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N =4 supersymmetric BMS; algebras from asymptotic symmetry analysis
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We consider three dimensional N = 4 flat supergravity, with an Abelian R-symmetry enhancing the
gravitational phase space. We obtain the field configuration whose asymptotic symmetries at null infinity
coincide with the centrally extended N =4 super-Bondi-Metzner-Sachs (BMS) algebra. The killing
spinors for this generic configuration are obtained together with the energy bounds imposed by
supersymmetry. It is explicitly shown that the same algebra can be obtained as a flat (AdS radius
— o0) limit of the combined (2,0) and (0,2) sectors of AdS supergravity.
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I. INTRODUCTION AND SUMMARY

Supergravity theories in 2 + 1 dimensions have many
interesting features which have no equivalent in their
higher-dimensional counterparts. It is well known for
instance, that no local degrees of freedom exist in the bulk
and that it is not possible to define the linear momentum or
the supercharges for any solution at spatial infinity [1-3].
One can only define the energy and the angular momentum
there associated to asymptotic time translations and spatial
rotations. However, the scenario changes at the null infinity.
Almost half a century ago, in their seminal works [4,5],
Bondi, van der Burg, Metzner and independently Sachs
first introduced the symmetries of 4D flat space times at
their null infinity, named BMS symmetry. Later, in [1,6,7],
it has been shown that the asymptotic structure for flat
three-dimensional gravity at their null infinity is also much
richer: it consists of an infinite dimensional symmetry
whose generators, supertranslation and superrotation gen-
erators, act on the boundary coordinates.

A similar symmetry enhancement also takes place when
one considers the asymptotic algebra of symmetries of
three dimensional AdS (super)gravity. In their seminal
paper [8], Brown and Henneaux showed that, upon
imposing suitable boundary conditions for the fields in
asymptotically AdS; space, the symmetry enhances from
SO(2,2) to the infinite dimensional conformal algebra in
two dimensions. This is connected to the enhancement of
the flat asymptotic algebra, as the latter corresponds to a
well defined flat space limit of the AdS algebra [9—14].l
Similar results have been obtained for supersymmetric
theories in asymptotic AdS; spaces [16—-18].

The enhancement of the symmetry algebra of flat three
dimensional gravity has been extended to the N =1 [19]
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'A free field realization of this algebra was first obtained
in [15].
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and N = 2 [20] supersymmetric cases. In [21] all possible
N—extended quantum Super BMS; algebras were found
as a well-defined Inonii-Wigner contraction of the super-
Virasoro algebras. The N =4 and N = 8 algebras also
possess nontrivial U(1) and non-Abelian internal R—
symmetries. The scaling proposal for the R-charges was
the main ingredient of this construction.

The purpose of the present paper is to find the N = 4
super BMS; algebra i.e. the algebra of three dimensional
N = 4 flat supergravity theory at null infinity, by a direct
asymptotic symmetry analysis a’ la [19], i.e. by finding the
appropriate boundary conditions to impose on the fields.
This provides a check of the algebra found in [21] while
also validating the proposed scaling of the R—charges.
We leave the similar analysis for the N = 8 Super BMS; to
a future project [22].

The N =4 Super BMS; algebra obtained, which is
the central result of this paper, is given in Eq. (3.26). The
agreement with the result of [21], as will be clear from
the detailed analysis done in later sections, works out it a
nontrivial way. In fact, it was noticed long back in [23]
that the presence of R-symmetry in the extended super-
conformal algebra leads to nonlinearities in the asymp-
totic symmetry algebra. Those nonlinearities can be
canceled only by appropriate Sugawara shift of the stress
tensor. We will explicitly show how this issue arises when
computing the asymptotic AdS algebras and its Inonii-
Wigner contraction which gives the N = 4 Super BMS;
algebra (3.26).

The paper is organized as follows: in the second section,
we present the action for three dimensional N = 4 super-
gravity theory. In the next section, we derive the N =4
super BMS; algebra by choosing the appropriate boundary
conditions for the fields. In Sec. IV, we present the bounds
on the energy of asymptotically flat solutions of the theory,
imposed by supersymmetry. We also solve the asymptotic
and global Killing spinor equations, and provide explicit
solutions. Finally in the last section, we show how the
asymptotic algebra is obtained by an appropriate flat limit
of the asymptotic AdS; algebra. Our notations, conventions
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and some details of the computations are presented in the
Appendices.

II. CONSTRUCTION OF THE ACTION

In three space-time dimensions, a gravity theory with
(non)zero cosmological constant possesses a Chern-
Simons formulation. For a three dimensional gauge field
A = A,dx", the Chern-Simons action is given by,

I[A] _£/<A,dA+§A2>,

where (,) denotes the invariant bilinear form that one
constructs from the symmetry algebra of the corresponding
theory (see Appendix B for details on how to build this
bilinear form).

As mentioned in the introduction, in this paper we want
to construct the asymptotic symmetry algebra of three
dimensional N =4 flat supergravity theory. The bulk
symmetry algebra for this theory consists of bosonic
generators J,, P,,(a =0,1,2),R, S and Majorana fer-
mionic generators Q. Q2*, (a = +1). The commutation

relations are

(2.1)

[ja’jb} :eabch’ [javpb] :eathCv

1
(Ta Q) = 5 (LV0 Q5™
R.QF = 4508, [R.Q¥F] =F 02

1 1
{Q(lli7 Q})’:F} = _E(Cra)aﬂpa + Ec(z/}Sv

1 1
{QF Q) = =5 (CT") Py %5 CopS. (2.2)

Here, S is a possible central extension of the super Poincaré
algebra while R acts as a proper R-symmetry. One can
construct the invariant nondegenerate bilinear form for this
algebra (see Appendix B) whose nonzero elements are,”

<~7avPb>:nab’ <Q}1’2i’Q;2:F>:Caﬁv <R’S>:_1
(2.3)

To write down the action for this supergravity theory, one
expands the gauge field in terms of the basis generators as,

A=eP,+ 0T, + Zw'f@},i + Zwi"Qﬁi
a==+

a==+

+ R + 68, (2.4)

where, ¢ is the vielbein field, w“ is the corresponding dual
spin connection, y'%, y2* are Majorana gravitini and v, ¢

2 . . . .
Our conventions are summarized in Appendix A.
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are internal gauge fields. With this, we can readily write
down the action for N = 4 asymptotically flat supergravity
theory as,

k
S_4—/2€aRa—6dl)—l)d6+ g wiDyl + E WDy,
a=+ a=+

T
(2.5)
where
| 1 1 a 1 1 1
Dy = dy + 50Ty 250w
1 1
Dy = dyl + 50Tyl F Soud, (2.6)
1
R = dw" + = &%y 0l 0. (2.7)

2
The invariance of the action S under the supersymmetry

(2.2) can be straightforwardly checked by using the trans-
formations,
SA = dAsY + [A’ lsusy]’ Jsusy — gzltaQ{lli + €2iaQ(21i

which explicitly read:

1 - _ _ _
Se? = 5 (@' Tyl + 0Lyl + 02T y? + 02T 7y3),

o’ =0,

I a1 a1 Lo !
Byt = dOl + S T, 0L + S00le = DO,

1 1
By = A0+ T3 F S06% = DO,
1
jo—% Lol i), s=0

2

The algebra of supersymmetry closes on-shell into a
general coordinate transformation, a Lorentz transforma-
tion (with dualized parameter 1¢ = €**“A,,) and a super-
symmetry transformation with parameters e, = —&y!,
and 9. = —&y?,:
[5(el, el, 91, 9L),6(e%, €2, 92, 9%)]

= 5L0r(la = _ébwua) + 6susy(£+’ €, 19+7 '9—)

1 _
+ 0. <§” =-3 (821vel + #2Ivel + 92179l
+ 92;”191_)) : (2.8)

The dynamical equations are
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1 o ]
T == (Tl +yiry?) Dy’ = Dk’ =0,

dv=F,=0 2F, + (wlyl —yly?) =0,

with the torsion tensor 7¢ = de® + ), 0’ w°.

In this paper, we are interested in finding the asymptotic
symmetry algebra for the above theory at null infinity. To
do so, we change frame for the generators, as was done in
[20]. The new generators {M,,, L,,, q}fi, R, S} are related
to the previous ones by the following relations’:

Mn = Pani’
gkt = V20L*,

‘cn = jaUz7
gt = V202,

with (R,S) remaining unchanged. In terms of these
generators, the super Poincaré algebra reads as:

[Envﬁm] == (n—m)£n+;nv [En,Mm] = (n_m)Mn+m’
n
N L
(M, qa*] =0, [S.qa*] =0,

1
R.q3") =F 5q5*.

1
[R.q4*) =547, 5

2
{g4*.a)T} = Moy £ (a—p)S,

{92". 457} =Muiy F (a=p)S. (2.9)
In the next section, we find the right asymptotic gauge field
to finally arrive at the asymptotic symmetry group for this
three dimensional N = 4 flat super-gravity.

III. N=4 BMS; ASYMPTOTIC ALGEBRA

The aim of this paper is to find the asymptotic symmetry
algebra for a specific set of boundary conditions of the
gauge field. The procedure is well defined and has been
used in the literature, for both asymptotically flat and AdS
theories. The boundary conditions need to (i) extend the
ones of the purely gravitational sector so as to include the
bosonic solutions of interest, mentioned in the previous
section, and (ii) relaxed enough so as to enlarge the set of
asymptotic symmetries from N = 4 super-Poincaré to its
N = 4 super-BMS extension. Obviously, they also fix the
form of the metric which is, in the usual BMS gauge with
Eddington-Finkelstein coordinates (u, r, ¢):

ds? = n pee’ = Mdu? — 2dudr + Ndude + r>de?
(3.1)

*Our conventions are summarized in Appendix A and
Appendix D.

PHYSICAL REVIEW D 96, 066029 (2017)

The gauge fields at the boundary is hence chosen in a radial
gauge,

A=b"a+d)b, b—exp(%M_1> (3.2)

where now a(u,¢) = a,d¢ + a,du reads:

1 ip
=M, —— M, ——
a, 1 4M —1 3 S
1 1 ib . ip
a,/, = ‘Cl —ZME_I —ZNM_l —?S—ER
1 1
- Z(‘Pﬂrqlf -Ylgl) + Z(‘I’iq%+ —-WP2q2).
(3.3)

The various charges appearing in the above expression
asymptotically will only have u and ¢ dependence. The
asymptotic symmetries correspond to the set of gauge
transformations that preserve this behavior together with
the dynamical equations:

1
da +=la,a] =0,

3 da = dA + [a, A],

(3.4)

where, the parameter A is Lie-algebra valued and depends
on various arbitrary functions of u and ¢,

A =L, +EM, + gt + (e + CqeT + 02y
+ xR + AsS. (3.5)

From the equations of motion one gets the following
differential identities:

oM =0,N, oM=0 0.0 =0, (3.6)
yp = 0,0, 9,¥L =0, 9,¥2=0. (3.7
Similar identities exist also for the parameters,
0,&" =0,Y", 9,T" =0, 2.4l =0, (3.8)
0,{3 =0, yhs = 0, A, 0,4 =0.  (3.9)

Here, we see that fields and parameters are not independent
of each other.

Next we start the analysis of the gauge variation
condition, which constrain the parameters even further:

L =0, + 10, Y0=-9,T+,

T—:%a?ﬂW—%szo (3.10)
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! (3.11)

where we made multiple use of the above identities. The constraints on the fermionic parameters are

1 i
= -0, F U £ ot

From now on, then we will use ¢}*"

M = =20, TF +2M9, T 4+ 9,MTH,

1 i
= =005 £ T F ool

= iz. Finally we write down the variation of the fields. For bosonic fields, we get,

SN = =200E7 +2M8, 7 + 2N, T + 0 ,MET, +O NTT

1 i i
s <aq,lpl+g1_ F3WL0,00 0, WLEL ~3WL0, 0L + Twldl, §w1¢;p>

1
2

i i
<8¢‘P2+CE P30, -0 e, - lwe, e 2+p> ,

8 = 200,45 — % (Pl wisl) - % (W22 + 9222,

op = 2i0,/x.
For the fermionic fields we get:

3

) i 1 1
SPL = +402¢) + <84,\P;T+ + Eﬂaq,w) —i(9,pC +2p0,C%) F ME, F Zw;pw ¥ EART; F-pL,

3

. i 1 1
SV = 40202 + (a(,,qﬂiw + Elpia,pw) (0,00 +2p0,C%) £ ML+ WA £ 2R £ 170

The variation of the canonical generators that corresponds
to the asymptotic symmetries of this theory spanned by
fields can be obtained in the canonical approach. In the case
of a Chern-Simons theory in three dimensions, they are
given by,

k

T

(3.14)

This expression is linear in the fields variations and it reads
explicitly

k
5C = e / (YT6F + ToM + 8P ¢l —sPLgh

— WL + 8282 + iARd + idsdp)de, (3.15)

where we have used the supertraces suitable for the

current basis (derived from relations in Appendix B and

Appendix D):

(R,S)=-1,
(3.16)

<£n7Mm> :ynmv <6I(11'2i,q/11’2¥> :2Caﬁ,

and solved (3.6) and (3.8):

(3.12)
4
(3.13)
|
N = F(p) + uo, M, &t =T(p) +ud,X*. (3.17)

Under some mild regularity assumptions for the variations,
we can readily read off the charge from the above variation
formula as,

C= —f/(T*:}JrTM +wlot —wplel
T

— W2 + W25 4 idg + idsp)dy
2
= DD TES T M, + WS Wi

W22 W2 + iR R, +145,S, (3.18)

where ¢32* are now the modes of ¢, We can derive the

asymptotic symmetry algebra of this configuration using
the asymptotic charge and its variation as given above. In
particular, the Poisson brackets among various modes of
the fields can be obtained using the formula

{Cl4]. Clhal} pp = 6,,ClAa]. (3.19)

It reads:
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I{Sn’ Sm} = (n - m)Sn-&-ma
. C
1{3}1’ Mm} = (l’l - m)Mner + %n35n+m,0
. n 1
{5, w1 = (5 S
I{an ‘Pli} +5 lPrJrnv

I{an ‘PZi} =+ ‘PH»nf
I{Rn, S } CM n5n+m,0
{lP}+le;_} = MrJrs + ( )Sr+r + [SS]rer
+ F r25r+\ 0

{‘P2+ le } =M= (r=95)S+ [SS]rJrs

+ 1%, 0. (3.20)

where c¢;; = 12k and the modes are defined as follows:

:_/d(pelﬂ(p@

M, = / dpe™ M,
4r

47

k )
S, = —/dqoe’”‘/’p,
A

\P},Zi _4£/d(peir(pl}ll,2:t’
T

k
R, = / dpe™ ¢,

k .
[\Ijl,Z:ts]r — E/ d(pezr(qul,2:tp’

k .
[SS], =+ / dpe'™pp,
47

1 )
5n0 = _/d(pe”l%”’
' 2r

and similarly for the parameters. To get the Poisson
brackets, we need the inverse relations among the fields
and the modes as well. For example, for fields J(¢) and
M(@), the inverse relations are given by:

(3.21)

2 —ing 2 —ing
3(@)2%26 "S- M((p)zz;e oM,. (3.22)
Here we notice that the Poisson bracket {,,y 12*}

contains a spurious term (the last term) while i{J,, R,,}
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is zero. Also, the Poisson bracket {¥!**, W2~} contains a
quadratic term in the S generator. Hence, at this stage, the
algebra looks quite different from the one derived in [21].
The resolution of these differences resides on a simple
argument: since we are dealing with a theory with one
internal U(1) symmetry, the physical energy-momentum
tensor should have a contribution from the corresponding
U(1) current. Thus it is important to add a Sugawara-like
term to §, as follows:

(RS),s

ne

With these shifts of the modes, some spurious terms
get canceled or absorbed and the new Poisson brackets
read:

A n
Z{Sn,wi’zj[}—(z )wifni,

i{lé):n’Rm} = _mRm+n7
i{gn’sm} = _mSern' (324)
Finally, we also perform a shift on M,
./\/l =M, +- [SS] (3.25)

to absorb the quadratic term in S in the {W¥, ¥} bracket.
Also:

i{Mn’ Rm} =

_m811+m .

The underlying justification for these shifts will become
clear in the last section. In the next subsection, instead we
present the final result for the N = 4 super-BMS algebra
which is in agreement with [21].

A. The BMS algebra

Here, we present the main result of this paper, the
algebra of three dimensional N = 4 flat super-gravity at
null infinity, namely the N = 4 super BMS; algebra. From
the nonzero Poisson brackets, we can write down the final
form of the algebra. The rule that we follow is

i{. pp =[] and { }pp—{.}.

The algebra in terms of commutators and anti-commutators
is given by:
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Cy 3
n+m + ﬁn 5n+m.01

&
o
3

I
=

|
S
&

[0 M} = (0= m) N+ S5 150,
(R Sl = T2 181m0
[Sn»Rm] = —MRy i [{}nvsm] =—mS, iy,
[/\A/ln’Rm] =-mS,p
(30 ¥} = (g - r) ¥y

1 1
(R W] = £ 2WEE, (R, W] =S¥,

" c
{\P}+’ lP;_} = MH—S + (r - S)8r+s + FM r25r+s,0

{\P%+7 ‘P%_} = Mr+s - (I’ - s)8r+s + C_M r25r+s,0-

. (3.26)

Here, we have presented the most generic possible quantum
extension of the algebra by allowing a possible central
extension to the [5,,5,,] and [R,.R,,] commutator. We
also notice that, after adding suitable shifts to g, and M,
we obtain the same algebra presented in [21].

IV. ENERGY BOUND AND KILLING SPINORS

In this section, we look for the energy bounds for
three dimensional N = 4 asymptotically flat supergravity
theories. We find the asymptotic symmetries that leave the
asymptotic background unchanged. Finally, we find the
global killing spinors for this system.

A. Supersymmetry energy bound

As it is well known, supersymmetry imposes constraints
on the energy of supersymmetric states. One can find it
from the super algebra. Specifically for our case, consid-
ering antiperiodic boundary conditions on the fermions,”
we see that the global part of the algebra consists of
(S M, ¥L25 R), where m = —1,0, 1 and r = +1. For
the quantum theory, following [26-28], we consider all
possible positive-definite combinations of the supercharges
‘Plﬁfz and get:

1

5o @D

N 1 L ok k
—_ I+\pi— it _ >
M, 42] o e e L

i=12
a=+1/2
Here, it is important to note that, we have derived the above

bound for M, the shifted charge. Unlike M, the latter

*We have not studied the Ramond boundary conditions for the
fermions, more can be found in [19,24,25].
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satisfies this nicer bound. This implies that, for extended
supersymmetric cases, the right physical charge at null

infinity corresponds to M It is also very clear that for the

Minkowski vacuum for which Mo =My=- % as all the
other fields, including the R- and S-symmetry gauge fields
are vanishing, the bound is saturated. Hence, Minkowski

space is certainly a ground state for this theory.

B. Asymptotic Killing spinors
To study the asymptotic supersymmetries that preserve
the asymptotically flat backgrounds, we impose that both
the gravitinos and their generic variation be zero, at
infinity. This is known as “asymptotic Killing spinor
equation.” One hence has to solve the simplified version
of Egs. (3.13), i.e.

. i ) 1 1 .
90 F Epazpﬁfﬁc ~ <M +ZP2> =0, (42)

where i=1, 2 and we assumed 9,0 =0 and M
constant. The general solutions to the above equations
read:

gLo= et (c’leT‘/’ + c’ze_T‘/’)

{= el (dg Ty dge—%’) (4.3)
for arbitrary ¢}, and d} , constant spinors. The solutions
are well defined, given the periodicity of ¢ only when
M = —n? and n > 0, a strictly positive integer without
loss of generality.

For n=1, p=0 we find the Killing spinors for
the Minkowski vacuum, M = —1. For n > 1, the
energy bound is violated and we have angular defect
solutions [29].

C. Global Kkilling vectors

We end this section with the study of global killing
spinors. These describe globally defined supersymmetry
transformations that leave the pure bosonic solution in the
asymptotic region invariant. Depending on the range of
the mass parameter, the pure bosonic zero mode solutions
include cosmological solutions [30,31], stationary conical
defects solutions [29], the Minkowski spacetime and
angular excess solutions of [32,33]. The global Killing
spinor equations is given as,

D¢l = (d—l—w:t%v)c:i =0. (4.4)

From the gauge field (3.3), we obtain the values of the spin
connection and the R-gauge field:

066029-6
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1 - 1/-= M
wziw”Fn:A‘ldA, A =exp <§ <F+] _TF_]>(/))’

The general solution of this equation is obtained from the
solution of the homogeneous equation (v = 0) that was
already solved in [19], given as:

Shom = A7'C0

cosh (TM (p) - TM sinh TM go)
_ |
= 0
- \/LA—/I sinh (TM (p) cosh (@ go)

(4.5)

with ¢} constant spinors and we have suppressed the
indices +. indices £. The solution of the inhomogeneous
equation with nonzero v is of the form:

Cigen = A7 (80 + 622 ()). (4.6)
By explicitly plugging in the above (4.4) we get:
i
AP (x) = £5de(Co” +E7(0)) (A7)
where we identified v = —i% from the form asymptotic

gauge field. This differential equation is immediately
solved by:

0.8 = 0,87 =0

£ () = Cletite — g} (4.8)
with Z’ ! constant spinor. Thus the final solution for the
global killing spinors takes the form:
CLgen = A1 T 00, (4.9)
For the second Killing spinor, the equation has simply the
signs of the R-symmetry gauge field flipped, which
corresponds only to the sign of the exponential flipped.
Like the asymptotic case, the Killing spinors are globally
well-defined when M = —n?, with n being positive

integer. A more detailed discussion can be found in
[19,20,34].

V. SUPER BMS; AS A FLAT LIMIT OF
ASYMPTOTICALLY SUPER-AdS;
SUPERGRAVITY

It is well known that the flat asymptotic algebra can be
obtained by taking an appropriate limit (or contraction) of
two copies of the asymptotic AdS algebras. In [21], we
adopted this limiting procedure to derive all possible super-
symmetric extensions of the BMS; algebras by considering

PHYSICAL REVIEW D 96, 066029 (2017)

the limit of the mixed sectors of the superconformal algebra.
When the R-symmetry is present, there exist two possible
combinations for the R— charge generators, the democratic
and the despotic scalings. The former was excluded because
the R-generators did not rotate the supercharges, so that left
us with one well-defined combination of the R-symmetry
generators of the two super-Virasoro sectors, which led
to a N = 4 super-BMS; algebra. In this paper, we have re-
derived this algebra as given in (3.26) by a direct analysis of
the gauge field boundary conditions. The result is in
complete agreement with the results of [21] after considering
suitable shifts in two generators, as shown in the last section.
The reason behind these shifts is discussed below.

As it turns out, the asymptotic AdS algebra considered
in [21] initially contains nonlinear terms in R—charge
generators. The asymptotic symmetry algebra of N—
extended AdS Supergravity theories were first discussed
in [23] and those are not the usual superconformal algebras.
For completeness, we shall present again those results,
including the Sugawara shifts of the Virasoro generators,
by using the Chern-Simons formulation of AdS gravity.

A. Asymptotic symmetry algebra for (2,0)
and (0,2) AdS supergravity

There are two inequivalent locally supersymmetric
extensions of general relativity with negative cosmological
constant in three spacetime dimensions containing an
R-symmetry, known as the (2,0) and (0,2) theories. The
bulk symmetry algebras for both the theories are presented
in Appendix C. Here, we formulate them as a Chern-
Simons theory with appropriate gauge group Osp(2[2, R).
The action is a functional of two independent connections
A, and A_:

I=1A+1I[A], (5.1)
where, I[A] is defined earlier in (2.1). Here, we have
defined x* = u /1 + @, where, [ is the identical AdS radius
in both sectors. Hence, the (2,0) sector asymptotically only
depends on x* and the (0,2) sector depends on x~. The
asymptotic behaviour of the gauge fields can be taken to be

r r? 1 1 N
A+: L1+7L0+WL_1—52+L_1—§W+Q_

1 o dr
+§W—Q- - 1¢’1‘}R>dx+ +EL_1

- - r- ot 1 - 1_ -
A_= <L—1 —7140 +4—12L1 _ES—LI —5W+Qi

_ o dr -
w_Q;—i¢%R)dx—+—rL1,

= (5.2)

+
N[ =

and again from the dynamical equations we get the trivial
constraints:

066029-7



BANERIJEE, LODATO, and NEOGI

0.8, =0y, =0_¢t=0

0,8 =0y, = 84}5}3 =0. (5.3)
The asymptotic symmetries for these systems are generated
by the asymptotic gauge transformations A, = dA, +
[AL, A.] for both gauge fields, where the transformation
parameters are given as,

Ay = "L, + €2 Qf + €2 Qy + 4R

A_=7"L, +&Qf + e Q5 + I4R. (5.4)
The variation at infinity constrains some parameters and
also fixes the variation of various fields appearing in the
asymptotic gauge fields. Below, we present the relations in
the (2,0) sector, where fields and parameters are only a
function of x_:

,
)(Oz_y/+7y
by, g, o1 1
=3 2—1y+<ﬁ sl A4 4_1<W+€_ w_e,)
1 1.
—Ell/+y +*1¢?}€+
1

€Z = —¢_ +2—l€ += 1//))——1¢

,
eJr:—eﬁr+2—le+

where we called y" =), el =€, and €& =e_. The
variations read:

1
0%, = =V 22V + LYV 45 (e + 3pel)

1 1.
=5 Wher + 3w ) +5ily e dr +y e dr)

3
Sy, =2e +yl Y+ ll/+y —i(¢R'e; +203e})

1

1.
—§1W+¢ﬁy - RU/+ ¢R¢?€€+

-R.e,
3
Sy_ = =2" +y' Y+ —w_y/ —i(pRe_ + 2¢pel)

1
t8e iy gy +5 /11// += ¢¢R€_

. L, L.
Sy =24y — Siwie —Siy_e..

Now following the same procedure as before, the asymp-
totic symmetry algebra for (2,0) asymptotically AdS super-
gravity theory is straightforwardly found. The nontrivial

supertrace elements are

1
R,R) =——,
(RR) ==

(5.5)

1
<Ln’Lm> :Eynmv < i’ Q;';> = Caﬂ’

PHYSICAL REVIEW D 96, 066029 (2017)

from which the generic charge reads

OV, ex,4g] = /ﬁ+y+w+e —w_e, +ippin

= —k—Zsjy_n +yilel, —wret, +iR, 4,
U

(5.6)

with €X modes of €. The nontrivial Poisson brackets are
given as:

. c

1{2;’ Sl;}PB = (I’l - m)S:{er +En35n+m.0

. k c
I{Rn Ry }PB = Eln5m+n,0 = Eném-&-n,o

. n
l{grf,ll/fzt}PB = <_

2 >W(l+n +35 [‘PiR]VH—a

. 1
I{le//;lt}PB = iiwg:—&-n

1
_ﬂ)R(l+/} +=

C
) [RR]aHJ +6a26a+/3’

(5.7)

wdwstes= g;r/} +(a

where the modes are defined as follows:
k ) k )
Lt :—l/d(pel"‘”51+, R, :4—l/dgoe’""’¢ﬁ,
3

ﬁ/d(péi(wl//i A
47

(5.8)

N / dopy*e ™, [y*R], =
[RR] i /d(pe”"/’(l)AqﬁA

Now, we need to redefine the generator &, by adding a term
bilinear in the R-current:

—_—

L, -2, =2,+-(RR),. (5.9)

\S]

This is a Sugawara shift on the Stress-tensor in presence of
internal currents. The effect of this shift is shown below,
where we write down the quantum (anti)commutator for
the theory using the same convention as (III A):

c

[Q:’ Q;] = (n - m)g;erm + En36n+m,0’

1
[Rrw l//g:] = iiyjfﬂx
A C
{wd vt =8+ (@=PRop+ ga25a+ﬂ,0
A N n
81 Rl = <R (80 = (50 )i

C
[an Rm] = Enaner.O' (510)
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One can carry on similar computation for the (0,2) sector
and in this case, the constraints are

)?Ozj)/_iy
1- r S| 1
st — _yr_ __-Q Sl = o =
X 2y 2ly+<412 > _>y+4(1//+€_ W_E,)
_ r 1_ - 1
ep=e, 25~ 51//+y §1¢R€+
_ _ ro_ 1_ - 1.-
et =¢. — 576 +§1//_37+§1¢,A§€_

where we called 7~ = ), €; = €;. The variations read:

[ =

V428 Y + Y-

| B
+5 (e, +3pe) - Si( e g

S Whe +3y. &)

+y_e.dy)

-3 -
oy = —2e +yl Y+ Elf/+yl (¢A/€+ + 2¢%¢€,)

+2.é - %ill_/#}?ej) - 5’%‘3‘7& +5 ¢R¢R€+
S =2 + Y +§ y_ Y +i(dhe. +2¢4e)

—ge + Lw Y+ 51k~ P
Sy = Ay + %iz/’/_é_ + %iy‘/_a.

The nonzero supertraces elements are

(5.11)

and the charge of the barred sector reads

09,2 4] = /2 Y-+ e, + b
T ;B;J’)_n — e, + et +iR, 14,

(5.12)
with &" modes of . Finally, the asymptotic form of the

Poisson brackets between various modes take identical
form of the (2,0) sector as,
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e B c
l{gn ’ 8m}PB = (l’l - m)gner + En35m+n.0
k ¢
I{an Rm}PB 2 n5m+n,0 = Enéern.O
e o n _r | R
l{gn Yo }PB = E O YWoin + 5 [lP R]t1+a
n - 1_
R, Wt pp = ii‘/@in
o _ |
{ws, Vg trs = ga+/3 +(a=p)R atp 5 3 [R ]a+ﬁ
&
+ 6025a+ﬁ

where the modes are defined as follows:

:—/d(pe_’”¢8_, R :_/dwe—m(pqﬁA

W= dpp*e™™ [p*R], = / dpe™ """ gE i,

471'
RR kl —iap 1A A
RR), =~ [ dpe 0

4z
(5.14)

Notice that the definition of Fourier transform in barred and
unbarred sectors are different. This is ultimately due to the
fact that the two sectors depend exclusively on x~ and x™
respectively, so that one can expand all the arguments
in power series of 1//, and the fields and charges in the
barred sector will depend on —¢. Finally using the same
convention for writing the suitable quantum commutators
in the barred sector, the asymptotic symmetry algebras
for the generators of the barred sector, i.e. of (0,2) three
dimensional AdS theory takes exactly identical form as the
one for (2,0) three dimensional AdS theories presented in
(5.10). Here also, we required a Sugawara shift of the
stress-tensor as

~ 1 _ _
g -8 =2, +=-(RR),

5 (5.15)

to get the final form of the algebra which is identical
to (5.10).

Note that we started with identical copies of bulk
symmetry algebras for (2,0) and (0,2) sectors as given in
Appendix C and, as a consequence, the asymptotic algebras
of the modes of the conserved charges are also identical,
differences in the sign of the Fourier modes notwithstand-
ing. It was shown in [15] that by properly combining
the two algebras, one immediately obtains the modes of
[(3.21)] and the corresponding BMS algebra [(3.26)].

B. N =4 super-BMS; from N =(2,2) super-AdS;

In this section, we shall explicitly show the relations
between the generators, gauge fields components and
gauge parameters of two copies of the super conformal
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algebras and the flat N = 4 BMS; algebra. As it is easy to
understand, in fact, the latter quantities can be obtained
from the linear combinations of the former ones. Before
doing so, let us recall that a Inonii-Wigner contraction of
two copies of Super-conformal algebra gives us the Super-
Poincare algebra. The contraction is defined in the large
AdS radius limit [ - oco. The level of the corresponding
Chern-Simons actions are related as k; = k- [. The gen-
erators of the flat algebra can be obtained from the AdS
ones as,

] L+
L,=L,-L — T R

M, =-1 "1
—n» n l
R+R 2 2.
s ol oo
] Qo lQa G lQa

It is easy to check that the asymptotic gauge field and the
gauge transformation parameter of the flat theory is
obtained from the AdS ones in the limit [ — oo as,

: R =R-R,

A=A, +A_, A=A, +A_. (5.16)
which can be immediately decomposed in the sum of the
gauge variations of the two superconformal sectors, up
the remembering that the unbarred and barred sectors are
functions of x™ and x~ coordinate respectively. We further
need to use the following maps of various charges, whose
algebra is indeed the asymptotic super-BMS; algebra we

have derived before™:

M=8,+8., N=12 -28), ¢=Idz—op).
_ 1
— A+ A, a _ lPl(l’ T~ 1112(1’
p=dr+¢ L Ay * L ]+

(5.17)

for the parameters:

2
63; - \/;Clia7

X” + Z—Vl
n — l ,
g 2

z—a 2 a n )(n_)—(—n
& =\/7§2, 1=t
Ry M4 74
L

j"R: /ISIZ

2 9
To obtain (3.6)—(3.7) from (5.3) one needs to make use of

the change of variables identity:

(5.18)

and similarly for the constraints on the parameters. Finally,
as proposed in [21], the three dimensional N =4 BMS

5Again, when writing down the BMS charges in terms of
Virasoro modes, the presence of the Chern-Simons level is crucial
to obtain the correct scaling.
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algebra (3.26) can be obtained by two identical copies of
asymptotic (2,0) and (0,2) AdS; algebras with the follow-
ing identification for the charges and their Fourier modes

S = lim(2} - 27,),

Pt = lim ey,
e—0

¢y =lim(c —¢),
=0

M, = lime(8,, + 22,,),
€
Yt = 1if% Ve,
€=
cy = lime(c + ¢),
e—=0

R, = lim(R,, ~R_,). Sy = lime(R,, +R_,).
€—> €—>

(5.19)

where ¢ = % The above identification follows directly from
relation (5.17) and definitions of various modes as given in
(3.21), (5.8), and (5.14).

Finally we end this section by justifying the Sugawara
shifts on the two flat algebra generators § and M to obtain
the algebra (3.26). If we think of the BMS; algebra as a
limit of two copies of AdS; algebras, then it is obvious to
realize why both § and M require a shift. Writing those
shifts in terms of fields we have:

. 1 A 1-
2+:£++5¢§,, 2_:2_+§¢§. (5.20)
It is easy to check that, the BMS; charges § and M,
which are combinations of the two above AdS; charges 2.
will pick up certain shifts. In particular the shift in M
comes out as,

M= (2, +8)

A A 1 -
= (& + &) -5 @R+ )

= M=+ (/1)

where we used the definitions of the R- and S-symmetry
gauge fields. Similarly, one obtains the shift for § (more
care needs to be exercised in that case,where it is crucial to
expand the Virasoro R-symmetry fields in powers of 1/1).
In the limit / — oo, we finally get the shifts (in terms of the
modes) as:

N 1 N 1
Sn = Sn + 5 {RS]W Mn = Mn + Z [SS]n (521)

These are indeed the correct Sugawara shifts for the BMS;
generators that simplify the algebra notably. The most
important simplification happens at the level of the anti-
commutator of the supercharges, as the nonlinear term [SS]
is immediately absorbed inside M.
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APPENDIX A: CONVENTIONS

In this paper we follow conventions similar to [20]. We
will list them here to maintain the paper self-contained.
The antisymmetric Levi-Civita symbol has component
€91 = +1 and the tangent space metric is the 3D
Minkowski metric

-1 0
1

Nab = (Al)

- O O

0 O

The I'-matrices satisfying the three dimensional Clifford
algebra {I',,I',} = 21, are
F0:i62, Fl =0y,

I =03, (A2)

with o; the Pauli matrices:

(02 () (Y
(A3)

Finally, the charge conjugation matrix C = ic,, or

explicitly
0 1
Caﬂzﬁ'aﬂzcaﬁ:<_1 0>

Throughout this paper the fermionic indices @, f run
over —, + (contrarily to [20] where they run over +, —).
The supercharges are also taken to be Grassmann quan-
tities, as are the fermion parameters and the gravitini. All
spinors in this work are Majorana and the Majorana
conjugate of a spinor y* is , = Caﬁl//ﬁ . Our conventions
imply that we can use the identities

(A4)

Loy =€apc T+ napl, T9%L7 5 =2858,— 8356,  (AS)

cT=-c, (T,=-(T,)'C. (A6)
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In verifying the closure of the supersymmetry algebra on
the fields and the off-shell invariance of the action, the three
dimensional Fierz relation is useful.

I S
(i = =5 7c] —z(nF O, (A7)

Other useful identities are

wl'an = by ple=—ely
where y, n are Grassmannian one-forms, while € is a
Grassmann paramter. It is sometimes convenient to change
basis of the tangent space to one more suited for the is/(2)
algebra in the bosonic sector of flat space supergravity. We
do this by choosing a map to bring the generators of
SO2,1) ([J4,Jp) = €4pcJ€) to those of SL(2, R) satisfying
[L,,L,]) = (n—m)L,,,. This defines a matrix U?, as a
map from the tangent space metric 7, with a, b = {0, 1,2}
to the metric y,, defined in (All) with n,m =
{-1,0,+41}, satisfying
L,=J,U%,. (AB)
An explicit representation of U, that does the job is for
instance

-1 0 -1
v, = -1 0 1 (A9)
0 1 0

In this basis the gamma matrices satisfy a Clifford algebra
with

0O 0 =2
(T} =2rm=2[ 0 1 0
-2 0 0

with:  n,m=—1,0,+1. (A10)

A real representation for the gamma matrices with n, m
indices can be obtained by taking I', = U*,,, or

explicitly:
1 0'1 l62 5
I'y=03= : (A12)
0 3 0 -1 '
+1 (] 10>
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In addition to the Clifford algebra (A10), the gamma
matrices now satisfy the commutation relations

[I:r1’fm] - 2(” - m)rn+rn? (A14)

which is the s/(2,R) algebra.

APPENDIX B: CONSTRUCTION OF THE
SUPERTRACE ELEMENTS

In this appendix, we shall outline the procedure to obtain
the supertrace elements for a given algebra. Below, we
present the computation for (2,0) AdS algebra, that is
presented in the last appendix. Super trace element is
computed from nondegenerate bilinear form of a given
algebra. For this, we construct a quadratic scalar combi-
nation of all the generators and impose that it commutes
with all the generators, so that it is a Casimir operator. The
construction of this quadratic scalar invariant is quite easy.
Let us focus on the (2,0) algebra first, and find its nonzero
supertrace elements. Now let us start with the most generic
possible bilinear form W:

W =anJJ, + bC?0; 05 + bC? 0, 0;

+cCPQF0f +eC?0;05 + dRR (B1)
By demanding that W commutes with all the generators
of thfi (2,0) super algebra, we can fix the factors
(a,b,b,c,c,d). In this process, we need to make sure that
the final Casimir is nondegenerate. We will use the
identities:

[AB.C]=A[B.C|+[A.C]B. [AB.C]=A{B.C}—{A.C}B,

CpClr =8, Cr=(CI)", TC=(ro)’. (B2)

The parameters (a, b, b,c,¢, d) get fixed as,
a=b=b=—d, c=c¢=0. (B3)

So overall, the invariant reads:

W =a(nJJp + CP05 05 + CPQ;0; —RR). (B4)

From W we extract all the supertrace elements (see also
book by Blagojevic M. “Gravitation and gauge sym-
metries,” Appendix L), by taking the inverse of the matrices
net, C%, and I:

1 1
<Ja7Jb> :E”]alw <Q2:-’Q/;> = <Q;v Q;j—> :;Ca/%
1
(R.R) = ——. (B5)

Similarly for the (0,2) sector, the supertrace element is
given as,
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‘]a7'7b>_6_l77ab7 <R,R>:—

Q| —

- 1
<Qg:7 Q[:)’F> = gcaﬁa
(B6

~~—

where we have kept the overall factors a, d in the supertrace
of both the sectors, because they correspond to an overall
normalization in the action. These constant factors get fixed
to a = —a = —2 for the bosonic action to contain the
Einstein-Hilbert term. The super Poincaré generators 7,
P, Q% R, and S are given in terms of the super
conformal generators in Appendix D. Hence, we can find
the supertrace elements for flat generators as linear combi-
nations of the AdS; supertrace-elements (the factor of 1//is
absorbed in the Chern-Simons level of the action, hence
neglected below):

(TasPo) = ((Ja+Ja) (Ja = o)) = Naps
(4, Q7)) = (V2)X(0F, 0F ) = Cup.
(2, Q2F) = (V=2)2(0%.07) = Cyp
(R,S) = ((R-R), (R+R))=-1. (B7)

(see Appendix D for the change of basis of the generators).
When dealing with the asymptotic algebra,the overall factor
is necessary to obtain the correct normalization of the
charges.

APPENDIX C: THE (0,2) AND (2,0)
ADS SECTORS

Below we present the N = (2,0) and (0,2) supercon-
formal algebras, the global bulk algebras for the corre-
sponding AdS supergravity theories.

[Ja",h] = eabc']c’

1 1
Vo 0] =5 (Ta) Q5. [R,Qa] =450z,

/., R] =0, [R,R] =0,

2
1 1
{Qchr’ Q[;} = _E(Cra)a/}‘]a_icaﬂR’ {Q;t7 Q;t} =0.
(C1)
[jmjh] :eabcjcﬁ [juvR] :0’ [R7R] :07
- 1 _ S 1.
Vo 02 =5 TV 05, [R 02] =430z,
- 1 - 1 - ., -
(0105} =~ (CT),, 1, ~SCyR. {050} =0.
(C2)

Here, a, b=0, 1, 2 and ,f = j:%. Our convention for
(T,)’, and C,; are presented in the first appendix. With
gauge fields
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A=A, + ) w0+ ¢rR,
i=+

A=A7,+> 0+ xR

=+

(C3)

where A* = w + j e and A* = @ — } ¢“, one can build the
supersymmetric action:

2 l l
= 2e,R* + D D
167TG/|: €y lze+ l// 1//++2l//+ v
[ _ [ 1 " "
= 571Dy =5iy D+ (Fye "y + ey,
i} _ ! o
—fye - —q_e ln ) — 5 (prddr — Prddr)
(C4)

by using the supertrace elements (B6). The covariant
derivatives read:

1 1

Dy, =dy, + §¢Rw+ + EG)FW+,
1 1

Dy_ =dy_ =S dry- + 50Ty,

1- 1
Dy, =dn, + §¢R’7+ + Ewrﬂ+v

1- 1
Dn_=dn_+ §¢R”‘ + Ewl“n_.

To obtain the flat action (2.5), we take the limit / - oo
combined with the following redefinitions for the fermions

and R-symmetry generators:
[ 2
a 71//3:(17

i for
¢R_’( +U> (271{—)(%—1)).

Jo=J
Po="—" Jy=Jo+J., QF= \/Qa,

1 - 1
Aa:wa+7€a, Aa_a) _76 l//:t \/;l//j:3

« ”» a_ Lo Ag = g
HL :\/%é‘i, Qi = —Eigi, AR:T,

Relation between the two flat basis:
M, = P,Uj, L, =J.U;,

R and S remain unchanged.
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APPENDIX D: SUM UP ALL THE NOTATIONS
AND CHANGE OF BASIS

In this appendix, we sum up the notations for the two
basis for AdS and flat algebra that we have used in our
computation. Although required relations are mentioned in
the main draft, here we sum them up in a compact form for
future reference. First we write down the notations for
various generators ,fields and gauge transformation param-
eters in all four cases:

generator L, L, QOf Of R R

AdS supergravity gauge fields A" A" y4* yle ¢pr P
parameters " 7" €l & iy AR

generator  J, 0f O0f R R
AdS supergravity gauge fields A¢ vl WL dr ¢y
parameters ... ... €1 I Ax I

e ]
[SER~Y
1

generator J, P, QF QX R S
Poincaré supergravity gauge fields o e* yl* y2* g4 p
parameters ... .. 0% %% g Ig

generator L, M, ¢t ¢+ R S
Poincaré supergravity gauge fields " " Wl* W2 ¢ p

parameters Y" &' (le 20 Jp g

Next we present the relations between the generators,
fields and parameters for the above cases:
Relation between the two AdS basis:

V203
(D1)

L,=J,Us, L,=J,Us Qr=v20%f Of=

R and R remain unchanged.
Relation between the AdS and flat basis:

o2 — /- Qa, R—R-R szy,

_ ]t o— ¢R+¢R D:¢R_¢_5R
Vi =y 2’7i’ 2 2
Ag + 2
ds =1 R; R (D2)
=V20iF,  ¢FF =V20%, (D3)
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Relation between flat and AdS basis:

L,+L_ - 2
. . ’ £n = Ln - L—n’ q}zi = \/;Q;ta

M, ="
1 1 -

Aa La “A-a _ pa — (2 = A
Wj: \/2_1 + + m 4+ ¢ (¢R ¢R)
" Xﬂ _Z—n Y )(n _I_}—{—n " 2 »

T = 2 s 5 = 2 s ei = 7C§Z s
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5 ) _
qﬁiZ\/;Qfa R =R-R, S:T,
A,A;—Z;g’ 152112”2

2

p:¢2+4_§A’

~—a 2 a
€ = \/;Ci

Az

(D4)
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