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We extend the standard model with two extra Higgs doublets. Making use of a symmetry principle, we
present flavor symmetries based on cycle groups ZN that oblige each Higgs doublet to contribute to the
mass of only one generation. The Higgs doublets couple to the fermions with different strengths and in this
way accommodate the quark mass hierarchy. We systematically search for all charge configurations that
naturally lead to the alignment in flavor space of the quark sectors, resulting in a Cabibbo-Kobayashi-
Maskawa matrix near to the identity, determined by the quark mass hierarchy, and with the correct overall
phenomenological features. The minimal realization is by the group Z7. We show that only a limited
number of solutions exist and that any accidental global symmetry that may occur together with the discrete
symmetry is necessarily anomalous. A phenomenological study of each class of solutions concerning
predictions to the flavor-changing neutral current phenomena is also performed; for some solutions, it is
possible to obtain realistic quark masses and mixing, while the flavor-violating neutral Higgs are light
enough to be accessible at the LHC.
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I. INTRODUCTION

The discovery of the Higgs boson in 2012 at the LHC has
attested the success of the standard model (SM) in
describing the observed fermions and their interactions.
However, there exist many theoretical issues or open
questions that have no satisfactory answer. In particular,
the observed flavor pattern lacks of a definitive explanation,
i.e., the quark Yukawa coupling matrices Yu and Yd, which
in the SM reproduce the six quark masses, three mixings
angles, and a complex phase to account for CP-violation
phenomena, are general complex matrices, not constrained
by any gauge symmetry.
Experimentally, the flavor puzzle is very intricate. First,

there is the quark mass hierarchy in both sectors. Second,
the mixings in the SM, encoded in the Cabibbo-Kobayashi-
Maskawa (CKM) unitary matrix, turns out to be close to the
identity matrix. If one takes also the lepton sector into
account, the hierarchy there is even more puzzling [1]. On
the other hand, in the SM, there is in general no connection
between the quark mass hierarchy and the CKM mixing
pattern. In fact, if one considers the Extreme Chiral Limit,
where the quark masses of the first two generations are set
to zero, the mixing does not necessarily vanish [2], and one
concludes that the CKM matrix V being close to the

identity matrix has nothing to do with the fact that the
quark masses are hierarchical. Indeed, in order to have
V ≈ 1, one must have a definite alignment of the quark
mass matrices in the flavor space, and to explain this
alignment, a flavor symmetry or some other mechanism is
required [2].
Among many attempts made in the literature to address

the flavor puzzle, extensions of the SM with new Higgs
doublet are particularly motivating. This is due to fact that
the number of Higgs doublets is not constrained by the SM
symmetry. Moreover, the addition of scalar doublets gives
rise to new Yukawa interactions, and as a result, it provides
a richer framework in approaching the theory of flavor.
On the other hand, any new extension of the Higgs sector
must be very much constrained, since it naturally leads to
flavor-changing neutral currents (FCNCs). At tree level, in
the SM, all the flavor-changing transitions are mediated
through charged weak currents, and the flavor mixing is
controlled by the CKM matrix [3,4]. If new Higgs doublets
are added, one expects large FCNC effects already present
at tree level. Such effects have not been experimentally
observed, and they constrain severely any model with extra
Higgs doublets, unless a flavor symmetry suppresses or
avoids large FCNCs [5].
Minimal flavor-violating models [6–11] are examples of

a multi-Higgs extension in which FCNCs are present at tree
level but their contributions to FCNC phenomena involve
only off-diagonal elements of the CKM matrix or their
products. The first consisted of this kind were proposed by
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Branco, Grimus, and Lavoura (BGL) [12] and subsisted of
the SM with two-Higgs doublets together with the require-
ment of an additional discrete symmetry. BGL models are
compatible with lower neutral Higgs masses, and FCNCs
occur at tree level, with the new interactions entirely
determined in terms of the CKM matrix elements.
The goal of this paper is to generalize the previous BGL

models and to, systematically, search for patterns in which
a discrete flavor symmetry naturally leads to the alignment
of the flavor space of both the quark sectors. Although the
quark mass hierarchy does not arise from the symmetry,
the effect of both is such that the CKM matrix is near to the
identity and has the correct overall phenomenological
features, determined by the quark mass hierarchy [13].
To do this, we extend the SMwith two extra Higgs doublets
to a total of three Higgs ϕa. The choice for discrete
symmetries is to avoid the presence of Goldstone bosons
that appear in the context of any global continuous
symmetry, when the spontaneous electroweak symmetry
breaking occurs. For the sake of simplicity, we restrict our
search to the family group ZN and demand that the resulting
up-quark mass matrix Mu is diagonal. This is to say that,
due to the expected strong up-quark mass hierarchy, we
only consider those cases in which the contribution of the
up-quark mass matrix to quark mixing is negligible.
If one assumes that all Higgs doublets acquire vacuum

expectation values with the same order of magnitude, then
each Higgs doublet must couple to the fermions with
different strengths. Possibly, one could obtain similar
results, assuming that the vacuum expectation values
(VEVs) of the Higgs have a definite hierarchy instead of
the couplings, but this is not considered here. Combining
this assumption with the symmetry, we obtain the correct
ordered hierarchical pattern if the coupling with ϕ3 gives
the strength of the third generation, the coupling with ϕ2

gives the strength of the second generation, and the
coupling with ϕ1 gives the strength of the first generation.
Therefore, from our point of view, the three Higgs doublets
are necessary to ensure that there exist three different
coupling strengths, one for each generation, to guarantee
simultaneously a hierarchical mass spectrum and a CKM
matrix that has the correct overall phenomenological
features, e.g., jVcbj2 þ jVubj2 ¼ Oðms=mbÞ2, and denoted
here by V ≈ 1.
Indeed, our approach is within the BGL models and such

that the FCNC flavor structure is entirely determined by
CKM. Through the symmetry, the suppression of the most
dangerous FCNCs, by combinations of the CKM matrix
elements and light quark masses, is entirely natural.
The paper is organized as follows. In the next section, we

present our model and classify the patterns allowed by the
discrete symmetry in combination with our assumptions. In
Sec. III, we give a brief numerical analysis of the
phenomenological output of our solutions. In Sec. IV,
we examine the suppression of scalar-mediated FCNCs

in our framework for each pattern. Finally, in Sec. V, we
present our conclusions.

II. THE MODEL

We extend the Higgs sector of the SMwith two extra new
scalar doublets, yielding a total of three scalar doublets, as
ϕ1, ϕ2, ϕ3. As was mentioned in the Introduction, the main
idea for having three Higgs doublets is to implement a
discrete flavor symmetry that leads to the alignment of the
flavor space of the quark sectors. The quark mass hierarchy
does not arise from the symmetry, but together with the
symmetry, the effect of both is such that the CKMmatrix is
near to the identity and has the correct overall phenomeno-
logical features, determined by the quark mass hierarchy.
Let us start by considering the most general quark

Yukawa coupling Lagrangian invariant in our setup,

−LY ¼ ðΩaÞijQ̄Li
~ϕauRj

þ ðΓaÞijQ̄LiϕadRj
þ H:c:; ð1Þ

with the Higgs labeling a ¼ 1, 2, 3 and i and j being just the
usual flavor indices identifying the generations of fermions.
In the above Lagrangian, one has three Yukawa coupling
matrices, Ω1, Ω2, and Ω3, for the up-quark sector and three
Yukawa coupling matrices, Γ1, Γ2, and Γ3, for the down
sector, corresponding to each of the Higgs doublets, ϕ1, ϕ2,
and ϕ3. Assuming that only the neutral components of the
three Higgs doublets acquire a VEV, the quark masses Mu
and Md are then easily generated as

Mu ¼ Ω1hϕ1i� þ Ω2hϕ2i� þ Ω3hϕ3i�; ð2aÞ

Md ¼ Γ1hϕ1i þ Γ2hϕ2i þ Γ3hϕ3i; ð2bÞ

where VEVs hϕii are parametrized as

hϕ1i ¼
v1ffiffiffi
2

p ; hϕ2i ¼
v2eiα2ffiffiffi

2
p ; hϕ3i ¼

v3eiα3ffiffiffi
2

p ; ð3Þ

with v1, v2, and v3 being the VEV moduli and α2 and α3
being just complex phases.We have chosen theVEVofϕ1 to
be real and positive, since this is always possible through a
proper gauge transformation. As stated, we assume that the
moduli of VEVs vi are of the same order of magnitude, i.e.,

v1 ∼ v2 ∼ v3: ð4Þ

Each of the ϕa couples to the quarks with a coupling
ðΩaÞij; ðΓaÞij, which we take be of the same order of
magnitude, unless some element vanishes by imposition of
the flavor symmmetry. In this sense, each ϕa and ðΩa;ΓaÞ
will generate its own respective generation; i.e., our model
is such that, by imposition of the flavor symmmetry,
ϕ3, Ω3, and Γ3 will generate mt, respectively mb; that
ϕ2, Ω2, and Γ2 will generate mc, respectively ms; and that
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ϕ1, Ω1, and Γ1 will generate mu, respectively md.
Generically, we have

v1jðΩ1Þijj∼mu; v2jðΩ2Þijj∼mc; v3jðΩ3Þijj∼mt; ð5aÞ

v1jðΓ1Þijj∼md; v2jðΓ2Þijj∼ms; v3jðΓ3Þijj∼mb; ð5bÞ

which together with Eq. (4) implies a definite hierarchy
among the nonvanishing Yukawa couplingmatrix elements:

jðΩ1Þijj ≪ jðΩ2Þijj ≪ jðΩ3Þijj; ð6aÞ

jðΓ1Þijj < jðΓ2Þijj ≪ jðΓ3Þijj: ð6bÞ

Next, we focus on the required textures for the Yukawa
coupling matrices Ωa and Γa that naturally lead to a
hierarchical mass quark spectrum and at the same time to
a realistic CKM mixing matrix. These textures must be
reproduced by our choice of the flavor symmetry. As referred
to in the Introduction, we search for quark mass patterns in
which themassmatrixMu is diagonal. Therefore, one derives
from Eqs. (2a) and (6a) the following textures for Ωa:

Ω1 ¼

0
B@

x 0 0

0 0 0

0 0 0

1
CA; Ω2 ¼

0
B@

0 0 0

0 x 0

0 0 0

1
CA;

Ω3 ¼

0
B@

0 0 0

0 0 0

0 0 x

1
CA: ð7Þ

The entry x means a nonzero element. In this case, the
up-quark masses are given by mu ¼ v1jðΩ1Þ11j, mc ¼
v2jðΩ2Þ22j and mt ¼ v3jðΩ3Þ33j.
Generically, the down-quark Yukawa coupling matrices

must have the following indicative textures:

Γ1 ¼

0
B@

x x x

x x x

x x x

1
CA; Γ2 ¼

0
B@

0 0 0

x x x

x x x

1
CA;

Γ3 ¼

0
B@

0 0 0

0 0 0

x x x

1
CA: ð8Þ

We distinguish rows with bold x in order to indicate that it
is mandatory that at least one of matrix elements within that
row must be nonvanishing. Rows denoted with xmay be set
to zero, without modifying the mass matrix hierarchy.
These textures ensure that not only is the mass spectrum
hierarchy respected but it also leads to the alignment of the
flavor space of both the quark sectors [13] and to a CKM
matrix V ≈ 1. For instance, if one were to not have a
vanishing, or comparatively very small, (1,3) entry in the

Γ2, this would not necessarily spoil the scale of ms, but it
would dramatically change the predictions for the CKM
mixing matrix.
To force the Yukawa coupling matrices Ωa and Γa to

have the indicative forms outlined in Eqs. (7) and (8), we
introduce a global flavor symmetry. Since any global
continuous symmetry leads to the presence of massless
Goldstone bosons after the spontaneous electroweak break-
ing, one should instead consider a discrete symmetry.
Among many possible discrete symmetry constructions,
we restrict our searches to the case of cycle groups ZN .
Thus, we demand that any quark or boson multiplet χ
transforms according to ZN as

χ → χ0 ¼ eiQðχÞ2πN χ; ð9Þ

where QðχÞ ∈ f0; 1;…; Ng is the ZN charge attributed for
the multiplet χ.
We have chosen the up-quark mass matrix Mu to be

diagonal. This restricts the flavor symmetry ZN. We have
found that, in order to ensure that all Higgs doublet charges
are different, and to have appropriate charges for fields QLi
and uRi, we must have N ≥ 7. We simplify our analysis by
fixing N ¼ 7 and choose

QðQLiÞ ¼ ð0; 1;−2Þ; ð10aÞ

QðuRiÞ ¼ ð0; 2;−4Þ: ð10bÞ

In addition, we may also fix

QðQLiÞ ¼ QðϕiÞ: ð11Þ

It turns out that these choices do not restrict the results, i.e.,
the possible textures that one can have for the Γi matrices.
Other choices would only imply that we reshuffle the
charges of the multiplets.
With the purpose of enumerating the different possible

textures for the Γi matrices implementable in Z7, we write
down the charges of the trilinears QðQ̄LiϕadRjÞ corre-
sponding to each ϕa as

QðQ̄Liϕ1dRjÞ ¼

0
B@

d1 d2 d3
d1 − 1 d2 − 1 d3 − 1

d1 þ 2 d2 þ 2 d3 þ 2

1
CA; ð12aÞ

QðQ̄Liϕ2dRjÞ ¼

0
B@

d1 þ 1 d2 þ 1 d3 þ 1

d1 d2 d3
d1 þ 3 d2 þ 3 d3 þ 3

1
CA; ð12bÞ

QðQ̄Liϕ3dRjÞ ¼

0
B@

d1 − 2 d2 − 2 d3 − 2

d1 − 3 d2 − 3 d3 − 3

d1 d2 d3

1
CA; ð12cÞ
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where di ≡QðdRiÞ. One can check that, in order to
have viable solutions, one must vary the values of
di ∈ f0; 1;−2;−3g.
We summarize in Table I all the allowed textures for the

Γa matrices and the resulting Md mass matrix texture,
excluding all cases that are irrelevant, e.g., matrices that
have too much texture zeros and are singular, or matrices
that do not accommodate CP violation. It must be stressed
that these are the textures obtained by the different charge
configurations that one can possibly choose. However, if
one assumes a definite charge configuration, then the entire

texture,Md andMu, and the respective phenomenology are
fixed. As stated, the list of textures in Table I remains
unchanged even if one chooses any other set than in
Eqs. (10) and (11). As stated, all patterns presented here
are of the minimal flavor-violation type [6–11].
Pattern I in the table was already considered in Ref. [14]

in the context of Z8. We discard patterns IV, VII, and X
because, contrary to our starting point, at least one of three
nonzero couplings with ϕ1 will turn out be of the same
order as the larger coupling with ϕ2 in order to meet the
phenomenological requirements of the CKM matrix.

TABLE I. The table shows the viable configurations for the right-handed down-quark dRi and their corresponding Γ1, Γ2, Γ3, andMd
matrices. It is understood that, for each pattern and coupling, the parameters expressed here by the same symbol are in fact different but
denote the same order of magnitude (or possibly smaller). For example, in pattern I, coupling Γ1, the three δ, δ, and δ stand for δ1, δ2, and
δ3. The same applies to the ε’s and c’s. For patterns IV, VII, and X, which will be excluded, one of the couplings in Γ1 turns out to be
much larger.

Pattern QðdRiÞ Γ1 Γ2 Γ3 Md

I (0,0,0)
0
B@

δ δ δ

0 0 0

0 0 0

1
CA

0
B@

0 0 0

ε ε ε

0 0 0

1
CA

0
B@

0 0 0

0 0 0

c c c

1
CA

0
B@

δ δ δ

ε ε ε

c c c

1
CA

II (0,0,1)
0
B@

δ δ 0

0 0 δ

0 0 0

1
CA

0
B@

0 0 0

ε ε 0

0 0 0

1
CA

0
B@

0 0 0

0 0 0

c c 0

1
CA

0
B@

δ δ 0

ε ε δ

c c 0

1
CA

III ð0; 0;−3Þ 0
B@

δ δ 0

0 0 0

0 0 0

1
CA

0
B@

0 0 0

ε ε 0

0 0 ε

1
CA

0
B@

0 0 0

0 0 0

c c 0

1
CA

0
B@

δ δ 0

ε ε 0

c c ε

1
CA

IV ð0; 0;−2Þ 0
B@

δ δ 0

0 0 0

0 0 ε

1
CA

0
B@

0 0 0

ε ε 0

0 0 0

1
CA

0
B@

0 0 0

0 0 0

c c 0

1
CA

0
B@

δ δ 0

ε ε 0

c c ε

1
CA

V (0,1,0)
0
B@

δ 0 δ

0 δ 0

0 0 0

1
CA

0
B@

0 0 0

ε 0 ε

0 0 0

1
CA

0
B@

0 0 0

0 0 0

c 0 c

1
CA

0
B@

δ 0 δ

ε δ ε

c 0 c

1
CA

VI ð0;−3; 0Þ 0
B@

δ 0 δ

0 0 0

0 0 0

1
CA

0
B@

0 0 0

ε 0 ε

0 ε 0

1
CA

0
B@

0 0 0

0 0 0

c 0 c

1
CA

0
B@

δ 0 δ

ε 0 ε

c ε c

1
CA

VII ð0;−2; 0Þ 0
B@

δ 0 δ

0 0 0

0 ε 0

1
CA

0
B@

0 0 0

ε 0 ε

0 0 0

1
CA

0
B@

0 0 0

0 0 0

c 0 c

1
CA

0
B@

δ 0 δ

ε 0 ε

c ε c

1
CA

VIII (1,0,0)
0
B@

0 δ δ

δ 0 0

0 0 0

1
CA

0
B@

0 0 0

0 ε ε

0 0 0

1
CA

0
B@

0 0 0

0 0 0

0 c c

1
CA

0
B@

0 δ δ

δ ε ε

0 c c

1
CA

IX ð−3; 0; 0Þ 0
B@

0 δ δ

0 0 0

0 0 0

1
CA

0
B@

0 0 0

0 ε ε

ε 0 0

1
CA

0
B@

0 0 0

0 0 0

0 c c

1
CA

0
B@

0 δ δ

0 ε ε

ε c c

1
CA

X ð−2; 0; 0Þ 0
B@

0 δ δ

0 0 0

ε 0 0

1
CA

0
B@

0 0 0

0 ε ε

0 0 0

1
CA

0
B@

0 0 0

0 0 0

0 c c

1
CA

0
B@

0 δ δ

0 ε ε

ε c c

1
CA
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Notice also that the structure of other Md’s cannot be
trivially obtained, e.g., from pattern I, by a transformation
of the right-handed down-quark fields.
Our symmetry model may be extended to the charged

leptons and neutrinos, e.g., in the context of type-1 seesaw.
Choosing for the lepton doublets Li the charges
QðLiÞ ¼ ð0;−1; 2Þ, opposite to the Higgs doublets in
Eq. (11), and e.g., for the charges QðeRiÞ ¼ ð0;−2; 4Þ of
the right-handed fields eRi, we force the charged lepton
mass matrix to be diagonal. Then, for the right-handed
neutrinos νRi, choosing QðνRiÞ ¼ ð0; 0; 0Þ, we obtain for
the neutrino Dirac mass matrix a pattern similar to pattern I.
Of course, for this case, the heavy right-handed neutrino
Majorana mass matrix is totally arbitrary. In other cases,
i.e., for other patterns and charges, in particular for the
right-handed neutrinos, we could introduce scalar singlets
with suitable charges, which would then lead to certain
heavy right-handed neutrino Majorana mass matrices.
Next, we address an important issue of the model,

namely, whether accidental Uð1Þ symmetries may appear
in the Yukawa sector or in the potential. One may wonder
whether a continuous accidental Uð1Þ symmetry could
arise, once the Z7 is imposed at the Lagrangian level in
Eq. (1). This is indeed the case; i.e., for all realizations of
Z7, one has the appearance of a global Uð1ÞX. However,
any consistent global Uð1ÞX must obey to the anomaly-free
conditions of global symmetries [15], which read for
the anomalies SUð3Þ2 ×Uð1ÞX, SUð2Þ2 ×Uð1ÞX and
Uð1Þ2Y ×Uð1ÞX as

A3 ≡ 1

2

X3
i¼1

ð2XðQLiÞ − XðuRiÞ − XðdRiÞÞ ¼ 0; ð13aÞ

A2 ≡ 1

2

X3
i¼1

ð3XðQLiÞ þ XðlLiÞÞ ¼ 0; ð13bÞ

A1 ≡ 1

6

X3
i¼1

ðXðQLiÞ þ 3XðlLiÞ − 8XðuRiÞ − 2XðdRiÞ

− 6XðeRiÞÞ ¼ 0; ð13cÞ

where XðχÞ is the Uð1ÞX charge of the fermion multiplet χ.
We have properly shifted the Z7 charges in Eq. (10) and in
Table I so that XðχÞ ¼ QðχÞ, apart from an overall Uð1ÞX
convention. In general, to test those conditions, one needs
to specify the transformation laws for all fermionic fields.
Looking at Table I, we derive that all the cases, except the
first case corresponding to di ¼ ð0; 0; 0Þ, violate the con-
dition given in Eq. (13a) that depends only on colored
fermion multiplets. In the case di ¼ ð0; 0; 0Þ, if one assigns
the charged lepton charges as XðlLiÞ ¼ XðQLiÞ, one
concludes that the condition given in Eq. (13b) is violated.
One then concludes that the global Uð1ÞX symmetry is

anomalous and therefore only the discrete symmetry Z7

persists.
We also comment on the scalar potential of our model.

The most general scalar potential with three scalars
invariant under Z7 reads as

VðϕÞ ¼
X
i

½−μ2iϕ†
iϕi þ λiðϕ†

iϕiÞ2�

þ
X
i<j

½þCiðϕ†
iϕiÞðϕ†

jϕjÞ þ C̄ijϕ†
iϕjj2�; ð14Þ

where the constants μ2i , λi, Ci, and C̄i are taken real for
i, j ¼ 1, 2, 3. Analyzing the potential above, one sees that it
gives rise to the accidental global continuous symmetry
ϕi → eiαiϕi, for arbitrary αi, which upon spontaneous
symmetry breaking leads to a massless neutral scalar, at
tree level. Introducing soft-breaking terms like m2

ijϕ
†
iϕj þ

H:c: can erase the problem. Another possibility without
spoiling the Z7 symmetry is to add new scalar singlets so
that the coefficients m2

ij are effectively obtained once the
scalar singlets acquire VEVs.

III. NUMERICAL ANALYSIS

In this section, we give the phenomenological predic-
tions obtained by the patterns listed in Table I. Note that,
although these patterns arise directly from the chosen
discrete charge configuration of the quark fields, one
may further preform a residual flavor transformation of
the right-handed down-quark fields, resulting in an extra
zero entry in Md. Taking this into account, all the
parameters in each pattern may be uniquely expressed in
terms of down-quark masses and the CKMmatrix elements
Vij. This follows directly from the diagonalization equation
of Md,

V†MdW ¼ diagðmd;ms;mbÞ
⇒ Md ¼ Vdiagðmd;ms;mbÞW†; ð15Þ

with V being the CKM mixing matrix, since Mu is
diagonal. Because of the zero entries in Md, it is easy to
extract the right-handed diagonalization matrix W, com-
pletely in terms of the down-quark masses and the Vij.
Thus, all parameters, modulo the residual transformation of
the right-handed down-quark fields, are fixed; i.e., all
parameters in each pattern may be uniquely expressed in
terms of down-quark masses and the CKMmatrix elements
Vij, including the right-handed diagonalization matrixW of
Md. More precisely, all matrix elements of V are written in
terms of Wolfenstein real parameters λ, A, ρ̄, and η̄, defined
in terms of rephasing invariant quantities as

λ≡ jVusjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVusj2 þ jVudj2

p ; A≡ 1

λ
jVcb

Vus
j; ð16aÞ
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ρ̄þ iη̄≡ −
VudV�

ub

VcdV�
cb
; ð16bÞ

and diagðmd;ms;mbÞ in Eq. (15),

ffiffiffiffiffi
md
ms

q
¼

ffiffiffiffi
kd
ks

q
λ md ¼ kdλ4mb

⇒
ms
mb

¼ ksλ2 ms ¼ ksλ2mb;

ð17Þ

with, phenomenologically, kd and ks being factors of order
1. Writing W† in Eq. (15) as W† ¼ ðv1; v2; v3Þ, with the vi
vectors formed by the ith column of W†, we find, e.g., for
pattern II,

v3 ¼
1

n3

0
B@

md
mb

V11

ms
mb

V12

V13

1
CA ×

0
B@

md
mb

V31

ms
mb

V32

V33

1
CA; ð18Þ

where n3 is the norm of the vector obtained from the
external product of the two vectors. Taking into account the
extra freedom of transformation of the right-handed fields,

we may choose Md
31 ¼ 0, corresponding to c1 ¼ 0 in

Table I, and we conclude that

v1 ¼
1

n1

0
B@

md
mb

V31

ms
mb

V32

V33

1
CA × v�3: ð19Þ

Obviously, then v2 ¼ 1
n2
v�1 × v�3. This process is replicated

for all patterns. Thus, V and W are entirely expressed in
terms of Wolfenstein parameters and kd and ks of Eq. (17).
These two matrices will be used later to compute the
patterns of the FCNCs in Table III. Indeed, in this way, we
find, e.g., for pattern II, in leading order order,

Md ¼ mb

0
B@

−kdλ3 ðρ̄ − iη̄ÞAλ3 0

−kdλ2 Aλ2 −ksλ3

0 1 0

1
CA; ð20Þ

which corresponds to the expected power series in which
the couplings in Γ1 to the first Higgs ϕ1 are comparatively
smaller than the couplings in Γ2, and these smaller than the
couplings in Γ3. Similar results are obtained for all patterns

TABLE II. A numerical example of a Yukawa coupling configuration for each pattern that gives the correct hierarchy among the quark
masses and mixing.

Pattern v1Y1 v2Y2 v3Y3 Md

I
0
B@
0.00277 0.0124 0.0101e1.907i

0 0 0

0 0 0

1
CA

0
B@
0 0 0

0 0.0537 0.119

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 2.86

1
CA

0
B@
0.00277 0.00124 0.0101e1.907i

0 0.0537 0.119

0 0 2.86

1
CA

II 0
B@
0.0123 0.0101e−1.235i 0

0 0 0.012

0 0 0

1
CA

0
B@

0 0 0

0.0524 0.119 0

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 2.86 0

1
CA

0
B@
0.0123 0.0101e−1.235i 0

0.0524 0.119 0.012

0 2.86 0

1
CA

III 0
B@
0.0127 0.0102e−1.253i 0

0 0 0

0 0 0

1
CA

0
B@

0 0 0

0.0523 0.120 0

0 0 0.295

1
CA

0
B@
0 0 0

0 0 0

0 2.844 0

1
CA

0
B@
0.0127 0.0102e−1.253i 0

0.0523 0.120 0

0 2.844 0.295

1
CA

V
0
B@
0.0127 0 0.0101e−1.234i

0 0.0117 0

0 0 0

1
CA

0
B@

0 0 0

0.0524 0 0.112

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 2.86

1
CA

0
B@
0.0127 0 0.0101e−1.234i

0.0524 0.0117 0.112

0 0 2.86

1
CA

VI 0
B@
0.0127 0 0.0102e−1.253i

0 0 0

0 0 0

1
CA

0
B@

0 0 0

0.0523 0 0.120

0 0.295 0

1
CA

0
B@
0 0 0

0 0 0

0 0 2.844

1
CA

0
B@
0.0127 0 0.0102e−1.253i

0.0523 0 0.120

0 0.295 2.844

1
CA

VIII
0
B@

0 0.0127 0.0102e1.907i

0.0117 0 0

0 0 0

1
CA

0
B@
0 0 0

0 0.0524 0.119

0 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 2.86

1
CA

0
B@

0 0.0127 0.0102e1.907i

0.0117 0.0524 0.119

0 0 2.86

1
CA

IX
0
B@
0 0.0127 0.0101e−1.253i

0 0 0

0 0 0

1
CA

0
B@

0 0 0

0 0.0523 0.120

0.295 0 0

1
CA

0
B@
0 0 0

0 0 0

0 0 2.844

1
CA

0
B@

0 0.0127 0.0101e−1.253i

0 0.0523 0.120

0.295 0 2.844

1
CA
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in Table I, except for patterns IV, VII, and X, in which, e.g.,
for pattern IV, we find that the coupling in ðΓ1Þ33 is
proportional to λ, which is too large and contradicts our
initial assumption that all couplings in Γ1 to the first Higgs
ϕ1 must be smaller than the couplings in Γ2 to the second
Higgs ϕ2. Therefore, we exclude patterns IV, VII, and X.
We give in Table II a numerical example of a Yukawa

coupling configuration for each pattern. We use the follow-
ing quark running masses at the electroweak scale MZ,

mu ¼ 1.3þ0.4
−0.2 MeV; md ¼ 2.7� 0.3 MeV;

ms ¼ 55þ5
−3 MeV; ð21aÞ

mc ¼ 0.63� 0.03 GeV; mb ¼ 2.86þ0.05
−0.04 GeV;

mt ¼ 172.6� 1.5 GeV; ð21bÞ

whichwere obtained from a renormalization group equation
evolution at four-loop level [16], which, taking into account
all experimental constrains [17], implies

λ ¼ 0.2255� 0.0006; A ¼ 0.818� 0.015; ð22aÞ

ρ̄ ¼ 0.124� 0.024; η̄ ¼ 0.354� 0.015: ð22bÞ

IV. PREDICTIONS OF FLAVOR-CHANGING
NEUTRAL CURRENTS

In the SM, FCNCs are forbidden at tree level, both in the
gauge and the Higgs sectors. However, by extending the
SM field content, one obtains Higgs flavor-violating neutral
couplings [18]. In terms of the quark mass eigenstates, the
Yukawa couplings to the Higgs neutral fields are

−LNeutral Yukawa ¼
H0

v
ðdLDddR þ uLDuuRÞ

þ 1

v0
dLNd

1ðR1 þ iI1ÞdR

þ 1

v0
uLNu

1ðR1 − iI1ÞuR

þ 1

v00
dLNd

2ðR2 þ iI2ÞdR

þ 1

v00
uLNu

2ðR2 − iI2ÞuR þ h:c; ð23Þ

where the Nu;d
i are the matrices that give the strength and

the flavor structure of the FCNC,

Nd
1 ¼

1ffiffiffi
2

p V†ðv2Γ1 − v1eiα2Γ2ÞW; ð24aÞ

Nd
2 ¼

1ffiffiffi
2

p V†
�
v1Γ1þv2eiα2Γ2−

v21þv22
v3

eiα3Γ3

�
W; ð24bÞ

Nu
1 ¼

1ffiffiffi
2

p ðv2Ω1 − v1e−iα2Ω2Þ; ð24cÞ

Nu
2 ¼

1ffiffiffi
2

p
�
v1Ω1þv2e−iα2Ω2 −

v21þv22
v3

e−iα3Ω3

�
: ð24dÞ

Since in our case the Nu
i are diagonal, there are no flavor-

violating terms in the up sector. Therefore, the analysis of
the FCNC resumes only to the down-quark sector. One can
use the equations of the mass matrices presented in Eq. (2)
to simplify the Higgs-mediated FCNC matrices for the
down sector:

TABLE III. For all allowed patterns, we find that the matrices
Nd

1 −Dd and Nd
2 are proportional to the following patterns, where

λ is the Cabibbo angle.

Pattern ðNd
1 −DdÞ∼ Nd

2∼

I
0
B@

λ4 λ3 λ3

λ5 λ2 λ2

λ7 λ4 1

1
CA

0
B@

λ4 λ7 λ3

λ9 λ2 λ2

λ7 λ4 1

1
CA

II
0
B@

λ4 λ3 λ3

λ3 λ2 λ2

λ5 λ4 1

1
CA

0
B@

λ4 λ7 λ3

λ9 λ2 λ2

λ7 λ4 1

1
CA

III
0
B@

λ4 λ3 λ3

λ3 λ2 λ2

λ λ2 1

1
CA

0
B@

λ4 λ5 λ3

λ3 λ2 λ2

λ λ2 1

1
CA

IV
0
B@

λ4 λ3 λ3

λ3 λ2 λ2

λ λ2 1

1
CA

0
B@

λ4 λ5 λ3

λ3 λ2 λ2

λ λ2 1

1
CA

V
0
B@

λ4 λ3 λ3

λ3 λ2 λ2

λ5 λ4 1

1
CA

0
B@

λ4 λ7 λ3

λ7 λ2 λ2

λ5 λ4 1

1
CA

VI
0
B@

λ4 λ3 λ3

λ3 λ2 λ2

λ λ2 1

1
CA

0
B@

λ4 λ5 λ3

λ3 λ2 λ2

λ λ2 1

1
CA

VII
0
B@

λ4 λ3 λ3

λ3 λ2 λ2

λ λ2 1

1
CA

0
B@

λ4 λ5 λ3

λ3 λ2 λ2

λ λ2 1

1
CA

VIII
0
B@

λ4 λ3 λ3

λ3 λ2 λ2

λ5 λ4 1

1
CA

0
B@

λ4 λ7 λ3

λ7 λ2 λ2

λ5 λ4 1

1
CA

IX
0
B@

λ4 λ3 λ3

λ3 λ2 λ2

λ λ2 1

1
CA

0
B@

λ4 λ5 λ3

λ3 λ2 λ2

λ λ2 1

1
CA

X
0
B@

λ4 λ3 λ3

λ3 λ2 λ2

λ λ2 1

1
CA

0
B@

λ4 λ5 λ3

λ3 λ2 λ2

λ λ2 1

1
CA
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Nd
1 ¼

v2
v1

Dd −
v2ffiffiffi
2

p
�
v2
v1

þ v1
v2

�
eiα2V†Γ2W

−
v2v3
v1

ffiffiffi
2

p eiα3V†Γ3W ð25aÞ

Nd
2 ¼ Dd −

v2

v3
ffiffiffi
2

p eiα3V†Γ3W: ð25bÞ

To satisfy experimental constraints arising from K0 − K0,

B0 − B0, and D0 −D0, the off-diagonal elements of the
Yukawa interactions Nd

1 and N
d
2 must be highly suppressed

[19,20]. For each of our ten solutions in Table I, we
summarize in Table III all FCNC patterns, for each
solution, and for v1 ¼ v2 ¼ v3 and α2 ¼ α3 ¼ 0. These
patterns are of the BGL type, since in Eq. (25) all matrices
can be expressed in terms of the CKM mixing matrix
elements and the down-quark masses. As explained, to
obtain these patterns, we express the CKM matrix V and
the matrix W in terms of Wolfenstein parameters.

The tree-level Higgs-mediated ΔS ¼ 2 amplitude must
be suppressed. This can always be achieved if one chooses
the masses of the flavor-violating neutral Higgs scalars
sufficiently heavy. However, from the experimental point of
view, it would be interesting to have these masses as low as
possible. Therefore, we also estimate the lower bound of
these masses by considering the contribution to B0 − B0

mixing. We choose this mixing, since for our patterns the
(3,1) entry of the matrix Nd

1 is less suppressed in certain
cases and would require very heavy flavor-violating neutral
Higgs. The relevant quantity is the off-diagonal matrix
element M12, which connects the B meson with the
corresponding antimeson. This matrix element, MNP

12 ,
receives contributions [19] both from a SM box diagram
and a tree-level diagram involving the FCNC,

M12 ¼ MSM
12 þMNP

12 ; ð26Þ

where the New Physics (NP) short-distance tree-level
contribution to the meson-antimeson contribution is

MNP
12 ¼

X2
i

f2BmB

96v2m2
Ri

���
1þ

�
mB

md þmb

�
2
�
ðaRi Þ12

�
−
��

1þ 11

�
mB

md þmb

�
2
��

ðbRi Þ12
�

þ
X2
i

f2BmB

96v2m2
Ii

���
1þ

�
mB

md þmb

�
2
�
ðaIiÞ12

�
−
��

1þ 11

�
mB

md þmb

�
2
��

ðbIiÞ12
�

ð27Þ

with v2 ¼ v21 þ v22 þ v22 and

ðaRi Þ12 ¼ ½ðNd
i Þ�31 þ ðNd

i Þ13�2
ðaIiÞ12 ¼ −½ðNd

i Þ�31 − ðNd
i Þ13�2

;
ðbRi Þ12 ¼ ½ðNd

i Þ�31 − ðNd
i Þ13�2

ðbIiÞ12 ¼ −½ðNd
i Þ�31 þ ðNd

i Þ13�2
; i ¼ 1; 2: ð28Þ

FIG. 1. Lower bound for the flavor-violating Higgs masses for case III.

EMMANUEL-COSTA, SILVA-MARCOS, and AGOSTINHO PHYSICAL REVIEW D 96, 073006 (2017)

073006-8



To obtain a conservative measure, we have tentatively
expanded the original expression in Ref. [19] and, for the
three-Higgs case, included all neutral Higgs mass eigen-
states.
Adopting as input values the Particle Data Group

experimental determinations of fB, mB, and ΔmB and
considering a common VEV for all Higgs doublets, we
impose the inequality MNP

12 < ΔmB. The following plots
show an estimate of the lower bound for the flavor-
violating Higgs masses for two different patterns. We plot
two masses chosen from the set ðmR

1 ; m
R
2 ; m

I
1; m

I
2Þ, while

the other two are varied over a wide range. In Fig. 1, we
illustrate these lower bounds for pattern III, which are
restricted by the (3,1) entry of Nd

1 matrix and suppressed
by a factor of λ. For pattern VIII, in Fig. 2, we find the
flavor-violating neutral Higgs to be much lighter and
possibly accessible at the LHC.

V. CONCLUSIONS

We have presented a model based on the SM with three
Higgs and an additional flavor discrete symmetry. We have
shown that there exist flavor discrete symmetry configu-
rations that lead to the alignment of the quark sectors. By
allowing each scalar field to couple to each quark gen-
eration with a distinctive scale, one obtains the quark mass
hierarchy, and although this hierarchy does not arise from
the symmetry, the effect of both is such that the CKM
matrix is near to the identity and has the correct overall
phenomenological features. In this context, we have
obtained seven solutions fulfilling these requirements, with
the additional constraint of the up-quark mass matrix being
diagonal and real.

We have also verified if accidentalUð1Þ symmetries may
appear in the Yukawa sector or in the potential, particularly
the case in which a continuous accidental Uð1Þ symmetry
could arise, once the Z7 is imposed at the Lagrangian level.
This was indeed the case; however, we have shown that the
anomaly-free conditions of global symmetries were vio-
lated. Thus, the global Uð1ÞX symmetry is anomalous, and
therefore only the discrete symmetry Z7 persists.
As in this model new Higgs doublets are added, one

expects large FCNC effects, already present at tree level.
However, such effects have not been experimentally
observed. We show that for certain specific implementa-
tions of the flavor symmetry it is possible to suppress the
FCNC effects and to ensure that the flavor-violating neutral
Higgs are light enough to be accessible at the LHC. Indeed,
in this respect, our model is a generalization of the BGL
models for the three-Higgs doublet model, since the FCNC
flavor structure is entirely determined by CKM.
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