG. 8. Chromoelectric (left) and chromomagnetic (right) gluon dressing functions for G,. The dashed lines represent the quenched
dressing functions.

parameter d; can be adjusted, for example, such as to  functions, the value for d; describing the correct vacuum
reproduce masses and decay constants of low-lying mesons  physics leads to a shifted value for the transition temper-
in the vacuum [42], we are here interested in the situation at ature [42]. Here, we first fix the value of d; to reproduce a
nonvanishing temperature. Since the model has only  transition temperature in the range of the N, = 2 lattice
limited temperature dependence via the quark dressing  results for a pion mass of 315 MeV. Then, we change the
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FIG. 9. Chiral (left) and dual chiral (right) condensates normalized to the vacuum chiral condensates for N, = 2.
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TABLE III. The crossover temperatures for the unquenched TABLE IV. The chiral crossover temperatures for SU(3), N, =
computations. 2 with mp ~ 1.2 Mev as a function of d;.

SU(3) SU(2) G, d, (GeV?) 8.36 7.86 7.6 7.36 7 6.84
T. (chiral) 174 MeV 218 MeV 155 MeV T. (MeV) 212 201 194 185 174 169
T, (deconfinement) 182 MeV 222 MeV 160 MeV

quark mass to obtain a pion mass of 140 MeV. The resulting
transition temperature is within the extrapolated interval
given in Ref. [89]. Note that the value for d; differs from
those used elsewhere which were fixed in an Ny =2 + 1
calculation [42,98]. For SU(2), we tune d; to be in
agreement with the deconfinement transition of 7. =
217(23) from [99]. However, it should be noted that we
use lower quark masses than in the lattice reference. We
have checked explicitly that for fixed d; increasing the
renormalized quark mass increases also the transition
temperature. The approach we take here is instead of
tuning d; and the quark mass for each gauge group, we
take a similar value for the quark masses of all three
theories, mp = 1.2 MeV in the case of SU(2) and my =
1.18 MeV for SU(3) and G,, which is set by the pion mass
in SU(3). To fix d, for G,, we follow the same approach
as in the quenched case. Again, the values of d; can be
found in Table II.

To quantify the magnitude of the model parameter
dependence, we show the effect of varying the parameter
d; in the model, see Eq. (11), on the chiral condensate of
SU(3) in Fig. 10; see also [100]. The corresponding cross-
over temperatures for SU(3), summarized in Table IV, vary
by roughly the same amount as in the Ny = 2 + 1 study of
Ref. [42], where different setups to determine d; where
employed. In particular, one could take the value of d; to
reproduce meson properties in the vacuum as a natural
bound on d;. In Fig. 10, this corresponds to the lower curve,
whereas the central curve corresponds to the value of d; that
reproduces the chiral condensate optimally around the
transition. This is the value employed in the rest of this

SU(3)

dy =7

O di = @.84 ) ) )
0.14 0.16 0.18 0.20

1 1 T G
0.22  0.24 (GeV)
FIG. 10. SU(3) chiral condensate for variations of the quark-
gluon vertex model.

paper. For SU(2) and G, the dependence on d; is the same.
This indication of universality of the employed truncation
scheme—at least for vanishing chemical potential—is one
of the main results of this work.

IV. SUMMARY

We studied the universality of a DSE truncation scheme
that relies on a modeled quark-gluon vertex and quenched
lattice input for the gluon propagator. Unquenching was
implemented by a hybrid approach that adds quark effects
via the quark loop to the quenched gluon propagator data.
In QCD, this truncation is well studied. Here we applied it
to QC,D and G,-QCD. These theories can be studied with
lattice methods at nonzero chemical potential where they
can provide a test bed for truncations of functional
equations. At vanishing chemical potential, all three the-
ories are quite well understood. For this reason, we
concentrated on this case for now to establish the useful-
ness of our approach. We found that the employed setup
behaves universally and is able to reproduce the expected
behavior of the confinement/deconfinement and chiral
transitions for all three theories. This is promising for
extensions to nonvanishing quark chemical potential which
we plan to do as a next step [101].

The employed approach also has some shortcomings. In
particular, there is some sensitivity to the interaction
strength of the vertex model. The nontrivial result is that
solutions could be obtained for which both transitions are
close to each other and that all three theories behave very
similar under changes in the setup. If the latter feature
persists at non-vanishing density, the development of
further truncations of functional equations in QCD can
profit from benchmarks provided by lattice calculations in
QCD-like theories at nonvanishing chemical potential. Of
course, the specifics of each theory have to be taken into
account, for example, the emergence of a diquark con-
densate in QC,D.

Improvements of the employed setup include an explicit
calculation of the Yang-Mills part and an improved input
for the quark-gluon vertex. The former point is challenging
insofar, as not only the corresponding propagator equations
require knowledge about three- and four-point functions,
but also two-loop diagrams would need to be included for a
quantitative description. For the quark-gluon vertex a
variety of model extensions could be thought of. In the
long run, however, an explicit inclusion of this quantity will
be advisable.
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APPENDIX A: FITS OF FIT PARAMETERS a7,
AND b7/, FOR SU(2)

Using the fit function Eq. (5) and the lattice data from
[30,31], we calculated values for the parameters ar/; and
by in SU(2). Note that an overall factor was taken into
account in the fit to accommodate for the finite renorm-
alization of the dressing functions, but this factor was not
employed in the calculation. To obtain a smooth behavior
of the propagator, these values were fitted themselves using
a polynomial ansatz. The resulting fits are shown in Fig. 11.
In contrast to the SU(3) fit, we distinguish three different
regions for the temperature dependence. However, the
splitting of the region below the critical temperature is
for convenience only, as it allows the use of simple
polynomial fits, and does not reflect any physical changes.
We tested explicitly that in derived quantities like the chiral
condensate only the splitting at the critical temperature is
visible. Since quenched SU(2) has a continuous phase
transition, we enforced continuity in the fits as well.
The agreement of the transverse and longitudinal values
at zero temperature was taken as another condition. A few

20}
15F . = . $
1.0f
05 a
: m ar
n n n 1 n n n 1 n n n 1 n n n 1 n n n 1 " " " J l
0.0 0.2 0.4 0.6 0.8 1.0 12 Te

PHYSICAL REVIEW D 96, 074002 (2017)

exemplary fits are shown together with corresponding
lattice data in Fig. 4.

The fits used for the parameters ar/; and by, in terms of

T

= T_c are

0.46 > 1t: 1.41 + 0.43¢

ar =< 1>1r>046: 1.52+0.207 (A1)
t>1: 3.60 — 1.88¢
049 >t 2.20 4+ 0.07¢

br=<1>t>049: 243 -0.40¢ (A2)
t>1: 2.32 —-0.29¢
0.53 >1: 1.41 —2.09¢

ap =< 1>t>053: 0.89—1.51t+0.77¢ (A3)
t>1: —8.16 + 8.31¢
052 >1t: 2.20 — 1.82¢

b; = { 1>¢>0.52: 122+0.10t-0.057  (A4)
t>1: —1.48 + 2.75¢

APPENDIX B: QUARK DRESSING
FUNCTION D(j.0,)

The dressing function D(p,w,) is typically neglected,
since it is very small. We tested its influence on our
calculations. The left plot in Fig. 12 shows the evolution of
the dressing function D(p, w,) for different temperatures
and Ny = 2. It is basically zero at very low temperatures,
starts to increase until approximatively 7' = 100 MeV and
then decreases again. In the right plot of Fig. 12, the
effect on the other quark dressing functions is shown when
including D(p, w,). The relative difference for the quark
propagator between the computations with and without
D(p,w,) function is below 0.0001. Consequently,
dropping this dressing in all our calculations is well
justified.

24r¢

22¢
2.0 s
1.8
16}

[ bL

14F
[ | pr

S S S S E S|

0.2 0.4 0.6 0.8 1.0 1.2

S~

FIG. 11. Parameters ar;;, (black) and by, (gray) for fits of the gluon dressing functions of the gauge group SU(2) .
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A" without D
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FIG. 12. Left: Evolution of the dressing function D(p, w,) for various temperatures. Right: Effects of the dressing function D(p, @,,)

on A(p,w,), B(p,w;) and C(p,w;) at T = 86 MeV.
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