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We perform a global Bayesian analysis of currently available neutrino data, putting data from oscillation
experiments, neutrinoless double beta decay (0νββ), and precision cosmology on an equal footing. We
evaluate the discovery potential of future 0νββ experiments and the Bayes factor of the two possible
neutrino mass ordering schemes for different prior choices. We show that the indication for normal ordering
is still very mild and does not strongly depend on realistic prior assumptions or different combinations of
cosmological data sets. We find a wide range for 0νββ discovery potential, depending on the absolute
neutrino mass scale, mass ordering and achievable background level.

DOI: 10.1103/PhysRevD.96.073001

I. INTRODUCTION

Neutrino physics is one of the most attractive fields to
look for new physics, and many parameters in the neutrino
sector are not yet determined. A series of oscillation
experiments has established the fact that at least two
neutrino masses are distinct from zero, but their smallness
cannot be accommodated within the Standard Model of
Particle Physics. Furthermore, quantities like the Dirac
phase δCP describing the difference between matter and
antimatter, the absolute neutrino mass scale, or the mass
ordering (i.e., which neutrino is the lightest) are currently
only poorly restricted [1]. The even more fundamental
question of whether neutrinos are of Majorana or of Dirac
nature (i.e., whether they are identical to their antiparticles,
or not) is also still unanswered. A global analysis, combin-
ing all relevant experimental results and using the current
data as efficiently as possible, is the most suitable way to
address these open issues. It additionally informs upcoming
experimental choices.
The first fully comprehensive Bayesian analysis of this

kind is presented in this paper. We use information from
oscillation experiments, precision cosmology, and neutri-
noless double beta decay (0νββ). While previous works
focus mostly on one of these aspects, we adopt a fully
global view. Our analysis is based on the minimal frame-
work of three light Majorana neutrinos, the most predictive
setting for neutrino physics. We use global oscillation data
from the nu-fit Collaboration [1], cosmological data
from the Planck Legacy Archive (PLA),1 and data from the
0νββ-experiments KamLAND-Zen [2], EXO-200 [3], and
GERDA [4]. We do not include single β decay results as
they currently do not provide additional constraints.

We extract the implications for future 0νββ-experiments,
and also address whether current data may already exhibit a
tendency towards the normal ordering scheme—which is
currently under intense debate [5–8].
Bayes’ Theorem provides the logical path from the

probability of data under different hypotheses Hi,
PðDjHiÞ, to the probability of a hypothesis being correct
given the data. It requires the explicit definition of prior
probabilities. Any other approach is either incoherent (for a
discussion of p-values as evidence, see e.g. [9]), requires
predefined error rates (Neyman frequentist approach [10]),
or contains implicit prior choices—all of which are to be
disfavored. If the outcome depends strongly on the choice
of prior, this is simply an indication that the data is not
powerful enough to draw a conclusion. In this context, it is
important to find the implications from a range of reason-
able prior choices.
For our analysis we assign equal prior probabilities to the

two mass orderings. For the absolute neutrinomass scale, the
choice of the prior on the mass, mlightest, of the lightest
neutrino is critical. At present, only an upper limit is
available. We consider two choices: A prior flat in mlightest

(this will tend to favor larger values and reflects the sizes of
the measured solar and atmospheric mass square differences
Δm2⊙ ≡m2

2 −m2
1 and Δm2

A ≡ jm2
3 −m2

1j) and a scale-free
prior (flat in the logarithm of mlightest, which tends to favor
small values and reflects the fact that the absolute neutrino
mass scale is still unknown). We then evaluate the conse-
quences of both prior choices on the posterior probabilities.
Technical details regarding priors and likelihoods are

provided in the Appendix.

II. PARAMETER SPACE, LIKELIHOODS, PRIORS

A. Parameter space

Our analysis depends on eight parameters, aggregated
into the vector θ,
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θ ¼ ðmlightest;Δm2⊙;Δm2
A; s

2
12; s

2
13; α1;α2;GÞ: ð1Þ

Here, mlightest is the smallest neutrino mass eigenvalue,
while s2ij denotes the sine squared of the mixing angle θij.
The Majorana phases α1 and α2 take trivial values if
neutrinos are of Dirac nature. The nuclear matrix elements
(NMEs) required to calculate rates of 0νββ for different
considered isotopes are condensed into G. Note that θ does
not contain the Dirac phase δCP or s223, as they only affect
neutrino oscillations, but neither 0νββ nor cosmology.
Furthermore we allow for the choice of either normal
(NO: m1 < m2 < m3) or inverted (IO: m3 < m1 < m2)
ordering.2

B. Likelihood

The global likelihood function Lglob is a function that
depends nontrivially on all eight parameters. Since every
suite of experiment constitutes an independent data set, we
can factorize the likelihood,

Lglob ¼ Lcosmo × L0νββ × Losc: ð2Þ

The cosmological term Lcosmo only depends on the sum of
neutrino masses,

Σ≡m1 þm2 þm3; ð3Þ

and hence on mlightest, Δm2⊙, and Δm2
A. We reconstructed

the likelihood from the Markov chains that are publicly
available on the PLA. As those chains were sampled on
a prior flat in Σ, one can construct a function of Σ that
is directly proportional to Lcosmo from these chains.3 To
be agnostic about the choice of data sets used in our
analysis, we chose two models: both contain the TT
correlation of the cosmic microwave background
(CMB), a joint likelihood on TT, EE, BB, and TE
correlations4 for low multipoles (2 ≤ l ≤ 29), as well as
weak gravitational lensing data. We refer to this combi-
nation of data as conservative model. Augmenting the
data by data from baryonic accoustic oscillations (BAO)
defines a restrictive model, which puts tighter con-
straints onto Σ.5

The termL0νββ is factorized into three terms for GERDA,
KamLAND-Zen, and EXO, respectively. Each term is well
parametrized by the form

L0νββ;i ¼ exp ½−ða0;i þ a1;i=T1=2 þ a2;i=T2
1=2Þ�; ð4Þ

where T1=2 is the neutrinoless double beta decay half-life in
units of 1025 a. The parameters entering this formula have
either been determined directly from published data or
confirmed by the experimental collaborations.
The neutrino oscillation data is adopted from the

global oscillation fit provided by nu-fit.org [1].
This collaboration does not provide a public likelihood
function depending on all oscillation parameters. We thus
approximate the likelihood using a spline-fit of the
one-dimensional projections of their Δχ2 fit onto the
relevant parameters, shifting the distributions so they have
a minimum at Δχ2 ¼ 0, and taking the likelihood to be a
product of the resulting four factors. Each such factor is
given by

exp

�
−
Δχ2ðθiÞ

2

�
; ð5Þ

where χ2ðθiÞ is the one dimensional projection onto the
parameter θi. To account for the slight tendency of
oscillation data to favor NO, we then added one offset
Δχ2 ¼ 0.83 [1] to the product value for IO after recalibrat-
ing the projections. This procedure avoids counting the
slight inclination towards NO each time it gets projected
onto one parameter. The quoted value of Δχ2 corresponds
to a Bayes factor of 1.5 in favor of NO.6

C. Priors

Our choice of priors is intended to be informative
whenever possible, and otherwise agnostic for parameters
with little or no information available. For mass square
differences and mixing angles, we choose flat priors
extending well beyond the best-fit values for both order-
ings, since the likelihood functions severely constrain
their values in any case. The choice of range does not
influence our results. For the Majorana phases α1 and α2,
we choose priors flat on the entire range ½0; 2π�, as we do
not have any prior knowledge or theoretical motivation
for an informative distribution. The prior on the NME
factor G of a certain isotope is discrete, equally weighing
the different theoretical calculations, which deviate from
one another by factors of up to 3. This procedure will be
further explained and justified in the Appendix (cf. Fig. 4
and subsequent discussion).

2Such an “external” parameter is called hyperparameter.
3Note that the choice of prior used by the Planck Col-

laboration is, in fact, unphysical, since Σ has a minimal value
Σmin ≠ 0. As shown in [5], using a more realistic prior, the
resulting constraints become stronger, but they constrain
ðΣ − ΣminÞ, making the corresponding limit on Σ appear
looser.

4Here, T refers to the temperature of the CMB, while E and B
denote the basic patterns of its polarization.

5We use the PLA data sets base_mnu_plikHM_TT_lowTE-
B_lensing (conservative) and base_mnu_plikHM_TT_lowTE-
B_lensing_BAO (restrictive).

6In future analyses, this procedure could be refined by using
the full multiparameter likelihoods or by directly fitting the
oscillation data.
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We choose two very different priors for mlightest,
to explicitly show how results depend on the res-
pective assumption. Both choices span the range
½10−7eV; 0.6 eV�.7 The flat prior allocates 90% of the
probability mass at values greater than 60 meV, while
the scale-free log prior allocates about 85% in a region
where mlightest < 60 meV.

III. RESULTS OF OUR ANALYSIS

For all combinations of neutrino mass ordering,
cosmological data set, and prior for mlightest, we used
the BAT Markov chain Monte Carlo code in version
v1.0.0-RC1 [12] to sample from the posterior proba-
bility density. For each scenario, we ran four Markov
chains with a length of 4 × 106 samples each. The
results derived from the posterior samples are presented
in Figs. 1, 2, and 3.

A. Posterior probabilities

For fixed mass ordering, cosmology, and prior on
mlightest, we show the posterior probability density in the
plane of the effective mass jmeej controlling the 0νββ
rate and the sum Σ of neutrino masses in Fig. 1. We
combine the NO and the IO cases into subplots in a “back-
to-back” manner. We also show theoretical envelopes
bounding the regions in the Σ–jmeej parameter space if

FIG. 1. Heat map of posterior probability density for both combinations of cosmological data sets and choices of the prior on mlightest.
The upper panels depict the flat prior while the lower panels show the log prior. Note that the color coding also changes from linear to
logarithmic. See text for definitions of the different quantities.

7The upper end of our range is motivated by the restrictive
power of the cosmological data sets: Extending it to larger values
does not alter the results significantly. The lower end of the range
can be argued to be as low as 10−13 eV [11], using a general
theoretical argument from perturbation theory. As we are inter-
ested in implications for 0νββ, there will however be a point
where lowering the minimal value does not anymore alter any
implications. In order to back up this statement numerically, we
also define a second logarithmic prior on mlightest, spanning the
range ½10−13eV; 0.6 eV� and denoted by log*. We will compare
the numerical results of this prior choice to the somewhat
restricted log prior where appropriate.
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FIG. 2. Probability distribution for T1=2 for both 76Ge and 136Xe (conservative cosmology). The distributions on the left feature a prior
flat in mlightest, while the ones on the right feature a prior flat in logðmlightestÞ.

FIG. 3. Discovery potential as a function of effective exposure Eϵ for different background levels. The upper left panel defines a
benchmark case (germanium, IO, conservative cosmology), while for the other panels one of these parameters is changed: upper right—
NO; lower left—restrictive cosmology; lower right—136Xe. The kinks in the curves are a consequence of the integer nature of Poissonian
statistics.
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the Majorana phases are varied within their full ranges
while the relevant oscillations parameters are kept at their
best fit values (dashed lines) or varied within their 3σ
ranges (solid lines).
Choosing the restrictive cosmological data sets forces

Σ (and by means of oscillation data also mlightest) to be
smaller, resulting in more probability mass shifted
towards smaller values of jmeej. Another clear feature
is the fact that a scale-free prior on mlightest leaves almost
no probability mass in regions where Σ≳ 0.1 eV. Finally,
we note that the highest probability density tends to be at
the upper ends of the allowed jmeej ranges for a given Σ.
This reflects the flat prior assumption on the Majorana
phases, which makes it highly unlikely to get a cancel-
lation of terms leading to vanishing jmeej [13–15].

B. Double beta decay

The posterior samples from our global fits can be used
to infer the discovery potential for 0νββ experiments. The
relevant quantity is the half-life probability distribution,
examples of which are shown in Fig. 2.8 As expected, the
probability mass at smaller half-life is always bigger in
the case of IO. However, for the log prior (right panel),
favoring small mlightest, the effect is much more pro-
nounced than in the case of the flat prior (left panel).
Additionally, the log prior leads to a spikier structure of
the probability distribution, caused by the discrete set of
values for G.
The relationship between the signal expectation and the

half-life is

ν ¼ NA ln 2
menr

Eϵ
T1=2

; ð6Þ

where NA is Avogadro’s number andmenr is the molar mass
of the relevant enriched isotope. E is the exposure and ϵ is
the efficiency to find a signal in the region of interest. The
latter includes active/fiducial mass considerations as well as
signal reconstruction efficiencies.
Selected results for the discovery potential for 0νββ,

assuming light Majorana neutrinos as the source of a signal,
are presented as a function of effective exposure Eϵ for four
different background levels ðBG ¼ 0.1; 1; 10; 100 eventsÞ
for 76Ge and three for 136Xe ðBG ¼ 1; 10; 100Þ9 in
Fig. 3. The discovery potential can be used to judge the
merits of individual experiments. In general, we see that a
prior flat in mlightest gives a much larger probability for
discovery than a prior flat in logðmlightestÞ. The importance
of keeping the background small is obvious from
these plots.

C. Mass ordering

As noted earlier, the oscillation data give a Bayes factor
of 1.5 in favor of the normal mass ordering. We have
evaluated the Bayes factor that results from including the
data of cosmology and 0νββ into the analysis for the
different cosmological data sets used as well as for our two
choices of priors on mlightest. All evidence integrals were
computed using the Cuhre quadrature algorithm provided
by the CUBA library [16]. The results are shown in Table I.
As can be seen, the additional data and our choices of priors
do not change the conclusions significantly. Also the choice
of the cut-off scale at 10−7 eV is perfectly reasonable, as
lowering it does not change the numerical results signifi-
cantly anymore.

IV. CONCLUSIONS

In this work, we have conducted a global Bayesian
analysis of neutrino mass parameters within the minimal
framework of three light Majorana neutrinos, combining
data from oscillation experiments, 0νββ decay, and pre-
cision cosmology. Working with one prior flat in mlightest

and another one flat in logðmlightestÞ, we have investigated
both extreme cases of uninformative priors for the critical
parameter mlightest. Combining these priors with a more
conservative cosmological data set on one hand and a more
restrictive one on the other hand, we conclude that the
posterior probability for NO is still very mild, even in the
extreme case of a restrictive cosmology and a flat prior on
mlightest. In the other cases, the slight inclination towards
NO is almost entirely driven by neutrino oscillation
experiments.
Furthermore we have evaluated the posterior distribu-

tions of T1=2 in the different combinations of priors and
cosmological data sets as well as for different isotopes. This
allowed us to infer the discovery potential of different
experimental approaches for 0νββ. Depending on the
neutrino mass ordering, the achievable effective exposure,
and the background level, the discovery potential spans a
wide range. Assuming a flat prior for mlightest is in all cases

TABLE I. Bayes factors of posterior odds for NO vs IO, for all
combinations of cosmologies and priors. For completeness, we
show the negligible changes when allowing the log prior to
extend down to 10−13 eV. The slight change for the conservative
cosmology appears larger than it actually when rounding to two
significant digits.

Cosmology Prior on mlightest Bayes factor NO/IO

restrictive flat 2.5
conservative flat 1.7
restrictive log 2.0
conservative log 1.6
restrictive log* 2.0
conservative log* 1.7

8The full set of plots is available in the Appendix.
9Discovery is defined as a Bayes factor of at least 100 in favor

of the presence of 0νββ. The details of the statistical analysis are
available in the Appendix.
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favorable for 0νββ searches as is the inverted mass
ordering.
Our approach of putting all relevant experimental

insights on a consistent and equal footing helps to pave
the way for future comprehensive analyses of neutrino data.
Additional data can be easily accommodated and proba-
bilities updated in this scheme.
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APPENDIX TECHNICAL DETAILS

This supplemental material describes how we obtained
the likelihood functions, it illustrates the procedure we used
to determine discovery potentials, and it also presents our
main result (namely the posterior probability densities) in
an alternative coordinate system, which only uses observ-
ables accessible in laboratory experiments.

1. Statistical formulation

The analysis was performed using Bayes’ Theorem,

PðHjD; IÞ ¼ PðDjH; IÞP0ðHjIÞ
PðDjIÞ ; ðA1Þ

where H is the hypothesis to which we are assigning
a probability, D represents the data being used to update
the probability, and I is the additional information and

constraints that have been used to define the probabilities.
P0ðHjIÞ is the prior probability assignment to H. The
denominator can be rewritten using the law of total
probability as

PðDjIÞ ¼
X
i

Z
dθPðDjMi; θ; IÞPðθjMi; IÞPðMijIÞ;

ðA2Þ

where Mi represent different models allowed under I
subject to

P
iPðMijIÞ ¼ 1 and θ are the (possibly different)

parameters present in the model. PðθjMi; IÞ is also
normalized.
In our analysis, we assume that there are three light

Majorana neutrinos and have two models representing
the two allowed mass ordering schemes: normal (NO:
m1 < m2 < m3) or inverted (IO: m3 < m1 < m2). We
assign equal prior probabilities to the two mass orderings:
PðM1 ¼ NOjIÞ ¼ PðM2 ¼ IOjIÞ ¼ 1=2. The parameters
used are

θ ¼ ðmlightest;Δm2⊙;Δm2
A; s

2
12; s

2
13; α1; α2;GÞ; ðA3Þ

where mlightest is the smallest neutrino mass eigenvalue
and s2ij denotes the sine squared of the mixing angle θij.
The Majorana phases α1 and α2 take trivial values if
neutrinos are of Dirac nature. The nuclear matrix elements
(NMEs) required to calculate rates for 0νββ are collec-
tively denoted by G. Note that θ does not contain the Dirac
phase δCP or s223, as they only affect neutrinos oscillations
but not 0νββ or cosmology. We assign flat probabilities to
all parameters except for mlightest and G. The latter are
discussed in more detail below. For the parameters with
flat priors, the ranges were defined either to be the
maximal range (for the phases) or to cover a sufficiently
wide range so as not to affect the results. For example, in
the case of the mixing angles and squared mass
differences, the parameters are so strongly constrained
by the oscillation data that values even remotely close to
the edges are already strongly disfavored.
We consider two prior probability assignments for

mlightest: A prior flat in mlightest (this will tend to favor
larger values, and it reflects the sizes of the measured mass
square differences Δm2⊙≡m2

2−m2
1 and Δm2

A ≡ jm2
3 −m2

1j)
and a scale-free prior (flat in the logarithm of mlightest,
which tends to favor small values and reflects the fact
that the absolute neutrino mass scale is still unknown). We
note that

PðlogðmlightestÞÞ ¼ const ⇔ PðmlightestÞ ∝ 1=mlightest:

The prior probability for G was defined by assigning
equal probabilities of 1=9 to the different matrix element
computations, the results of which are collected in Table II,

CALDWELL, MERLE, SCHULZ, and TOTZAUER PHYSICAL REVIEW D 96, 073001 (2017)

073001-6



using the normalization corresponding to the following
half-life formula [18]:

1

T0ν
1=2

¼ G0νjM0νj2
�jmeej

me

�
2

; ðA4Þ

where G0ν is a phase space factor which can be easily
computed for any isotope under consideration (we make
use of the values from Ref. [19], which were slightly
updated by Ref. [20]).M0ν is the NME, which encodes all
nuclear physics that goes into the process. Some remarks

TABLE II. NMEs as extracted from the references given. See text for details.

Method [reference] Value for 76Ge Value for 136Xe

Energy density functional method [25] 4.60 4.20
Interacting shell model [21] 2.30 1.77
Microscopic interacting boson model [26] 5.47 3.36
Proton-neutron QRPA [27] 5.52 3.35
Self-consistent renormalized QRPA (Bonn potential) [23] 5.82 3.36
Self-consistent renormalized QRPA (Argonne V18 potential) [23] 5.44 2.75
QRPA (Bonn potential) [22] 5.40 2.38
QRPA (Argonne V18 potential) [22] 5.00 2.11
Deformed self-consistent Skyrme QRPA [28] 5.53 1.68

FIG. 4. Posterior probability distributions of the NMEs, sorted into 500 bins, for both 76Ge and 136Xe, along with the input values. As
can be seen, the posterior probabilities basically reproduce the input, i.e., the current constraints are not sufficiently strong to impact
NME computations.
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are at order concerning the values shown in Table II. For
definiteness, we have adopted the standard value gA ¼ 1.25
for the axial vector coupling, which means that we had to
rescale some of the NMEs [21,22]. Also the phase space
factors used [19,20] correspond to gA ¼ 1.25. In cases
where different versions of a computations are available,
we have for definiteness always chosen the most optimistic
result. For example, Ref. [23] reports the results for both,
an intermediate size model space and a large size single
particle space, the latter of which tends to yield larger
values of the NME. Hence, we have decided to use the large
size results. This differs from the choices e.g. made in
Ref. [24], where in some cases the smaller and in others
the larger value has been chosen. Nevertheless, none of the
treatments is wrong in the sense that at the moment the
values still suffer from nuclear physics uncertainties, and
there exists no way to decide which value is closer to
reality.
The NMEs are shown together with their posterior

probabilities in Fig. 4. While we only show results for
76Ge and 136Xe, it is straightforward to extend the analysis
to any isotope for which NMEs have been calculated. Note
that the posterior distribution for the NMEs tracks the prior
distribution quite closely. This is to be expected, as the data
from the 0νββ experiments does not yet hint towards a
signal but only gives lower bounds on the lifetimes of the
isotopes. Thus, no insights about the NMEs mediating the
decays can be generated, and our prior knowledge does
not get updated in a relevant way. Due to this argument, we
can also justify taking a prior distribution sharply centered
around discrete values. Even if each calculation were
equipped with an uncertainty, which could be accounted
for by modeling the prior by a sum of narrow Gaussians,
this would not change the results significantly. As the
spread between the different calculations is presumably
much larger than this uncertainty, the overall picture would
stay unaltered. The choice of assigning a equal normali-
zation of N−1

calc to each calculation just formalizes our

current state of ignorance concerning the best method—a
state that can only be changed by observation of
0νββ decay.
The probability of the data, PðDjMi; θ; IÞ, viewed as

function of the parameters with the data fixed, is known as
the likelihood LðθÞ. In the following, we describe which
prescriptions were used to define these likelihoods.

a. Neutrino oscillation data

The neutrino oscillation likelihood is taken from
nu-fit.org [1], of which we have used v3.0 of
their neutrino oscillation global fit results. As described in
the main text, we have converted the Δχ2 projections
from nu-fit.org into likelihood functions, LðθiÞ ∝
exp ½−Δχ2ðθiÞ=2�, where Δχ2ðθiÞ is the Δχ2 projection
for the parameter θi. The likelihoods are shown in Fig. 5.
Note that the fit by nu-fit.org very slightly disfavors
IO, by an offset Δχ2 ¼ 0.83. However, while this value
appears in each of the projections shown by that collabo-
ration, we have to be careful not to penalize IO more than
once in our analysis, because the value of 0.83 also appears
only once in the full χ2-function, before projecting out
individual parameters. We have accounted for this by
adding the offset only once, to avoid an artificial worsening
of IO which would even increase with the number of
parameters used. Note that this results in a global factor in
front of the likelihood function for IO, which drops out
when computing posterior probabilities. However, once we
compute a Bayes factor, both likelihoods need to share a
common normalization to make sense of the values
obtained, and in that case this constant prefactor does play
a role, and it corresponds to the factor of 1.5 in favor of NO,
as mentioned in the main text.

b. Double beta decay data

The most strongly constraining experiments to date are
the GERDA, KamLAND-Zen, and EXO experiments, and

FIG. 5. Likelihood functions for the squared mass differences (left) and for the relevant mixing angles (right).
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we have included likelihood terms for these experiments in
our analysis. The data were analyzed and presented in
different ways by the three experiments. We discuss these
in turn to explain how we included these data into our
Bayesian analysis. Note that T1=2 values are always given
in units of 1025 years. The functions we will present in
the following are plotted in the left panel of Fig. 6 for
illustration.

Gerda

The GERDA Collaboration [29] performed both a
Bayesian and a frequentist limit setting analysis on their
data. We use the posterior probability density for the
inverse of the half-life of 76Ge as determined by the
GERDA Collaboration, which is well parametrized by
the form10

Pð1=TGe
1=2Þ ∝ exp

�
−
1

2

ð1=TGe
1=2 þ 1.48Þ2
0.4612

�
: ðA5Þ

Since GERDA used a flat prior for 1=TGe
1=2, we use

LGERDAðTGe
1=2Þ ∝ exp

�
−
1

2

ð1=TGe
1=2 þ 1.48Þ2
0.4612

�
: ðA6Þ

KamLAND-Zen

The KamLAND-Zen Collaboration [30] performed fre-
quentist analyses based on a profile likelihood test statistic.
They presented their results in the form ofΔχ2 as a function
of TXe

1=2 (Wilk’s Theorem was assumed to apply). We have

interpreted these Δχ2 as likelihoods for the half-life of
136Xe by setting

LKamLAND-ZenðTXe
1=2Þ ∝ exp

�
−
1

2
Δχ2ðTXe

1=2Þ
�
: ðA7Þ

The phase-I and phase-II results were used separately, and
the following parametrizations were found to represent the
KamLAND-Zen results well11:

Δχ2 ¼
(
2½2.3=TXe

1=2 þ 1.09=ðTXe
1=2Þ2� phase-I;

2½9.71=TXe
1=2 þ 28.1=ðTXe

1=2Þ2� phase-II:
ðA8Þ

EXO

The EXO Collaboration also performed a frequentist
analysis and presented confidence level limits on TXe

1=2.
However, the background expectation, background uncer-
tainty, and observed numbers of events were presented in
the paper [31], allowing for the construction of the like-
lihood as

LEXOðTXe
1=2Þ ∝

Z
e−ðνþλÞ ðνþ λÞn

n!

× Gðλ; λ0 ¼ 31.1; σλ ¼ 3.3Þdλ; ðA9Þ
where the signal expectation ν depends on TXe

1=2 as well as
on the exposure and the efficiency, which are both given in
Ref. [31]. The background level is given by λ and is
centered on λ0. The uncertainty is introduced by smearing
the expectation with a Gaussian of width σλ. The observed
number of events is n ¼ 39. The resulting likelihood is well
parametrized by the form

FIG. 6. Likelihood functions for the different 0νββ experiments (left) and cosmological data sets (right).

10The parametrizations have been cross-checked by the col-
laboration [L. Pandola (private communication)].

11The parametrizations have been cross-checked by the col-
laboration [I. Shimizu (private communication)].
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LEXOðTXe
1=2Þ ∝ exp

�
−
1

2

ð1=TXe
1=2 − 0.32Þ2
0.302

�
: ðA10Þ

We note that the peak is at finite TXe
1=2 since more events

were observed than expected from background processes.

c. Cosmological data sets

The cosmological factor Lcosmo contains extensive infor-
mation about cosmic structure formation and cannot be
given in a simple closed form. Instead, we have used
Markov chains sampling the posterior for different combi-
nations of data sets that are publicly available on the Planck
Legacy Archive (PLA).12 These posterior samples were
obtained from a uniform prior in Σ, such that the posterior
is identical to the likelihood except for some unknown
normalization that is irrelevant in our implementation. The
total number of samples for each model is about 50 × 103.
The samples were binned into 50 bins to obtain a likelihood
estimator, which was then fit to the following four-
parameter template:

LcosmoðΣÞ ¼ p1Σp2p3−1 exp

�
−
�
Σ
p3

�
p4

�
: ðA11Þ

This functional form is related to the generalized Gamma
distribution, and it is a good empirical fit to likelihood, as
the right panel of Fig. 6 shows. Table III lists the fit
coefficients we obtained for the two cosmological data sets
used in our analysis.

2. Double beta decay: Discovery probability analysis

We define two hypotheses:
H0 There are only background processes producing
the data;
H1 There is, additionally to the background processes,
also a signal from neutrinoless double beta decay.

The full information is contained in the posterior
probability for the hypothesis given the data, PðH1jDÞ.
If this probability is large enough, then a “discovery” can
be claimed. We will use the related concept of posterior
odds

O1 ¼
PðH1jDÞ
PðH0jDÞ

and place requirements on this quantity to claim a
discovery. Assuming the two hypotheses are exhaustive13

we have

PðH0jDÞ ¼ PðDjH0ÞP0ðH0Þ
PðDjH1ÞP0ðH1Þ þ PðDjH0ÞP0ðH0Þ

;

PðH1jDÞ ¼ PðDjH1ÞP0ðH1Þ
PðDjH1ÞP0ðH1Þ þ PðDjH0ÞP0ðH0Þ

:

The posterior odds are then given by

O1 ¼
PðDjH1Þ
PðDjH0Þ

O0;

where

O0 ¼
P0ðH1Þ
P0ðH0Þ

are the prior odds. The factor PðDjH1Þ
PðDjH0Þ is known as the “Bayes

factor”.
We consider the case of a single experiment measuring

n events in a given region of interest defined by the Q
value of the decay, the background level, and the energy
resolution. We use simple Poisson statistics to evaluate
the discovery potential. Small improvements are possible
by making use of the background and signal spectral
shapes, but the additional sensitivity gained by doing this
is not significant for our discussion. We will also ignore
uncertainties in the background and assume it is well-
known. The uncertainty in the background typically has
little effect on the discovery calculation if the background
is small, but it can become important if this is not
the case.
We use the symbol λ to represent the background

expectation in the region of interest, and ν is the signal
expectation given a half-life for the decay, the exposure,
and the detection efficiency.
Given these definitions, we have

PðDjH1Þ ¼ PðnjH1Þ ¼
Z

∞

0

Pðnjλþ ν0ÞPðν0Þdν0; ðA12Þ

TABLE III. Fit parameters for the cosmological likelihood factor parametrized by Eq. (A11) for both data sets used in our analysis.

Level Data set p1 p2 p3 p4

Conservative base_mnu_plikHM_TT_lowTEB_lensing 2.073 0.401 0.552 2.514
Restrictive base_mnu_plikHM_TT_lowTEB_lensing_BAO 7.385 0.407 0.207 2.765

12Based on observations by Planck (http://www.esa.int/
Planck).

13We exclude here the possibility that there are background
sources not included in the background model expectations. We
also assume that the signal would come from the exchange of a
light Majorana neutrino.
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where Pðν0Þ is the probability to have the signal expectation
ν0 given the experimental conditions and prior knowledge
on T1=2. The probability of the data for H0 is simply

PðDjH0Þ ¼ PðnjH0Þ ¼ e−λ
λn

n!
: ðA13Þ

The relationship between the signal expectation and the
half-life is

ν ¼ NA ln 2
menr

Eϵ
T1=2

; ðA14Þ

where NA is Avogadro’s number andmenr is the molar mass
of the relevant enriched isotope. E is the exposure and ϵ is
the efficiency to find a signal in the region of interest. The
latter includes active/fiducial mass considerations as well as
signal reconstruction efficiencies.
We evaluate the probability of a claim of discovery

assuming three light Majorana neutrinos by

Pdiscovery ¼
X∞
n¼0

PðnjH1ÞIðO1Þ;

Pdiscovery ¼
X∞
n¼0

�Z
∞

0

Pðnjν0 þ λÞPðν0Þdν0
�
IðO1Þ;

where I is the indicator function,

I ¼ 1 if O1 ≥ 100;

I ¼ 0 if O1 < 100:

In addition to the exposure and the signal efficiency, the
discovery potential depends on the background level and
on the cut value for the posterior odds. We take the prior
odds to be 1. The probability distribution for ν is given by
the results of our neutrino parameter analysis, and depends
on the mass orderings, on the probability distribution for
the effective neutrino mass in these orderings, and on the
matrix element values. We give the probability distributions

FIG. 7. Posterior probability distributions for T1=2 (300 bins) for both 76Ge and 136Xe, featuring both mass orderings and both priors on
the lightest neutrino mass. As to be expected, the logarithmic prior disfavors NO more strongly than the flat prior.
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for T1=2 for 76Ge and 136Xe for the different orderings,
cosmological data sets, and mass scale priors in Fig. 7.
We use the output of BAT to carry out the integrals,

PðnjH1Þ ¼
Z

∞

0

Pðnjλþ ν0ÞPðν0Þdν0 ðA15Þ

¼ E½Pðnjλþ νÞ�PðνÞ ðA16Þ

≈
1

N

XN
i¼1

Pðnjλþ νÞjPðνÞ; ðA17Þ

with N being the number of samples of T1=2 taken from the
Markov chain. Recall that the background level λ is fixed.
The discovery potential is presented as a function of

efficiency reduced exposure, Eϵ, for four different back-
ground levels (λ ¼ 0.1, 1, 10, 100) for Ge and three for Xe
(1,10,100). The results are shown in Figs. 8 and 9.14

The cut value for the Bayes factor was taken to be 100—
i.e., we would claim a discovery if H1 was 100 times more
probable thanH0. This is an arbitrary choice, and varying it
by a factor of 10 is certainly possible, but it does not have
strong influence on the results of this analysis. The jumps in
the curve are due to the Poisson nature of the statistical
fluctuations.

3. Posterior probability for lab-based experiments

In the main text, we have shown the heat map of
posterior probability density in the Σ–jmeej plane, i.e., in
terms of the observables that are probed by cosmology
and by 0νββ. This choice is inspired by these two
observables being the most promising both to identify
the neutrino mass ordering and to get information on the
absolute neutrino mass scale. In the theoretical literature,
one often finds plots of mlightest vs jmeej, see e.g. the
literature on how to probe certain neutrino mass models by
0νββ [32–35]. However, this choice is problematic in our
case because not only is mlightest only a theoretical

FIG. 8. Discovery potential for 76Ge: IO/NO (left/right) and restrictive/conservative cosmology (top/bottom).

14Results for other isotopes can be requested from the authors.
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parameter rather than an actual observable, but it also
exhibits a very strong dependence on the prior, which is
poorly constrained.
When considering laboratory-based experiments, there is

a long history of attempts to measure the neutrino mass in
single beta decay experiments. These types of experiments
are looking for deviations in the kinematic endpoint of the
resulting electron spectrum, and what they constrain (at
least with realistic resolution) is the so-called effective
electron neutrino mass mβ, defined by15

m2
β ¼ m2

1c
2
12c

2
13 þm2

2s
2
12c

2
13 þm2

3s
2
13: ðA18Þ

Constraints on mβ have mainly been derived from tritium
decay, by both MAINZ [36] and Troitsk [37]; however also

future proposals focus on tritium16 (such as Project 8 [39],
which aims at detecting cyclotron radiation from relativistic
tritium ions). The most prominent on-going effort is
provided by KATRIN [40], which has recently started data
taking and whose sensitivity on mβ could possibly be of
Oð1 eVÞ, with quoted values being dependent on the
statistics used (e.g. Ref. [41] predicts a sensitivity of
0.20 eV based on frequentist methods and a sensitivity
of 0.17 eV when using Bayesian statistics with a flat
prior m2

β).
The heat maps for our posterior probability densities for

all combinations used of orderings and cosmological limits
are displayed in Fig. 10. The underlying data are equivalent
to those shown in the main text. As can be seen, the generic
tendencies are basically the same as for the Σ–jmeej plot.
However, even if the ultimate sensitivity limit of KATRIN
is reached, it will not add a significant constraint on the

FIG. 9. Discovery potential for 136Xe: IO/NO (left/right) and restrictive/conservative cosmology (top/bottom).

15Note that, in fact, there is no mass that could be associated
with an electron neutrino, as this is a not a mass eigenstate. Thus,
the mβ defined in Eq. (A18) is really nothing more than an
effective quantity, however, an observable one.

16Alternative isotopes, such as rhenium as used by MARE
[38], do not seem to be competitive.
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parameter space for the scenarios investigated—and thus
the current bounds do not provide any significant con-
straints. This is our justification for neglecting data from
single beta decay experiments.

4. Conclusion

The probability density heat maps and 0νββ results are
based on currently available data. They should be updated
as new data becomes available.
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