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We review lessons from the AdS/CFT correspondence that indicate that the emergence of locality in
quantum gravity is contingent upon considering observables with a small number of insertions. Correlation
functions, where the number of insertions scales with a power of the central charge of the CFT, are sensitive
to nonlocal effects in the bulk theory, which arise from a combination of the effects of the bulk Gauss law
and a breakdown of perturbation theory. To examine whether a similar effect occurs in flat space, we
consider the scattering of massless particles in the bosonic string and the superstring in the limit, where the
number of external particles, n, becomes very large. We use estimates of the volume of the Weil-Petersson
moduli space of punctured Riemann surfaces to argue that string amplitudes grow factorially in this limit.
We verify this factorial behavior through an extensive numerical analysis of string amplitudes at large n.
Our numerical calculations rely on the observation that, in the large n limit, the string scattering amplitude
localizes on the Gross-Mende saddle points, even though individual particle energies are small.
This factorial growth implies the breakdown of string perturbation theory for n ∼ ðMpl

E Þd−2 in d dimensions,
where E is the typical individual particle energy. We explore the implications of this breakdown for the
black hole information paradox. We show that the loss of locality suggested by this breakdown is precisely
sufficient to resolve the cloning and strong subadditivity paradoxes.
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I. INTRODUCTION

It is generally recognized that quantum gravity cannot be
an exactly local theory due to the difficulty of localizing
operators in spacetime to an accuracy better than the Planck
length, lpl. In this paper, we would like to present evidence
that, for at least some observables, these nonlocal effects
can spread over macroscopic distance scales. We will
argue that the observables that are sensitive to these effects
are correlation functions with a very “large” number of
insertions. A significant part of our analysis will be devoted
to quantifying what we mean by “large” here.
The initial motivation to consider such effects came from

the results of [1–3]. These papers proposed a representation
of the interior of large black holes in the AdS/CFT
correspondence [4]. But this representation had the remark-
able property that the operators that described the degrees of
freedom in the interior of the black hole were complicated
combinations of operators that described the exterior of the
black hole. This implied that a suitably complicated combi-
nation of exterior operators would fail to commute with an
interior operator even if the exterior and interior operators
were separated by a distance that was large in Planck units.
However, it is natural to expect that if these nonlocal

effects are real, then they should be visible even in empty
space, in the absenceof black holes.This is indeed the case.A
simple example of these nonlocal effects was examined in a

controlled setting in [5]. The paper [5] considered anoperator
localized in the center of empty anti–de Sitter (AdS).1 In
AdS/CFT, operators in the bulk of AdS can bemapped to the
CFT using the standard Hamilton-Kabat-Lifschytz-Lowe
mapping [6]. The authors of [5] then showed that this
operator could be explicitly rewritten as a complicated
combination of other operators that were localized near
the boundary of AdS on the same time slice. We review this
construction in Sec. II B, where we show that the operator in
the center of AdS, ϕð0Þ, can be written as

ϕð0Þ ¼
X
n;m

cnmXnP0X
†
m: ð1:1Þ

Here, Xn and Xm are simple polynomials in operators
localized near the boundary, cnm are c-number coefficients,
andP0, whichwecalculate explicitly in II B, is a complicated
polynomial that involves the bulk graviton fluctuations near
the boundary and has a degree as large asN, whereN2 is the
central charge of the theory.
The central feature of (1.1) is that the operators that appear

in the polynomials on the right-hand side are all localized at
points that are spacelike to the operator that appears on the
left-hand side. This equation obviously implies nonzero
commutators at spacelike separation. For example, an
operator that contains the momentum conjugate to ϕð0Þwill
fail to commute with the operators on the right-hand side of
(1.1). However, the relation (1.1) provides us with a stronger
statement: it tells us that the information in the center of AdS
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1We describe what we mean by an operator “localized” at a
point in greater detail in Sec. II A.
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can be entirely recovered by making a suitably complicated
measurement, on the same time slice, near the boundary of
AdS. Thus, (1.1) provides a toymodel of the phenomenon of
black hole complementarity [7].
There are two physical effects that allow the relation (1.1)

to hold. One of them is the bulk Gauss law, which tells us that
the energy of a local operator can be measured through a
Hamiltonian that is entirely defined through a surface integral
at infinity. The Gauss law itself leads to small nonvanishing
commutators between operators at spacelike separations. In
AdS, these commutators are suppressed by factors of 1

N.
However, the key to (1.1) is that by taking complicated
enough combinations of localized operators, we can enhance
these 1

N effects to anOð1Þ effect. This requires the breakdown
of 1

N perturbation theory. Thus, the nonlocal effects that we
are looking for arise from a combination of a kinematical
effect—the Gauss law—and a dynamical effect—the break-
down of gravitational perturbation theory.
In this paper, our main focus is on exploring whether

similar effects exist in flat space and, if so, on the
implications that such effects might have for black hole
evaporation. Of course, the kinematic ingredient that was
present in AdS—the Gauss law—operates in flat space as
well. In flat space, the Gauss law leads to commutators
between local operators that are suppressed by a power of
ð E
Mpl

Þ, where E is a measure of the energy of the configu-

ration of operators and Mpl ¼ 1
lpl

is the Planck scale.

So, in this paper, we will focus on the dynamical effect
that was required above: the breakdown of the perturbation
theory. In flat space, the analogue of the breakdown of the 1

N
expansion is the breakdown of gravitational perturbation
theory for correlation functions where the number of
insertions becomes very large, even if these insertions
are well separated.
The fact that the breakdown of the perturbation theory

corresponds to a loss of bulk locality in theories of gravity
is also natural from the path-integral viewpoint. The reason
that gravity is approximately local for simple observables,
even though the path integral sums over all metrics, is
because the path integral is dominated by a saddle point in
many circumstances. This saddle point provides a dominant
metric, and when we refer to approximate locality, we are
referring to locality as defined by this metric.
The breakdown of perturbation theory is a sign that the

saddle point approximation is no longer valid for a
particular observable. So it is natural that a perturbative
breakdown in gravity corresponds to either a loss or a
change in the notion of locality.2

To study this perturbative breakdown in a precise setting,
we focus on S-matrix elements rather than correlation
functions since scattering amplitudes are naturally gauge
invariant. We also study scattering in string theory—both
the bosonic theory and superstring theory—rather than pure
gravity. This helps us ensure that the breakdown of
perturbation theory that we describe here is not cured by
stringy effects. However, it is also true—perhaps somewhat
surprisingly—that the technical analysis of the breakdown
of perturbation theory turns out to be easier in string theory
than in pure gravity for reasons that we explain in Sec. V D.
Our results are as follows. We consider the scattering of

massless particles in the bosonic string and type II super-
string theory with external polarization tensors chosen so
that these particles correspond to linear combinations of the
graviton and the dilaton. We take the limit where the
number of external particles, n → ∞, but where the energy
per particle is taken to zero in string units E

ffiffiffiffi
α0

p ¼ 1
nγ with

0 < γ < 1
d−2, and the dimensionless string coupling con-

stant, gs is also taken to be very small. Then we argue that

string perturbation theory breaks down for n ∝ ð 1g2sÞ
1

1−ðd−2Þγ.

This threshold for the breakdown of perturbation theory can
also be rewritten as n ∝ ðMpl

E Þd−2.
To derive this bound, we first derive some simple bounds

on the growth of tree amplitudes in any perturbative theory
in Sec. III. These bounds state that if tree amplitudes grow
factorially in the number of external particles then, pro-
vided the energy per particle does not fall too rapidly, the
perturbation theory eventually breaks down for a large
enough number of external particles. In Secs. IV and V, we
then argue that tree-level scattering amplitudes, both in the
bosonic string and the superstring, do grow factorially.
Our arguments in Sec. IV rely on the growth of the volume

of moduli space of punctured Riemann surfaces. This is a
subject that has attracted some recent attention in the
mathematical literature. We are able to utilize these results
by arguing that at large n, the size of the string amplitudes is
bounded below by the volume of moduli space.
Our arguments in Sec. V are independent and rely on a

numerical study of string scattering at large n. Here, we
exploit the fact that at large n, the integral over moduli
space localizes to a set of saddle points that are solutions of
the so-called “scattering equations.” By solving these
equations numerically, we are able to numerically estimate
the growth of amplitudes. This numerical estimate precisely
matches the estimate from the volume of moduli space that
we derive in Sec. IV.
The arguments above then suggest that scattering experi-

ments with a large enough number of external particles may
be sensitive to nonlocal effects in the bulk. In Sec. VI,
we explore the implications of such effects for the infor-
mation paradox. In particular, we consider two versions of
the information paradox—the “cloning paradox” and the
“strong subadditivity paradox.”

2We caution the reader that, in doing the quantum-gravity path
integral, we hold the asymptotic geometry fixed. Therefore, in
this entire discussion, loss of locality only refers to a loss of “bulk
locality” and not any change in the causal relationship of points
on the asymptotic boundary to each other. This is true in AdS/
CFT as well where the boundary theory remains exactly local
even though the bulk theory is not exactly local.
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The cloning paradox is based on the observation that the
Hawking radiation that emerges from a black hole at late
times carries information about the infalling matter.
However, the geometry of the evaporating black hole
suggests that we can draw a spacelike nice slice that
intersects both the infalling matter and the outgoing
Hawking radiation. This seems to suggest that the same
information is present in two places, which would violate
the linearity of quantum mechanics.
However, whenwe carefully examine the observables that

are required to extract information from the outgoing
radiation, it turns out that we need to measure S-point
correlators of the outgoing Hawking quanta, at intervals of
size 1

E, whereS is the entropyof the black hole andE is energy
of a typical Hawking quanta. Our analysis of the breakdown
of perturbation theory tells us that gravitational perturbation
theory breaks down precisely for such correlators.
This suggests an elegant resolution to the cloning para-

dox. It is not the case that two different operators can
extract the same information from the state. Rather the
simple operator that acts on the infalling matter should be
equated to a complicated operator that acts on the outgoing
Hawking radiation. Even though it seems that these
operators are distinct, because they seem to act at different
points in space, they may still be related through a relation
of the form (1.1). Therefore, our resolution to the cloning
paradox is that the linearity of quantum mechanics is
preserved, and it is our notion of locality that must be
modified.
The strong subadditivity paradox is closely related to the

cloning paradox. As we review in Sec. VI, this paradox
relies on splitting up the black hole spacetime into three
regions on a spacelike slice. Plausible arguments about the
von Neumann entropies of each of these three regions then
suggest that these entropies violate the strong subadditivity
of entropy. However, the von Neumann entropy is a fine-
grained probe of a state, and we argue in VI B that
measuring this quantity is equivalent to measuring a
S-point correlator in the Hawking radiation. Therefore,
nonlocal effects may be important for such quantities. In
particular, we should not expect that the Hilbert space of the
theory factorizes into a tensor product of the Hilbert spaces
corresponding to different local regions on a spacelike
slice. Thus the strong subadditivity paradox may also be
resolved by recognizing limits on locality in gravity.
In Sec. VI D, we show how the simple setup of empty

AdS considered in Sec. II B can also be used to produce toy
models of both the cloning and the strong subadditivity
paradoxes. In this setting, the resolution to both of these
paradoxes is absolutely clear and involves, as we expect, a
loss of bulk locality rather than any modification of
quantum mechanics.
A summary of the main results in this paper was

provided in [8]. The scattering of a large number of
particles was also studied in [9] although the motivation

and perspective of these papers was different from ours.
The significance of OðSÞ point correlators for the infor-
mation paradox, and the fact that they might deviate
strongly from naive expectations, was also discussed
in [10].
Our conventions in the rest of the paper are as follows.

We set α0 ¼ 2. We will use the string coupling constant
4π2g2s ¼ κ2ðα0

2
Þ2−d2 . With our choice of units, this simply

becomes gs ¼ κ
2π, where κ is the d-dimensional gravita-

tional coupling. We also use κ2 ¼ 8πG ¼ ld−2
pl .

II. LOCALITY IN GRAVITY AND
PERTURBATION THEORY

In this section, we describe the relation between approxi-
mate notions of locality in gravity and the validity of
perturbation theory. First, we clarify what we mean by an
approximately local operator in a theory of gravity. Then
we review the results of [5]. This analysis provides an
explicit example of nonlocality in quantum gravity in a
controlled setting. Then we abstract some lessons from this
example and show how appreciable nonlocal effects in
correlators result from a combination of the effect of the
Gauss law and the breakdown of perturbation theory. We
then provide some additional arguments for nonlocality
based on the path integral. Finally, we emphasize the
distinction between asymptotic notions of locality, which
we expect to be exact, and bulk locality, which we expect is
only approximate.

A. Approximately local operators in gravity

Since this paper is devoted to the study of nonlocal
effects in gravity, it is important to clarify what we mean
by an approximately local operator. For simplicity, we
will consider scalar operators. Under a diffeomorphism,
xμ → xμ þ ημ, a scalar operator transforms as ϕðxÞ →
ϕðxÞ − ημ∂μϕðxÞ. Therefore, unless we provide additional
information, this operator does not provide us with gauge
invariant information.
The simplest way to resolve this issue is just to fix gauge.

Alternately, it is possible to use a relational prescription that
fixes the location of the operator with reference to an
asymptotic boundary. An example of such a relational
prescription is given in Sec. IV of [2] or Sec. 3.1.1 of [3].
Both alternatives then lead to operators that have the

following important property. If x1, x2 are spacelike
separated then in the limit where Mpl → ∞ and within
low point correlators, these operators satisfy

h0j½ϕðx1Þ;ϕðx2Þ�ϕðx3Þ…ϕðx2nÞj0i ¼ 0; as Mpl → ∞;

ð2:1Þ

where n does not scale with any power of Mpl and
jxijj ≫ 1

Mpl
;∀i; j.
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The property (2.1) defines what we mean by a local
operator in this paper. Note that the commutator of such
operators does not vanish in general when Mpl is finite.
Second, as we describe in great detail in the rest of this
paper, various subtle effects arise when we keep Mpl finite
and scale the number of insertions in a correlator with a
power of Mpl. Consequently, the notion of locality
described above is only approximate. We will sometimes
refer to such operators as “quasilocal” operators.

B. Small algebras and locality in AdS/CFT

If nonlocal effects are present in nature, we would expect
that they should be observable even in empty space without
black hole horizons which are, after all, teleological
objects. The AdS/CFT correspondence provides us with
a simple setting to study such effects, and it is indeed true
that these effects are present even in empty AdS. This was
shown in [5]. We review this example below, and it will
serve as a prototype for the nonlocal effects that we will
later invoke while considering the information paradox in
flat space.
Consider empty global AdSdþ1, where we set the AdS

radius lads ¼ 1 so that the metric is

ds2 ¼ −ð1þ r2Þdt2 þ dr2

1þ r2
þ r2dΩ2

d−1:

We also consider a band of length T on its boundary, where
T < π so that the band is smaller than the light-crossing
time of AdS. This gives rise to the setup shown in Fig. 1.
We denote the band itself by B, by which we mean the set of
all points on the boundary with time coordinate between −T

2

and T
2
. A causal diamond D, in the bulk, is out of causal

contact with B. We also have the “causal wedge” D̄ in the

bulk. Here, by causal wedge, we mean the region in the
bulk such that from each point in this region, it is possible
to send both a future directed light ray and a past-directed
light ray to the band B. In the literature, the term “causal
wedge” is often only applied to bulk regions that are dual to
an entire causal diamond on the boundary, but this termi-
nology also makes sense in the setting considered here. The
significance of the causal wedge is that perturbative fields
propagating in the causal wedge can be related to simple
operators in B using the equations of motion.
The bulk AdS may have various propagating, weakly

coupled fields. We will take ϕ to be one such field, dual to
an operator O of dimension Δ. The standard AdS/CFT
dictionary then relates the boundary value of ϕ to the value
of O through

lim
r→∞

rΔϕðt; r;ΩÞ ¼ Oðt;ΩÞ:

If the field ϕ is weakly coupled in the bulk, then the
operatorOðt;ΩÞ is a generalized free field in the conformal
field theory that is dual to this bulk theory.
We would now like to consider the “algebra” of “low-

order polynomials” in these generalized free fields. This
means that we consider the set of polynomials in gener-
alized free fields

A ¼ fOðt1;Ω1Þ;Oðt2;Ω2ÞOðt3;Ω3Þ;…
×Oðtm;ΩmÞOðtmþ1Ωmþ1Þ…Oðtmþn;ΩmþnÞg;

where ðti;ΩiÞ ∈ B. We put a cutoff on the number of
operators that such a polynomial can contain by imposing
n ≪ N, where N2 ≡ ðladslpl

Þd−1. Here, when we write n ≪ N,

we mean that in the limit whereN → ∞, n does not scale as
any finite power of N. Note that, as a result of this cutoff,A
is, strictly speaking, just a set and not an algebra since it is
not closed under multiplication. Nevertheless, we will
continue to use the phrase “algebra” below although this
caveat should be kept in mind.
Now, by solving the bulk equations of motion, the set of

operators A can be related to the algebra of truncated
polynomials in the bulk fields ϕ in the region D̄ in Fig. 1.
The explicit mapping is given in [5]. While respecting the
constraints of bulk locality, we clearly cannot relate
operators in D to operators in B since all points in D
are spacelike to all points in B.
Nevertheless, it was shown in [5] that it is possible to

construct operators in D using operators in the band B,
provided that we consider complicated polynomials of
generalized free fields that are not elements of A. This can
be done in two steps as follows. To be specific, consider an
operator ϕðr ¼ 0; t ¼ 0;ΩÞ localized in the diamond D at
some point on the sphere. We will denote this operator by
ϕð0Þ to lighten the notation below. Now, this operator can
be approximated as

FIG. 1. A band of length T < π on the boundary. A causal
diamond D in the middle of AdS is out of causal contact with the
band.
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ϕð0Þ ≈
X

n;m≪N

cnmjnihmj; ð2:2Þ

where the states jni correspond to energy eigenstates in
AdS and cnm are c-number coefficients. At energies below
the Planck scale, N, these energy eigenvalues are approx-
imately quantized in units of the AdS scale. So far, in (2.2),
we have not done anything except expand the operator in a
complete set of states and place a cutoff since we are not
interested in the matrix elements of ϕð0Þ for ultra-Planckian
energies.
Now, we note that the states jni can be written as

jni ¼ Xnj0i; ð2:3Þ
whereXn ∈ A. This means that all low-energy eigenstates in
anti–de Sitter space can be created by acting on the vacuum
with the algebra of simple polynomials of generalized free-
field operators in the band, B, or by simple polynomials of
bulk fields in D̄. The readermay thinkof this as an application
of the Reeh-Schlieder theorem [11] as applied to the set of
simple bulk operators in the region D̄. However, in [5], this
theorem was directly proved by using the properties of
generalized free fields in a CFT and by considering the
algebra of such fields in the band, B. Explicit expressions for
the operators, Xn, are also available in [5].
Although (2.3) is a surprising statement, so far there has

been no violation of locality since (2.3) would hold even in
a theory without gravity. However, we now note that we can
also write

P0 ¼ j0ih0j ¼ lim
α→∞

e−αH:

Here, H is the Hamiltonian and given by

H ¼
Z

T00ðΩÞdd−1Ω − E0; ð2:4Þ

where

E0 ¼ hΩj
Z

T00ðΩÞdd−1ΩjΩi:

The key point is that, in a theory of gravity in the bulk,H is
an operator in B and the boundary value of a bulk operator
in D̄. This property is evidently true in AdS/CFT since the
stress tensor is a generalized free field in B and is dual to
the fluctuations of the graviton in the bulk. However, this
fact is independent of AdS/CFTand relies on a fundamental
property that emerges from the canonical quantization of
gravity: the Hamiltonian, in any theory of quantum gravity,
is a boundary term.
In fact, the projector above can be approximated using a

very complicated polynomial. In particular, we can write

P0 ≈ P0 ¼
Xpc

p¼0

ðαcHÞp
p!

; ð2:5Þ

by choosing a particular large value of α ¼ αc and expand-
ing the exponential in a power series and cutting that off at
pc. We can see that a choice of αc ¼ logðNÞ is sufficient to
ensure that for the lowest possible nonzero energy eigen-
value, E1, we have P0jE1i ¼ Oð1NÞ. Second, an exponential
ex can be expanded in a power series as long aswe keepOðxÞ
terms. Therefore, if we choose pc ¼ N logðNÞ, we ensure
that this polynomial approximates the true projector on the
vacuum,P0 ≈ P0, as long as it is inserted only in states with
energy eigenvalues much smaller than N.
Putting these observations together, we obtain the

following formula:

ϕð0Þ ¼
X

n;m≪N

cnmXnP0X
†
m: ð2:6Þ

We thus see that we have succeeded in representing an
operator in the center of AdS in terms of a complicated
polynomial of operators that are uniformly spatially sep-
arated from the original operator. This is an important
example, since it serves as a concrete prototype for the
nonlocal effects that we expect are important for black hole
evaporation.
We return to this toy model in VI showing how it also

provides a toy model of various examples of the informa-
tion paradox, which can then be resolved in this setting.

C. Breakdown of perturbation theory and locality

The example above shows how operators at one point in
anti–de Sitter space can be represented entirely in terms of
operators at other points. We can abstract two important
elements from this analysis. The root of the nonlocality
visible in the formula above lies in the Gauss law. The fact
that the energy of a local insertion in the bulk can be
measured at infinity leads to the fact that the Hamiltonian is
purely a boundary term in gravity. This is what allowed us
to construct the projector on the vacuum as a complicated
polynomial of boundary operators in (2.5).
It is important to realize that, naively, the Gauss law

seems to lead to very small nonlocal commutators that are
suppressed by factors of 1

N. The stress tensor, as it appears in
(2.4) has a two-point function3 that is proportional to N2. In
particular, the canonically normalized bulk graviton field is

3The precise form of this function is not relevant for our
discussion but is given by [12]

hTijðxÞTlmð0Þi ¼
N2

x2d
Iij;lmðxÞ;

where the tensor Iij;lmðxÞ is given by

Iij;lm ¼ 1

2
ðIilðxÞIjmðxÞ þ IimðxÞIjlðxÞÞ −

1

d
δijδlm;

and IijðxÞ ¼ δij − 2
xixj
x2 .
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dual to hij ↔
Tij

N . Therefore, the nonlocal commutator

i½H;ϕðt; r;ΩÞ� ¼ _ϕðt; r;ΩÞ leads to nonlocal commutators
between the canonically normalized graviton field and
other bulk fields that are suppressed by 1

N. It is important
to note that the effect above, where we were able to
completely rewrite a bulk operator in terms of other
operators near the boundary, was obtained by suitably
“enhancing” this 1

N effect to an order 1 effect. This can only
happen when 1

N perturbation theory breaks down. This is
why it is important that the polynomials that appear in (2.6)
contain OðNÞ insertions.
We thus find two underlying features in our toy model

that lead to the nonlocality that is visible there. These are
(1) Nonlocal perturbative commutators due to the

Gauss law.
(2) The enhancement of these small commutators due to

the breakdown of perturbation theory.
Precisely the same analysis applies in flat space. As we

review below, the Gauss law leads to commutators between
two quasilocal operators that are suppressed by a power of
E
Mpl

, where E is a measure of the energy of the operators

involved. The breakdown of perturbation theory may
enhance these commutators to give rise to physically
significant effects.
Recall that the Hamiltonian in gravity, in asymptotic

flat space, can also be written as a boundary term. If we
choose nk to be the unit normal to the sphere at infinity,
then we have

H ¼ 1

16πG

Z
∞
dd−2Ωnkðgik;i − gii;kÞ;

where the repeated indices are summed over the spatial
directions [13]. The Hamiltonian generates translations of
asymptotic time.
Now consider studying a quasilocal operator in the

interior of spacetime, ϕðt; x⃗Þ, where we have separated
the time t from spatial coordinates, x⃗. To define what we
mean by the coordinates ðt; x⃗Þ, we need to fix gauge or
use a relational prescription. But provided that our pre-
scription for localizing the operator satisfies the property
that large diffeomorphisms that translate the asymptotic
time coordinate by δt also lead to translations of the local
time coordinate t → tþ δt, then it is guaranteed that

i½H;ϕðt; x⃗Þ� ¼ dϕðt;x⃗Þ
dt . This commutator is nonlocal since

the Hamiltonian can be defined by integration on a surface
that is entirely spacelike to the point ðt; x⃗Þ.
This is simply the Gauss law in action again. In fact, it is

well-known that, in gravity, as a result of the Gauss law,
there are no exactly gauge-invariant local operators.
Nevertheless, it is possible to define quasilocal observables,
since the nonlocality induced by the commutators above is
small, as we now explain.

Note that, in terms of the canonically normalized
fluctuations of the metric, gμν ¼ ημν þ

ffiffiffiffiffiffiffiffiffi
8πG

p
~hμν, the

expression for the Arnowitt-Deser-Misner Hamiltonian
can be written as

H ¼ 1

2
ffiffiffiffiffiffiffiffiffi
8πG

p
Z
∞
dd−2Ωnkð ~hik;i − ~hii;kÞ;

where we recognize
ffiffiffiffiffiffiffiffiffi
8πG

p ¼ l
d−2
2

pl . Therefore, purely on
dimensional grounds, we expect that if we smear the
metric fluctuations to obtain a unit-normalized operator
and consider its commutator with another unit-normalized
operator, then this commutator will be suppressed by
ð E
Mpl

Þd−22 , where E is a measure of the energy of the

configuration of the two operators. Commutators between
other field operators (not the metric) may be suppressed by
further factors.
The precise commutators depend on how we define our

quasilocal operators. Equivalently, the precise nonlocal
commutators induced by the Gauss law depend on a choice
of gauge. But, a concrete example was analyzed in [14],
and we can use their results to verify our expectations. The
authors of [14] worked in d ¼ 4 so we will use this value
below and then indicate the generalization to arbitrary d.
With the choice made in [14], the authors found that the
commutator between two quasilocal scalar operators out-
side the light cone was given by

½ϕðt; x⃗Þ;ϕðt0; y⃗Þ� ¼−iG
8

ð _ϕðt; x⃗Þ∂iϕðt0; y⃗Þþ∂iϕðt; x⃗Þ _ϕðt0; y⃗ÞÞ

×
xi−yi

ððt− t0Þ2þðx⃗− y⃗Þ2Þ12 :

We emphasize that the precise form of the commutator
above depends on the choice made in [14] of how to
localize the operator. We remind the reader that this is
similar to quantum electrodynamics, where our choice of
how we place the Wilson lines on a local charged field
controls the commutators of that field with local currents.
To estimate the size of this commutator evaluated in [14],

we smear both fields to generate operators with a unit-
normalized two-point function. We choose

ϕðfÞ ¼
Z

ϕðt; x⃗Þfðt; x⃗Þdtd3x⃗;

ϕðgÞ ¼
Z

ϕðt; x⃗Þgðt; x⃗Þdtd3x⃗;

with the constraint that hϕðfÞϕðfÞi ¼ hϕðgÞϕðgÞi ¼ 1.
This leads to simple constraints on the functions f and g,

Z
fðt; x⃗Þfðt0; y⃗Þd3x⃗d3y⃗dtdt0

ðt − t0Þ2 þ ðx⃗ − y⃗Þ2 ¼ 1;

Z
gðt; x⃗Þgðt0; y⃗Þd3x⃗d3y⃗dtdt0

ðt − t0Þ2 þ ðx⃗ − y⃗Þ2 ¼ 1:
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These conditions are calculated at leading order since we
have put in the leading order two-point function for ϕ but
they can be corrected order by order in perturbation theory
if required. We also demand that the two functions have no
points of common support: fðt; x⃗Þ ≠ 0 ⇒ gðt; x⃗Þ ¼ 0 and
gðt; x⃗Þ ≠ 0 ⇒ fðt; x⃗Þ ¼ 0. The expectation value of the
commutator then becomes

h½ϕðfÞ;ϕðgÞ�i ¼ i

�
E
Mpl

�
2

; d ¼ 4

where the “energy” of this configuration of operators is
defined through

E2 ≡
Z ðt − t0Þðx⃗ − y⃗Þ2

ððt − t0Þ2 þ ðx⃗ − y⃗Þ2Þ72 fðt; x⃗Þgðt
0; y⃗Þd3x⃗d3y⃗dtdt0;

ð2:7Þ

in d ¼ 4. The expression is not covariant due to various
choices made in defining the operators; these choices can
be thought of as a choice of gauge. We have used the term
“energy” for this quantity because it is a measure of the
inverse distance scale in this configuration of operators.
In arbitrary d, we expect an entirely analogous result

to hold

h½ϕðfÞ;ϕðgÞ�i ¼ i

�
E
Mpl

�
d−2

;

with E defined in analogy to (2.7), up to numerical
prefactors, and with the exponent of 7

2
in the denominator

replaced by 2d−1
2
.

The fact that, for separations much larger than the Planck
length, we have E ≪ Mpl tells us that the nonlocality
induced by the Gauss law is small and explains why we
observe approximate locality in nature.
However, the perturbative parameter for gravitational

perturbation theory in flat space is also ð E
Mpl

Þd−2.4 This

suggests that the limits in which perturbation theory breaks
down in flat space may also be interesting from the point of
view of the loss of locality. We caution the reader that
unlike the case of empty AdS above, we will not be able to
demonstrate this effect explicitly in flat space. However, we
believe that it is extremely likely that, at least in some
settings, a combination of the fundamental nonlocality
induced by the Gauss law, and the breakdown of gravita-
tional perturbation theory leads to large-scale nonlocal
effects. We now describe why this is also natural from a
path-integral viewpoint.

D. Locality in path integrals and perturbation theory

A consideration of the quantum-gravity path integral
provides another heuristic argument for the claim that the
breakdown of locality is concomitant with the breakdown
of perturbation theory. In the Euclidean theory, we can
consider some quasilocal observables ϕðtEi ; x⃗iÞ at some
value of Euclidean time, tEi and position x⃗i. As mentioned
above, to define these observables precisely, we need to
choose a gauge or a relational prescription. We can then
imagine inserting these operators into a path integral to
compute a Euclidean correlation function. For example,

hϕðtE1 ; x⃗1Þ…ϕðtEn ; x⃗nÞi

¼
Z

e−SϕðtE1 ; x⃗1Þ…ϕðtEn ; x⃗nÞDgμνDϕ; ð2:8Þ

where we integrate over all bulk metrics with some
specified asymptotic boundary conditions.
Now, if we want this multilocal correlator to conform to

some notions of locality, then we need a notion of when two
points ðtE1 ; x⃗1Þ and ðtE2 ; x⃗2Þ are close to each other. Such a
notion is predicated on a metric. However, in the path
integral, we only specify asymptotic boundary conditions
for the metric.
Nevertheless, it is possible to define an approximate notion

of locality when the path integral is dominated by a saddle
point. In the saddle point approximation, some particular
metric g0μν dominates the path integral, and this metric allows
us to define the distance between two points. We may
continue to use this metric to specify our notion of locality,
provided that the correlator in (2.8) can be computed in an
asymptotic series expansion about this saddle point.
However, if perturbation theory breaks down in the

computation, this is a sign that the saddle point approxi-
mation to the path-integral has broken down. In this case,
either the quantity (2.8) is dominated by another metric
saddle point, ~g0μν ≠ g0μν, or else perhaps it cannot be
computed in a saddle point approximation at all. In either
case, our original notion of locality, which was predicated
on the metric g0μν is invalidated.
Therefore, from a path-integral point of view, it is natural

for the breakdown of the perturbation theory in gravity to
be a signal of the loss of locality. This analysis also helps us
emphasize that, in a nongravitational theory, where the
metric does not fluctuate there is no such link between
perturbative breakdown and the loss of locality. It is only in
a theory of gravity that locality is tied to the dominance of a
particular background metric as a saddle point in the path
integral, which in turn is tied to the validity of perturbation
theory.

E. Boundary vs bulk locality

The path-integral analysis also helps us clarify another
issue. It is very important that the effects we describe here

4In any specific calculation, it may be more convenient to
choose a definition of the coupling constant that differs from this
by an Oð1Þ numerical prefactor. However, what is important here
is that if all the distances are scaled by λ, the gravitational
interactions fall by λ2−d.
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do not lead to a violation of boundary causality. For
example, in AdS/CFT, the boundary theory satisfies micro-
causality, and locality in the boundary theory is not lost
even if we consider arbitrarily high-point correlators.
Rather, our claim is that very high-point correlators may
not have a simple bulk local interpretation.
The situation is similar in flat space. In doing the path

integral in (2.8), we keep the asymptotic geometry fixed,
and we do not expect to violate asymptotic notions of
locality, as defined in [15]. For example, we may consider
the situation where we take the points ðti; xiÞ to either
future or past null infinity: I�. On both I�, we can specify
these points through a null coordinate—which we denote
by ui and vi, respectively—and a point on the sphere at
infinity Ωi. Then the points ðu1;Ω1Þ and ðu2;Ω2Þ are
spacelike to each other if Ω1 ≠ Ω2. In this situation, for
instance, we expect that

h½ϕðu1;Ω1Þ;ϕðu2;Ω2Þ�ϕðu3;Ω3Þ…ϕðun;ΩnÞi ¼ 0;

even as n → ∞:

So, we expect that this commutator vanishes even if it is
inserted in a correlator with an arbitrarily large number of
insertions.
Our point, in this paper, is simply that if we try and

define quasilocal operators that are not asymptotic oper-
ators, then it is possible that even approximate notions of
locality for such operators may break down with the
breakdown of perturbation theory. With this motivation,
we now turn to a detailed study of the breakdown of string
perturbation theory.

III. BOUNDS ON PERTURBATION THEORY

We will start our analysis of the breakdown of perturba-
tion theory by reviewing some simple bounds on the rate of
growth of tree amplitudes in perturbation theory. Consider
the scattering of n

2
particles. (We assume n is even.)

Unitarity of the S matrix tells us that

X
f

Z
dΠfjMðfk1…kn

2
g → ffgÞj2

¼ 2Im½Mðfk1…kn
2
g → fk1…kn

2
gÞ�:

Here, dΠf is the measure on phase space, and the sum over
f schematically indicates the sum over all possible final
states.
Since the left-hand side is a sum over positive terms, we

can restrict the sum to the case where the final state also
consists of only n

2
particles to obtain an inequality. This

leads to

Z
dΠn

2
jMðfk1…kn

2
g → fkn

2
þ1…kngÞj2

≤ 2Im½Mðfk1…kn
2
g → fk1…kn

2
gÞ�: ð3:1Þ

In a theory with coupling constant g, we can expand the
amplitude as

Mðfk1…kn
2
g → fkn

2
þ1…kngÞ

¼
X∞
l¼0

gn−2þ2lMlðfk1…kn
2
g → fkn

2
þ1…kngÞ;

where l is the loop order. Later, the relevant coupling
constant will turn out to be the string coupling gs but for
now, we do not need to specify any particular value for g.
While perturbation theory is valid, the inequality (3.1) must
then hold order by order in perturbation theory. Within this
perturbative expansion, the first few terms simply lead to
some positivity constraints but the first nontrivial term in
the inequality (3.1) isZ

dΠn
2
g2n−4jM0ðfk1…kn

2
g → fkn

2
þ1…kngÞj2

≤ 2g2n−4Im½Mn−2
2 ðfk1…kn

2
g → fk1…kn

2
gÞ�;

where on the right-hand side, we have a high-order loop
amplitude with n−2

2
loops. Now, the validity of perturbation

theory requires that loop amplitudes be smaller than tree
amplitudes. From this criterion, we obtain the relation

g2n−4Im½Mn−2
2 ðfk1…kn

2
g → fk1…kn

2
gÞ�

≤ gn−2jM0ðfk1…kn
2
g → fk1…kn

2
gÞj:

We emphasize that this is a very weak condition because we
have included factors of the coupling constant in the
inequality. A much higher power of the coupling constant
appears on the left-hand side. This relation can fail to hold
only if a huge factor in the amplitude overcomes this large
power of the coupling constant. When this happens, the
perturbation theory breaks down. Combining the relations
above, we find thatZ

dΠn
2
g2n−4jM0ðfk1…kn

2
g → fkn

2
þ1…kngÞj2

≤ 2gn−2Im½M0ðfk1…kn
2
g → fk1…kn

2
gÞ�:

Defining

Mtrðfk1…kn
2
g → fkn

2
þ1…kngÞ

¼ gn−2M0ðfk1…kn
2
g → fkn

2
þ1…kngÞ;

which is just the tree level amplitude including all powers
of the coupling, we see that this relation becomes
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Z
dΠn

2
jMtrðfk1…kn

2
→ fkn

2
þ1…kngÞj2

≤ 2jMtrðfk1…kn
2
g → fk1…kn

2
gÞj: ð3:2Þ

At the point where the bound is violated, we expect that
perturbation theory breaks down, and all orders in the
perturbative answer become as important as the tree-level
answer to the S matrix.
To give a concrete form to this inequality, we also need

the phase-space factor. We will consider massless particles
so that the phase space factor is simply given by

dΠn
2
¼ ð2πÞdδðnE

2
−
P jkljÞδd−1ð

P
klÞ

ðn=2Þ!
Y
t

dd−1kt
ð2πÞd−12jktj

:

ð3:3Þ

Note the factor of ðn
2
Þ! which appears in the denominator.

This simply arises from the conventional normalization of
scattering amplitudes. Here, E is the center-of-mass energy
per particle and l; t ∈ fn

2
þ 1;…ng.

It is not too difficult to work out the total volume of
phase space, which we do in Appendix C. The result is

Z
dΠn

2
¼ v

E
ðd−2Þn

2
−d

ðn=2Þ! : ð3:4Þ

Here,

v ¼ 2πΓðd
2
− 1Þn2ðn

2
Þnðd2−1Þ−d

ð4πÞðn−2Þd4Γððd−2Þðn−2Þ
4

ÞΓððd−2Þn
4

Þ
: ð3:5Þ

In this paper, we are concerned with the situation where,
at large n, tree amplitudes grow as

Mtrðk1…kn
2
→ kn

2
þ1…knÞ ¼

n!

Λ
ðd−2Þn

2
−d

: ð3:6Þ

Here, Λ is a physically important energy scale, and its
appearance on the right-hand side can be understood through
dimensional considerations. Momentum eigenstates are
normalized as hkjk0i ¼ ð2πÞd−1ð2jkjÞδd−1ðk − k0Þ. The
amplitude is given by the overlap of an in-state with n=2
particles with an out-state with n=2 particles. In our analysis,
we do not include the overall momentum conserving delta
function in the amplitude. Hence, the mass dimension of the

amplitude is d − nðd−2Þ
2

, and the power of Λ ensures that the
right-hand side also has the correct dimension.Wewill return
to the significance of Λ below.
When (3.6) holds, we see that the inequality (3.2) is

violated at a value of n that satisfies

v
ðn!Þ2Eðd−2Þn

2
−d

Λðd−2Þn−2d
1

ðn=2Þ! ¼
2n!

Λ
ðd−2Þn

2
−d

;

or

v
2

ðn!Þ
ðn=2Þ!

�
E
Λ

�ðd−2Þn
2

−d
¼ 1:

Keeping only the leading terms and using Stirling’s
approximation for the factorial: logðn!Þ ≈ n logðnÞ − nþ
OðlogðnÞÞ, we find that perturbation theory breaks down at
a value of n that satisfies

ð2 − dÞ log E
Λ

logðnÞ ¼ 1þ O

�
1

logðnÞ
�
:

We see that although the prefactor v grows exponentially in
n, it turns out to be irrelevant in the final answer because the
dominant terms grow factorially with n. More precisely, we
have logðvÞ=ðn log nÞ → 0 in the large n limit.
The breakdown of perturbation theory at large n is not

specific to string theory or gravity. In fact, it is well-known
in ordinary quantum field theories. For example, ampli-
tudes grow factorially even in the λϕ4 theory in four
dimensions. Moreover, we note that two particles with
momentum components of OðEÞ can be added to the
amplitude at the cost of an additional propagator that
contributes a term of Oð 1

E2Þ and a single coupling constant
factor λ. Therefore, the energy scale that enters (3.6) is
Λ ¼ E=

ffiffiffi
λ

p
. Note that Λ depends on the energy per particle.

These arguments suggest that perturbation theory breaks
down for n ¼ Oð1=λÞ in d ¼ 4 and this is indeed the result
that was found in [16].
In Secs. IVand V, we will now argue that tree amplitudes

in string theory also display at least a factorial growth,
where the energy scale in (3.6) is Λ ¼ Mpl ¼ l−1

pl . The fact
that this energy scale appears can be seen easily since the
coupling constant in string theory is gs. In the units that we

have adopted here, we have 2πgs ¼ l
d−2
2

pl . A factor of gn−2s

appears with each n point tree-level string amplitude. When
dimensions are restored, this is equivalent to a factor of

l
ðd−2Þðn−2Þ

2

pl . We then find that string perturbation theory breaks
down for values of n and E that satisfy

logðElplÞ
logðnÞ ¼ 1

2 − d
þ O

�
1

logðnÞ
�
: ð3:7Þ

If we take the energy per particle to scale with n as E ∝ 1
nγ

then this threshold can also be written as

logðg2sÞ
logðnÞ ¼ ðd − 2Þγ − 1þ O

�
1

logðnÞ
�
:

It is important that we take γ > 0 (for reasons that we
explain in Sec. IV D) and from the relations above, we see
that we must also take γ < 1

d−2.
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A. Calculation with compact extra dimensions

Before we proceed to string amplitudes, we would like to
describe some simple extensions of the bound above. One
situation that is of physical interest is when the string theory
lives in d dimensions but some of these dimensions are
compactified. For simplicity, we take m of the extra
dimensions to be compactified on a torus, where each side
has radius ρ; it is easy to generalize our calculation to more
general compact manifolds. We consider a regime where
1
E ≫ ρ ≫

ffiffiffiffi
α0

p
but we do not scale ρ with n. We also define

p ¼ d −m, the number of noncompact dimensions.
In general, as we will see below, the estimate for the

amplitude is not altered by the compactification. This is
because that the estimate for the growth of the amplitude
relies on the volume of moduli space that depends on the
structure of the world sheet and not on whether the
spacetime is compactified. In Sec. V, we will also estimate
the amplitude through a sum of the solutions of the
scattering equations. But the fact that the number of
solutions to the scattering equations grows factorially is
independent of whether some of the spacetime dimensions
are compact or not.
However, in the compact extra dimensions case, the

volume of phase space given above in (3.4) is modified.
The momentum in the compact extra dimension is quan-
tized, and string theory also generates new winding-sector
states. However, in the regime under consideration, the
lowest mass of a state in thewinding sector ism2 ¼ ρ2

α02 ≫
1
α0;

so these states are heavier than the lightest string excitations
and can consistently be ignored. Including the Kaluza-Klein
excitations, the newvolume of phase space can be calculated
as follows:

Z
dΠm

n
2
¼

X
nqt

Z �
ð2πÞpδ

�
nE
2

−
X
l

k0l

�
δp−1

×

�X
l

kil

� ð2πρÞmδmðPtnqtÞ
ðn=2Þ!

×
Y
t

ð2πÞδ
�
k2t −

Xm
q¼1

n2qt
ρ2

�
dpkt

ð2πÞpð2πρÞm
�
;

where the components of the momentum, kt in the compact
directions are specified by nqt, where q ¼ 1…m; the
measure dpkt runs over the noncompact dimensions includ-
ing time and the (p − 1)-dimensional delta function runs
over the spatial noncompact dimensions. The delta function
imposing momentum conservation in the compact direc-
tions is, of course, a discrete delta function. We have also
placed a superscript m on the measure on the volume of
phase space to indicate that m dimensions are compact.
We are not aware of any method of evaluating this

integral and sum exactly. However, fortunately, in the limit
under consideration where 1

ρ ≫ E, the sum is dominated by

the term with nqt ¼ 0. In this limit, the volume of phase
space is given by

Z
dΠm

n
2
¼ vm

ð2πρÞmn
2
−m

E
ðp−2Þn

2
−pð1þ OðEρÞÞ
ðn=2Þ! ;

where

vm ¼ 2πΓðp
2
− 1Þn2ðn=2Þnðp2−1Þ−p

ð4πÞðn−2Þp4Γððp−2Þðn−2Þ
4

ÞΓððp−2Þn
4

Þ
:

Repeating the analysis above, we find that perturbation
theory breaks down for

logðElpl;pÞ
logðnÞ ¼ 1

2 − p
þ O

�
1

logðnÞ
�
;

where lpl;p is the p-dimensional Planck length that is
related to the d-dimensional Planck length through
lp−2
pl;p ð2πρÞm ¼ ld−2

pl .
Thus, we see that our d-dimensional bound on the

validity of string-perturbation theory naturally generalizes
to a lower-dimensional bound, when some of the dimen-
sions are compactified.

B. Other combinations of incoming and
outgoing particles

In the analysis above, we considered a process where n
2

particles were incoming and n
2
were outgoing. Of course, it

is also possible to consider other processes such as 2 → n
scattering. We do not consider these combinations in this
paper to avoid any possible complications that may arise if
one of the ingoing or outgoing particles has trans-Planckian
energy. However, we emphasize that, assuming that the
factorial growth outlined above continues to hold, these
kinematical configurations would not yield a bound that is
any stronger than the bound above. This is easy to see as
follows. Consider scattering from αn → βn particles, where
α, β are some fractions. Then we see that the unitarity
bound above is saturated at

v
2
½ððαþ βÞnÞ!�2

�
E
Λ

�ðd−2Þβn−d
¼ ð2αnÞ!ðβnÞ!:

Simplifying this expression and disregarding all subleading
terms, we see once again that this leads to a breakdown of
the perturbation theory at

ð2 − dÞ log E
Λ

logðnÞ ¼ 1þ OðlogðnÞÞ;

which is precisely the same expression as the one above.
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IV. ANALYTIC ESTIMATES OF THE GROWTH
OF STRING AMPLITUDES

In this section, we will argue that n point tree-level
scattering amplitudes of massless states in closed bosonic
string theory as well as in type II superstring theories grow
at least as fast as n!gn−2s for large n. Our argument is based
on the formulation of string scattering amplitudes as
integrals over the moduli space of punctured Riemann
surfaces. We then provide some evidence that these moduli-
space integrals are dominated by the volume of moduli
space, which allows us to utilize results from the math-
ematics literature on these volumes. Since the analysis for
the bosonic string and the superstring is similar, we provide
several details for the bosonic string and then briefly
describe the generalization to the superstring.

A. Closed bosonic string amplitudes

Scattering amplitudes in closed bosonic string theory can
be formulated as integrals over the moduli space of
punctured Riemann surfaces. This representation may be
somewhat unfamiliar to the reader, since the textbook
formulation of string scattering leads to a formula for
the amplitude where the positions of the vertex operators
are integrated over a nonsingular world sheet [17]. So we
first review the equivalence of the two prescriptions.
We claim that the string scattering amplitude may be

written as

Mðk1…knÞ ¼ N gn−2þ2g
s

Z
½dm� dethμα;ϕβi

ðdethϕα;ϕβiÞ12
ðdet0 P†

1P1Þ12

× ðdet0 ΔÞ−d2 QnPnP̄n: ð4:1Þ

Here, the integral ½dm� runs over the moduli space of a
Riemann surface with n punctures and genus g. ϕα are
holomorphic quadratic differentials on the punctured
Riemann surface, and μα are Beltrami differentials that
parametrize infinitesimal motion on the moduli space. We
denote this moduli space by Mg;n, and when we need to
refer to the Riemann surface itself, we useMg;n. Apart from
this measure, we also have the standard ghost determinant
ðdet0 P†

1P1Þ12 and a power of the determinant of the scalar
Laplacian, ðdet0 ΔÞ−d

2, which arises when we do the path
integral over the world sheet fields. Here, Qn, Pn, P̄n are
terms that come from the correlation functions of vertex
operators, which are placed at the punctures, and we give
explicit expressions for these terms below when the vertex
operators correspond to massless particles.
The main point that we would like to emphasize in this

formula is that the integral over the positions of the vertex
operators has been absorbed into the integral over the
positions of the punctures of the Riemann surface. The
equivalence of this prescription to the textbook Polyakov
prescription is somewhat subtle because the punctured

Riemann surface cannot be mapped to the unpunctured
surface by a nonsingular Weyl transformation.
Nevertheless, it was shown in [18,19] that the formu-

lation of string scattering on the moduli space of the
unpunctured Riemann surface, Mg;0 and the moduli space
of the punctured Riemann surfaceMg;n indeed gives rise to
equivalent answers. We start by dividing the holomorphic
quadratic differentials into two sets: ðϕA;ϕiÞ, where the
differentials ϕA are holomorphic on the surfaceMg;0 and ϕi

which are meromorphic onMg;0 with poles at the positions
of the punctures. We can choose these two sets of differ-
entials to have no overlap so that ðϕA;ϕiÞ ¼ 0. Similarly,
we can divide the Beltrami differentials into two sets: μi
that move the punctures and μA that change the other
moduli. It is not difficult to see that we can also
choose hμi;ϕAi ¼ hμA;ϕii ¼ 0.
This then leads to the expression

Mðk1…knÞ¼N gn−2þ2g
s

Z
½dm0�

Y
d2zi

dethμA;ϕBi
ðdethϕA;ϕBiÞ12

×
dethμi;ϕji

ðdethϕi;ϕjiÞ12
ðdet0P†

1P1Þ12ðdet0ΔÞ−d2 QnPnP̄n;

where we have divided the integral over the moduli,
½dm� ¼ ½dm0�Q d2zi, into an integral over the moduli of
the surface Mg;0 and an integral over the positions of the
punctures. At this point, the operator P1, defined on a world
sheet with metric gab, as

ðP1δVÞab ¼
1

2
ð∇aδVb þ∇bδVa − gab∇cδVcÞ; ð4:2Þ

still acts only on those vector fields that vanish at the
positions of the punctures.
The main result of [18], which was further clarified in

[19], was that when the functional determinants are
appropriately regulated, we have

dethμi;ϕji
dethϕi;ϕji12

ðdet0 P†
1P1Þ12 ¼ ðdet0 ~P†

1
~P1Þ

1
2;

where ~P1 is the same operator as (4.2) but with a domain
that includes vector fields that do not vanish at the positions
of the punctures. Therefore, on the right-hand side above,
we have the usual determinant that would have resulted
from integrating out the ghost fields on the surface Mg;0.
This reduces the expression (4.1) to the more familiar
expression, which only involves quantities on the unpunc-
tured Riemann surface,

Mðk1…knÞ ¼ N gn−2þ2g
s

Z
½dm0�

Y
d2zi

dethμA;ϕBi
dethϕA;ϕBi12

× ðdet0 ~P†
1
~P1Þ12ðdet0ΔÞ−d2 QnPnP̄n:
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However, the advantage of the expression (4.1) is that it
allows us to make contact with various results in the
mathematical literature. On the punctured surface, we can
choose the so-called “hyperbolic metric” on the world sheet
so that, everywhere on the world sheet, we have uniform
scalar curvature: R ¼ −1. Note that it is possible to make
this choice even for the tree-level amplitude because, for
the n-punctured sphere, the Gauss Bonnet theorem readsZ ffiffiffi

g
p

Rd2z ¼ 2πχðMg;nÞ ¼ 2πð2 − 2g − nÞ:

Therefore, even for g ¼ 0, there is no obstruction to
choosing R ¼ −1. This just implies that the area of the
world sheet is

R ffiffiffi
g

p
d2z ¼ 2πðnþ 2g − 2Þ.

We note that near a puncture at z ¼ 0, the hyperbolic
metric behaves like

ds2 →
z→0

dzdz̄
jzj2 logðjzjÞ2 : ð4:3Þ

With this choice of metric on the world sheet, the
measure on moduli space turns into the Weil-Petersson
measure [20]

dμWP ¼ ½dm� dethμα;ϕβi
dethϕα;ϕβi12

;

where the inner product between the quadratic differentials
is taken with respect to the hyperbolic metric.
We now specialize to tree-level scattering so that we set

g ¼ 0. At tree level, our expression for the string scattering
amplitude now becomes

Mtrðk1…knÞ

¼ N gn−2s

Z
dμWPðdet0 P†

1P1Þ12ðdet0ΔÞ−d2 QnPnP̄n;

ð4:4Þ

where dμWP is the Weil-Petersson measure on the moduli
space of the n-punctured sphere.
The final ingredient that we need is the correlation

function of vertex operators. For massless states in the
closed bosonic string theory, at tree-level, these correlators
are easy to write down explicitly. Moreover, they are Weyl
invariant by themselves and so take on the same form when
the metric on the world sheet is hyperbolic, as they do when
the world sheet is flat. For the closed bosonic string, we
recall that the vertex operators for massless states are

Vðz; z̄Þ ¼ ðϵ · ∂XÞðϵ̄ · ∂̄XÞeik·X;
where we have also specified the polarization vectors ϵ, ϵ̄,
and the antiholomorphic polarization vector is just the
complex conjugate of the holomorphic polarization vector.

Physically, this means that we are considering the scattering
of linear combinations of the graviton and the dilaton.
The relevant correlation function can then be written

hVðz1; z̄1Þ…Vðzn; z̄nÞi ¼ QnPnP̄n;

where

Qn ¼ exp

�
−
1

2

X
i≠j

ki · kjGij

�
;

Pn ¼ L
�
exp

�X
i≠j

1

2
ϵi · ϵj∂i∂jGij þ ki · ϵj∂jGij

��
:

ð4:5Þ

P̄n is the antiholomorphic counterpart of Pn. Gij is the
world sheet Green’s function,

Gij ¼ ln jzi − zjj2: ð4:6Þ

The symbol L above is shorthand for a rule that instructs us
to expand the exponential in Pn and keep only the part that
is linear in all the polarization tensors.

1. Infrared divergences

The moduli-space integral receives divergent contribu-
tions from the boundaries of moduli space, where some
closed geodesic on the Riemann surface pinches off and its
length goes to zero. In the case of tree-level amplitudes, this
corresponds to the situation where two punctures collide.
These divergences can be regulated through a suitable iϵ

prescription as explained in [21]. Equivalently, as explained
in [22], one may divide the moduli-space integral into two
regions: (1) the region that covers those Riemann surfaces
that can be obtained by plumbing lower-dimensional
surfaces together using the “plumbing fixture” and
(2) the rest of the moduli space, which can be understood
as coming from a fundamental higher-point vertex. The
divergences mentioned above come from the first region of
moduli space. Here, one can get rid of them by using field
theoretic techniques to rewrite the integral as a sum over
contributions coming from the propagation of intermediate
particles. The full amplitude can then be obtained by
including the contribution from the second part of moduli
space where the integral is finite.
However, both of these prescriptions will complicate our

estimate of the size of the integral. So, here, we will follow
a simple-minded procedure by regulating these divergences
by placing a cutoff, l0, on the length of the smallest simple
closed geodesic onM0;n. This cuts off moduli space near its
boundaries, and we will work in this cutoff moduli space.
We caution the reader that it is possible that this

procedure is not justified. For example, it may happen
that the contributions from the edges of moduli space

SUDIP GHOSH and SUVRAT RAJU PHYSICAL REVIEW D 96, 066033 (2017)

066033-12



cancel off the contributions from the bulk of moduli space
that we will focus on below. These cancellations are
possible even though, in our analysis, we have chosen
polarization vectors for the external particles that will make
the integrand on the bulk of moduli space positive. But if
we use the iϵ prescription of [21], this instructs us to adopt a
contour in a complexified version of moduli space near the
edges, and then the integrand is no longer positive. For
these reasons, it would be nice to repeat the arguments
below without this cutoff.
Keeping these caveats in mind, we now examine each of

the terms that appear in (4.4).

B. Volumes of Weil Petersson moduli spaces

We will argue below that the main contribution to the
growth of amplitude comes simply from the volume of
moduli space

Vg;n ¼
Z

dμWP:

Volumes of the Weil-Petersson moduli spaces of punctured
Riemann surfaces have been studied in the mathematics
literature. For the n-punctured sphere, this volume was first
calculated in [23]. Then, numerical techniques were used to
advance conjectures for the growth of these volumes at
large genus [24]. In [25], an analytic recursion relation was
developed to calculate the Weil-Petersson volumes for any
value of n, g. The asymptotic growth of this volume was
then studied in [26].
These papers found that, for any fixed n, when g

becomes large

Vg;n ¼ ð4π2Þ2gþn−3ð2g − 3þ nÞ! 1ffiffiffiffiffi
gπ

p
�
1þ O

�
1

g

��
:

ð4:7Þ

We do not need the subleading terms and are only
interested in the leading asymptotic behavior, which is
given by

lim
gþn→∞

logðVg;nÞ
ð2gþ nÞ logð2gþ nÞ ¼ 1; ð4:8Þ

and holds when either n or g become large.
Note that putting n ¼ 0 in (4.8) we have

lim
g→∞

Vg;0 ∝ ð2gÞ!: ð4:9Þ

Here, as in the rest of this paper, when we use the symbol∝,
we mean that we have captured the leading growth of the
physical quantity. For example, in (4.9), we have dropped
factors that may even grow exponentially with g since these
factors are subleading compared to the factorial growth.

This large-g growth in the volume of moduli space was
independently obtained in the physics literature by using
matrixmodel techniques in [27]. By combining these results
with the analysis of [28], it is possible to show that this
growth implies that the vacuum amplitude in the closed
bosonic string theory also grows as ð2gÞ! for large g. It is
well-known that this growth implies that nonperturbative
effects in string theory appear with a strength of Oðe−1=gsÞ.
At weak coupling, this is larger than the size of non-
perturbative effects in ordinary quantum field theory, which
is expected to be Oðe−1=g2s Þ. These stringy nonperturbative
effects are related to the existence of d-branes in string
theory.
In our case, we are interested in the growth of the volume

at large n with g ¼ 0, which is given by

lim
n→∞

logðV0;nÞ
n logðnÞ ¼ 1þ O

�
1

logðnÞ
�
;

or in simpler notation

lim
n→∞

V0;n ∝ n!; ð4:10Þ

where we have kept only the leading part of the growth and
dropped other factors, including those that are merely
exponential in n.
We will now argue that the full scattering amplitude is

dominated by the factorial growth (4.10) since the other
terms in the string scattering amplitude have subfactorial
growth.

C. Bounds on functional determinants

The functional determinants that appear in (4.4) can be
related to special values of the Selberg zeta function and its
derivatives. The Selberg zeta function is defined as

ZðsÞ ¼
Y
Θ

Y∞
k¼1

ð1 − e−ðsþkÞlΘÞ; ReðsÞ > 1:

Here the product labeled by Θ is over all simple closed
geodesics on the Riemann surface. The length of Θ, lΘ, is
measured with respect to the hyperbolic metric on the
Riemann surface. In terms of ZðsÞ, we have [29]

det0 Δ ¼ e−c0χ
�
dZ
ds

�
s¼1

;

det0ðP†
1P1Þ ¼ e−c1χZð2Þ; ð4:11Þ

where χ is the Euler characteristic of the Riemann surface
under consideration. The constants cn are Oð1Þ numbers
given by
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cα ¼
X

0≤m≤α−1
2

½ð2α − 2m − 1Þ logð2α −mÞ�

−
�
αþ 1

2

�
2

þ 2ðα − ½α�Þ
�
αþ 1

2

�
logð2πÞ

þ 2ζ0ð−1Þ: ð4:12Þ

In particular, we have c0 ≈ −0.58 and c1 ≈ −1.89.
In most of the moduli space, we expect the Selberg zeta

function to bewell behaved.However, it is important to bound
this term near the boundaries of moduli space and ensure that
it cannot affect the factorial growth of the amplitude.
The behavior of the Selberg zeta functions near the

boundaries of moduli space, where the Riemann surface
degenerates was studied in [28–30]. The basic method of
estimating the behavior of the Selberg zeta function near
the boundaries of the moduli space is as follows. Let Θ be a
simple closed geodesic which gets pinched when two given
punctures approach each other on the world sheet and
consider the collar region around Θ, which is defined as

CðΘ; rÞ ¼ fz∶ρðz;ΘÞ < rg;
where ρðz;ΘÞ is the hyperbolic distance of a point z from
Θ, and r is referred to as the radius of the collar.
It turns out that as the length of this geodesic, l → 0, the

geometry of theRiemann surface excluding a collar of radius
r ¼ logðl−1Þ remains uniformly bounded. The geodesics,
which only remain in this part of the Riemann surface and do
not intersectΘ, are not affected by the degeneration ofΘ, and
their contribution to the Selberg zeta function is simply a
constant in the limit where l → 0. However, the lengths of
the geodesics, which happen to intersect Θ, tend to infinity
since these now have to cross the collar region. As a result,
their contribution to ZðsÞ is simply 1 in the limit
where l → 0.
This leaves behind the degenerating geodesic itself, and

its inverse, which has the same length. Their contribution to
the infinite product can be calculated explicitly. This
analysis allows one to estimate the behavior of the
Selberg zeta function and its derivatives as the moduli
space degenerates [29], and one finds that

ZðsÞ →
l→0

l−2sþ1e−
π2

3l:

In our case, we recall that we have bounded the length of
the smallest simple geodesic on the Riemann surface by an
n-independent constant l0. This means that near the
boundaries of this cutoff moduli space

Zð2Þ ∝ l−3
0 e−

π2

3l0 ;

up to an l0 independent constant. From the formulas above,
we can also derive the behavior of Z0ð1Þ near the boundary
of the cutoff moduli space, which is given by

Z0ð1Þ ∝ l−1
0 e−π

2=3l0 :

Our interest in these formulas is restricted to the fact that, in
the cutoff moduli space, the Selberg zeta functions that
appear in (4.11) are bounded away from 0 and ∞ by finite
constants.
Now note that the only other terms that appear in (4.11)

are e−c0χ and e−c1χ . While these vary exponentially with n,
since χ ¼ 2 − n, this behavior is subleading compared to
the factorial growth of the volume of moduli space. In fact,
since c0 < 0 and c1 < 0, both determinants in (4.11) decay
with n.
As far as the ghost determinant is concerned, the main

result that we are interested in is that it is bounded below
and does not decay as rapidly as a factorial. However, we
see that it also does not grow as a factorial and that

logfdet0ðP†
1P1Þg

n logðnÞ ¼ 0þO
�

1

logðnÞ
�
;

in the cutoff moduli space. On the other hand, to bound the
amplitude from below we only need the result that the
determinant of the scalar Laplacian is bounded above so
that its inverse does not decay as rapidly as a factorial.
However, we have the stronger result that

logfdet0ðΔÞg
n logðnÞ ¼ 0þO

�
1

logðnÞ
�
;

in the cutoff moduli space.
Therefore, the functional determinants in (4.11) do not

alter the factorial growth shown in (4.10).

D. Bounds on Green’s functions

We now argue that the term Qn also does not affect the
factorial growth of the amplitude.
Once again, we start by ensuring that its contribution from

the boundaries of moduli space is bounded. The region on
the Riemann surface near the degeneration locus, where two
punctures on the world sheet collide, is conformally equiv-
alent to a twice punctured disc. In [31], it was shown that on a
twice punctured disc Dnf−a; ag, the length, l of the
smallest closed geodesic separating the punctures f−a; ag
from the boundary of the disc ∂D is given by

l ¼ 2π2

logð1=aÞ ;

as the punctures coalesce, i.e., as a → 0. (See also [32].)
Using this result, and the formula for the world sheet

Green’s functions (4.6), we see that on the cutoff moduli
space, Gij can then be bounded as

jGijl0j ≤ C;
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near the region where the punctures i, j come close and
where C is a constant, which is independent of the number
of punctures, n.
It is also of interest to determine the contribution of the

Green’s function between two generic punctures on the
punctured Riemann surface. We can set up holomorphic
coordinates on the punctured Riemann surface by setting
the hyperbolic metric to be ds2 ¼ eρdzdz̄. The function ρ
must have the appropriate logarithmic singularities at the
positions of the punctures where the metric behaves like
(4.3). Furthermore, we can fix the isometries of this metric
by demanding that three of the punctures be at z ¼ 0, z ¼ 1
and z ¼ i.
Then, noting that the area of the Riemann surface

is 2πðn − 2Þ, at a generic point in moduli space, we expect
thatwewill have j log jzi − zjjj ¼ OðlogðnÞÞ for two generic
punctures.
Next, note the energy per particle scales as E ∝ 1

nγ.
Therefore, the factor of ki · kj in the exponent of Qn has
a magnitude of order 1

n2γ. Second, although there are Oðn2Þ
terms in the exponent of Qn, the factor of ki · kj does not
have a definite sign. More precisely, correlations between
these terms come only from the momentum conserving
delta function, but this single constraint tends to become
unimportant in the large n limit. The Green’s function
Gij also has varying signs on the moduli space, although
it is bounded and has typical magnitude logðnÞ as
explained above.
Hence, we expect that the sum of Oðn2Þ terms, each

of the size OðlogðnÞn−2γÞ, will only contribute an
OðlogðnÞn1−2γÞ factor to the magnitude of the exponent,
at least at most points in the moduli space.
These arguments suggest that

log jlogQnj
ð1 − 2γÞ logðnÞ ≤ 1þO

�
logðlogðnÞÞ

logðnÞ
�
;

on a significant fraction of the moduli space. This can be
rewritten as

j logðQnÞj ≤ q logðnÞn1−2γ; ð4:13Þ

where q is some Oð1Þ factor on a significant part of
moduli space.
From (4.13) we see that, for any value of γ > 0, the

possible suppression due to Qn is subleading compared to
the factorial growth of the volume of the moduli space.
Note that, in this section, we have been somewhat heuristic.
We have also not bounded Qn everywhere in the cutoff
moduli space, as we were able to do for the term involving
the functional determinants. In particular, we have not ruled
out the possibility that Qn might become very large on
some parts of moduli space, which might enhance the
factorial growth of the amplitude.

Nevertheless, insofar as the issue of proving a lower
bound on the growth of the moduli-space integral in the
cutoff moduli space is concerned, we believe that these
arguments are correct. Our conclusions above are also
verified very nicely by the numerical calculations of Sec. V.
In particular, we direct the reader to Fig. 4, which shows
that (4.13) provides an excellent fit to our numerical results
when logðQnÞ is evaluated at the saddle points of the
moduli-space integral.
This analysis suggests that the factor of Qn does not

modify the factorial growth of the amplitude that comes
from the volume of moduli space.

E. Prefactors

We are left with the prefactors Pn and P̄n. These
prefactors contain, within themselves, both a factorial
number of terms and also a product of n Green’s functions.
Thus, in principle, this prefactor could either grow
factorially or suppress the overall factorial growth of the
volume.
A heuristic, and indirect, argument that this prefactor

does not alter the factorial growth of the amplitude is as
follows. By unitarity, we know that massless amplitudes
appear in the residues of the poles of tachyon amplitudes. If
we can show that tachyon amplitudes grow factorially, then
it is likely that these residues—and, hence, the massless
amplitudes—also grow factorially and that the factors of Pn
do not suppress this growth.
If we had been considering tachyon amplitudes,

then the analysis of the volume of moduli space and
functional determinants would have been just as in the
previous sections. The analysis of the factor Qn would
also have been similar to Sec. IV D except that the
typical components of the tachyon momenta would
scale with 1ffiffiffi

α0
p . This corresponds to γ ¼ 0 in the notation

above.
The analysis of this case is somewhat delicate since, on a

large fraction of moduli space, we see from (4.13) that the
suppression due to Qn may itself be as strong as 1

n!.
However, we would still expect that, at least on an
exponentially small fraction of moduli space, the inequality
j logðQnÞj < n logðnÞ would hold. Since the volume of this
fraction already grows factorially with n, this suggests that
the final answer for tachyon amplitudes also grows facto-
rially with n.
By the argument above, this suggests that the factors of

Pn and P̄n do not suppress the factorial growth of massless
amplitudes.
However, this argument is only suggestive and not

entirely satisfying. Therefore, here, we will borrow a result
from Sec. V. The numerical analysis of Sec. V shows that
Pn does not decay as a factorial. The numerical analysis
also suggests that Pn does not grow factorially but we are
unable to entirely rule out this latter possibility due to
subtleties in the numerics explained in Sec. V C.
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Nevertheless, this result tells us that the factorial growth
shown in (4.10) provides at least a lower bound on the rate
of growth of string amplitudes.

F. Growth of tree amplitudes

Combining the results above, we have

logðMtrðk1…knÞÞ
ðn − 2Þ logðgsÞ þ n logðnÞ → 1;

in the limit where gs → 0 and n → ∞. Said differently, we
see that

Mtrðk1;…knÞ ∝ gn−2s n!; ð4:14Þ

where the ∝ sign indicates that we have dropped other
terms that do not grow as fast as n!. This is the result that
we wanted to prove.

G. Superstring amplitudes

We now describe how this analysis can be extended to
the superstring. The analysis is largely parallel to the
bosonic string, so we will be brief and not repeat all of
our steps. We will also confine ourselves to tree-level
amplitudes to avoid subtleties with the superstring moduli
space at higher genus.
We start with the formulation of the superstring scatter-

ing amplitude as

Mtrðk1…knÞ ¼ N gn−2s

Z
dμWPðdet0 P†

1
2

P1
2
Þ−12 ðdet0 P†

1P1Þ12

× ðdet0 =DÞd2ðdet0 ΔÞ−d2 QnPnP̄n; ð4:15Þ
which is the natural supersymmetric generalization [33] of
(4.1). The determinant of the world sheet Dirac operator
arises from integrating out the world sheet fermions, and in
addition, we also obtain a determinant by integrating out
the superghosts. In the expression above, we have per-
formed the integral over the odd moduli, which leaves
behind the expression QnPnP̄n. The only integral that
remains is over the positions of the punctures. We
have used notation to use the same symbols Pn, P̄n for
the world sheet correlators as in the bosonic string but in the
case of the superstring, the values of these correlators
are different. This should not cause any confusion and
which expression for Pn needs to be used should be clear
from the context.
We now describe this world sheet correlator in more

detail. We define

Vðθ; χ; zÞ ¼ exp ðiθχϵ · ∂X þ θk · ψ − χϵ · ψÞ; ð4:16Þ

which depends on the momentum kμ, a polarization vector
ϵμ, and two auxiliary Grassmann variables θ, χ [34]. Then,

we recall that the vertex operators for NS-NS sector
operators in the type II superstring with polarization tensor
ϵμν ¼ ϵμϵν

5 are given in the ð−1;−1Þ-picture and the (0,0)
picture by

Vð−1;−1Þðz; z̄Þ ¼ e−ϕ−ϕ̄eik·X
Z

dχ̄dχVðθ ¼ 0; χ; zÞ

× ~Vðθ̄ ¼ 0; χ̄; z̄Þ;

Vð0;0Þðz; z̄Þ ¼ eik·X
Z

dχ̄dθ̄dχdθVðθ; χ; zÞ ~Vðθ̄; χ̄; z̄Þ;

where the operator e−ϕ−ϕ̄ arises from the bosonized super-
conformal ghost insertions and ~V is defined in analogy to
(4.16) with all the left-moving fields replaced with right-
moving ones.
The n-point world sheet correlation function that

we need is then obtained by inserting 2 ð−1;−1Þ picture
operators and (n − 2)-(0,0) picture operators. This is
given by

QnPnP̄n ¼ hVð−1;−1Þðz1; z̄1ÞVð−1;−1Þðz2; z̄2ÞVð0;0Þðz3; z̄3Þ � � �
× Vð0;0Þðzn; z̄nÞi

¼ 1

jz12j2
Z Yn

i¼3

dθidθ̄i
Yn
j¼1

dχjdχ̄j exp I exp Ī;

where

I ¼
X
i≠j

1

2
ki · kj lnðzi − zjÞ −

θiθjki · kj
zi − zj

þ θi − θj
zi − zj

ðχiϵi · kj þ χjϵj · kiÞ −
χiχjϵi · ϵj
zi − zj

−
θiθjχiχjϵi · ϵj
ðzi − zjÞ2

;

and it is understood that θ1 ¼ θ2 ¼ 0 in the expression
for I.
Now the integral over the Grassmann variables may be

done as follows. We separate the last term in I, which is
quartic in the Grassmann variables, and then pull it down
using a power series expansion of the exponent. Each
power of this term soaks up some of the Grassmann
integrals. The integral over the rest of the Grassmann
variables is Gaussian and so can be performed in terms of a
Pfaffian. The result, after this manipulation, can be seen to
be QnPnP̄n, where

5For this choice of polarization tensors, which corresponds to
the scattering of linear combinations of the graviton and the
dilaton, tree-level amplitudes in the type I theory are the same as
tree-level amplitudes in the type II theories.
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Qn ¼
Y
i≠j

jzi − zjjki·kj ;

Pn ¼
1

z12

�
PfðM12Þ þ

X
fkg;Πk

�Yk
p¼1

ðϵπ2p−1 · ϵπ2pÞ
ðzπ2p−1 − zπ2pÞ2

�

× PfðM12π1ðπ1þnÞ…π2kðπ2kþnÞÞ
�
: ð4:17Þ

Here, the matrix M is defined as

M ¼
�
A −CT

C B

�
; ð4:18Þ

and the matrices A, B, C are defined through

Aij ¼
(

ki·kj
zi−zj

i ≠ j

0 i ¼ j
; Bij ¼

( ϵi·ϵj
zi−zj

i ≠ j

0 i ¼ j
;

Cij ¼

8><
>:

ϵi·kj
zi−zj

i ≠ j

−
P
p

ϵi·kp
zi−zp

i ¼ j
;

and the notationMi1…in means that the rows i1;…in and the
columns i1…in are removed before taking the Pfaffian. The
sum over fkg; πk is over all distinct choice of k pairs from
the range ð3…nÞ, where k runs from 1…ðn − 2Þ=2. The
pairs themselves are specified by fðπ1; π2Þ…ðπ2k−1; π2kÞg.
For future reference, we note that the Pfaffian in the last
term in the sum above, with k ¼ ðn − 2Þ=2, can be
simplified using

PfðM1;2;3;3þn;…n;2nÞ ¼
ϵ1 · ϵ2
z12

; ð4:19Þ

since only the rows and columns (nþ 1) and (nþ 2) are
left after the deletion above.
The rest of the analysis for the type II superstring

amplitude is entirely parallel to the analysis for the bosonic
string that we displayed above. In particular, the functional
determinants that appear in the path integral above can
again be related to special values of the Selberg zeta
function [35] through

det0P†
1
2

P1
2
¼ exp ð−c1

2
χÞZ

�
3

2

�
;

det0=D=D ¼ exp ð−c−1
2
χÞZ

ð2NÞð1
2
Þ

ð2NÞ! :

Here, N is the number of zero modes of the Dirac operator,
and the constants c�1

2
are also given by (4.12). It is not

difficult to see, by a simple extension of the analysis above,
that these functional determinants are also bounded away

from factorial growth, and therefore do not affect the
leading factorial behavior of the amplitude.
SinceQn for the superstring has the same formasQn for the

bosonic string, our bounds on this term that we analyzed for
the bosonic string also apply here. To analyze the prefactors
Pn and P̄n, the heuristic relation to tachyon amplitudes that
was given for the bosonic string can also be utilized here. This
is because the processes we are considering, in principle, also
make sense in the type 0 string theories. The massless
scattering amplitudes we are considering here can, therefore,
be obtained by factorizing tachyon amplitudes in the type 0
theories. By using the bounds on functional determinants and
the bound onQn above,we can argue that tachyon amplitudes
in the type 0 theories grow factorially. This suggests that at the
poles of these amplitudes, the residues, which include the
massless amplitudes, also grow factorially.
However, this argument is not watertight and, with just

these arguments, we cannot entirely rule out the possibility
that the expansion of the Pfaffians leads to an additional term
that also grows like n! or alternately, becomes very small.
With the help of numerical analysis, in the next section, we
will be able to rule out the possibility that PnP̄n decays as
rapidly as 1

n!. The numerical analysis also suggests that these
terms do not grow as rapidly as n! but this conclusion is less
robust for reasons that we detail below.
Assuming this property of Pn, we find that (4.14) holds

for the superstring amplitude as well.

V. NUMERICAL ESTIMATES OF THE
GROWTH OF STRING AMPLITUDES

In this section, we will turn to a numerical analysis of
string scattering amplitudes. In our analysis above, we
provided some evidence that string amplitudes grow at least
as fast as n! at large n. However, we were unable to deal
precisely with the effect of the factor of PnP̄n that appears
in (4.4) and (4.15). By numerically estimating the growth of
string amplitudes in this section, we will verify the factorial
growth in an entirely independent manner and also check
that the factors of Pn and P̄n do not seem to change this
behavior. Our conclusion that the factors of PnP̄n do not
suppress the factorial growth is robust. However, our result
that they do not enhance this growth is subject to some
caveats as we describe in Sec. V C.
In this section, it will be convenient to go back to the

choice of a flat world sheet metric. Therefore, our expres-
sions for the bosonic and type II superstring amplitudes can
both be written as

Mtrðk1…knÞ ¼ 4πgn−2s

Z Yn
i¼4

d2ziQnPnP̄njGj; ð5:1Þ

where Pn and Qn are given in (4.5) for the bosonic string
and (4.17) for the type II superstring and G is the ghost
contribution given by
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G ¼ z212z
2
23z

2
13: ð5:2Þ

Note that although the superstring also receives a contri-
bution from the superghost insertions, we have already
included them in (4.17). We have now also fixed the overall
normalization of the scattering amplitude, which can be
determined by unitarity [17].
We note that this integral runs over (n − 3)-complex

dimensions. Moreover, as we mentioned above, it suffers
from divergences when zi → zj. As we explained above,
these divergences can be regulated systematically. One
procedure was outlined in [21]—which suggested a suit-
able iϵ prescription—and another procedure was described
in [22]—which described how the region of moduli space
that led to the divergences could be isolated and dealt with
using field theoretic techniques. However, in practice, both
of these prescriptions are nontrivial to implement on a
computer. Therefore, we will not directly attempt to
perform the integral in (5.1).
Instead, we are able to proceed further as follows. Upon

considering the string integral, we find that, even though
individual energies are small, logðQnÞ becomes large at
large n. The exponent inQn has Oðn2Þ terms, and while we
expect these terms to cancel among each other, we still
expect that the saddle is of order n1−2γ as shown in (4.13).
Therefore, even in the situation where the individual
energies are small, we can approximate the amplitude by
localizing the moduli-space integral onto the points where
logðQnÞ is maximized. This procedure is not only numeri-
cally efficient, it also has the advantage that it sidesteps the
issue of divergences in the moduli-space integral.
Extremizing the exponent in Qn leads us to focus on the

values of zi that satisfy

Ei ¼
X
j≠i

ki · kj
zi − zj

¼ 0; ∀i: ð5:3Þ

These equations were first discovered in [36] in the study of
high-energy string scattering. However, they have recently
turned out to be useful in the study of scattering in ordinary
quantum field theories [37].
Note that solutions to the scattering equations are

invariant under simultaneous SLð2; CÞ transformations of
the variables zi →

aziþb
cziþd with ad − bc ¼ 1. This invariance

also appears in the string amplitude and can be gauge fixed
by setting z1, z2, z3 to definite values. Modulo this gauge
invariance, it is easy to see that there are actually ðn − 3Þ!
solutions of the scattering equations. This was proved in
[38]. The proof is not difficult and proceeds by induction.
Assume that the number of distinct solutions to the

scattering equations with n − 1 particles is ðn − 4Þ!. Now
consider the scattering equations with n particles. We can
use the SLð2; CÞ freedom to set z1 ¼ ∞. Then z1 and k1
drop out of the Eq. (5.3). We now deform the first and the

last momenta through kn → αkn, while simultaneously
deforming k1 → k1 þ ð1 − αÞkn. The deformation of k1
has no effect since we have set z1 ¼ ∞. As we take α from
1 to 0, we see that the αkn drops out of the scattering
equations, ðE1…En−1Þ, and this set of equations becomes
an independent set of scattering equations for n − 1
particles. By assumption, this set has ðn − 4Þ! solutions.
On the other hand, En is independent of α. This gives us a
polynomial equation of order (n − 3) for zn that should
have (n − 3) roots. Therefore, for each of the ðn − 4Þ!
solutions to the equations ðE1;…En−1Þ, we now have
(n − 3) solutions for zn leading to a total of ðn − 3Þ!
solutions for the full system ðE1;…EnÞ. Now, as we
deform α away from 0, and back towards 1, we can assume
that these ðn − 3Þ! solutions move continuously in the
complex plane leading to ðn − 3Þ! solutions for the original
undeformed scattering equations.
It is rather remarkable that this is exactly the same

number as the estimate of the volume of moduli space in
(4.7) at g ¼ 0 including even the subleading terms in n.
Therefore, there is one solution of the scattering equations
per unit volume of moduli space. We do not understand the
reason for this phenomenon.
Localizing on the solutions to the scattering equations,

and after performing the integral about the Gaussian
fluctuations about these saddle points, our prescription
for numerical evaluation of the amplitude becomes

Mtrðk1…knÞ ¼ ð4πgsÞn−2
X
fzig

jGjjJ j−1QnPnP̄n: ð5:4Þ

The sum goes over all inequivalent solutions of the
scattering equations. Here, jJ j−1 is the Jacobian factor
that results from integrating fluctuations about the saddle
points and is given by J ¼ detð∂jEiÞ. More explicitly, this
matrix is

∂jEi ¼

8>><
>>:

ki·kj
ðzi−zjÞ2 ; i ≠ j

−
P
q≠i

ki·kq
ðzi−zqÞ2 ; i ¼ j;

ð5:5Þ

and i; j ∈ ð4…nÞ. The overall factor multiplying the
amplitude arises because the integral over Gaussian fluc-
tuations yields ð4πÞn−3jJ j−1, and this factor combines with
the 4πgn−2s in (5.1) to give ð4πgsÞn−2.
We see immediately that we can also write our

estimate as

Mtrðk1…knÞ ¼ ðn − 3Þ!ð4πgsÞn−2jGjhjJ j−1QnPnP̄ni;
ð5:6Þ

where by hjJ j−1QnPnP̄ni, we mean the mean of this
quantity across the set of solutions of the scattering
equations. Thismean can be estimated statistically by taking
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a sample of the set of saddle points. Thus, by sampling over a
large set of solutions to the scattering equations, we obtain
an estimate for the full amplitude without having to find all
ðn − 3Þ! solutions to the scattering equations.

A. Brief description of algorithm

We now briefly describe the algorithms that we use here
to solve the scattering equations and evaluate the integrand.
We provide some additional details in Appendix A.
We choose a set of random external kinematics using a

uniform measure in phase space. This can be done using
standard algorithms [39] used to generate events in phe-
nomenological calculations, as explained further in
Appendix A.
Given a set of external momenta, the first task in

evaluating (5.6) is to obtain solutions of the scattering
equations. Our algorithm simply starts at a random point
in Cðn−3Þ (with some cutoffs that disallow very large
initial values of z) and then uses a variant of the multidi-
mensional Newton’s method to seek the nearest solution.
Multidimensional root-finding algorithms are not guaran-
teed to converge, so if the algorithm does not converge,
it simply picks another starting point and flows to a
nearby root. We caution the reader that although we pick
our initial starting point using as uniform a distribution as
possible, this does not mean that we are sampling the roots
uniformly. This is because we do not have any prior
estimates for the sizes and shapes of the basins of attraction
of different roots.
After having obtained a root, our next task is to evaluate

the summand in (5.6). The terms J −1 and Qn are
straightforward to evaluate. Qn can be obtained by sum-

ming over the nðn−1Þ
2

terms in its exponent. The Jacobian
factor, J −1 is a determinant of a ðn − 3Þ × ðn − 3Þ matrix,
which can also be evaluated efficiently using LU decom-
position [40]. However, note that Pn contains a large
number of terms. Several of these terms are numerically
expensive to evaluate, as we describe below. Therefore, in
order to evaluate this term efficiently, we truncate the
prefactor for the superstring as

PnP̄n≈
				 PfðM12Þ

z12

				2 þX
π

				 ϵ1:ϵ2z212

Yðn−2Þ=2

i¼1

ϵπ2i−1 :ϵπ2i
ðzπ2i−1 − zπ2iÞ2

				2:
ð5:7Þ

Here, we note that the last term comes from (4.19). Here,
the sum over permutations runs over distinct pair-
ings ð3;…nÞ → fðπ1; π2Þ…ðπn−3; πn−2Þg.
For the bosonic string, we truncate the prefactor as

PnP̄n≈
				Y

i

X
j≠i

ϵi · kj
zi − zj

				2 þX
π

				Y
n
2

l¼1

ϵπ2l−1 · ϵπ2l
ðzπ2l−1 − zπ2lÞ2

				2: ð5:8Þ

Here, the sum over permutations runs over all distinct
pairings of all n particles: ð1;…nÞ → fðπ1; π2Þ…
ðπn−1; πnÞg.
There are two truncations involved here. First, we see

that the truncation reduces the Oðn2Þ terms that appear in
(4.17) and (4.5) to two terms each. We do not expect this to
make any difference to the factorial growth, which is our
main interest. Moreover, we expect that these two terms are
the most important terms in the amplitude. Naively, we
might also expect that the term involving the polarization
vectors is important at lower energies since it involves the
fewest possible factors of the external momenta. On the
other hand, we expect that the term involving the Pfaffian
will be important at relatively higher energies for the
superstring. Similarly, we expect that the term involving
dot products of the momenta with the polarizations will be
important at higher energies for the bosonic string.
However, more significantly, we have placed the per-

mutation outside the absolute value sign in (5.7) and (5.8)
even though the original expressions involved the absolute-
value squared of the sum. This is because we expect that the
other terms in the sum will suffer cancellations, and
therefore this part—which involves the sum of absolute-
value squares in which all terms are positive—is likely
to dominate. We cannot verify this assumption directly in
our numerics since, in order to do so, we would have to
check cancellation in the remaining terms to Oð 1n!Þ, which is
not feasible. It would be nice to understand this approxi-
mation better.
Empirically, we find for the bosonic string for γ ¼ 0

(relatively higher energies), the first term in (5.8) starts
dominating the second term after about n ∼ 60. For γ ¼ 1

24

(relatively lower energies), the first term against starts
dominating after about n ∼ 90. From this analysis, it
appears that, at large n, the string amplitude is well
approximated by only the first term in (5.8). However,
we direct the reader to the paragraph on “prefactor
estimation” in Appendix A for a discussion of whether
this is a genuine result or a numerical artifact.
For the superstring the second term in (5.7) becomes

unimportant even earlier—after about n ∼ 30 in the
case where γ ¼ 0 and after about n ∼ 70 in the case where
γ ¼ 1

8
.

Although the prefactor Pn contains only Oðn2Þ terms,
the reason these terms are expensive to evaluate is as
follows. Consider the term that involves the product
of polarization vectors either in (5.7) or (5.8). We see that
this involves a sum over all possible pairings of the
polarization vectors. There are n!

2
n
2ðn=2Þ! distinct pairings,

and so it cannot be evaluated directly. Therefore, to
estimate this term, we sum over a set of random pairings
and then multiply by the total number of possible pairings.
This sampling process is expensive, and it would be very
numerically expensive to carry it out for all the other terms
in (4.17) and (4.5).
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B. Results

We now describe the results of our numerical calcula-
tions. For the superstring, we evaluated 1000 solutions of
the scattering equations for 500 different sets of random
kinematics for each even value of n ∈ ½4; 100�. This
constitutes 2.25 × 107 distinct solutions of the scattering
equations. For the bosonic string, we evaluated 500
solutions of the scattering equations for 500 different sets
of random kinematics for each even value of n ∈ ½4; 100�.6
This constitutes 1.13 × 107 distinct solutions of the scatter-
ing equations. Both computations together took about
8000 hours of CPU time.
The results of our calculations for the type II superstring

are displayed in Fig. 2. In our calculation, we are interested
in values of n that are as large as possible. Accordingly, in
the figure, we only show data for n ∈ ½18; 100� and discard
the data for smaller values of n. This choice of starting
point is simply based on empirical considerations since we
find that the data does not obey the same nice trend for
smaller values of n. On the y axis, we plot

logð ~MnÞ ¼ logðMtrðk1…knÞÞ − ðn − 2Þ logð4πgsÞ
þ n logðd − 2Þ; ð5:9Þ

where d ¼ 10 is the critical dimension for the superstring.
The reason that the last factor n logðd − 2Þ appears is to
compensate for the fact that when we dot a set of random
polarization tensors with the amplitude, we expect to obtain
a factor of 1

ðd−2Þn. Adding n logðd − 2Þ to the logarithm of

the amplitude strips off this irrelevant kinematic factor and
gives us a better sense of the magnitude of the amplitude.

We can fit the amplitude to the following expression:

logð ~MnÞ ¼ aþ bnþ logððn − 3Þ!Þ; ð5:10Þ

and the values of a, b for two extreme possible choices
of γ are shown in Fig. 2. These values are not of any
direct relevance to our calculation. Our emphasis is simply
on the leading logððn − 3Þ!Þ term, and the graphs show that
it is an excellent fit to the amplitude. In particular, what
Fig. 2 shows is that the factor of Pn does not suppress the
amplitude or contribute another factorial term to the
amplitude.
These results may be compared to the answer for the

bosonic string, which we had previously discussed in [8].
The graphs for the bosonic string are reproduced below in
Fig. 3. Once again, we plot logð ~MnÞ as defined in (5.9)
except that now we use d ¼ 26, which is the critical
dimension for the bosonic string. The best fit values for
the fit (5.10), are also displayed in Fig. 3. Note that the
values of a, b that appear here are slightly different from [8]
because, in order to retain consistency with the superstring
case, we have discarded data for n < 18 here whereas we
had retained data for n ¼ 12, 14, 16 in [8]. Once again, we
see that the factorial growth, which can be understood as
coming from the volume of moduli space or from the
number of solutions to the scattering equations, provides an
excellent approximation to the amplitude.
Note the various values of a, b are not comparable

between the superstring and the bosonic string since the
bosonic string amplitudes are evaluated in d ¼ 26 whereas
the superstring amplitudes are evaluated in d ¼ 10. The
different dimensionality leads to several subtle effects. For
example, it alters the average value of kinematic invariants
ki · kj even if we choose jkij to scale in the same manner.
We can also use our numerical results to check our

expectations about the growth of Qn outlined in Sec. IV D.
Note that in Sec. IV D, we were concerned with a generic

FIG. 2. Scattering amplitudes in the superstring for extreme
values of γ. The solid lines show aþ bnþ logððn − 3Þ!Þ.

FIG. 3. Scattering amplitudes in the bosonic string for extreme
values of γ. The solid lines show aþ bnþ logððn − 3Þ!Þ.

6Obviously, for n ¼ 4, 6, 8, there are only 1, 6, and 120 distinct
solutions.
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point in moduli space whereas, by construction,
our numerical results pertain to those points in moduli
space where logðQnÞ is extremized. Nevertheless, in Fig. 4,
we show hlogðQnÞi, averaged over our numerical samples
for γ ¼ 0. Choosing a nonzero value for γ would just
change logðQnÞ → 1

n2γ logðQnÞ. For γ ¼ 0, we find that we
can fit

hlogðQnÞi ¼ α1 þ α2nþ α3n logðnÞ: ð5:11Þ
We see from Fig. 4 that, with the appropriate choice of
parameters, this is a perfect fit both for the bosonic string
and for the superstring. This precisely justifies our analytic
expectations from Sec. IV D
It is a fact that, for every solution of the scattering

amplitudes logðQnÞ < 0. Physically, this is a sign of the
good high-energy properties of string theory since it
indicates that as we scale up the momentum, Qn → 0.
On the other hand, from the point of view of the
scattering equations, viewed as a set of polynomial
equations, it is somewhat miraculous that the roots
always lead to a negative value for logðQnÞ. This property
is certainly not true everywhere on the moduli space. It
would be nice to understand this property directly from the
equations.
We now turn to a discussion of the possible errors in

this result.

C. Errors

The main possible source of error in our answers arises
as follows. We find, empirically, that our numerical samples
obey a log-normal distribution. This is shown in Fig. 5,
where we have plotted a histogram of the values obtained
for the superstring for

L ¼ log ðjGjjJ j−1QnPnP̄nÞ þ n logðd − 2Þ:

These values cover all the solutions to the scattering
equations that we generated for n ¼ 50, 80, 100, respec-
tively. As mentioned above, each histogram covers
500,000 distinct solutions of the scattering equations,
since we generated 1000 solutions for 500 distinct sets
of external momenta. It is convenient to combine all
these sets into a single set for the discussion here.
Histograms for the same quantity and for the same
values of n are shown for the bosonic string in Fig. 6
although, in this case, each histogram covers 250,000
samples for each n.
In each case, we find that the distribution of the

amplitude is well-approximated by a sum of log-normal
distributions. More precisely, the values of L obtained in
our numerical results are distributed according to the
probability distribution

(0.30,88.93, 15.64) + (0.69, 105.62, 10.04)
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L
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(0.28,74.54, 12.73) + (0.72, 87.97, 8.23)

40 60 80 100 120
L

0.01

0.02

0.03

0.04
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FIG. 5. Histograms for the distribution of amplitudes for n ¼ 100, 80, 50, respectively, for the superstring. The legend shows the best
fit sum of normal distributions as explained in the text.
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FIG. 4. Plot of hlogQni vs n for the bosonic string (left) and the superstring (right). The best fit values α1, α2, α3 defined in (5.11) are
also shown.
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pðLÞdL ¼ α1ffiffiffiffiffiffi
2π

p
σ1

e
−ðL−μ1Þ2

2σ2
1 þ α2ffiffiffiffiffiffi

2π
p

σ2
e
−ðL−μ2Þ2

2σ2
2 : ð5:12Þ

In Figs. 5 and 6, the parameters that appear in the sum of
distributions indicated above are displayed using the
notation ðα1; μ1; σ1Þ þ ðα2; μ2; σ2Þ.
A log-normal distribution (or a sum of such distribu-

tions) creates difficulties for numerical sampling. For
example, if the distribution in (5.12) had been an exact
distribution for L then we would have had

ð4πgsÞ2−nh ~Mni ¼
Z

eLpðLÞdL ¼ α1eμ1þ
σ2
1
2 þ α2eμ2þ

σ2
2
2 :

ð5:13Þ

However, the probability distribution itself takes on an
extremely small value at the point where this mean is
attained. In fact, the probability that a random variable
distributed according to (5.12) will be above some given
value λ is given by

PðλÞ ¼
Z

∞

λ
pðLÞdL ¼ 1 −

α1
2
erfc

�
μ1 − λffiffiffi
2

p
σ1

�

−
α2
2
erfc

�
μ2 − λffiffiffi
2

p
σ2

�
:

The numerical values of this probability for λ given by
(5.13), with the parameters for the distribution as given in
Figs. 5 and 6, are given below.

n
Pðð4πgsÞ2−nh ~MniÞ

(superstring)
Pðð4πgsÞ2−nh ~MniÞ
(bosonic string)

100 1.44 × 10−15 4.44 × 10−16

80 5.26 × 10−11 4.57 × 10−13

50 1.03 × 10−5 2.09 × 10−8

What this table indicates is that to obtain an accurate value
for the mean of the amplitude, using random sampling we
would need to obtain about 1015 samples for the superstring
and 1016 samples for bosonic string.
Clearly, this is not feasible using direct sampling.

Therefore, it is clear that a better algorithm is required
to identify the points where the amplitude is the largest, and
sample those accurately rather than simply using random
sampling as we have done here. We are not aware of any
such algorithm at the moment, and developing such an
algorithm remains an important challenge to complete this
program of numerically estimating string amplitudes.
An order of magnitude estimate of the number of

samples that would be required to accurately sample a
log-normal distribution with mean μ and standard deviation

σ is given by e
σ2

2 . In Fig. 7, we provide a plot of the standard
deviation of our sampled values of L for the bosonic string
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FIG. 7. Standard deviation of the distribution of sampled values of L for the bosonic string (left) and the superstring (right).
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FIG. 6. Histograms for the distribution of amplitudes for n ¼ 100, 80, 50, respectively, for the bosonic string. The legend shows the
best fit sum of normal distributions as explained in the text.
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and for the superstring, respectively. These graphs are
provided for the case γ ¼ 0.
The fact that this standard deviation does not grow very

rapidly, indicates that this sampling error may not affect the
leading factorial growth that we have found.
We emphasize that random numerical sampling tends to

significantly underestimate the mean for log-normal dis-
tributions and not overestimate them. Therefore, in any case,
our numerical results establish that the amplitude grows at
least factorially. However, it is clearly important to bound
these sampling errors more precisely and check whether the
growth is exactly factorial or whether it is larger.

D. Comments on pure gravity

We conclude this section with some comments on
scattering amplitudes in pure gravity. It appears to us that,
surprisingly, numerically estimating amplitudes in a theory
of pure gravity may be harder than estimating amplitudes
in string theory. This is because although scattering
amplitudes in gravity can also be localized to solutions
of the scattering equations, pure-gravity amplitudes are
given by holomorphic functions of the roots. The holo-
morphicity of the amplitude creates difficulties for numeri-
cal sampling, as opposed to the bosonic string and the type
II superstring, where the amplitude can be expressed as a
sum of real positive terms, at least for specific choices of
the external polarizations.
Note that the pure-gravity amplitude is given by a

formula that is very similar to the formula for the super-
string (5.4). In particular, we have

Mtrðk1…knÞ ¼ ð4πgsÞn−2
X
fzig

GJ −1ðPgrav
n Þ2: ð5:14Þ

On the right-hand side, the terms match almost precisely
with the superstring. We have J ¼ detð∂jEiÞ, which is
shown explicitly in (5.5). The ghost term is also as defined
in (5.2). Moreover,

Pgrav
n ¼ 1

z12
PfðM12Þ;

where the matrix M is defined in (4.18). We remind the
reader that M12 means that we remove the first two rows
and columns. We note this is precisely the first term that
appears in Pn for the superstring in (4.17).
Of course, Pgrav

n ≠ Pn and also the Koba-Nielsen factor
Qn that appears in (5.4) does not appear in gravity. But an
even more important difference between the superstring
answer and the gravitational answer is that the superstring
answer involves absolute values whereas the expression
(5.14) does not have absolute values, either on G or on J .
Moreover, we simply have the square of the term Pgrav

n in
the pure-gravity answer and not its absolute-value squared
as we have in the superstring. This is the reason that the
pure-gravity answer must be obtained as a limit of the
“ambitwistor string” rather than the usual superstring [41].

The difficulty with parsing the holomorphic answer
numerically is that ðn − 3Þ! contributions that come from
the distinct solutions to the scattering equations now
involve several numerical cancellations since they are
not simply the sum over a set of positive terms. This
makes the sum difficult to evaluate numerically.
For this reason, we have not carried out our numerical

calculations for pure gravity. Nevertheless, we do expect
that even in pure gravity the answer for the amplitude
will scale like n!. In fact, this leading factorial growth
may also be seen directly from the Britto-Cachazo-Feng-
Witten (BCFW) recursion relations [42].
The BCFW recursion relations state that the n-point tree-

level amplitude can be decomposed as a sum over products
of lower point tree-level amplitudes. Schematically, we
have

Mtr
n ¼

Xn−3
p¼1

Mtr
pþ2M

tr
n−p

P2
L

:

This recursion relation arises as follows. We mark two
particular legs for performing the BCFW extension. Of the
remaining n − 2 legs, we must select p legs on one side and
n − p − 2 legs on the other. On one side, we get a
pþ 2-point scattering amplitude after adding one of the
original marked legs and an intermediate leg. On the other
side, we similarly get a n − p point amplitude. This
recursion relation is valid for n ≥ 4.
To estimate the growth of the amplitude, we just want to

calculate the number of terms in the BCFW recursion
relations. Denoting this number by Nn, we see that it
satisfies the recursion relations

Nn ¼
Xn−3
p¼1

�
n − 2

p

�
Npþ2Nn−p:

We define N3 ¼ 1, and we have Nn ¼ 0 for n ≤ 3.
Now, we consider the following generating function:

WðgÞ ¼
X∞
n¼4

Nngn−2

ðn − 2Þ! :

With the conventions above, but recalling that the recursion
relation is valid only for n ≥ 4, we then find that

WðgÞ ¼
X∞
n¼4

Xn−3
p¼1

Npþ2gp

p!

Nn−pgn−p−2

ðn − p − 2Þ! :

We write ~p ¼ pþ 2, and ~n ¼ n − p, so that the sum above
can be written as
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WðgÞ ¼
X∞
~p¼3

X∞
~n¼3

N ~pg ~p−2

ð ~p − 2Þ!
N ~ng ~n−2

ð ~n − 2Þ! ¼ ðWðgÞ þ gÞ2:

We can now solve for

WðgÞ ¼ 1 − 2g −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4g

p
2

:

This provides an analytic formula for Nn,

Nn ¼ ð−1Þn−1 1
2
4n−2

� 1
2

n − 2

�
ðn − 2Þ!:

Thus, we see that Nn also grows factorially with n.
Of course, even in the BCFW analysis there are can-

cellations, and therefore, this estimate cannot be used for
direct numerical calculations either. However, this estimate
of the number of terms in the BCFW relations reinforces
the indications that pure gravity does not behave differently
from string theory in any qualitative manner as far as the
leading factorial growth of the amplitude is concerned.
However, note that in string theory, it is important to

have γ > 0 to ensure that the rapid falloff of Koba-Nielsen
factor at high energies does not overwhelm the factorial
growth. In pure gravity, there would be no such constraint.

VI. APPLICATIONS TO THE
INFORMATION PARADOX

Wenowdescribe how the analysis above can be applied to
the information paradox. First, we review the two forms of
the paradox that we will discuss here—the cloning paradox
and the strong subadditivity paradox. We explain how an
important—and often unstated—assumption that goes into
formulating these paradoxes is that bulk locality holds even
for very high point correlation functions, including OðSÞ-
point correlators, where the typical separation between
points is the inverse of the Hawking temperature. We then
describe how the loss of locality suggested by the break-
down of the perturbation theory discussed above is precisely
sufficient to resolve these paradoxes.
At the end of this section, we return to the toy model of

Sec. II B and describe how it can be used to set up some toy
models of the information paradox. In this toy-model
setting, the resolution to these paradoxes is also very clear.
This toy-model analysis supports the idea that these para-
doxes can be resolved by recognizing that very complicated
correlation functions in gravity may display the effects of a
loss of bulk locality.

A. The cloning and strong subadditivity paradoxes

We now review the cloning and strong subadditivity
paradoxes that, as we will see, are closely related. We will
consider a Schwarzschild black hole in d dimensions with a
metric given by

ds2 ¼ −
�
1 −

μ

rd−3

�
dt2 þ

�
1 −

μ

rd−3

�
−1
dr2 þ r2dΩ2

d−2;

ð6:1Þ

where μ ¼ 16πGM
ðd−2ÞΩd−2

and Ωd−2 ¼ 2π
d−1
2

Γðd−1
2
Þ is the area of a

unit (d − 2)-sphere. So, the horizon radius is given
by rh ¼ ð 16πGM

ðd−2ÞΩd−2
Þ 1
d−3.

Strictly speaking, the metric (6.1) represents an eternal
black hole, but it is correct at late times for black holes
formed from collapse. Second, the metric (6.1) does not
account for the effects of the backreaction of Hawking
radiation on the geometry. Nevertheless, it gives an excellent
approximation to the geometry provided we consider time
scales that are short with respect to the evaporation time of
the black hole. Whenever we refer to M; rh below, without
qualification, we are referring to the mass and radius of the
black hole upon formation.

1. The cloning paradox

The cloning paradox proceeds as follows. Consider a
black hole formed from collapse that gradually starts to
evaporate. Now, a general argument due to Page [43] tells us
that as energy is transferred from the black hole to the
Hawking radiation, the von Neumann entropy of the
Hawking radiation first increases and then starts to decrease.
We can make this precise by defining a length scale

δ ≫ lpl but δ ≪ rh, and using this length scale to define a
region outside the black hole, and well separated from the
horizon,

regionA∶ rh þ δ < r < ∞:

For convenience below, we will use ra ¼ rh þ δ. Now to
frame the result of Page in this notation we assume that on
any spacelike slice drawn through the black hole spacetime,
as in other local quantum field theories, the full set of
operators in the theory factorizes as

A ¼ ĀA ⊗ AA; ð6:2Þ
which emphasizes the tensor product decomposition of the
full set of observables,A, into a factor corresponding to the
set of operators localized in A, AA and a complementary
factor, ĀA. The assumption (6.2) is the same as assuming
that the Hilbert space of the theory factorizes into a factor
corresponding to the degrees of freedom on A and a
complementary factor.
With this assumption, we can define a density matrix for

local regions. The result of Page concerns the von
Neumann entropy of the region A

SA ¼ −TrðρA logðρAÞÞ:
We are interested in the excess entropy over the entropy of
the vacuum, so we define
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SA ¼ ShawkA þ AreaðraÞ
4G

;

where the second term on the right-hand side is given by
AreaðraÞ ¼ Ωd−2ðraÞd−2 and we are assuming that this is
the vacuum von Neumann entropy of region A.
Page then argued that, if we consider a black hole formed

from the collapse of a pure state that then proceeds to
evaporate completely then ShawkA should start from zero,
increase monotonically, turn around after a time called the
“Page time”, and then decrease monotonically down to
zero. This is shown schematically in Fig. 8.
The fact that the entropy starts to decrease after the Page

time implies that the Hawking radiation outside starts to
become pure. This can also be understood as the transfer of
information from the interior of the black hole to the exterior.
To obtain the cloning paradox, we consider a black hole

formed from collapse. Then, in the extended Penrose
diagram, it is possible to draw a nice slice that cuts through
the infalling matter and captures a significant fraction of the
late Hawking radiation. This slice is shown in Fig. 9.
Now, by the argument above, the section of the slice

outside the black hole in the region A contains a significant
fraction of the information that was present in the infalling
matter. However, we see that the infalling matter is itself
present on another section of the slice. This seems to
suggest that information has been duplicated or “cloned”,
in violation of the linearity of quantum mechanics. This is
the “cloning paradox” [44]. A closely related paradox was
outlined by Hayden and Preskill [45]. They considered a
situation where after the black hole has been formed, one
throws in some additional information. They then argued
that this additional information should return to the exterior
in a “scrambling time.” This also leads to a cloning paradox
since we can again draw a slice that captures the informa-
tion thrown in and the exterior Hawking radiation that
appears to carry the same information.

2. The strong subadditivity paradox

A closely related paradox is the strong-subadditivity
paradox. To set up this paradox, we consider an old black
hole, after the Page time, but well before the end of
evaporation. At this point, the black hole has shrunk so that
its horizon radius is roldh but we still have roldh ≫ lpl. We
now define three regions A, B, C as follows:

regionC∶ roldh − δ < r < roldh ;

regionB∶ roldh < r < roldh þ δ;

regionA∶ roldh þ δ < r < ∞:

Note that in this discussion the region A is now defined with
respect to roldh and not rh. We also use rolda ≡ roldh þ δ and
use roldc ≡ roldh − δ.
These regions are shown in Fig. 10, where we also show

a spacelike slice that cuts through all of them. Only the late-
time parts of these regions—the parts above the spacelike
slice—are shaded, since we are only interested in these
regions at late times.
Now, to frame the strong subadditivity paradox, we

assume, analogously to (6.2) that the set of operators in the
theory factorizes as

FIG. 9. A nice slice that captures the infalling matter and the
late Hawking radiation. The cloning paradox is a measurement at
the points xin which seems to contain the same information as a
measurement at the points xout.

C
B

A

FIG. 10. A representation of the late-time parts of regions A
(yellow), B (orange), and C (blue) and their intersection with a
spacelike slice (green).

T f

S

t

S max

FIG. 8. Variation of the von Neumann entropy of the Hawking
radiation with time. The “Page time” is shown by the dashed
red line.
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A ¼ Ā ⊗ AC ⊗ AB ⊗ AA; ð6:3Þ

where Ā is another residual factor and the main point of
(6.3) is to emphasize that the set of local operators
corresponding to the regions A, B, C appear as tensor
factors in the algebra of the full theory.
Subject to the assumption (6.3), we may then consider

the entropy of the regions A, B, C. This entropy can be
written as a sum of the entropy of the Hawking radiation in
this region and the vacuum entanglement entropy. So we
have

SA ¼ ShawkA þ Areaðrolda Þ
4G

;

SB ¼ ShawkB þ Areaðrolda Þ
4G

þ Areaðroldh Þ
4G

;

SC ¼ ShawkC þ Areaðroldc Þ
4G

þ Areaðroldh Þ
4G

: ð6:4Þ

We can also consider the entropies of pairs of regions,
which gives us

SBC ¼ ShawkBC þ Areaðrolda Þ
4G

þ Areaðroldc Þ
4G

;

SAB ¼ ShawkAB þ Areaðroldh Þ
4G

: ð6:5Þ

Now the process of Hawking radiation involves pair
creation in the region BC. The Hawking particles that exit
into region B are entangled with their pairs in region C that
fall into the black hole. On the other hand, if one views the
Hawking radiation only in B or only in C, then this
radiation appears almost thermal. This argument leads to
the inequality

ShawkBC < ShawkC : ð6:6Þ

Now we note that the Hawking radiation in B will emerge
into region A. If we are in the phase of Hawking
evaporation after the Page time, then the radiation in B
purifies the radiation in A. This leads to the inequality

ShawkAB < ShawkA : ð6:7Þ

However, a general theorem concerning von Neumann
entropies—called the strong subadditivity of von Neumann
entropy [46]—states that

SAB þ SBC ≥ SA þ SC:

When we add the area terms in (6.5) and (6.4), the strong
subadditivity inequality becomes

ShawkAB þAreaðroldh Þ
4G

þShawkBC þAreaðrolda Þ
4G

þAreaðroldc Þ
4G

≥ ShawkA þAreaðrolda Þ
4G

þShawkC þAreaðroldc Þ
4G

þAreaðroldh Þ
4G

:

The area terms neatly cancel in this inequality leaving us
just with

ShawkAB þ ShawkBC ≥ ShawkA þ ShawkC :

However, we see that the inequality above is in contra-
diction with (6.7) and (6.6). This is the “strong subaddi-
tivity paradox” [47].
We note that both the cloning and the strong subaddi-

tivity paradox involve assumptions of bulk locality. In the
cloning paradox, we assume that operators defined on
the nice slice, at the point where the nice slice intersects the
infalling matter, commute with the operators that measure
the same information in the Hawking radiation. In the
strong subadditivity paradox, we assume that the Hilbert
space factorizes as (6.3). We now analyze the protocol for
determining the von Neumann entropy and extracting
information from Hawking radiation more closely. We
will find that this process necessarily requires the meas-
urement of very high-point correlators, which invalidates
the assumption of locality made in framing both paradoxes.

B. Protocols for extracting information

The key to resolving the paradoxes above lies in setting
up a precise protocol to extract information from the
emitted Hawking radiation. We can consider a family of
observers who stay fixed at a very large value of r and
measure the outgoing Hawking radiation as it crosses them
at large values of t. Such observers may also have injected
information into the system in the far past, as in the
Hayden-Preskill scenario mentioned above. For simplicity,
we will restrict ourselves to s-wave measurements here,
since most of the energy emitted in Hawking radiation from
a Schwarzschild black hole emerges in s waves. We will
also be interested in a limit where the mass of the black hole
becomes very large compared to the Planck mass so that
M ≫ Mpl and the entropy also becomes very large, S ≫ 1.
In this section, we would like to argue that this family of

observers needs to measure S-point correlators of the
emitted Hawking quanta to extract information that is
relevant for the cloning and the strong subadditivity para-
doxes. However, our arguments in this section will not be
entirely precise, and we will be forced to rely on some
discretizations and plausible assumptions. Improving
this analysis of protocols for extracting information from
the Hawking radiation remains an important objective for
future work.
The correlation functions measured by these

observers are
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Cðu1;…us; vsþ1…vnÞ

¼ lim
Z

hTfϕðt1; x⃗1Þ…ϕðts; x⃗sÞ;

ϕðtsþ1; x⃗sþ1Þ;…ϕðtn; x⃗nÞgi
Y

dΩp;

where the limit is taken so that

rm ¼ jx⃗mj → ∞; t1…ts → ∞; tsþ1…tn → −∞

um ¼ tm − rm; vm ¼ tm þ rm;

where we keep u1…us finite and vsþ1…vn finite. The
integrals are over the sphere at infinity to extract s-wave
information. We can easily generalize this to consider
higher spherical harmonics.
We should also emphasize that we are only interested

in the connected part of the position space correlator.

This is because the part of a high-point correlator that
factorizes into a product of lower-point correlators
does not contain any fresh information. In momentum
space, it is easy to exclude the disconnected part of the
scattering amplitude by simply focusing on external
kinematics, where momentum is not conserved by any
subset of the particles. However, in position space, the
restriction to the connected part of the correlator must be
imposed by hand by subtracting off the disconnected
parts. We will assume that this has been done in the
analysis below.
Although, from a physical perspective, these correla-

tors are more natural, they contain precisely the same
information as S-matrix elements. In fact, a simple
application of the Lehmann-Symanzik-Zimmermann
(LSZ) formula tells us that they are Fourier transforms
of S-matrix elements.

Cðui; vjÞ ¼
Nne

iπsd
2

rn
d−2
2

Z
Mðk1;…knÞð2πÞdδd


X
kp
�
e−i

P
Eiuiþi

P
Ejvj

Y
dk̂pdEpðEpÞd=2−2; ð6:8Þ

where the on shell d momenta ki ¼ ð−Ei; Eik̂iÞ for i ¼
1…s and kj ¼ ðEj; Ejk̂jÞ for j ¼ sþ 1…n and p ¼ 1…n.
Here, the normalization factor,N, and the phase factor e iπsd

2

are both irrelevant. The leading suppression by a power of 1r
indicates the asymptotic falloff of the correlator and will
also not be relevant. This formula is proved in Appendix B.
In the case under consideration, we are only interested in
correlators measured at future null infinity, and so we will
suppress the v coordinates now.
The task of setting up a protocol to extract information is

to determine which set of correlation functions we must
measure at future null infinity to pin down the density
matrix of the emitted radiation. We will proceed in a simple
minded fashion. First, we choose the origin of coordinates
so that the Hawking radiation starts to emerge at u ¼ 0.
Then, we allow the observer at infinity to measure
correlators at u ¼ 0; αT ;

2α
T … nmaxα

T , where T is the temper-
ature of the Hawking radiation and α is an order 1 number
that controls how finely we can make measurements. We
can choose α ≪ 1, but we do not scale αwith the entropy of

the black hole so that logðαÞ
logðSÞ ≪ 1. We assume that the

radiation continues till nmaxα
T , and we calculate nmax below.

Here, we are assuming that the measurement of correlators
at finer separation is not relevant for extracting information
from Hawking radiation, which has a characteristic
energy T. However, it would be nice to make this protocol
more precise.
In terms of the horizon radius, the Hawking temperature

is given by

T ¼ d − 3

4πrh
: ð6:9Þ

The entropy of the black hole is given by

S ¼ Ωd−2rd−2h

4G
: ð6:10Þ

Note that the total time required for the black hole to
evaporate entirely is given by

tevap ¼
KS
T

;

where K ¼ 1
σΩd−2

ð 4π
d−3Þd−2, and σ is the Stefan-Boltzmann

constant. Therefore, the largest value of u that is relevant in
this discussion is KS

T , and we have nmax ¼ KS
α .

Now the task of extracting information from the out-
going Hawking radiation boils down to the task of
determining its density matrix, ρA. However, we note that
each correlation function measured by our family of
observers gives them only partial information about the
density matrix ρA. When appropriately discretized, we
expect this density matrix to have dimension eS × eS,
where S is the entropy of the black hole. If we are given
a set of D observables corresponding to the region
A: AA ¼ fA1…ADg, then these observables give us infor-
mation about matrix elements of this density matrix

hAii ¼ TrðρAAiÞ:
To extract the full density matrix, we require D ¼ e2S

distinct observables.
In fact, as explained in [48], if we have only a small

number of observations, so that D ≪ e2S, then our infor-
mation about properties of the density matrix ρA is very
limited. For example, a thermal density matrix and a pure
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state density matrix may appear almost identical when the
number of observations is small. Therefore, we often
require accurate information about all components of the
density matrix even if, in the end, we are only interested in a
single number like its von Neumann entropy.
Now, here, the set of observables comprises correlation

functions at null infinity measured at discrete points as
outlined above. If we measure up to p-point correlators,
then the number of distinct observables is given by

D ¼
Xp
j¼2

�
nmax

j

�
:

At large S, setting D¼e2S, we see that we must consider
at least p ¼ ηS point correlators, where η logðηÞ þ
ð1−ηÞ logð1−ηÞ¼−2α

K . The precise value of η depends
on our choice of allowed spacing in our measurements,
which is controlled by α. However, what is important for us
is simply that p ¼ OðSÞ. In other words, this leads to the
following conclusion. To extract information from the
outgoing Hawking radiation, we need to measure OðSÞ-
point correlation functions of the outgoing Hawking
quanta. Furthermore, by (6.8), these correlators are sensi-
tive to S-matrix elements that involve S particles with
typical energies Ei ¼ OðTÞ.7
This conclusion is also relevant for the von Neumann

entropies that appear in (6.7). The von Neumann entropy,
SA depends on the density matrix ρA. If we use an
approximation to this density matrix, which corresponds
to using a limited set of observables, then we do not expect
(6.7) to hold. This is because we expect that the entangle-
ment between the Hawking radiation in B and the old
Hawking radiation in A can only be measured by consid-
ering very complicated operators in A. If such complicated
operators are excluded from the set of allowed observables
in A, then we may not find that SAB < SA. Therefore, the
arguments in this section tell us that in order for (6.7) to be
hold, we must use the density matrix ρA obtained by
measuring a set of observables, AA, that contains S-point
correlators of simple local field operators.

C. Resolving the cloning and strong
subadditivity paradoxes

Once we have the conclusion above in hand, the
resolution of both the cloning and the strong subadditivity

paradoxes follows naturally. We have already explained
that these paradoxes rely on an assumption of bulk locality.
However, the measurement protocol that we have described
above relies on measuring an OðSÞ point correlation
function with separations of α

T. Using the conversion
(6.8), this simply corresponds to an S-matrix element with
OðSÞ insertions with a typical energy T.
We now see from (6.9) and (6.10) (where we recall that

8πG ¼ ld−2
pl ) that as we scale the mass of the black hole,

M ≫ Mpl, so that S → ∞, the energy and number of
insertions precisely satisfy

logðSÞ
ð2 − dÞ logðTlplÞ

→ 1:

Comparing this with (3.7), we see that string perturbation
theory breaks down precisely for OðSÞ measurements,
with energy OðTÞ. By the arguments of Sec. II, we see
that this is also the limit where we might expect a loss of
locality.
In particular, this implies that the assumption that goes

into the strong subadditivity paradox (6.3) is not justified
for such measurements. It also tells us that, in this limit, the
assumption of locality required for the cloning paradox
fails: measurements of OðSÞ-point correlators of the
Hawking radiation outside the black hole may not commute
with measurements of the infalling matter inside the black
hole, even though both of these measurements are made on
the same spacelike slice.
Thus, we see that the breakdown of perturbation theory

that we have described above appears precisely in time to
invalidate the assumption of locality that went into the
strong subadditivity and cloning paradoxes.

D. Toy models of the information paradox

It is amusing that we can use our toy model of black hole
complementarity to also construct toy models of the
information paradox, which are resolved in precisely the
manner described above.
Consider a constant-time slice of AdS that we can divide

into three regions as shown. More precisely, we define

regionC∶ rc < r < r0; regionB∶ r0 < r < ra;

regionA∶ ra < r < ∞:

The difference with the black hole case is that now the
boundaries of all three regions are timelike. So in Fig. 11,
we show a constant global-time cross section of empty AdS
that displays these regions.
Now in Sec. II B, we showed that local operators in C

could be written entirely in terms of a very complicated set
of operators in A. This immediately leads to a version of the
cloning paradox. Consider a qubit in region C that can be
manipulated by a local operator ϕC. Since this local

7Note that the exponent in the Fourier transform that appears in
(6.8) appears to become large when we take energies to be of
order the Hawking temperature because the u values can become
large in units of 1

T. However, this is just an overall large phase and
does not imply that these energies are unimportant in the Fourier
transform. We need energies of a size 1

T to distinguish between a
correlator with an insertion at iαT : Cðu1;… iα

T …us; vjÞ and another
correlator with an insertion at ðiþ1Þα

T and all other insertion points
unchanged: Cðu1;… ðiþ1Þα

T …us; vjÞ.
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operator can also be written in terms of operators that
are in A, we find that this qubit can also be manipulated by
some operator ϕA. We thus appear to have a cloning
paradox, where the same information is present both in
C and in A.
In this setup, the resolution to this paradox is trivial.

We can make a distinction between operators in C and
operators in A only when locality holds approximately.
Locality holds provided that we restrict ourselves to
“small algebras”, where we do not consider very com-
plicated polynomials in the field operators. If we start
considering such polynomials then, as shown in Sec. II B,
a local operator in C can be equated to a complicated
polynomial of operators in A. Therefore, there is no
cloning of information. Rather what we are seeing is a
loss of locality when we consider very complicated
operators in AdS.
We can also produce a version of a paradox related to

strong subadditivity. The strong subadditivity of entropy is
closely related to the “monogamy” of entanglement. We
see, from the figure, that the region B is entangled with the
region C because they are close together in AdS. However,
as we explained above, all the information in C is also
present in A. Therefore, the region B is also entangled with
the region A. Thus, we seem to have a loss of the
monogamy of entanglement—with B being entangled both
with C and with A.
Once again, the resolution to this paradox is very simple

in this case. The regions A, B, C are approximately
independent local regions only when we consider low-
order polynomials of simple operators localized in these
regions. At a fine-grained level, the bulk Hilbert space does
not contain tensor factors HA ⊗ HB ⊗ HC. In fact, we
know from AdS/CFT that the entire Hilbert space is
contained in HA. Therefore, this seeming paradox is also
resolved by recognizing that bulk locality is not exact.

VII. DISCUSSION

In the analysis above, we studied S-matrix elements in
string theory and argued that they could not be computed
perturbatively when the number of external particles
became too large, even if each of these particles carried
only a small amount of energy in string units.
This is an interesting limit because of the relation

between the breakdown of the perturbation theory for
S-matrix elements and the loss of bulk locality. As we
explained in Sec. II, these two thresholds are related
because, in any theory of gravity, the Gauss law leads
to small perturbative nonlocal commutators. When
perturbation theory breaks down, we must consider the
possibility that these commutators become significant at
leading order.
As we reviewed in Sec. II B, these arguments which

relate the loss of locality to the combination of the Gauss
law and the breakdown of the perturbation theory—are
known to be correct at least in one entirely controlled
setting: empty AdS. In that setting, [5] showed how an
operator anywhere in AdS could be rewritten as a suffi-
ciently complicated combination of operators that were all
spacelike separated from the original operator.
We showed how these potential nonlocal effects have

significant consequences for some versions of the infor-
mation paradox. In particular, we considered the cloning
paradox that appears because the information present in the
infalling matter also appears to be present in the outgoing
Hawking radiation. We argued that the usual framing of this
paradox ignores the fact that to parse this information
outside the black hole, we need to measure OðSÞ-point
correlators in the outgoing Hawking radiation, where S is
the entropy of the black hole. But the breakdown of
gravitational perturbation theory, which we linked to a
loss of locality, occurs precisely for OðSÞ-point correlators.
We used this to argue that the complicated observable that
is required to perform this measurement is not guaranteed
to commute with the operator in the interior that acts on the
infalling matter, even though these operators are spacelike
separated.
A similar loophole exists in the strong subadditivity

paradox. The strong subadditivity paradox is framed in
terms of the von Neumann entropies of different parts of the
black hole spacetime. In a theory of gravity, we need to be
careful about how to define the von Neumann entropy of a
spacetime region. This entropy depends on how we
truncate the “algebra” of operators localized in this region.
We argued that, to obtain a paradox, it was necessary to
define the von Neumann entropy in a fine-grained manner,
where we expand the algebra of operators to include
polynomials that are very high order in the simple local
operators from the region. But such high order polynomials
may not commute on a spacelike slice. Therefore, with this
choice of local algebra, it is not valid to assume that the von
Neumann entropies of geometrically disjoint regions will

AC B

FIG. 11. A schematic description of the intersection of the
regions A, B, C with a constant global time slice in empty
global AdS.
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satisfy the same properties as von Neumann entropies of
direct-product Hilbert spaces.
As additional evidence for the resolutions above, we also

considered toy models of the strong subadditivity and
cloning paradoxes that appear in empty AdS. In this setting,
the resolution to these paradoxes is clear and indeed relies
on the loss of locality that we have described above.
Nevertheless, while we believe that these arguments are

persuasive, we should indicate several points at which they
can be made firmer. First, while Gauss-law commutators
are clearly also present in flat space, and while our
arguments for the breakdown of string perturbation theory
are robust, we do not have the same controlled under-
standing of nonlocal effects in flat space or about black hole
backgrounds. It would be nice to make this more precise.
Second, when we applied our analysis of the breakdown

of perturbation theory to black hole evaporation, we were
forced to use several ad hoc discretizations to analyze our
measurement protocols. Also, it is possible to set up other
protocols for extracting the information in Hawking radi-
ation. For example, one protocol that seemingly avoids the
need for measuring high-point correlators is simply to
measure a lower-point function to arbitrarily high accuracy.
However, then we see that to extract information, we need to
measure this lower-point correlation function to exponential
accuracy in the entropy of the black hole [48]. This
observation is sensitive to very high order terms in pertur-
bation theory in E

Mpl
, where E is the energy of a typical

Hawking quantum. Just as perturbation theory breaks down
for a very large number of particles, it is well-known that it
also breaks down at very high loop order. Therefore, even in
a measurement protocol that involves the measurement of
low-point correlators to very high accuracy, we would
expect nonperturbative and—by the arguments above—
nonlocal effects to be important. It would be nice to frame
this entire analysis of measurement protocols within a
unified framework that makes it clear that extracting
information from Hawking radiation necessarily involves
some nonperturbative physics.
We would also like to caution the reader on a few points

related to our discussion of the information paradox. Our
discussion of the information paradox here does not
address the question of reconstructing the interior of large
black holes in AdS/CFT. This has been the subject of
considerable recent discussion [49] and involves several
interesting and partially unresolved puzzles [50]. Here, we
are only concerned with the information paradox for
evaporating black holes. Second, we note that some
alternative resolutions to these paradoxes have been pro-
posed in [51], which do not rely on the nonlocal effects
described here. In forthcoming work, we hope to provide a
comparative analysis of these resolutions.
Finally, we should also mention another important

interpretation of the breakdown of perturbation theory that
we have described. In this paper, and especially in Sec. VI,

we considered this breakdown in a setting where a black
hole already exists in spacetime, and where we are making
complicated measurements in the outgoing Hawking
radiation.
However, it is also possible to consider high-point

S-matrix elements in the absence of a black hole.
Simple dimensional analysis then tells us that at the
threshold of perturbative breakdown, we expect the
formation of black holes.
This can be seen as follows. If the momentum compo-

nents of each particle are of order E then each particle is
delocalized over a length of at least Oð1=EÞ and so we
expect that the smallest black hole that can be made by
many such particles also has a radius Oð1=EÞ. The mass of
such a black hole in d dimensions is OðMd−2

pl =Ed−3Þ, which
requires OððMpl=EÞd−2Þ particles of energy E. But this is
precisely the value of n at which our breakdown occurs. So
we see that the breakdown of perturbation theory that we
have described is also related to black hole formation. This
analysis of the threshold of black hole formation and its
relation to the loss of locality was also discussed in [52].
Separate from the issue of the breakdown of perturbation

theory, the analysis of string scattering at a large n is of
intrinsic interest. It would be very interesting, for example,
to examine the limit where n becomes large but we are still
below the threshold of perturbative breakdown and ask
whether string perturbation theory simplifies in this limit.
Finally, it would be nice to have a better understanding of

the nonperturbative effects that become important beyond
the perturbative threshold. The recognition that string
perturbation theory breaks down at large genus spurred
the discovery of d-branes, and we would like to understand
if the large-n breakdown is related to similar interesting
nonperturbative phenomena.
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APPENDIX A: ADDITIONAL DETAILS ABOUT
THE NUMERICAL ALGORITHM

1. Root finding

Our root-finding algorithm is a generalization of the
Newton algorithm. We use the GNU Scientific Library’s
“hybridj” function [53]. We are interested in solving
the equations Ei ¼ 0 specified in (5.3). The basic multi-
dimensional Newton’s algorithm starts with an initial
guess zi. Each step updates this to z0i ¼ zi − J−1ij zj, where
Jij ¼ ∂iEj. This algorithm was improved by Powell [54]
who pointed out that the steps should be restricted to
jz0i − zij ≤ δ, where δ is a dynamically determined trust
region. If the step is outside the trust region, then Powell’s
hybrid algorithm uses a combination of the Newton step
and gradient flow by taking a step along

z0i − zi ¼ −αJ−1ij Ej − β∇i

X
j

jEjj2:

Here, α, β are fixed by demanding that the step minimize
the norm of the function

P
jjEjj2, with the constraint

that the step also stay inside the trust region. After the
step is completed, the algorithm then determines if
jEiðz0iÞj ≤ jEiðziÞj. If this is the case, the step is accepted
and δ is increased. Otherwise, the step is rejected, and δ is
decreased.
In our case, we choose a starting point by choosing a

random value for each zi satisfying −50 ≤ ReðziÞ ≤ 50 and
−50 ≤ ImðziÞ ≤ 50. We then use the algorithm detailed
above to attempt to find a root.
Even the simple one-dimensional Newton method is not

guaranteed to converge. The convergence properties of
multidimensional problems are, in general, even worse.
However, we were pleasantly surprised to find that the
hybrid algorithm converges rather well to a root of the
scattering equations, starting with a random initial guess as
detailed above. This indicates that most points in our
starting region are within the basin of attraction of
some root.
Some versions of the hybrid algorithm scale the trust

region with a factor that is dynamically determined using
the Jacobian but we found, empirically, that the unscaled
hybrid method works better than the scaled hybrid method.
The vanilla Newton’s method does not converge at all.
Note that the algorithm only solves (n − 3) equations.

This may sometimes lead to “false roots”, where some zi
drifts off to ∞ thereby causing the corresponding Si → 0
within numerical errors. These false roots can be detected
by checking if the roots that have been found also satisfy
the other three equations.

A judicious gauge choice is required to ensure that the
number of false solutions is kept within limit. We find that
the algorithm converges well if we choose z1 ¼ 106;
z2 ¼ 0.0; z3 ¼ 1.0. We also find the best performance by
then solving the (n − 3) equations ðE2…En−1Þ ¼ 0.

2. Random number selection

To ensure that we sample the space of roots as uniformly
as possible, the choice of random number generator is also
important. In fact, hidden correlations in pseudorandom
number generators used for Monte Carlo sampling can
sometimes lead to significant errors in the final result [55].
We use the random number generator “gsl_rng_ranlxs2”
provided with the GNU Scientific Library. This uses a
variant of the RANLUX algorithm of Luscher [56].

3. Momentum selection

It is also important to correctly sample scattering
amplitudes in momentum space. We are interested in
generating external kinematics that are uniformly distrib-
uted in phase space according to the measure (3.3). For this,
we can use the RAMBO algorithm [39], which is used to
generate events in particle physics. This algorithm works
well for massless particles, where it can generate external
kinematics precisely according to the distribution (3.3). The
algorithm proceeds as follows.
(1) First, we pick a set of n=2 momenta corresponding

to ingoing particles using the following procedure
for each momentum. We choose the energy q0 from
the distribution

pðq0Þ ¼
1

Γðd − 2Þ ðq0Þ
d−3e−q0 :

The other components of the momentum are picked
by picking a vector on a sphere n⃗ ∈ Ωd−1 and then
choosing the momentum to be

ðq0; q0n⃗Þ:

We will call this set of momenta qi.
(2) Let the center of mass-momentum of the momenta

so obtained by P⃗. Now, we simultaneously boost all
the momenta formed so that the new center of mass
momentum becomes 0.

(3) We now rescale the momenta so that the total energy
becomes nE

2
. The transformations corresponding to

this boost and rescaling are as follows:

k0i ¼ xðgq0i þ b⃗ · q⃗iÞ;
k⃗i ¼ xðq⃗i þ b⃗q0i þ aðb⃗ · q⃗iÞb⃗Þ;
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where

b⃗ ¼ −
Q⃗
M

; x ¼ nE
2M

; g ¼ Q0

M
;

a ¼ 1

1þ g
; Qμ ¼

Xn
2

i¼1

qμi ; M ¼
ffiffiffiffiffiffi
Q2

p
:

(4) The momenta k1…kn
2
obtained above can be taken to

be the physical incoming momenta. We now pick
another set of n=2 momenta corresponding to out-
going particles and use the same procedure to ensure
that their center of mass momentum is 0 and total
center of mass energy is nE

2
.

It was shown in [39] that this procedure leads to momenta
that are uniformly distributed in phase space.

4. Polarization tensor selection

As explained in the text, we choose polarization
tensors ϵμν ¼ ϵμϵν, which are simply outer products of
real polarization vectors. For a momentum given by
ðk0; k0n⃗Þ, we first perform an orthogonal transformation
in the spatial directions so that the components of this
momentum become n⃗1 ¼ 1 and n⃗i ¼ 0 for i ¼ 2…d − 1.
We then choose a random unit vector with components
ϵ1 ¼ 0 and satisfying

P
d−1
i¼2 ϵ

iϵi ¼ 1. We then perform the
inverse orthogonal transformation so that the momentum is
rotated back to its original value. By acting with the same
transformation on the polarization vector, we generate a
transverse polarization vector that has no timelike compo-
nent. We then simply take the outer product of this
polarization vector with itself to obtain a polarization
tensor for the spin-2 particles.

5. Prefactor estimation

The primary difficulty in estimating the prefactor Pn
originates in evaluating the term that involves the Wick
contractions. We find that the most stable solution is
obtained by simply selecting a random sample of pairings
and by multiplying the mean of this sample with the total
number of pairings. Note that trying to identify the Wick
contraction that gives the largest contribution is equivalent
to pairing the n points so that the product of the distances
between pairs is the minimum. This is similar to a traveling
salesman problem and therefore, cannot be solved for large
n in any computationally efficient manner.
In our computations, we sum over a sample of 1000

samples of different possible pairings; each time, we need
to evaluate the term Pn.
The log normal distribution of the samples of amplitudes

that we discussed in Sec. V C is also visible in these
samples. Therefore, it is possible that a better algorithm that
efficiently locates nearest neighbors might increase the
significance of this term in the numerical results.

6. Parallelization

Our calculations can be entirely parallelized, since every
solution of the scattering equations is independent of every
other solution. In principle, it is possible that two random
choices of initial points lead to the same solution, and
therefore while generating random parallel samples of
solutions, it is important to check that we are not generating
any duplicate solutions. In practice, we have never found
any duplicate solutions for n > 10. Therefore, we were able
to perform our calculations efficiently by using a number of
CPUs running in parallel in a large computational cluster.
In advance of our final computations, we also generated
some preliminary data sets on a desktop workstation for
which we found that GNU parallel [57] was a useful tool.

APPENDIX B: ASYMPTOTIC CORRELATORS
AND THE S MATRIX

In this appendix, we review how correlators of fields
at null infinity can be rewritten as Fourier transforms of
S-matrix elements using the LSZ formula.
Consider a scalar field, ϕðt; x⃗Þ. As above, in this appen-

dix, we will use x⃗—to indicate spatial vectors. Now, as in
Sec. VI, we wish to consider the following correlator:

Cðu1;…us; vsþ1…vnÞ

¼ lim
Z

hTfϕðt1; x⃗1Þ…ϕðts; x⃗sÞϕðtsþ1; ⃗xsþ1Þ;…

× ϕðtn; x⃗nÞgi
Y

dΩp;

with

rm ¼ jx⃗mj → ∞; t1…ts → ∞; tsþ1…tn → −∞;

um ¼ tm − rm; vm ¼ tm þ rm;

where we keep ui finite for i ¼ 1…s and vi finite for i ¼
sþ 1…n and p ¼ 1…n.
This is a s-wave correlator with some points taken the

past null infinity and some others taken to future null
infinity. The spherical integrals are taken over the (d − 2)-
sphere at infinity. We will only consider massless scalar
particles here. As we have mentioned, it is not difficult to
generalize this to higher spherical harmonics. Now, the
time-ordered correlator can be written as the Fourier
transform of the momentum space time-ordered Green’s
function so the correlator of interest becomes

Cðui; vjÞ ¼ lim
Z

Gðω1; k⃗1…ωn; k⃗nÞei
P

q
ωqtþk⃗q·x⃗q

×
Y

dωqdd−1k⃗qdΩp:

Here, to lighten the notation, we have suppressed the
distinct range of indices on u, v although it is understood
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that i ¼ 1…s and j ¼ sþ 1…n. We have also split up the
momentum of each insertion into an energy and a spatial
component as ðωi; k⃗iÞ. Note that these momenta do not
have to be on shell.
We can do the position space spherical integrals as

follows. For each coordinate x⃗m, we can choose coordinates
so that k⃗m · x⃗m ¼ kmrm cos θm. Here, through a slight abuse
of notation, we have used km ≡ jk⃗mj although at other times
we also use km to denote the full on shell d momenta. We
hope that this will not lead to confusion. We also have

dΩm ¼ 2π
d−2
2

Γðd−2
2
Þ ðsin θmÞðd−3Þdθm. We can then do the remain-

ing angular integrals throughZ
π

0

eikmrm cos θmðsin θmÞd−3dθm

¼ ffiffiffi
π

p
Γ
�
d − 2

2

�
0
~F1

�
;
d − 1

2
;−

k2mr2m
4

�
;

where ~F is the regularized hypergeometric function.
Moreover, we are only interested in the limit that
rm → ∞. In this limit, expanding the hypergeometric
function and keeping only the leading terms, we find thatZ

π

0

eikr cosðθÞ sinðθÞd−3dθ

→
r→∞

i2
d
2
−2ðkrÞ−d=2þ1ðeikr−iπd4 − e−ikrþiπd

4ÞΓ
�
d − 2

2

�
:

For convenience, we define the constant

N ¼ −
1

2
ð2πÞd2e−iπd4;

which comes from combining the various constants that
appear above, and we have added an extra factor of πi using
some foresight.
We find that our correlator reduces to

Cðui;vjÞ¼ lim
1

rnðd2−1Þ

Z
Gðω1; k⃗1…ωn; k⃗nÞ

Y
p

�
dd−1k⃗pdωp

k
d
2
−1
p

×

�
N
πi
ei

ωpþkp
2

ðtpþrpÞþi
ωp−kp

2
ðtp−rpÞ−

N�

πi
ei

ωpþkp
2

ðtp−rpÞþi
ωp−kp

2
ðtpþrpÞ

��
:

We change variables to kþp ¼ ωpþkp
2

; k−p ¼ ωp−kp
2

. We also rewrite the momentum space measure as

dωdd−1k⃗ ¼ 2dkþdk−ðkþ − k−Þd−2dk̂:

We note that when we do this, we need to be careful about the limits of integration over kþ and k− since k must be positive
and so kþ ≥ k−. This leads to

Cðui; vjÞ ¼ lim
1

rnðd2−1Þ

Z
Gðω1; k⃗1…ωn; k⃗nÞ

Y
p

�
2N
πi

eik
þ
p vpþik−pup −

2N�

πi
eik

þ
p upþik−pvp

�
× ðkþp − k−pÞd−22 dkþp dk−pdk̂p:

Now, we need the following formula:

lim
k→∞

Z
∞

a

fðxÞ
x − iϵ

eikxdx ¼ ð2πiÞfð0Þθð−aÞ;

where the order of limits is that, after doing the integral,
ϵ is taken to zero before k is taken to infinity. To prove
this, simply consider the contour that goes up in an arc
from x ¼ ∞ and comes down vertically on a through the
complex x plane. This contour encloses the pole at
x ¼ iϵ, if a < 0, and not otherwise. Other poles in the
function fðxÞ for ImðxÞ > 0 do not contribute in the
limit where k → ∞. Also, the part of the contour that
is not on the real line does not contribute in the limit
where k → ∞. Repeating this, for other cases, which
will be useful below, we get the following additional
identities:

lim
k→∞

Z
∞

a

fðxÞ
xþ iϵ

eikxdx ¼ 0;

lim
k→−∞

Z
∞

a

fðxÞ
x − iϵ

eikxdx ¼ 0;

lim
k→−∞

Z
∞

a

fðxÞ
xþ iϵ

eikxdx ¼ −2πifð0Þθð−aÞ:

Now, the key point is that the Green’s function has a
pole when the momenta go on shell, with a residue that is
the S-matrix element. In a scheme, where the wavefunction
renormalization factors are unity (this is simply a question
of the normalization of the two point function), we have
that

Gðω1; k⃗1…ωn; k⃗nÞ ¼
M̂ðk1…knÞQð4kþp k−p þ iϵÞ þ Fðωp; k⃗pÞ;
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where F is some function that does not have a pole in the
limit where kþp k−p ¼ 0 and the momenta that enter the
scattering amplitude are now on shell. We use M̂ to denote
the amplitude with the momentum-conserving delta func-
tion included

M̂ðk1;…knÞ ¼ Mðk1;…knÞð2πÞdδ
�Xn

p¼1

kp

�
:

Now, as we take the points to either future or past null
infinity, for each point either up → −∞ or vp → ∞. In each
of these limits, the momentum space integrals simplify as
follows:

lim
up→−∞

Z
∞

−∞
dk−p

Z
∞

k−p

dkþp
M̂ðk1…knÞðkþp − k−pÞd−22

ð4kþp k−p þ iϵÞ
× eik

þ
p upþik−pvp ¼ 0:

This is because, to pick up a contribution, we need the pole
in kþp to be in the lower half plane, and this requires k−p > 0.

However, then by the identity above, the integral vanishes.
Similarly, we find

lim
up→−∞

Z
∞

−∞
dkþp

Z
kþp

−∞
dk−p

M̂ðk1;…knÞðkþp −k−pÞd−22
ð4kþp k−pþ iϵÞ eik

−
pupþikþp vp

¼
Z

∞

0

dkþp
πi
2
ðkþp Þd2−2M̂ðk1;…knÞeikþp vp ;

and

lim
vp→∞

Z
∞

−∞
dk−p

Z
∞

k−p

dkþp
M̂ðk1;…knÞðkþp −k−pÞd−22

ð4kþp k−p þ iϵÞ eik
−
pupþikþp vp

¼−eiπd
2

Z
0

−∞
dk−p

πi
2
ðkþp Þd2−2M̂ðk1…knÞeik−pup ;

while

lim
vp→∞

Z
∞

−∞
dkþp

Z
kþp

−∞
dk−p

M̂ðk1;…knÞ
ð4kþp k−p þ iϵÞ e

ik−pvpþikþp up ¼ 0:

Putting all of this together, we find the final formula

Cðui; viÞ ¼
Nne

iπsd
2

rn
d−2
2

Z Yn
i¼1

dk̂pdEpðEpÞd=2−2M̂ðk1;…knÞe−i
P

s
p¼1

Epupþi
P

n
p¼sþ1

Epvp ;

where now the integral over the energies Ei goes over
ð0;∞Þ and

ki ≡ ð−Ei; Eik̂iÞ for i ¼ 1…s

and

ki ≡ ðEi; Eik̂iÞ for i ¼ sþ 1…n:

This is the formula that is used in Sec. VI.

APPENDIX C: VOLUME OF PHASE SPACE

Now we compute the volume of phase space using the
formulas in Appendix A of [39]. The only difference with
their analysis is that we work in d dimensions whereas they
were exclusively concerned with d ¼ 4. We considerm ¼ n

2

particles with total d momentum P ¼ ðQ; 0;…Þ. Recall
that in the text we had Q ¼ nE

2
and m ¼ n

2
but we will work

with general parameters here.
Then, on grounds of symmetry, it must be true that the

volume of phase space is Vm ¼ vmQðd−2Þm−d. We deter-
mine vm by recursion. We have

Vm ¼
Z Ym

j¼1

ddpj

ð2πÞd ð2πÞδðp
2
jÞð2πÞdδd

�X
pj − P

�
:

We insert 1 in the integral through

1 ¼
Z

ð2πÞdδd
�Xm−1

j¼1

pj − q

�
ddq
ð2πÞd ð2πÞδðq

2 − w2Þ dw
2

ð2πÞ :

Using Lorentz invariance, and in the presence of the delta
functions above, we can write the integral over m − 1
particles as

Z Ym−1

j¼1

ddpj

ð2πÞd ð2πÞδðp
2
jÞð2πÞdδd

�X
pj − q

�

¼ vm−1wðd−2Þðm−1Þ−d:

Inserting this, we find that

Vm ¼ vm−1wðd−2Þðm−1Þ−d
Z

ddpm

ð2πÞd ð2πÞδðp
2
mÞð2πÞdδdðqþ pm − PÞð2πÞδðq2 − w2Þ dw

2

ð2πÞ
ddq
ð2πÞd :
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The last integral over pm and q can be done as follows. First, we simply do the q integral using the delta functions. The
measure over pm can be written as

dd−1pm

ð2πÞd−12jpmj
¼ Ωd−2

2ð2πÞd−1 jpmjd−3djpmj:

The remaining integral becomes

Ωd−2

2ð2πÞd−1
Z

djpmjjpmjd−3vm−1wðd−2Þðm−1Þ−dδ


jpmj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpmj2 þ w2

q
−Q

� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpmj2 þ w2

p :

The delta function is solved by

jpmj ¼
Q2 − w2

2Q
;

at which point, we also have (after including the Jacobian from the delta function) and doing the integral over jpmj

Vm ¼ vm−1
Ωd−2

4ð2πÞd−1
Z

Q

0

ð2wÞdw2ðd−3ÞQ2−d23−dðQ2 − w2Þðd−3Þwðd−2Þðm−1Þ−d

¼ vm−1
Ωd−2

4ð2πÞd−1 Q
ðd−2Þm−d 2

3−dΓðd − 2ÞΓð1
2
ðd − 2Þðm − 2ÞÞ

Γð1
2
ðd − 2ÞmÞ :

This leads to the recursion relation

vm ¼ vm−1
Ωd−2

ð2πÞd−1
21−dΓðd − 2ÞΓð1

2
ðd − 2Þðm − 2ÞÞ

Γð1
2
ðd − 2ÞmÞ :

We can also compute V2 using

V2 ¼
Z

ddp1

ð2πÞd ð2πÞδðp
2
1Þð2πÞdδdðp1 þ p2 − PÞð2πÞδðp2

2Þ
ddp2

ð2πÞd ;

which just gives

V2 ¼
Ωd−2

ð2πÞd−1
Z

jp1jðd−4Þ
djp1j
4

ð2πÞδð2jp1j − wÞ ¼ Ωd−2

8ð2πÞd−2
�
w
2

�
d−4

;

or

v2 ¼
Ωd−2

ð2πÞd−22d−1 :

The recursion relation we have is of the form

vm ¼ C
Γðkðm − 2ÞÞ

ΓðkmÞ vm−1;

and this is solved by

vm ¼ Cm−2 ΓðkÞΓð2kÞ
ΓðkmÞΓðkðm − 1ÞÞ v2:

Specializing to the constants, we have we find that
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vm ¼
�
21−dΓðd − 2ÞΩd−2

ð2πÞd−1
�

m−2 Γð1
2
ðd − 2ÞÞΓðd − 2Þ

Γð1
2
ðd − 2ÞmÞΓð1

2
ðd − 2Þðm − 1ÞÞ v2

¼
�
21−dΓðd − 2ÞΩd−2

ð2πÞd−1
�

m−1
2π

Γð1
2
ðd − 2ÞÞ

Γð1
2
ðd − 2ÞmÞΓð1

2
ðd − 2Þðm − 1ÞÞ :

If we now substitute Ωd−2 ¼ 2π
d−1
2

Γðd−1
2
Þ and use the identity ΓðxÞΓðxþ 1

2
Þ ¼ 2ð1−2xÞ

ffiffiffi
π

p
Γð2xÞ and do some simplifications, we

find that

vm ¼ ð2πÞð4πÞ−ðm−1Þd
2

Γðd−2
2
Þm

Γð1
2
ðd − 2ÞmÞΓð1

2
ðd − 2Þðm − 1ÞÞ :

The full phase space volume can then be written as

Vm ¼
�
Q
m

�ðd−2Þm−d
ð2πÞð4πÞ−ðm−1Þd

2

Γðd−2
2
Þmmðd−2Þm−d

Γð1
2
ðd − 2ÞmÞΓð1

2
ðd − 2Þðm − 1ÞÞ :

Putting m ¼ n
2
and Q ¼ nE

2
, we find the formula (3.5) used in the text.
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