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In conformal quantum mechanics with the vacuum of a real scaling dimension and with a complete
orthonormal set of energy eigenstates, which is preferable under the unitary evolution, the dilatation
expectation value between energy eigenstates monotonically decreases along the flow from the UV to the
IR. In such conformal quantum mechanics, there exist bounds on scaling dimensions of the physical states
and the gauge operators.
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I. INTRODUCTION

A space-time symmetry is of great importance in
defining theories to describe the laws of nature. By
reconciling quantum mechanics with the Poincaré sym-
metry group, one obtains relativistic quantum field theory
in which fields are classified by the Casimir operators of the
Poincaré group as quantum numbers, i.e., the spin and the
mass. In conformal field theory, operators are classified by
the Casimir operators of the conformal group. Since
the mass cannot be invariant under the conformal group,
as the mass is a dimensional parameter, it is replaced by the
scaling dimension. The main subject in the study of
conformal field theory is the operators which have a
definite spin and scaling dimension. By virtue of symmetry
properties of the correlation functions, even if we have no
Lagrangian description, we can study conformal field
theory from consistency conditions via the conformal
bootstrap method [1–3], which leads to a certain spectrum
of the allowed scaling dimensions of the theory.
In this work we investigate conformal quantum mechan-

ics, which is obtained by the incorporation of the SLð2;RÞ
conformal symmetry of time into quantum mechanics. In
conformal quantummechanics, the Casimir operators of the
conformal group SLð2;RÞ are associated only with the
scaling dimensions. The important fact is that, while, in
the analysis of the spectrum for conformal field theory, the
dilatation is identified with the Hamiltonian in the radial
quantization, in conformal quantum mechanics they should
be distinguished. Therefore, conformal quantummechanics
would be a theoretically appropriate playground to study the
relationship between the energy and the scaling dimension.
Here, we aim to address two main issues in conformal

quantum mechanics that admits the vacuum and the
primary operators by examining its correlation functions.
The first question is the irreversibility of the renormal-

ization group (RG) flow in a quantum mechanical system.
The RG transformation is associated with the scaling

process from the UV to the IR. The information in the
UV of the theory is expected to be lost in the IR since
correlation functions in field theory are valid only at scales
smaller than the cutoff by integrating out higher momentum
degrees of freedom. Zamolodchikov’s c theorem [4] proves
the irreversibility of the RG flow in two-dimensional field
theories by establishing the existence of a c function, a
function of a coupling constant and energy scale that
decreases along the RG flow and is stationary at the RG
fixed points, where its value equals the crucial parameter in
the theory, i.e., the central charge. Even for d-dimensional
conformal field theory (CFTd), Cardy [5] proposes a c
function as the quantity appearing in the trace anomaly
given by the one point function of the trace of the energy-
momentum tensor on the sphere: c ∼ hTμ

μiSd . There have
been various proposals in higher dimensional extensions of
a c function: d ¼ 3 [6–8], d ¼ 4 [9], and d ¼ 6 [10,11]. An
exploration of a c function in conformal quantum mechan-
ics is attractive since it may provide a direct explanation of
the irreversibility as the theory distinguishes the energy and
the scaling dimension. We observe that the trace part of the
energy-momentum tensor is related to the conserved
current of the dilatation D, and we show that the expect-
ation value of the dilatation between preferable energy
eigenstates under the unitary evolution, which we will call
the D function DðEÞ ∼ hEjDjEi, possesses similar proper-
ties as a c function.
In the second part, we present a pair of simple no-go

theorems. In relativistic quantum field theory, the inter-
action of massless particles with spins is highly constrained
due to the Lorentz symmetry. For higher spin massless
particles, the negative energy state and negative probability
occur. Even though they are mathematically well defined,
they would not appear in experimental results. The
Weinberg-Witten theorem [12] claims that a theory with
the Lorentzian covariant conserved current Jμ does not
admit the spin s > 1

2
massless charged particles and that a

theory with the Lorentzian covariant energy-momentum
tensor Tμν does not involve spin s > 1 massless particles.
The theorem is proven by investigating the matrix elements*tadashiokazaki@phys.ntu.edu.tw

PHYSICAL REVIEW D 96, 066030 (2017)

2470-0010=2017=96(6)=066030(11) 066030-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.066030
https://doi.org/10.1103/PhysRevD.96.066030
https://doi.org/10.1103/PhysRevD.96.066030
https://doi.org/10.1103/PhysRevD.96.066030


of the charge operators between one massless particle
states of spin and momenta. In this work we apply a
similar method to matrix elements in conformal quantum
mechanics. We derive new types of no-go theorems
which impose constraints on scaling dimensions of the
physical states constructed in terms of the primary oper-
ators and the preferred vacua under the unitary evolution
as − 1

2
≤ dþ Δ ≤ 1

2
. This admits the free bosonic scalar

with dþ Δ ¼ − 1
2
, the free fermion with dþ Δ ¼ 0, and

the bosonic auxiliary field with dþ Δ ¼ 1
2
. We also find a

bound on the scaling dimension of the gauge operators
which may couple to physical states with the scaling
dimensions dþ Δ and 0 < δQ ≤ 2. While the bosonic
scalar of dþ Δ ¼ − 1

2
may couple to the gauge fields of

δQ ¼ 2, the fermion of dþ Δ ¼ 0 can interact with those
of δQ ¼ 1.
The organization of this paper is as follows. In Sec. II we

review the SLð2;RÞ conformal symmetry of time. In
Sec. III we discuss the vacuum state jΩi, which can be
labeled by the scaling dimension d. It characterizes the
theory under consideration. In Sec. IV we study the energy
eigenstate jEi and introduce theD function as the dilatation
expectation value between the energy eigenstates. We see
that the D function behaves as a c function. In Sec. V we
derive the no-go theorems. They provide bounds on scaling
dimensions of the vacuum, of the primary operator and of
the gauge operator as well as the constraints. In Sec. VI we
conclude with some open questions and future directions.

II. CONFORMAL SYMMETRY OF TIME

In general, a conformal group is the group of space-
time transformations that preserve angles locally between
two distinct points and whose definition contains a metric
tensor. Such a definition does not seem to be suitable for
one dimension since there is neither an angle nor a metric
tensor. In addition, if we follow the definition, we find a
diffeomorphism group DiffðRÞ, which requires a gravity
coupling. It does not seem realistic to consider the quantum
mechanical system which is invariant under the DiffðRÞ,
that is, the topological quantum mechanics. In this work we
are interested in the conformal symmetry transformation of
time which consists of the translation, the scaling trans-
formation, and the conformal boost. The corresponding
generators are the Hamiltonian H ¼ i∂t, the dilatation
D ¼ it∂t, and the special conformal transformation
K ¼ it2∂t, respectively. Let

G ¼ uH þ vDþ wK ð2:1Þ

be a linear combination of the three generators, where u, v,
and w ∈ C are constant parameters. It then turns out that

G ¼ i
d
dτ

; ð2:2Þ

dτ ¼ dt
uþ vtþ wt2

: ð2:3Þ

Hence, the G can be viewed as the new Hamiltonian of the
new time coordinate τ. From (2.3), the new time coordinate
τ can be represented as

τ ¼
Z

dτ ¼
Z

t

t0

dt0

uþ vt0 þ wt02
þ τ0; ð2:4Þ

where τ0 ¼ τðt0Þ. For simplicity, we set τ0 ¼ 0. For
example, the new time coordinates τ generated by H, D,
and K are as follows.
(1) Time evolution. An evolution of the original coor-

dinate t is generated by the Hamiltonian H. The
corresponding new time coordinate (2.4) is

τ ¼
Z

t

t0

dt0 ¼ t − t0: ð2:5Þ

The finite transformation of the original time
coordinate is

t ¼ t0 þ τ; ð2:6Þ
and the infinitesimal transformation is

δt ¼ t − t0 ¼ τ: ð2:7Þ
(2) Global time dilation. The new time coordinate (2.4)

whose evolution is generated by the dilatation D is

τ ¼
Z

t

t0

dt0

t0
¼ log

t
t0
: ð2:8Þ

The finite transformation of the original time
coordinate is

t ¼ t0eτ; ð2:9Þ
and the dilatation D rescales the time coordinate. It
can be viewed as a global time dilation for the
original time coordinate t0 with a constant scale
factor eτ. Its infinitesimal transformation is

δt ¼ t − t0 ≈ τt0: ð2:10Þ
(3) Local time dilation. The new time coordinate (2.4)

whose evolution is generated by the special
conformal transformation K is

τ ¼
Z

t

t0

dt0

t02
¼ 1

t0
−
1

t
: ð2:11Þ

The finite transformation of the original time coor-
dinate is

t ¼ t0
1 − τt0

; ð2:12Þ
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and the generator K is responsible for the local scale
transformation. It corresponds to the local time
dilation, with the scale factor 1

1−τt0
depending

on the time coordinate t0. The infinitesimal trans-
formation is

δt ¼ t − t0 ≈ τt20: ð2:13Þ

A sequence of three finite transformations, (2.6), (2.9), and
(2.12), can be expressed as

t → t0 ¼ fðtÞ ¼ atþ b
ctþ d

; A ¼
�
a b

c d

�
∈ SLð2;RÞ:

ð2:14Þ

The infinitesimal transformations (2.7), (2.10), and (2.13)
are summarized as

δt ¼ ϵ1 þ ϵ2tþ ϵ3t2; ð2:15Þ

where ϵ1, ϵ2, and ϵ3 are the infinitesimal parameters of the
Hamiltonian H, the dilatation D, and the special conformal
transformation K, respectively. The conformal generators
obey the commutation relations

½H;D� ¼ iH; ½K;D� ¼ −iK; ½H;K� ¼ 2iD;

ð2:16Þ
which form the slð2;RÞ algebra. In terms of the conformal
generators, the Casimir operator C2 of the slð2;RÞ
conformal algebra is written as

C2 ¼
1

2
ðHK þ KHÞ −D2 ¼ KH þ iD −D2: ð2:17Þ

We claim that this expression specifies a choice of basis and
its dual of the conformal algebra in terms of the
Hamiltonian, the dilatation, and the special conformal
transformation of time coordinate t, although one can
obtain an alternative quantum mechanical description with
a different time coordinate t0 ¼ fðtÞ from (2.14) and its
Hamiltonian H0. For instance, for the de Alfaro–Fubini–
Furlan (DFF) model [13] with the action (3.15), one can
find a theory with a different Lagrangian

L0 ¼ 1

2

�
_x2 −

g
x2

−
x2

4

�
ð2:18Þ

containing the harmonic potential by changing the original
time coordinate t into a new time coordinate

t0 ¼ 2tan−1t; ð2:19Þ

whose Hamiltonian is

H0 ¼ 1

2
ðH þ KÞ: ð2:20Þ

This achieves the discrete energy spectrum and the normal-
izable ground state. However, this is a different theory from
the original one and the generators H, D, and K should
still be identified as the conformal generators in time
coordinate t. Therefore, the relation (2.17) would intrinsi-
cally characterize the conjugation and scalar product in the
state space of conformal quantum mechanics in time
coordinate t.
One might worry that the system with time coordinate t

has neither a discrete energy spectrum nor a normalizable
vacuum state, as observed in [13]. However, it would imply
not that the physical system with time coordinate t is
unreasonable but rather that the quantization needs a subtle
treatment due to the existing constraints on the canonical
variables [14]. In other words, such undesirable properties
for the physical description originate from a naive
assumption in the quantization problem that all of the
canonical variables are the observables in the Hilbert space.
In fact, for the DFF model, the constraint x > 0 should be
taken seriously to advance the consistent quantization so
that some operators (states) would not belong to the algebra
of the observables (physical states).1 As a consequence, the
non-normalizable vacuum state may be harmless, so one
obtains descriptions of some physical systems.2

In this work, instead of considering the detailed quan-
tization prescription that provides a way to embed the
observable algebra into a larger algebra of the canonical
variables in a specific model, we wish to extract universal
features of conformal quantummechanics by restricting our
attention to the universal relation (2.17).

III. VACUUM STATE

Let us consider the vacuum state jΩi which has zero
energy,

HjΩi ¼ 0; hΩjΩi ¼ 1: ð3:1Þ

Here, ket j·i is the vector which belongs to the vector
space V. The corresponding bra h·j is the linear map from V
to C which belongs to the space V� dual to V. Here, we
have assumed that the restrictions or boundary conditions
of the wave functions in a particular region due to the
constraints on the canonical variables admit the satisfactory

1The uncertain principal leads to the nonzero lowest energy for
the physical ground states as the zero point energy, although, in
the quantum field theories, it is neglected by the normal ordering.
In this aspect the non-normalizable vacuum state may play the
role of the reference state rather than the physical ground state.

2For example, the energy spectrum of an electron in a periodic
potential can be purely continuous and the ground state is not
normalizable. However, by restricting the wave function to a unit
cell, one can acquire the physically well-defined description.
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normalizable wave functions for the vacuum states. Now
that the states in quantum mechanics follow the SLð2;RÞ
conformal symmetry of time, one needs to select out
consistent bras h·j belonging to the dual space V� in such
a way that the matrix element h·jC2j·i of the Casimir
operator (2.17) gives the c number. This leads to additional
constraints on the bra and the ket. From the expression
(2.17) of the Casimir operator, the ket Hj·i has the dual bra
h·jK, so h·jKHj·i gives a c number. For the vacuum state
(3.1), one can choose the corresponding bra as

hΩjK ¼ 0: ð3:2Þ

It follows from the slð2;RÞ algebra (2.16) that the state

jΩ0i ≔ DjΩi ð3:3Þ

is also the vacuum state HjΩ0i ¼ 0. According to the
Casimir (2.17), the ket jΩ0i entails the bra

hΩ0j ∝ ihΩj; ð3:4Þ

which is proportional to hΩj. The bra-ket pairs from (3.3)
and (3.4) mean that an application of D to jΩi does not
result in a state vector with a distinct basis but merely gives
a proportionality constant. Namely, the vacuum state is the
eigenstate of the dilatation D,

DjΩi ¼ idjΩi; ð3:5Þ

where d is the eigenvalue characterizing the scaling
dimension of the vacuum jΩi. In this work we will
concentrate on the case with a real scaling dimension
d ∈ R.3 From (2.17) the dual bra of the ket DjΩi is
proportional to both ihΩj and hΩjD. The proportionality
constant is fixed by taking the bra-ket pairs from (3.4) and
(3.5). So we have

hΩjD ¼ idhΩj: ð3:6Þ

Note that the dilatation generator is anti-Hermitian, and it is
not the observable that is measured by a probability
distribution. The diagonalization (3.5) means that jΩ0i is
proportional to jΩi and there is a single basis jΩi of the
vacuum state. From (3.5) and (3.6), one finds inner
products

hΩjDjΩi ¼ id; ð3:7Þ

hΩjD2jΩi ¼ −ðdþ C2Þ ¼ −d2: ð3:8Þ

It follows from (3.8) that the scaling dimension d of the
vacuum is fixed by the Casimir C2,

d ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4C2

p
2

: ð3:9Þ

Alternatively, the Casimir is expressed as

C2 ¼ dðd − 1Þ: ð3:10Þ

Let us act K on the vacuum and define

jΩ00i ≔ KjΩi: ð3:11Þ

From the slð2;RÞ algebra (2.16) and the diagonalization
(3.5), we see that it satisfies the relations

HjΩ00i ¼ −2djΩi; ð3:12Þ

DjΩ00i ¼ iðdþ 1ÞjΩ00i: ð3:13Þ

Equation (3.13) indicates that K increases the eigenvalue of
jΩi for D by i. For a further application of K on the
vacuum, we find

DðK2jΩiÞ ¼ iðdþ 2ÞðK2jΩiÞ: ð3:14Þ

This implies that K2 increases the eigenvalue of jΩi for D
by 2i.
As a simple example, let us consider the DFF model [13]

whose action is given by

S ¼ 1

2

Z
dt

�
_x2 −

g
x2

�
; ð3:15Þ

where g is a dimensionless coupling constant parameter.
The action (3.15) is invariant under the conformal trans-
formations (2.14) and δx ¼ x=ðctþ dÞ. Using the Noether
method, one can deduce the conformal generators

H ¼ p2

2
þ g
2x2

; D ¼ −
1

4
fx; pg; K ¼ 1

2
x2

ð3:16Þ

and the Casimir operator

C2 ¼ dðd − 1Þ ¼ g
4
−

3

16
: ð3:17Þ

Therefore, if the vacuum state exists in the DFF model, the
coupling constant g determines the scaling dimension of the
vacuum

d ¼
1�

ffiffiffiffiffiffiffiffiffiffi
gþ 1

4

q
2

: ð3:18Þ

3By contrast, the complex scaling dimension d ∈ C is realized
for the principal series representation of the slð2;RÞ conformal
algebra, in which case the energy eigenstate is described by the
Whittaker vector [15].
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For example, the Heisenberg picture vacuum is realized
when g ¼ 3

4
.

IV. D FUNCTION

Consider an energy eigenstate jEi

HjEi ¼ EjEi ð4:1Þ

with energy eigenvalue E ∈ R. Taking into account the
Hermiticity of the HamiltonianH and the expression (2.17)
of the Casimir operator, we can take the corresponding bra
for the state (4.1) as

hEjK ¼ hEjE; ð4:2Þ

where hEj is the dual bra of the energy eigenstate jEi. Let
us apply D and K to the energy eigenstate and define

jE0i ≔ DjEi; jE00i ≔ KjEi: ð4:3Þ
Then we have

HjE0i ¼ EjE0i þ iEjEi; ð4:4Þ

HjE00i ¼ EjE00i þ 2ijE0i: ð4:5Þ

From (4.4), the state jE0i is not the energy eigenstate due to
the term iEjEi. The energy eigenstate jEi is unchanged
under the scale transformation generated by D only when
jEi is the vacuum state jΩi.4
Similarly, according to (4.5), jE00i is not the energy

eigenstate because of the term 2ijE0i. The energy eigenstate
can be realized under the conformal boost generated by K
as the energy eigenstate only when jE0i vanishes, i.e.,
d ¼ 0 and E ¼ 0. In this case, (4.3) requires that jE00i is the
vacuum state. Then (4.3) implies that jE00i is the eigenstate
of K,

KjΩi ¼ kjΩi; ð4:6Þ

with eigenvalue k. Therefore, only the vacuum state
obeying (4.6) and

HjΩi ¼ DjΩi ¼ 0 ð4:7Þ

keeps the same energy eigenvalue under the conformal
transformations. Specifically, the conformally invariant
vacuum is realized only when the vacuum satisfies

HjΩi ¼ DjΩi ¼ KjΩi ¼ 0: ð4:8Þ

In this case, the vacuum state admits the Heisenberg picture
in which the state has no time dependence.

Employing the Baker-Campbell-Hausdorff formula, we
find that

eHDe−H¼Dþ iH; eHKe−H¼Kþ2iD−H; ð4:9Þ

eaDHe−aD ¼ e−iaH; eaDKe−aD ¼ eiaK: ð4:10Þ

Using the relation (4.10), one can show that

HðeiαDjEiÞ ¼ e−αEðeiαDjEiÞ: ð4:11Þ

Taking α as a continuous parameter, the energy spectrum
can be continuous. Hence, the continuous energy spectrum
is a universal feature in conformal quantum mechanics.
However, such an undesirable feature can be cured by
selecting the observables out of the canonical operators.
Thus, it does not follow that one should discard the system
with time coordinate t as the physical system.
Now consider a matrix element

DðEÞ ≔ 1

i
hEjDjEi: ð4:12Þ

This describes the quantum scaling dimension of the
energy eigenstate jEi, and it is a real function of the
energy eigenvalue E. The overall factor in (4.12) eliminates
the imaginary unit due to the anti-Hermiticity of the
dilatation generator D.
We assume that the energy eigenstate jEi forms a

complete orthonormal set5

1 ¼
Z

dEjEihEj; hE1jE2i ¼ δðE1 − E2Þ: ð4:14Þ

Making use of (2.17), (4.1), (4.2), and (4.14), we find the
quadratic equation

DðEÞ2 −DðEÞ − ðC2 − E2Þ ¼ 0; ð4:15Þ

whose solution is given by

DðEÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðC2 − E2Þ

p
2

: ð4:16Þ

To make all predictions in quantum mechanics work
correctly, we shall associate some energy eigenstate jEi of
the energy E with the unitary group to describe time

4This fact was also pointed out in Appendix C of [16].

5In [17], for the DFF model the energy eigenstates jEi with
these properties are actually constructed from the proposed state
jti by the Fourier transform

jEi ¼ 2r0E
1
2
−r0

Z
∞

−∞

dt
2π

e−iEtjti: ð4:13Þ

The author thanks R. Jackiw for pointing out this point.
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evolution, i.e., the unitary evolution. However, as the
quantity DðEÞ measures the averaged scaling dimension
of the energy eigenstate jEi, the energy eigenstate jEi
would behave as tDðEÞ. So it is preferable to have
DðEÞ ¼ 0. To achieve this, we will need to take the minus
sign in (4.16), and we have

DðEÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðC2 − E2Þ

p
2

; ð4:17Þ

which we will call a D function.
Now let us make a connection to the AdS=CFT corre-

spondence. It tells [18,19] that the bulk mass m of a scalar
field in two-dimensional anti–de Sitter (AdS2) space is
related to the dimension Δm of the corresponding operator
on the boundary as

ΔmðΔm − 1Þ ¼ m2; ð4:18Þ

and there are two solutions,

Δ�
m ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

p

2
: ð4:19Þ

For 3
4
< m2, only the boundary conditions with Δþ

m lead to

the normalizable solution [20–22] as zΔþ
m near z ¼ 0 for a

free scalar of mass m in the AdS2 space whose metric is
given by

ds2 ¼ 1

z2
ðdz2 þ dt2Þ: ð4:20Þ

Since (4.17) corresponds to Δ−
m, it is unlikely that the dual

conformal quantum mechanics appears when 3
4
< m2.

Meanwhile, there can be two possible boundary conditions
with Δþ

m and Δ−
m when [20–22]

−
1

4
< m2 <

3

4
; ð4:21Þ

where the lower bound is the Breitenlohner-Freedman
bound.6 Comparing (4.16) with (4.19) for Δ−

m, the mass
range leads to E2 − 1

4
≤ C2 ≤ E2 þ 3

4
. The existence of the

vacuum state requires that the Casimir is bounded above
and below, − 1

4
≤ C2 ≤ 3

4
, and that the scaling dimension d

of the vacuum has a bound − 1
2
≤ d ≤ 1

2
. The resulting

function (4.17) is shown in Fig. 1. As the energy eigenvalue
E takes real values, the energy squared is bounded above
and below: 0 ≤ E2 ≤ C2 þ 1

4
. Correspondingly, DðEÞ is

also bounded above and below,

d ≤ DðEÞ ≤ 1

2
; ð4:22Þ

where d is the scaling dimension (3.9) of the vacuum state.
The normalizability of the energy eigenstate under the
evolution operator can be kept when E2 ¼ C2.
To summarize, if conformal quantum mechanics dual to

the AdS2 has the vacuum jΩi and a complete orthonormal
set of energy eigenstates jEi with the averaged scaling
dimension (4.17), the energy eigenstate will realize well-
behaved unitary evolution at E2 ¼ C2 for − 1

4
< C2 < 3

4
.

Here, we would like to argue the physical implications of
the D function. It involves two important physical quan-
tities, scaling dimension and energy. In quantum field
theory change of scale is described by the RG trans-
formation, and the number of degrees of freedom in a
physical system decreases along the RG flows from high
energy to lower energy. In CFT2 this can be quantitatively
measured by defining a c function [4] which has the
following properties:
(1) It is a real function of the coupling constant g and the

energy scale E which is defined on the space of
theories.

(2) It monotonically decreases along the RG flow.
(3) It is stationary at the RG fixed point where its value

equals the crucial parameter in the CFT.
It is proposed [5] that for even dimensional CFTd, the Euler
characteristic appearing in the trace anomaly provides a c
function, which can be evaluated as the expectation value of
the trace of the energy-momentum tensor on the sphere Sd,

c ∼
Z
Sd
hTμ

μi: ð4:23Þ

We remark that the trace Tμ
μ of the energy-momentum

tensor is related to the conserved current of the dilatation D
as the scale invariance is achieved when the trace of the

FIG. 1. The D function. It is defined in the range 0 ≤ E2 ≤
C2 þ 1

4
and decreases monotonically from the UV to the IR.

6It has been discussed [23] that an electric field E in AdS2 can
shift the Breitenlohner-Freedman bound − 1

4
< m2 to − 1

4
þ E2 ≤

m2 due to the pair production of the Schwinger effect. However,
we will not consider such effects in this work.
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energy-momentum tensor vanishes [24]. This leads us to
expect that, in conformal quantum mechanics, the expect-
ation value hDi of the dilatation, which depends on the
energy scale E, can play a role of a c function. In fact, we
see that the D function has the below properties of a c
function:
(1) TheD function is defined on the space of theory as it

depends on the Casimir which may involve the
coupling constants of the theories considered. For
instance, in the DFF model (3.15), the Casimir
invariant is given by the coupling constant g as in
(3.18), and the D function is represented by

DðEÞ ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g − 4E2 þ 1

4

q
2

: ð4:24Þ

Since the dimensionless coupling constant g para-
metrizes the theories, the D function is defined on
the space of the theories.

(2) Along the flow from the UV to the IR, the energy
scale decreases and the D function decreases mono-
tonically with the energy scale E,

dDðEÞ
dE

¼ 2Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðC2 − E2Þ

p ≥ 0: ð4:25Þ

This shows the monotonic flow for the D function.
(3) At the fixed point E ¼ 0 of the flow, it is stationary

with its value,

DðE ¼ 0Þ ¼ d ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4C2

p
2

: ð4:26Þ

This is the crucial parameter in conformal quantum
mechanics, that is, the scaling dimension (3.15) of
the vacuum state.

Therefore, the D function exhibits analogous properties as
a c function. It supports the irreversibility of the flow from
the UV to the IR in conformal quantum mechanics. At the
fixed point, it becomes the scaling dimension d of the
vacuum that encodes the theory considered. As dimension
conceptually measures certain properties of an object that is
independent from other objects, the D function as an
averaged scaling dimension of energy eigenstates, includ-
ing the scaling dimension d of the vacuum counts the
number of degrees of freedom in a similar way as a c
function.

V. BOUNDS ON SCALING DIMENSIONS

Now we want to consider a dynamical realization of a
conformal group in quantum mechanics. We shall postulate
the existence of primary operators transforming as repre-
sentations of the conformal algebra

ðTðgÞOÞαðtÞ ¼ Sαβðg; tÞOβðg−1tÞ; ð5:1Þ

where g acts on time coordinate t as (2.14) and TðgÞ is the
representation matrix. It follows from (5.1) that Sαβðg; 0Þ
should be a representation of the stability subgroup at the
time t ¼ 0. According to the infinitesimal transformation
(2.15), this subgroup is given by the dilatation and special
conformal transformation. The commutation relation (2.16)
reduces to

½K;D� ¼ −iK: ð5:2Þ

Every element of the slð2;RÞ conformal algebra can be
constructed by ascribing the time dependence to the
generators. From (4.9), we have

DðtÞ ¼ eiHtDe−iHt ¼ D − tH; ð5:3Þ

KðtÞ ¼ eiHtKe−iHt ¼ K − 2tDþ t2H: ð5:4Þ

Assume that

HOð0Þ ¼ i _Oð0Þ; ð5:5Þ

DOð0Þ ¼ iΔOð0Þ; ð5:6Þ

KOð0Þ ¼ 0; ð5:7Þ

withΔ ∈ R. Equation (5.6) indicates that the operatorOð0Þ
enjoys a real scaling dimension Δ. According to (5.3) and
(5.4), we find that

HOΔðtÞ ¼ i _OΔðtÞ; ð5:8Þ

DOΔðtÞ ¼ i

�
−t

∂
∂tþ Δ

�
OΔðtÞ; ð5:9Þ

KOΔðtÞ ¼ i
�
t2

∂
∂t − 2tΔ

�
OΔðtÞ: ð5:10Þ

Equivalently, one can define the primary operators OΔðtÞ,
which obey (5.8)–(5.10) by the transformation law

OΔðtÞ →
�∂t0
∂t

�
Δ
OΔðt0Þ ¼

1

ðctþ dÞ2ΔOΔðt0Þ ð5:11Þ

under the finite transformation (2.14).
We will formulate conformal quantum mechanics in

terms of the primary operators OΔðtÞ acting on the vacuum
state jΩi. We assume that each state in the Hilbert space is
represented by

jstatei ¼ FðGÞjOΔ1
ðt1Þ � � �OΔn

ðtnÞi; ð5:12Þ

where
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jOΔ1
ðt1Þ � � �OΔn

ðtnÞi ¼ OΔ1
ðt1Þ � � �OΔn

ðtnÞjΩi; ð5:13Þ

with FðGÞ being some function of G ¼ uH þ vDþ wK.
Let us examine the expectation values hstateAjstateBi
constructed as overlaps of the two states jstateAi and
jstateBi with the form of (5.12) in the Hilbert space. In
this work we will explore the expectation value involving
the time-independent primary operators OΔ ≔ OΔð0Þ and
take the conventional choice of the overall constant one
which fixes the normalization of OΔ as

hOΔjOΔi ¼ 1: ð5:14Þ

Now we would like to extract constraints on the
description of the unitary evolution for a certain physical
system. To achieve this, one needs to fix its time coordinate
t and construct all the physical states in such a way that they
fall into the representations of the slð2;RÞ conformal
algebra specified by the vacuum with the eigenvalue of
the Casimir invariant C2, i.e., the scaling dimension d.
Given the normalized primary operators (5.14), this
corresponds to the condition

hOΔjC2jOΔi ¼ C2 ¼ dðd − 1Þ; ð5:15Þ

which ensures the unitary evolution of the states by fixing
the eigenvalue of the Casimir invariant. Alternatively, we
can write the expectation value (5.15) as

hOΔjHK − iD −D2jOΔi
¼ hOΔjHKjOΔi þ ðdþ ΔÞðdþ Δþ 1Þ: ð5:16Þ

Unitarity implies the positivity of the inner product in the
Hilbert space. Demanding that hOΔjHKjOΔi ¼ jKjOΔij2
is positive definite and combining (5.15) with (5.16), we
find a condition

ðΔþ 2dÞðΔþ 1Þ ≤ 0: ð5:17Þ

Together with the preferred range (4.22) under the unitary
evolution probed by the D function, we obtain the bounds
on the scaling dimension of the primary operator and of the
vacuum

−1 ≤ Δ ≤ −2d; ð5:18Þ

−
1

2
≤ d ≤

1

2
: ð5:19Þ

Similarly, we can extract further constraints by rewriting
(5.15) as

hOΔjKH þ iD −D2jOΔi
¼ hOΔjKHjOΔi þ ðdþ ΔÞðdþ Δ − 1Þ: ð5:20Þ

Since hOΔjKHjOΔi ¼ jHjOΔij2 is positive definite, we get
the condition

ΔðΔþ 2d − 1Þ ≤ 0; ð5:21Þ

which gives the additional constraint

0 ≤ Δ ≤ −2dþ 1: ð5:22Þ

The result is depicted in Fig. 2. The primary operators
and the vacuum states can exist in the orange region. As a
consequence, the allowed range of the scaling dimensions
of the physical states jOΔi which are constructed in terms
of the vacua and the primary operators is

−
1

2
≤ dþ Δ ≤

1

2
: ð5:23Þ

It supports the existence of the bosonic scalar with the
scaling dimension − 1

2
, the fermion with the scaling

dimension 0, and the bosonic auxiliary field with the

FIG. 2. The bound on ðd;ΔÞ in conformal quantum mechanics.
In the orange region, the primary operators with the dimension Δ
and the vacuum states with the dimension d are allowed, and the
red line characterizes the charged physical states coupled to the
gauge operators of δQ. Without the favored condition (5.19) for
the unitary evolution of the states, the green region is also
allowed.
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scaling dimension 1
2
in conformal quantum mechanics, as

argued and constructed in Lagrangian theory. If we relax
the condition (5.19) for the favored energy eigenstates jEi
under the unitary evolution, which is examined by the D
function, the states are allowed in the green region.
Suppose that a theory allows the construction of a

conserved charge. In what follows, we will not rely on
the Lagrangian but rather will describe a charge as the
operator that acts on the state (5.12) and the primary
operator (5.11). LetQ be the corresponding charge operator
that obeys

QOΔ ¼ qOΔ; ð5:24Þ

QjΩi ¼ 0; ð5:25Þ

½H;Q� ¼ 0; ð5:26Þ

½D;Q� ¼ iδQQ; ð5:27Þ

with q ∈ R. Equations (5.24) and (5.25) assign the charges
such that the primary operator OΔ has charge q, whereas
the vacuum state has no charge. Equation (5.26) implies
that the charge operator Q is not dynamical. In the
Lagrangian description, it would have no kinetic term,
so it can be eliminated by its algebraic equation of motion
as an auxiliary field. Equation (5.27) gives the scaling
dimension δQ of the charge operatorQ. In the following, we
will focus on the case δQ ≥ 0.
The corresponding symmetry transformation is a

global transformation if δQ ¼ 0 because every charge at
t is transformed in the same way, making q a constant
charge, which we will call a global charge. For the
continuous symmetry, an operator can be realized
by exponentiating the corresponding global charge.
When the theory is generalized by including a (d − 1)-
dimensional space Md−1 separated from time, one may
further define higher-form global symmetries and higher-
form global charges QðMd−1Þ [25] by furnishing the
scaling dimensions stemming from Md−1.
On the other hand, for δQ > 0 we view the symmetry

transformation as a local transformation because the
charge is a function of time: qðtÞ. In this case, Q can
enter the Lagrangian, and its elimination by the equation
of motion and the gauge fixing would give the Gauss
constraint. In the Lagrangian description of quantum
mechanics, it is nothing but an auxiliary gauge field. In
quantum mechanics, it is the Gauss law operator. Note that
the Gauss law constraint is not the identity between
operators obeying the canonical commutation relation
½·; ·� but rather holds only when acting on the physical
states. In fact, it is well known that the Gauss law
constraint is incompatible with the canonical commutation

relation.7 Therefore, we should not require the Jacobi
identity for a canonical commutation relation operation by
including the Gauss law operator Q. When the theory is
generalized by adding a (d − 1)-dimensional space Md−1,
this operator behaves as a vector- or tensorlike operator
since it has the nonvanishing scaling dimension. If a
theory follows the action principle, it naturally appears in
the covariant derivative as a gauge field to make the
symmetry manifest. We will refer to the charge operator
with δQ > 0 as a gauge operator.
Consider a matrix element

hOΔj½K;Q�HjOΔi: ð5:30Þ
Since ½K;Q�H ¼ ðKHÞQ −QðKHÞ and both actions ofQ,
on the ket jOΔi and the bra hOΔj, produce the same charge
q ∈ R, this should vanish. On the other hand, using
the commutation relations (2.16) and (5.24)–(5.27), we
find that

½K;Q�H ¼ 2iδQQD − δ2QQþ δQQ: ð5:31Þ
Plugging this into (5.30), we get

qδQðδQ − 1þ 2ðdþ ΔÞÞ ¼ 0: ð5:32Þ
For the global charge operator with δQ ¼ 0, the above
condition holds and there is no constraint on the primary
operator. However, for the gauge operator with δQ > 0, the
scaling dimension of the charged primary operator is
determined by

dþ Δ ¼ 1 − δQ
2

: ð5:33Þ

The resulting constrained scaling dimension is illustrated in
Fig. 2. The red line characterizes the gauge operator. Within
the regions (5.23) and (5.19), there exists a bound on the
scaling dimension of the gauge operator

0 < δQ ≤ 2: ð5:34Þ

This admits the presence of the gauge operators with
δQ ¼ 1, which would realize massless spin s ¼ 1 gauge
fields involving photon and gluon, coupled to the physical

7For example, in pure Maxwell theory, the canonical commu-
tation relations for the gauge fields

½Aiðx; 0Þ; _Ajðx0; 0Þ� ¼ iδijδðx − x0Þ; ½Aiðx; 0Þ; Ajðx0; 0Þ� ¼ 0

ð5:28Þ
are incompatible with the Gauss law constraints

divE ¼ 0; Ei ¼ _Ai: ð5:29Þ
See, for example, [14] for a more general discussion of the Gauss
law constraint in quantum mechanics.
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states with dþ Δ ¼ 0, i.e., free fermions. Also, it is
compatible with the gauge operators with δQ ¼ 2, which
would show up as massless spin s ¼ 2 fields involving a
graviton, coupled to the physical states with dþ Δ ¼ − 1

2
,

i.e., free bosonic scalars. On the other hand, the bosonic
auxiliary field with dþ Δ ¼ 1

2
may not couple to the gauge

operators.

VI. DISCUSSION

In thisworkwe have studied conformal quantummechan-
icswith thevacuum state and the primary operators.We have
shown that a matrix element of the dilatation operator
between two energy eigenstates may define a conformal
quantum mechanical counterpart of a c function, which we
call aD function. Its monotonic decrease from the UV to the
IR along the flow supports the universal irreversibility of the
RG flow in higher dimensional field theories. At the fixed
point of the flow, it becomes a crucial parameter d—that is,
the scaling dimension of the vacuum—which specifies the
theory, analogous to the central charge in two-dimensional
conformal field theories. In addition, we have found new no-
go theorems which impose constraints and bounds on the
scaling dimensions of the primary operator, the vacuum, and
the gauge operators.
Our results in conformal quantummechanics should have

implications for two-dimensional gravity and black holes
via holography. It would be nice to find further applications
of our proposed D function in a holographic framework of
the RG flow, as in higher dimensional conformal field
theories in the context of the AdS=CFT correspondence
[26,27]. Also, our result may be substantiated by the
dS=CFT correspondence [28]. As the radial direction
corresponds to time evolution in an asymptotically de
Sitter space-time [28,29], time evolution would be dual to
the RG flow. It has been discussed [30] that the RG flowmay
correspond to the instability of the space due to Hawking
emission [31]. As time goes on, the black hole mass would
decrease due to Hawking radiation. Nevertheless, Bianchi
and Smerlak [32,33] have recently derived a formula that
relates the energy flux and the von Neumann entropy of the
Hawking radiation for a two-dimensional black hole, which
predicts the possibility of the increase of black holemass due
to the negative energy flux, whereas Abdolrahimi and Page
[34] have pointed out some inadequacies in the Bianchi-
Smerlak formula. We would like to address these issues via
the holographic method in future work.

Although we have investigated several properties of
conformal quantum mechanics, there are other conformal
quantummechanical models which are beyond the scope of
this work. First, one can construct other conformal quan-
tum mechanics by considering topological quantum
mechanics, which may not obey the unitary evolution
for energy eigenstates in our argument. Such theories
may have a zero Hamiltonian; however, they can appear
in the study of topological or Bogomolny-Prasad-
Sommerfield (BPS) protected sector for physical system.
For example, superconductor and fractional quantum Hall
systems are studied by topological Chern-Simons quantum
mechanics [35–37] and certain BPS protected sectors are
examined by superconformal quantum mechanics [38] (see
also [39–41] and the references therein). By relaxing the
unitary evolution of physical energy eigenstates, which is
taken as the physically preferable condition in this work,
one may find other conformal quantum mechanics which
can be used as a physical description.
Meanwhile, even if we focus on the SLð2;RÞ conformal

quantum mechanics, there may exist some quantum
mechanical models which are not studied in this work.
One possibility is to construct a conformal quantum
mechanics which does not rely on the existence of a
vacuum state and of the primary operators. In fact,
Jackiw, Pi, and co-workers [17,42] argue that in the
DFF model the unexpected nonprimary operator and the
nonconformally invariant state conspire with each other to
construct consistent correlation functions.
For many applications of conformal quantummechanics,

it would be important to proceed with the analysis of
correlation functions and to explore stronger constraints by
considering an additional physical requirement or the
presence of additional operators characterizing the sym-
metries in the theory.
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