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For a perturbation of the state of a conformal field theory (CFT), the response of the entanglement
entropy is governed by the so-called “first law” of entanglement entropy, in which the change in
entanglement entropy is proportional to the change in energy. Whether such a first law holds for other types
of perturbations, such as a change to the CFT Lagrangian, remains an open question. We use holography to
study the evolution in time t of entanglement entropy for a CFT driven by a t-linear source for a conserved
Uð1Þ current or marginal scalar operator. We find that although the usual first law of entanglement entropy
may be violated, a first law for the rates of change of entanglement entropy and energy still holds. More
generally, we prove that this first law for rates holds in holography for any asymptotically (dþ 1)-
dimensional anti–de Sitter metric perturbation whose t dependence first appears at order zd in the
Fefferman-Graham expansion about the boundary at z ¼ 0.
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I. INTRODUCTION, SUMMARY, AND OUTLOOK

Many-body systems in thermal equilibrium are governed
by universal laws, the laws of thermodynamics. Many-body
systems perturbed out of thermal equilibrium are also
governed by universal laws, the laws of hydrodynamics
(for sufficiently small perturbations and at sufficiently late
times).What laws, if any, governmany-body systems driven
far from equilibrium? This question is of central importance
in many branches of physics, from cosmology (the electro-
weak phase transition, the Kibble-Zurekmechanism, etc.) to
condensed matter physics (quantum quenches, thermaliza-
tion, etc.) to heavy ion collisions (thermalization and iso-
tropization of the quark-gluon plasma), and beyond. Many
of these phenomena, such as thermalization, necessarily
involve interactions. Few reliable techniques exist for study-
ing interacting systems far from equilibrium; hence the
question remains open.
Cardy and Calabrese pioneered the use of entanglement

entropy (EE), SEE, to characterize far-from-equilibrium
systems [1–4]. The EE of a subregion of space at a fixed
time, t, is defined as thevonNeumann entropyof the reduced
densitymatrix, ρ, obtained by tracing out the states in the rest
of space (i.e. the region’s complement), SEE ≡ −trðρ ln ρÞ.
Cardy and Calabrese focused on a quantum quench of a

coupling in the Hamiltonian to a value that produces a

Conformal Field Theory (CFT), and used the powerful
techniques of (boundary) CFT in spacetime dimension
d ¼ 2 to compute SEE, for a spatial interval of length l.
They showed that after the quench ends, SEE evolves
linearly in t, and then saturates at a time proportional to
l=c, with c the speed of light. They also provided an
intuitive model for SEE’s evolution, in terms of maximally
entangled Einstein-Podolsky-Rosen (EPR) pairs of par-
ticles produced by the quench, which are necessarily
massless, due to the CFT’s scale invariance, and hence
move at speed c. Liu and Suh proposed, based on evidence
from the anti–de Sitter/CFT (AdS/CFT) correspondence,
also known as holography, that when d > 2, Cardy and
Calabrese’s massless particle model becomes an “entan-
glement tsunami” in which a quench produces a wave front
of entangled excitations that moves inward from the
region’s boundary [5–7].
Crucially, EE obeys constraints that ultimately come

from unitarity, and that can be, and have been, used to
constrain far-from-equilibrium evolution in quantum sys-
tems. For example, for two density matrices ρ and ρ0 in the
same Hilbert space, their relative entropy, Sðρjρ0Þ≡
trðρ ln ρÞ − trðρ ln ρ0Þ, is non-negative, and indeed provides
a measure of the “statistical distance” or distinguishability
between them. Positivity of relative entropy, Sðρjρ0Þ ≥ 0,
played a key role in proving speed limits on entanglement
tsunamis [5–9].
Further constraints can be derived from Sðρjρ0Þ ≥ 0. In

particular, if ρ and ρ0 are close, so that ρ0 ¼ ρþ δρ with δρ
small, then expanding Sðρjρ0Þ to first order in δρ gives a
constraint called the “first law of EE” (FLEE) [10–13]:
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δSEE ¼ δhHi; ð1Þ

where δSEE is the change in EE; H is the modular
Hamiltonian, defined via ρ≡ e−H; and δhHi is the change
in H’s expectation value. If ρ is a thermal density matrix
with temperature T, then the FLEE becomes the usual first
law of thermodynamics, δS ¼ δE=T, with entropy S and
energy E. If ρ is the reduced density matrix of a spatial
subregion, then generically H and δhHi are complicated
nonlocal objects that are difficult to calculate. However, for
a spherical subregion in a CFT vacuum, H is a product of
two factors, integrated over the sphere’s volume. The first
factor is δE, or in terms of the stress-energy tensor Tμν

(μ; ν ¼ 0; 1;…; d − 1, with x0 ≡ t), the change in hTtti in
the subregion. The second factor depends only on geo-
metric data, including in particular the sphere’s radius, R
[13,14]. For perturbations with δhTtti constant in space, or
for spheres sufficiently small that δhTtti can be approxi-
mated as a constant, the integral is easily performed, with
the result

δSEE ¼ δE
Tent

; ð2Þ

where the “entanglement temperature,” Tent, depends on R
and d,

Tsphere
ent ¼ dþ 1

2πR
; ð3Þ

but is independent of any other details of the CFT or of the
state ρ. For a “strip” subregion, consisting of two parallel
planes separated by a distance l, holographic CFTs also
obey Eq. (2), but now with [10]

Tstrip
ent ¼

2ðd2 − 1ÞΓ
�

dþ1
2ðd−1Þ

�
Γ
�

d
2ðd−1Þ

�
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ffiffiffi
π

p
Γ
�
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�
Γ
�

1
2ðd−1Þ

�
2

1

l
: ð4Þ

The FLEE does not hold for arbitrary deformations. In
quantum mechanics, the FLEE holds only for “completely
positive trace-preserving” maps, linear maps that are
combinations of unitary transformations, partial tracing,
and adding subsystems—for a precise definition, see for
example Appendix of Ref. [12], and references therein.
In a continuum quantum field theory (QFT), what

deformations obey the FLEE? Finding a precise answer
appears to be more challenging than in quantummechanics.
In particular, in continuum QFT, ρ generically has an
infinite number of eigenvalues, so in what sense can a
perturbation of the eigenvalues, δρ, be small? Currently the
best intuition appears to be that, for compact subregions,
the FLEE should hold when δhTμνi is small, relative to the
scale set by the subregion’s size [12].

In this paper we will consider perturbations that go
beyond a change of state: we will deform a CFT
Hamiltonian by a relevant or marginal operator with a
t-dependent source, which drives the CFT far from equi-
librium. We will focus on sources linear in t, although our
most general results apply to a larger class of sources,
characterized most precisely via holography, as we discuss
below. For our cases, we will show two things: first,
generically the naïve FLEE in Eq. (2) is violated, and
second, a relation very similar to Eq. (2) holds for the rates
of change of EE and energy.
We will restrict to CFTs with holographic duals, mainly

because holography is currently the easiest way to compute
SEE in interacting QFTs. Computing SEE holographically
requires two steps. First, we must solve Einstein’s
equation for the asymptotically AdSdþ1 metric, Gmn
(m; n ¼ 0; 1;…; d), of the holographically dual spacetime.
We will mostly work with a Fefferman-Graham (FG)
holographic coordinate z with asymptotic AdSdþ1 boun-
dary at z ¼ 0, where the CFT “lives.” Second, we must
compute the area of the extremal surface that at the
asymptotic AdSdþ1 boundary coincides with the entangling
region’s boundary in the dual QFT. SEE is then that area
divided by 4GN, with Newton’s constant GN [15–19].
In holography, a deformation of the CFT Hamiltonian by

a relevant or marginal operator corresponds to a change
of the bulk metric, Gmn → Gmn þ δGmn. Our unperturbed
metricGmn will be asymptotically AdSdþ1 and independent
of t and the CFT spatial coordinates, but otherwise
arbitrary. Our main examples of Gmn will be Poincaré
patch AdSdþ1, dual to the CFT vacuum, and the AdSdþ1

black brane, dual to the CFT with nonzero T. Our
perturbation δGmn will preserve the asymptotic AdSdþ1,
but generically depend on t. Our only nontrivial assumption
will be that t dependence in δGmn first appears at order zd

in the FG expansion. In other words, the t dependence
of δGmn will be arbitrary, except that terms in the FG
expansion with powers of z smaller than zd will be t
independent. With that assumption, in Sec. II we will prove
a “first law of entanglement rates” (FLOER),

∂tδSEE ¼ ∂tδE
Tent

; ð5Þ

whereTent depends on the unperturbedGmn and the extremal
surface therein. If the unperturbedGmn is the Poincaré patch
AdSdþ1, then Tent is identical to that in Eq. (3) or (4).
Our proof of Eq. (5) can also be straightforwardly

extended to deformations by sources which are position
dependent instead of time dependent, provided the corre-
sponding assumptions about Gmn and δGmn are satisfied.
The resulting FLOER involves rates of change in a spatial
coordinate x1 ≡ x, rather than t, i.e. ∂xδSEE ¼ ∂xδE=Tent.
However, given our motivation to understand far-from-
equilibrium evolution, and also for clarity, we will continue
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to refer only to t-dependent sources, unless stated
otherwise.
Equation (5) is our main result. The key assumption

underlying Eq. (5), that t dependence in δGmn appears first
at order zd in the FG expansion, characterizes the most
general class of perturbations for which our FLOER holds,
and turns out to be a relatively mild constraint. Indeed, in
Secs. III, IV, and V we discuss various nontrivial examples
that illustrate how easily our key assumption can be
satisfied with a t-linear source. Our examples also provide
our other main result: in many of our examples the FLEE in
Eq. (2) is explicitly violated, indicating that the FLOER
may be more fundamental than the FLEE, as we discuss
below.
In Secs. III and IV, we consider holographic CFTs in

d ¼ 3 and 4, respectively, each with a conserved current Jμ

of a global Uð1Þ symmetry. In each case, in the CFT we
introduce a constant external electric field E in the x
direction, that is, we add to the CFT Lagrangian a relevant
deformation ∝ tEJx, resulting in a current, hJxi ≠ 0. We
introduce no charge density, hJti ¼ 0, so the current arises
exclusively from Schwinger pair production, i.e. produc-
tion of maximally entangled particle-antiparticle (EPR)
pairs. Crucially, in our examples, hJxi is t independent.
As a result, the Ward identity ∂μTμν ¼ FνρJρ implies Joule
heating, ∂thTtti ¼ EhJxi, that is also t independent. As a
convenient shorthand, we will call such states “nonequili-
brium steady states” (NESS): nonequilibrium because
∂thTtti ≠ 0, but steady states because hJxi and ∂thTtti
are t independent.
In holography, Tμν is dual to Gmn, and Jμ is dual to a

Uð1Þ gauge field, Am. On the gravity side of the duality, our
examples in Secs. III and IV thus both have Gmn and Am,
albeit with some essential differences.
In Sec. III, we consider Einstein-Maxwell theory in

AdS4, which arises for example from the consistent
truncation of eleven-dimensional supergravity on AdS4 ×
S7 down to AdS4 [20,21]. In that example, the dual CFT is
the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory,
i.e. the N ¼ 6 supersymmetric (SUSY) Chern-Simons-
matter CFT in d ¼ 3 [22]. Our NESS are dual to spacetimes
with a null Uð1Þ field strength and AdS4-Vaidya metric
[23], describing a horizon that moves towards the asymp-
totically AdS4 boundary as t increases.
In contrast, in Sec. IV our Am has a probe Dirac-Born-

Infeld (DBI) action in a fixed asymptotically AdS5 back-
ground. Specifically, we consider asymptotically AdS5 ×
S5 solutions of type IIB supergravity with a number Nf of
probe D7-branes along AdS5 × S3. The type IIB solutions
are dual to states of N ¼ 4 SUðNcÞ SUSY Yang-Mills
(SYM) theory in d ¼ 4, at large Nc and large ’t Hooft
coupling, and the probe D7-branes are dual to a number
Nf ≪ Nc of N ¼ 2 SUSY hypermultiplets in the funda-
mental representation of SUðNcÞ, i.e. flavor fields. When
T ≠ 0, hTμνi receives order N2

c and NfNc contributions
from the N ¼ 4 SYM and flavor fields, respectively.

We may thus think of the flavors as probes inside a huge
heat bath. Our NESS exist because E pumps energy into the
flavor sector at the same constant rate that the flavors
dissipate energy into the heat bath. To obtain δSEE we
compute only the linearized (not the full nonlinear) back-
reaction of Am onto Gmn.
Although in Secs. III and IV we focus on particular

“top-down” string/M-theory constructions, in each case our
analysis should easily generalize to many other systems of
Uð1Þ gauge fields in asymptotically AdSdþ1 spacetimes,
either fully backreacted, as in Sec. III, or with linear
backreaction of a probe, as in Sec. IV.
In Sec. V, we consider holographic CFTs in d ¼ 2, 3, 4

with a marginal scalar operator O, and add to the CFT
Lagrangian a deformation ∝ tO. In holography, a marginal
O is dual to a massless scalar field, ϕ. In Sec. V we
compute only ϕ’s linearized backreaction onto Gmn, and
only in the asymptotically AdSdþ1 region, which suffices to
establish the FLOER. (The Appendix contains the results of
the holographic renormalization [24] of ϕ in d ¼ 3 and 4
that we use in Sec. V.) In Sec. V we also follow Ref. [25],
and add to the CFT Lagrangian a deformation ∝ xO. In that
case, a spatial FLOER is satisfied trivially, because in the
system of Ref. [25] both δSEE and δE turn out to be x
independent.
In our examples symmetries actually require T mn to

depend only on z, and not on t. In Secs. III and IV, Uð1Þ
gauge invariance implies that T mn depends only on Am’s
field strength, Fmn, which is t independent because our
solutions for Am are linear in t. In Sec. V, the massless
scalar ϕ has a shift symmetry ϕ → ϕþ C with constant C,
which implies that T mn depends only on derivatives of ϕ,
and hence is t independent because our solutions for ϕ are
linear in t. Time dependence is instead generated by off-
diagonal terms T tz ¼ T zt which, via Einstein’s equation,
force δGmn to depend on both z and t. Indeed, such off-
diagonal terms in T mn indicate ∂thTtti ≠ 0 in the dual QFT
[26]; i.e. the system is out of equilibrium. We emphasize,
however, that while the symmetries of our examples are
sufficient to guarantee that δGmn obeys our key assumption,
they are not strictly necessary.
In terms of the CFT generating functional, in all of our

examples we deform the CFT by a source linear in t. Such
deformations are not quenches in any conventional sense:
our systems do not necessarily approach equilibrium in
the infinite past or future. At best, our deformations could
perhaps be interpreted as an endless series of global
quenches, one right after another, every moment in t.
More succinctly, our systems are driven by a source linear
in t (not periodic in t, in contrast to Ref. [27]). We
emphasize again, however, that our examples are only a
subset of a much larger class of t-dependent deformations,
as mentioned above.
To summarize, we have identified a law governing a

certain class of far-from-equilibrium systems. Specifically,
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we extended the FLEE in Eq. (2) beyond deformations of
the state, to deformations of the Hamiltonian, characterized
holographically by δGmn whose t dependence first appears
at order zd in the FG expansion. For such deformations, we
have shown that the FLOER of Eq. (5) holds, while the
FLEE of the form in Eq. (2) in general does not.
Looking to the future, our results have implications both

practical and conceptual. In practical terms, the FLOER
may be useful because ∂tδE is often easier to calculate than
∂tδSEE. In particular, if we can argue that the FLOER holds,
and we know Tent, then we can obtain ∂tδSEE by calculating∂tδE, for example via the Ward identity ∂μTμν ¼ FνρJρ.
Of the many conceptual questions our results raise, we

will highlight only three. First, given that the same Tent
appears in our FLOER and in the FLEE of Eq. (2), can the
FLOER simply be integrated to obtain the FLEE? In
our examples where the FLEE is violated, δSEE has a
t-independent contribution absent from δE. Apparently,
integrating the FLOER produces different integration con-
stants in δSEE and δE. We suspect that the difference arises
from initial conditions. For instance, imagine “turning on”
our t-linear source at t ¼ 0. We expect EE and energy to be
produced immediately. However, the EE is only sensitive
to entanglement across the entangling surface, so in an
entanglement tsunami description some of the EPR pairs
produced at t ¼ 0will contribute to SEE only after some “lag
time” required for one EPR partner to leave the subregion.
The lag time should be on the order of the subregion’s size,
as indeed we find in some of our examples.
Second, when the FLOER holds but the FLEE in the

form of Eq. (2) is violated, could the FLEE in the form of
Eq. (1) still hold? This is only possible if δhHi ≠ δE=Tent.
The crucial point is that we are not comparing two states
in the same Hilbert space. We are changing the CFT
Hamiltonian, which changes the Hilbert space, and then
comparing states in the old and new Hilbert spaces. In such
cases, can Sðρjρ0Þ even be defined, and if so, do Sðρjρ0Þ ≥ 0
and hence the FLEE in Eq. (1) hold? To our knowledge,
these questions remain open. The current state of the art
appears to be the proof in Ref. [28], for t-independent
relevant deformations, that Sðρjρ0Þ can be defined, and
Sðρjρ0Þ ≥ 0, for states in two different Hilbert spaces only
if the two theories have the same UV fixed point.1 The
D3=D7 system with massive flavors actually provides a
time-independent example where the assumptions of
Ref. [28] are satisfied but the FLEE in the form of
Eq. (2) fails, as we discuss in Sec. IV. In our time-dependent
examples we could attempt to test the FLEE in Eq. (1)
directly, by calculating δhHi holographically. However,
although much is known about the holographic dual of H
[30–34], we know of no practical prescription for

computing δhHi holographically, so we will leave such a
test for future research.
Third, can we identify more precisely in field theory

terms the class of t-dependent deformations for which the
FLOER of Eq. (5) holds while the FLEE of Eq. (2) need
not? Moreover, can we extend our results to more general
systems, either in QFT or in holography? (For work in
this direction, see for example Ref. [35].) We believe that
these and many other questions relating to the FLOER
deserve further study, in large part because they may
eventually reveal universal laws governing far-from-
equilibrium systems.

II. GENERAL ANALYSIS

In this paper we consider only asymptotically AdSdþ1

spacetimes. In this section, we exclusively use FG coor-
dinates, in which the metric takes the form

ds2 ¼ Gmndxmdxn ¼
L2

z2
ðdz2 þ gμνðz; xρÞdxμdxνÞ; ð6Þ

where m; n ¼ 0; 1;…; d and μ; ν; ρ ¼ 0; 1;…; d − 1,
where x0 ¼ t is time, and L is the radius of the asymptotic
AdSdþ1, with boundary at z ¼ 0. The FG expansion of
gμνðz; xρÞ about the boundary is of the form

gμνðz; xρÞ ¼ gð0Þμν ðxρÞ þ z2gð2Þμν ðxρÞ þ � � � þ zdgðdÞμν ðxρÞ
þ zd log z2hðdÞμν ðxρÞ þ � � � ; ð7Þ

where the term ∝ zd log z2 is present only when d is even.
The expectation value of the energy-momentum (density)
tensor of the dual field theory, hTμνðxρÞi, takes the generic
form [24]

hTμνðxρÞi ¼
dLd−1

16πGN
gðdÞμν ðxρÞ þ Xμν½gðNÞ

κλ ðxρÞ�; ð8Þ

where Xμν½gðNÞ
κλ ðxρÞ� is a function of the gðNÞ

κλ ðxρÞ with

N < d. Via Einstein’s equation, the gðNÞ
μν ðxρÞ with N < d

are functions of the leading asymptotic coefficients in the
near-boundary FG expansions of matter fields, or in dual
QFT terms, functions of sources of operators.
Our key assumption is that the gðNÞ

μν ðxρÞ with N < d are t

independent: gðNÞ
μν ðxρÞ ¼ gðNÞ

μν ðx⃗Þ, where x⃗ are the field
theory spatial coordinates. In these cases,

∂thTμνðxρÞi ¼
dLd−1

16πGN
∂tg

ðdÞ
μν ðxρÞ; ð9Þ

so in particular the energy density’s rate of change,

∂thTttðxρÞi, is fixed by gðdÞtt ðxρÞ alone.
Our goal is to relate ∂thTttðxρÞi to ∂tSEE, where in the

QFT SEE is the EE between a subregion A and its

1See also Ref. [29] for a discussion of whether Sðρjρ0Þ ≥ 0
holds for a deformation ∝ tO, with marginal O, for CFTs on a
spatial sphere, holographically dual to gravity in global AdSdþ1.
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complement on a Cauchy surface. To compute SEE holo-
graphically, we consider a codimension-two surface W
homologous to A, with ∂W ¼ ∂A. We describe W’s
embedding by a mapping XmðξÞ from W’s world volume,
with coordinates ξ, into the background spacetime. We then
define W’s area functional,

A½W� ¼
Z

dd−1ξ
ffiffiffi
γ

p
; ð10Þ

where γ is the determinant of W ’s world volume metric.
Extremizing A then gives SEE [17,19],

SEE ¼ A½Wext�
4GN

: ð11Þ

Imagine we have the solution Xm
ð0Þ forW

ð0Þ
ext’s embedding

in a given background geometry Gð0Þ
mn, which we assume is

asymptotically AdSdþ1, but is otherwise arbitrary. If we

perturb the metric, Gð0Þ
mn → Gð0Þ

mn þ δGmn, which leads
to a change in the embedding, Xm

ð0Þ → Xm
ð0Þ þ δXm, then

the change in the EE, δSEE, to leading order in δGmn and
δXm, is2

δSEE ¼
1

4GN

Z
Wð0Þ

ext

dd−1ξ
ffiffiffi
γ

p �
θmδXmþ 1

2
Θmn

extδGmn

�
; ð12Þ

where θm and Θmn
ext are variations of A, evaluated on the

unperturbed solutions,

θm ≡ 1ffiffiffi
γ

p δA
δXm

����
Xm
ð0Þ;G

ð0Þ
mn

; Θmn
ext ¼

2ffiffiffi
γ

p δA
δGmn

����
Xm
ð0Þ;G

ð0Þ
mn

: ð13Þ

As argued for example in Refs. [36–38], becauseWð0Þ
ext is an

extremal surface in the unperturbed geometry Gð0Þ
mn, by

definition θm ¼ 0. We therefore find

δSEE ¼ 1

8GN

Z
Wð0Þ

ext

dd−1ξ
ffiffiffi
γ

p
Θmn

extδGmn; ð14Þ

which generalizes the result of Ref. [37] for δSEE to
t-dependent perturbations.
Equation (14) is valid for any holographic spacetime, but

for our proof of a FLOER we impose a few restrictions, as
follows. First, we assume Gð0Þ

mn is asymptotically AdSdþ1,
and so admits a FG form, and is invariant under translations
and rotations in the x⃗ directions as well as translations in t,
so that

Gð0Þ
mndxmdxn ¼ L2

z2
ðdz2 þ gttdt2 þ gxxdx⃗2Þ; ð15Þ

where gtt and gxx depend only on z. In our examples in the

following sections, Gð0Þ
mn will be Poincaré patch AdSdþ1 or

an AdSdþ1 black brane. The assumption that Gð0Þ
mn is t

independent means the extremal surface Wð0Þ
ext will actually

be a minimal surface, Wð0Þ
min, and hence also Θmn

ext → Θmn
min,

the notation that we will use in the following.
We also make three assumptions about the perturbation

δGmn. First, we assume δGmn preserves the AdSdþ1 FG
asymptotics, and also preserves translational and rotational
symmetry in x⃗, so that

δGmndxmdxn ¼
L2

z2
ðδgttdt2 þ δgxxdx⃗2Þ; ð16Þ

where gtt and gxx depend only on z and t. In particular, as
mentioned above, in δgtt and δgxx’s FG expansions we

assume that the first t-dependent coefficients are δgðdÞtt and

δgðdÞxx , respectively. All of these assumptions are crucial for
our proof of the FLOER, except for translational and
rotational symmetry in x⃗, which we assume only for
simplicity of our presentation, but which could be relaxed
without spoiling the FLOER. Moreover, our assumptions
are relatively mild, being satisfied by an enormous class of
holographic spacetimes.
Under these assumptions, plugging the FG expansion of

δGmn into Eq. (14) and taking ∂t of both sides gives us

∂tδSEE ¼ L2

8GN

Z
Wð0Þ

min

dd−1ξ
ffiffiffi
γ

p
Θμν

minz
d−2∂tδg

ðdÞ
μν ðtÞ þ � � � ;

ð17Þ

where � � � indicates higher powers of (z), which are sup-
pressed for a subregion sufficiently small compared to any
other scale. We will henceforth assume that the subregion is
sufficiently small to neglect the � � � terms.
To proceed any further we need an explicit form forΘμν

min,
for which we must restrict to specific A. We will use two
different A’s: a sphere, defined by jx⃗j ≤ R, and a strip,
defined as two parallel planes separated in x1 ≡ x by a
distance l, and symmetric about x ¼ 0.
For the sphere, we employ spherical coordinates, with

radial coordinate r. By spherical symmetry we can then
parametrize W’s embedding as rðzÞ, so that

ffiffiffi
γ

p ¼
�
L
z

�
d−1

rd−2gðd−2Þ=2xx

ffiffiffi
h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gxxr02

q
; ð18Þ

where h is the determinant of the metric hαβ of a unit
(d − 2) sphere, Sd−2. We then find

2We may safely assume that under a small perturbation the
topology around the entangling wedge does not change, so the
homology constraint does not rule out Wð0Þ

min in the backreacted
geometry.
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Θmn
min∂m ⊗ ∂n ¼

�
z
L

�
2
�ð∂z þ r0∂rÞ2

1þ gxxr02
þ 1

r2gxx
hαβ∂α ⊗ ∂β

�
:

ð19Þ

For the strip, by translational symmetry in the x⃗ directions
we can parametrize W’s embedding as xðzÞ, so that

ffiffiffi
γ

p ¼
�
L
z

�
d−1

gðd−2Þ=2xx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gxxx02

q
; ð20Þ

Θmn
min∂m ⊗ ∂n ¼

�
z
L

�
2
�ð∂z þ x0∂xÞ2

1þ gxxx02
þ 1

gxx
δαβ∂α ⊗ ∂β

�
:

ð21Þ
Since the

ffiffiffi
γ

p
in Eq. (20) depends only on x0ðzÞ, and not on

xðzÞ, if we plugEq. (20) into the area functional Eq. (10), then
variationwith respect to x0ðzÞ gives us a constant ofmotion, κ.
We can then solve algebraically for x0ðzÞ in terms of κ,

x0ðzÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κd−1z2−2dgdxx − gxx

p ; κ ¼ z2�
g�xx

; ð22Þ

where z⋆ denotes Wð0Þ
min’s maximal extension in z, fixed by

integrating x0ðzÞ from (z ¼ 0) to z⋆ with the boundary
conditions xð0Þ ¼ �l=2 and by symmetry xðz⋆Þ ¼ 0),
and g�xx ≡ gxxðz�Þ.
We now plug the Θmn

min from Eqs. (19) and (21) into
Eq. (17) for ∂tSEE. Crucially, the Θmn

min in Eqs. (19) and (21)
depend only on z, so we can trivially perform the
integration over all other world volume coordinates ξ.

Moreover, in the sum over μ and ν in Θμν
min∂tδg

ðdÞ
μν ðtÞ, only

the x⃗ directions contribute, and indeed all contribute
equally, due to the rotational symmetry in the x⃗ directions.
Dropping the… terms in Eq. (17), as mentioned above, we
thus find, for the sphere and strip, respectively,

∂tδS
sphere
EE ¼ Ld−1

8GN
volðSd−2Þ∂tδg

ðdÞ
xx

Z
z�

0

dzzrd−2g
d
2
−2
xx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gxxr02

q �
gxxr02

1þ gxxr02
þ d − 2

�
; ð23aÞ

∂tδS
strip
EE ¼ Ld−1

4GN
volðRd−2Þ∂tδg

ðdÞ
xx

Z
z�

0

dzzg
d
2
−2
xx

ðg�xxz2=gxxz2�Þd−1 þ d − 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðg�xxz2=gxxz2�Þd−1

p ; ð23bÞ

where in both cases z� denotes W
ð0Þ
min’s maximal extension

in z.
We can write each right-hand side in Eq. (23) in terms of

∂tE, with E the energy inside A, as follows. Translational
and rotational symmetry in x⃗ implies hTμνi is x⃗ indepen-
dent, so ∂tE is simply the volume ofA times ∂thTtti. From
Eq. (9) we have ∂thTtti ∝ ∂tg

ðdÞ
tt ; however, the right-hand

sides of Eq. (23) involve ∂tg
ðdÞ
xx . To replace g

ðdÞ
xx with gðdÞtt , we

use the fact that Tμν is traceless, T
μ
μ ¼ 0, up to a possible

Weyl anomaly in even d, and the fact that theWeyl anomaly

is t independent for Gð0Þ
mn obeying our assumptions, so that

∂tT
μ
μ ¼ 0 in any d. As a result, ∂tg

ðdÞ
tt ¼ ðd − 1Þ∂tg

ðdÞ
xx in

any d. Plugging that into Eq. (9) and multiplying by A’s
volume we find [for the sphere, the volume of a (d − 1) unit
ball is volðSd−2Þ=ðd − 1Þ]

∂tEsphere ¼ dLd−1

16πGN
volðSd−2ÞRd−1∂tg

ðdÞ
xx ; ð24aÞ

∂tEstrip ¼ dLd−1

16πGN
volðRd−2Þðd − 1Þl∂tg

ðdÞ
xx : ð24bÞ

From Eq. (23) we thus identify our FLOER,

∂tSEE ¼ ∂tE
Tent

; ð25Þ

with entanglement temperature Tent for the sphere and strip,
respectively,

ðTsphere
ent Þ−1 ¼ 2π

dRd−1

Z
z⋆

0

dzzrd−2g
d
2
−2
xx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gxxr02

q �
gxxr02

1þ gxxr02
þ d − 2

�
; ð26aÞ

ðTstrip
ent Þ−1 ¼

4π

dðd − 1Þl
Z

z⋆

0

dzzg
d
2
−2
xx

ðg⋆xxz2=gxxz2⋆Þd−1 þ d − 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðg⋆xxz2=gxxz2⋆Þd−1

p : ð26bÞ
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If Gð0Þ
mn is pure AdSdþ1, where gxx ¼ 1, then Wð0Þ

min for the
sphere is given by rðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − z2

p
, for which z� ¼ R, and

for the strip, z⋆ ¼ lΓð 1
2ðd−1ÞÞ=2

ffiffiffi
π

p
Γð d

2ðd−1ÞÞ [16]. In these

cases Tent takes the same value as in the FLEE, Eqs. (3)
and (4), respectively.
In the following sections we identify examples in which

the bulk stress-energy tensor, T mn, produces a perturbation
δGmn obeying all of our assumptions, thus leading to a
nontrivial FLOER. Moreover, the FLEE in Eq. (2) is
typically violated.

III. AdS4 VAIDYA

In this section we consider solutions of Einstein-
Maxwell theory in AdS4, with bulk action

S ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGmnÞ

p �
Rþ 6

L2
− F2

	
; ð27Þ

with Ricci scalar R and Uð1Þ field strength Fmn. This
theory arises for example as a consistent truncation of
eleven-dimensional supergravity on S7 [20,21]. In that
case, the dual CFT is the ABJM theory [22], the N ¼ 6
SUSY Chern-Simons-matter theory with gauge group
UðNcÞk ×UðNcÞ−k, in the limits Nc → ∞ and Nc ≫ k5,
where the Maxwell gauge field is dual to a conserved
current Jμ of a Uð1Þ subgroup of the R-symmetry.
A solution of the Einstein-Maxwell theory in AdS4 that

describes a constant external electric field E in the x
direction has the Vaidya metric,

ds2 ¼ L2

u2
½−ð1 −mðvÞu3Þdv2 − 2dudvþ dx⃗2�; ð28Þ

with holographic coordinate u, with asymptotic AdS4
boundary at u ¼ 0, null time coordinate v≡ t − u, and
mðvÞ ¼ 2E2v [23]. The metric in Eq. (28) is sourced by a
Uð1Þ field strength whose only nonzero components are
Fxv ¼ −Fvx ¼ E, which in the CFT describes an E that
produces hJxi ¼ σE with conductivity σ ¼ L2=ð4πGNÞ
[23]. In the ABJM example, σ ¼ k1=2N3=2

c =ðπ3 ffiffiffi
2

p Þ [22].
The bulk stress-energy tensor’s only nonzero component is
T vv ¼ E2u2=L2, which via v ¼ t − u produces both diago-
nal components T tt and T uu and off-diagonal components
T tu ¼ T ut, all t independent, as advertised in Sec. I.
The metric in Eq. (28) is well defined only when

mðvÞ > 0, that is, when v > 0. In that regime, the metric
in Eq. (28) describes a black brane geometry with a horizon
moving outward, towards the AdS4 boundary, in reaction
to E dumping energy into the system at a constant rate
∂thTtti ¼ EhJxi ¼ σE2. We can write the metric in Eq. (28)

in the form Gð0Þ
mn þ δGmn, with Gð0Þ

mn the metric of pure
AdS4, by switching from v to t ¼ vþ u:

Gð0Þ
mndxmdxn ¼ L2

u2
ðdu2 − dt2 þ dx⃗2Þ; ð29aÞ

δGmndxmdxn ¼
L2

u2
½2E2u3ðt − uÞðdt2 − dtduþ du2Þ�:

ð29bÞ

However, just to be clear, Gð0Þ
mn þ δGmn is an exact solution

of the (full, nonlinear) Einstein equation, not merely a
solution to linear order in δGmn.
Crucially, Gð0Þ

mn þ δGmn obeys all the assumptions in
Sec. II, and hence will obey a FLOER. However, we will
also compute δSEE and δE themselves, to show that the
FLEE of Eq. (2), δSEE ¼ E=Tent, is violated.
Equation (14) gives us the δSEE induced by E, to leading

order in E,

δSEE ¼ 1

8GN

Z
Wð0Þ

dd−1ξ
ffiffiffi
γ

p
Θuu

minδGuu; ð30Þ

where in this example γ and Θmn
min are the determinant of the

induced metric and the stress-tensor, respectively, of the

minimal surfaceWð0Þ
min in pure AdS4. Again, just to be clear,

Eq. (30) only captures the leading change in the EE due to
E, whereas the metric in Eq. (28) is an exact solution of the
Einstein equation. For a spherical subregion, we plug the

solution for Wð0Þ
min’s embedding, rðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − u2

p
, into

Eqs. (18) and (19) for γ andΘmn
min, respectively, and then use

δGuu from Eq. (29b), to find from Eq. (30)

δSEE ¼
�

L2

4πGN
E2

�
2π2R

Z
R

0

duuðt − uÞ
�
1 −

u2

R2

�

¼ EhJxiðπR2Þ
�
πR
2

��
t −

8

15
R

�
;

where in the second equality we used hJxi ¼ σE with
σ ¼ L2=ð4πGNÞ. Using the Ward identity for the energy
density ∂thTtti ¼ EhJxi and the area ðπR2Þ of a sphere in
two spatial dimensions, we identify EhJxiðπR2Þ ¼ ∂tE, and
from Eq. (3) with d ¼ 3, we identify Tent ¼ 2=ðπRÞ. We
thus find

δSEE ¼ ∂tE
Tent

�
t −

8

15
R

�
: ð31Þ

The analogous calculation for a strip subregion of width l
gives

δSEE ¼ ∂tE
Tent

�
t −

8

5π
l
�
; ð32Þ

where Tent ¼ 4l=ðπ2u2�Þ with u� ¼ lΓð1=4Þ=2 ffiffiffi
π

p
Γð3=4Þ

in d ¼ 3, in agreement with Eq. (4) with d ¼ 3.
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As mentioned above, the metric in Eq. (28) is valid only
for v ¼ t − u > 0, so Eqs. (31) and (32) are valid only for
t > R or t > u�, respectively, so that in both cases
δSEE > 0. Equations (31) and (32) clearly obey the
FLOER, ∂tδSEE ¼ ∂tE=Tent, as expected.
To compute δE we switch from the coordinate u in

Eq. (29) to the FG coordinate z in Eq. (6), using
1=u2 ¼ gxx=z2. Comparing Gtt in the two coordinate
systems,

Gtt ¼
L2

z2
ð−1þ z3gð3Þtt þ � � �Þ

¼ L2

u2
ð−1þ u3ðgð3Þtt þ gð3Þxx Þ þ � � �Þ; ð33Þ

we find gð3Þtt þ gð3Þxx ¼ 2E2t. Tracelessness of Tμν gives us

gð3Þxx ¼ gð3Þtt =2, so that gð3Þtt ¼ 4E2t=3. Equation (8) then
gives the energy density,

hTtti ¼
3L2

16πGN
gð3Þtt ¼ L2

4πGN
E2t ¼ EhJxit; ð34Þ

so that, unsurprisingly, ∂thTtti ¼ EhJxi. As a result,
for spherical and strip subregions, δE ¼ EhJxiðπR2Þt
and δE ¼ EhJxiðlVolðRÞÞt, respectively, or more simply,
δE ¼ t∂tE.
For perturbations of the CFT state, without changes to

the CFT Hamiltonian, intuition from QFT [12] and results
from holography [10] suggest that for a subregion of fixed
size the FLEE of Eq. (2) should hold for sufficiently small
δE. Strictly speaking, that criterion does not immediately
translate to our case, because we deform the CFT
Hamiltonian, by E. Nevertheless, naïvely applying that
criterion to our case, we expect the FLEE to hold for t short
enough that E has deposited little energy into the subregion.
For example for the sphere we expect the FLEE to hold
for t short enough that δE ¼ t∂tE≲ 1=R, meaning
t≲ ðEhJxiπR3Þ−1. We can make that time arbitrarily long
by making E arbitrarily small. In particular, the times for
which we expect the FLEE to hold can be made ≫R, and
hence can easily include the regime t > R where our result
for δSEE Eq. (31) is valid. However, plugging a time of
order R into δSEE in Eq. (31), we find that δSEE ≠ δE=Tent,
due to the term ∝ R in Eq. (31). Of course analogous
statements apply for δSEE of the strip in Eq. (32). In short,
in both cases we find that the FLEE of Eq. (2) is violated, as
advertised.
Moreover, as mentioned in Sec. I, the “entanglement

tsunami” model [5–7] offers a possible explanation for the
offending terms, as a difference in initial conditions. As
soon as E is turned on, it pumps energy into the CFT and
begins producing massless EPR pairs, doing both at a
constant rate and uniformly throughout space. However,
the pairs produced at sufficiently early times only

contribute to EE after some finite time required to exit
the subregion A. As a result, δSEE lags behind δE by an
amount on the order ofA’s size, R or l, as indeed observed
in Eqs. (31) and (32). Of course, not all EPR partners are
equidistant from ∂A, so the lag is not identically R or l, but
is only ∝ R or l.

IV. D3=D7 WITH ELECTRIC FIELD

In this section we study the D3=D7 system [39]. Type
IIB supergravity in the near-horizon geometry of Nc → ∞
D3-branes, AdS5 × S5, is dual to N ¼ 4 SYM with gauge
group SUðNcÞ, in the limits Nc → ∞ and ’t Hooft coupling
λ → ∞ [40]. A number Nf of probe D7-branes along
AdS5 × S3 is dual to a number Nf ≪ Nc of massless
N ¼ 2 SUSY hypermultiplets in the fundamental repre-
sentation of SUðNcÞ, i.e. flavor fields [39]. The D7-brane
world volume UðNfÞ gauge fields are dual to conserved
UðNfÞ flavor symmetry currents.
As mentioned in Sec. I, the probe D7-brane provides a

time-independent example in which the FLEE of Eq. (1)
can hold while that in Eq. (2) is violated. Suppose we give
the flavor fields a nonzero N ¼ 2 SUSY-preserving mass,
m. The proof of Ref. [28] applies in that case, so if ρ and ρ0
are the vacua of the m ¼ 0 and m ≠ 0 theories, then we
expect Sðρjρ0Þ ≥ 0 and hence the FLEE of Eq. (1). For the
FLEE of Eq. (2), SUSY guarantees δE ¼ 0. On the other
hand, holographic results for δSEE of a spherical subregion
[41,42] include a term ∝ ðmRÞ2 logðϵ=RÞ, with FG cutoff ϵ.
The coefficient of the logðϵ=RÞ cannot be set to zero by
rescaling ϵ, so clearly δS ≠ δE=Tent; i.e. the FLEE of
Eq. (2) is violated.
To realize out time-dependent example, we introduce

T ≠ 0, so that AdS5 becomes an AdS5 black brane. The
N ¼ 4 SYM and flavor contributions to hTμνi are then
order N2

c and NfNc ≪ N2
c, respectively [26], so we may

think of the flavors as probes inside an enormous heat bath.
We also introduce a constant, external electric field E in the
x direction for the diagonal Uð1Þ ⊂ UðNfÞ, producing a
current, hJxi, of charge carriers in the flavor sector. The
charge density vanishes, hJti ¼ 0, so the current comes
entirely from Schwinger pair production [43,44]. We
consider NESS in which hJxi is t independent because
the charge carriers gain energy from E at the same constant
rate EhJxi that they lose energy to the heat bath [26], as we
discuss below.
We use an AdS5 black brane metric

ds2¼L2

u2

�
du2

bðuÞ−bðuÞdt2þdx⃗2

�
; bðuÞ¼ 1− ðu=uhÞ4;

ð35Þ

with T ¼ 1=ðπuhÞ. The D7-branes fill the AdS5 black brane
space and also wrap an equatorial S3 ⊂ S5 with radius L.
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The only nontrivial contribution to the D7-brane action,
SD7, is then the DBI term,

SD7 ¼ −NfTD7

Z
d8ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðΓab þ ð2πα0ÞFabÞ

p
; ð36Þ

with D7-brane tension TD7 ¼ ð2πÞ−7α0−4g−1s , with string
length squared α0 and coupling gs; world volume coor-
dinates ζa with a ¼ 0;…; 7; world volume metric Γab; and
world volume Uð1Þ field strength Fab ¼ ∂aAb − ∂bAa. To
describe E and hJxi we make the ansatz

Axðt; uÞ ¼ −Etþ axðuÞ; ð37Þ

with all of Aa’s other components zero. Plugging our ansatz
Eq. (37) into SD7 in Eq. (36), and trivially performing the
integration over the S3 directions, we find

SD7 ¼ −NfTD7L3volðS3Þ

×
Z

d5ζ
L5

u5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2πα0Þ2 u

4

L4

�
bðuÞa0x2ðuÞ−

E2

bðuÞ
�s
:

ð38Þ

For simplicity, we define an “effective tension,”

~TD7 ≡ NfTD7L3volðS3Þ ¼ λNfNc

ð2πÞ4
1

L5
; ð39Þ

where in the second equality we used volðS3Þ ¼ 2π2,
λ≡ 4πgsNc, and λ ¼ L4=α02 [45].
Crucially, SD7 in Eq. (38) depends on a0xðuÞ but not on

axðuÞ; hence we have a first integral of motion, which in the
dual CFT is precisely the current: δSD7

δa0x
¼ hJxi [45]. We can

then solve algebraically for a0xðuÞ in terms of hJxi,

a0xðuÞ ¼
hJxi
bðuÞL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðuÞ=u4 − ð2πα0Þ2E2=L4

~T2
D7ð2πα0Þ2bðuÞ=u6 − hJxi2=L6

s
: ð40Þ

To fix hJxi we follow Ref. [45]: we plug the solution for
a0xðuÞ in Eq. (40) into SD7 in Eq. (38) and demand that
the result remain real for all u ∈ ½0; uh�, since a nonzero
imaginary part of an effective action signals a tachyon
[43,44]. We find hJxi ¼ σE, with conductivity

σ ¼ NfNcT

4π
½1þ E2=ðπ

ffiffiffi
λ

p
T2=2Þ2�1=4: ð41Þ

To compute the δSEE due to E, we must compute the
perturbative backreaction of the D7-branes to first order.
At first, that looks like a daunting task, since the D7-branes
couple not only to the metric but also to the axiodilaton
and B-field, and moreover break several symmetries of the
background, for example breaking the S5’s SOð6Þ isometry

down to the SOð4Þ ×Uð1Þ preserved by the equatorial
S3 ⊂ S5. Fortunately, however, as argued in Refs. [37,46], if
the D7-brane world volume fields are independent of the
S3 ⊂ S5 directions, as in our case, then using an “effective
stress-energy tensor,” obtained by integrating the AdS5
part of the D7-brane stress-energy tensor over the S3, is
sufficient for computing δSEE. In our case, this effective
stress-energy tensor is

T mn
eff ¼ − ~TD7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðΓmn þ ð2πα0ÞFmnÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGð0Þ

mnÞ
q

× ½ðΓþ ð2πα0ÞFÞ−1�ðmnÞ; ð42Þ

where Gð0Þ
mn is the AdS5 black brane metric in Eq. (35), Γmn

and Fmn are now restricted to the directions in Eq. (35),
and ðmnÞ indicates symmetrization over the indices m and
n. Splitting T mn

eff into diagonal and off-diagonal parts,
T eff

mn ¼ T diag
mn þ T off

mn, for the a0xðuÞ solution in Eq. (40)
we find

T diag
mn dxmdxn ¼ −

a0xL3

hJxiu3
��

1 −
hJxi2

~T2
D7ð2πα0Þ2

u6

bL6

�
du2

− b
b2 − hJxi2E2u10=ð ~T2

D7L10Þ
b − ð2πα0Þ2E2u4=L4

dt2

þ hJxi2u2
~T2
D7ba0x2L2

dx2 þ bðdx2Þ2 þ bðdx3Þ2
	
;

ð43aÞ

T off
mndxmdxn ¼ −EhJxi u3

bðuÞL3
2dudt: ð43bÞ

As advertised in Sec. I, T mn
eff is t-independent but has off-

diagonal terms T ut
off ¼ T tu

off . In fact, T
diag
mn and T off

mn turn out
to be separately conserved, so if we linearize Einstein’s
equation in δGmn, and split δGmn into parts sourced by
T diag

mn and T off
mn, respectively, δGmn ¼ δGdiag

mn þ δGoff
mn

(which are not necessarily diagonal and off-diagonal
themselves), then we can solve for δGdiag

mn and δGoff
mn

separately.
We have checked explicitly that a t-independent solution

for δGdiag
mn exists, whose existence relies crucially on the fact

that T diag
mn is invariant under t-reversal. At leading order in

E, T diag
mn ’s backreaction is just a shift of the cosmological

constant, as expected: the DBI action in Eq. (36) with trivial
world volume fields is a contribution to the cosmological
constant ∝ TD7. The cosmological constant is ∝ 1=L2, and
roughly speaking L in Planck units is dual to the number of
degrees of freedom in the CFT, measured for example in
even d by a central charge [47]. In particular, adding a
space-filling probe DBI action with trivial world volume
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fields corresponds to adding degrees of freedom, such as
adding flavor fields to N ¼ 4 SYM. Such a deformation
results in a FLEE of the form in Eq. (2), but with a
“chemical potential” term arising from the change in the
number of degrees of freedom [48].
On the other hand, T off

mn breaks t-reversal, and hence so
does δGoff

mn. Indeed, the solution for δGoff
mn is

δGoff
mndxmdxn ¼

16πGN

3L
EhJxitu2

�
dt2 þ du2

b2ðuÞ
�
: ð44Þ

If δGoff
mn grows too big, then the linearized approximation

breaks down; hence the linearized solution in Eq. (44) is
valid only for sufficiently small EhJxit.
Strictly speaking, in this example Gmn ¼ Gð0Þ

mn þ δGmn
does not obey all the assumptions in Sec. II. For instance, as
mentioned above δGdiag

mn is asymptotically AdS5, but shifts
L, something we did not account for in Sec. II. However, a
key step in Sec. II was taking ∂t of δSEE, so in fact we only
need the t-dependent part of δGmn to obey our assumptions.
In this example, all of δGmn ’s t dependence is in δGoff

mn.

Indeed, Gð0Þ
mn þGoff

mn obeys all the assumptions in Sec. II,
and hence this example must obey a FLOER.
However, to dispel any doubt, we have calculated ∂tSEE

following the steps in Sec. II, adapted to the coordinate u of
Eq. (35), with the results

∂tδS
sphere
EE ¼EhJxi

�
4

3
πR3

�
2π

R3

Z
u⋆

0

du
r2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b3ðuÞð1þbðuÞr02Þ
p ;

ð45aÞ

∂tδS
strip
EE ¼ EhJxiðlvolðR2ÞÞ 4π

3l

Z
u⋆

0

duu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðu=u⋆Þ6

b3ðuÞ

s
;

ð45bÞ

where for the sphere rðuÞ is the solution for the minimal
surface’s embedding, and for both the sphere and strip u⋆ is
the minimal surface’s maximal extension in u, in the
unperturbed AdS5 black brane geometry of Eq. (35). For
the strip, u⋆ is related to the width l by

l ¼ 2

Z
u⋆

0

du
ðu=u⋆Þ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bðuÞð1 − ðu=u⋆Þ6Þ
p : ð46Þ

Identifying ∂tδE¼EhJxið4
3
πR3Þ or ∂tδE¼EhJxiðlvolðR2ÞÞ

for the sphere and strip, respectively, we thus find

∂tδS
sphere
EE ¼∂tδE

2π

R3

Z
u⋆

0

du
r2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b3ðuÞð1þbðuÞr02Þ
p ; ð47aÞ

∂tδS
strip
EE ¼ ∂tδE

4π

3l

Z
u⋆

0

duu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðu=u⋆Þ6

b3ðuÞ

s
: ð47bÞ

A straightforward calculation confirms that for the AdS5
black brane the integrals in Eqs. (47a) and (47b) reproduce
Tent from Eqs. (26a) and (26b), respectively. We have thus
explicitly shown that this example obeys the FLOER.
As mentioned in Sec. I, the FLOER may be useful

because ∂tδE is often easier to calculate than ∂tδSEE.
Indeed, for probe branes we can calculate ∂tδE in the
probe limit, without computing backreaction, following
Refs. [26,49]. The probe flavor’s order NfNc contribution
to the energy density, δhTtti, is given holographically by
the energy density on the D7-brane, T t

t, integrated over the
S3 ⊂ S5 and u directions,

δhTtti ¼ −
Z

uh

0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðΓabÞ

p
T t

t: ð48Þ

Taking ∂t of Eq. (48) and using∇c ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðΓabÞ

p
T c

tÞ¼ 0),
from conservation of T ab, we find

∂tδhTtti ¼
Z

uh

0

du∂u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðΓabÞ

p
T u

t

¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− detðΓabÞ
p

T u
t

i
uh

0
: ð49Þ

From the T u
t in Eq. (43), we find that the rate of energy

density gain at the boundary, dual to the energy density
pumped into the probe sector by E, and energy density loss
at the horizon, dual to the energy density that the probe
sector dumps into the heat bath, are equal:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðΓabÞ

p
T u

tju¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðΓabÞ

p
T u

tju¼uh
¼ −EhJxi:

ð50Þ

The total rate of change of energy density in Eq. (49) thus
vanishes, ∂tδhTtti ¼ 0, producing a NESS, as advertised.
Presumably, the ∂tδE that appears in the FLOER in
Eq. (47) comes from the energy injected into the subregion
by E, i.e. from the u ¼ 0 contribution to ∂tδhTtti in
Eq. (49). In short, we can calculate ∂tδE directly in the
probe limit, avoiding any backreaction, simply by evalu-
ating

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðΓabÞ

p
T u

t at u ¼ 0.
In general, when E ≠ 0 a probe brane’s induced metric

Γab has a horizon distinct from that of the background
metric [45,50,51]. A temperature can be associated with the
world volume horizon [52–59], which in general is distinct
from the background temperature T, clearly indicating that
the system is out of equilibrium. The world volume horizon
may represent the EE of the Schwinger pairs produced by E
[60]. However, whether any meaningful notion of entropy
can be associated to the world volume horizon is unclear.
An obvious guess is a Bekenstein-Hawking entropy, the
horizon’s area over 4GN. However, the DBI action does not
describe gravitational degrees of freedom, and Γab is not
necessarily a solution of Einstein’s equation, so although
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we can compute the area of the world volume horizon, what
should play the role of 4GN? The open string coupling
[56]? In any case, the world volume horizon did not appear
to play any special role in our calculation of EE, and in
particular, our result for the EE does not appear to be
proportional to the area of the world volume horizon.
Although we focused on the D3=D7 system, the analysis

in this section should straightforwardly generalize to many
other systems involving a space-filling probe DBI action
with E ≠ 0 in an asymptotically AdSdþ1 spacetime.

V. MASSLESS SCALARS

In this section we study holographic CFTs deformed by
marginal scalar operatorsO with a source linear in time t or
in a spatial direction x. Explicit examples of such CFTs are
N ¼ 4 SYM in d ¼ 4, which has three exactly marginal
scalar operators [61,62], and ABJM theory, where the
Chern-Simons level, or equivalently the ’t Hooft coupling,
is exactly marginal.
A marginal scalar operatorO is holographically dual to a

massless scalar field ϕ, whose stress-energy tensor T mn
depends only on derivatives of ϕ, due to invariance under
constant shifts of ϕ. A linear source for O produces a T mn
that depends only on the holographic radial coordinate, but
may have nontrivial off-diagonal components, producing a
δGmn that may depend on t or x, but obeys the assumptions
in Sec. II; hence the FLOER will be obeyed.
However, we compute δSEE and δE separately for d ¼ 2,

3, 4, and show that in all cases the FLEE of Eq. (2) is
violated. More specifically, we solve Einstein’s equation
for δGmn near the asymptotic AdSdþ1 boundary, obtaining
explicit expressions for only a subset of δGmn ’s FG
coefficients, while any remaining FG coefficients could
in principle be fixed by imposing regularity of δGmn in
the bulk. These asymptotic solutions for δGmn suffice to
establish violation of the FLEE of Eq. (2).

A. Linear time dependence

In this subsection we consider (dþ 1)-dimensional
Einstein-Hilbert gravity coupled to a massless scalar field
ϕ, with bulk action

S ¼
Z

ddþ1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGmnÞ

p
×

�
1

16πGN

�
Rþ dðd − 1Þ

L2

�
−
1

2
ð∂ϕÞ2

	
: ð51Þ

As in Sec. II, we consider Gmn ¼ Gð0Þ
mn þ δGmn in FG form,

with Gð0Þ
mn the AdSdþ1 metric,

Gð0Þ
mndxmdxn ¼ L2

z2
ðdz2 − dt2 þ dx⃗2Þ: ð52Þ

A solution for ϕ admits the FG expansion,

ϕ ¼ ϕ0 þ � � � zdϕd þ � � � ; ð53Þ

where the coefficients ϕ0, ϕd, etc. generically depend on t
and x⃗. The coefficient ϕ0 is dual to the source for O, so we
introduce ϕ0 ¼ −ctwith constant c > 0 of dimension ½t�−1.
The remaining coefficients in ϕ’s and δGmn’s FG expan-
sions can then depend only on t, although their explicit
solutions depend on d, so in the following we consider
d ¼ 2, 3, 4 in turn.
For each of d ¼ 2, 3, 4, we compute δSEE and δE for a

sphere or strip subregion. More specifically, to compute
δSEE we use Eq. (14), whose inputs are

ffiffiffi
γ

p
, Θmn

min, and

δGmn. We plug the solution for Wð0Þ
min’s embedding, for

example rðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − z2

p
for the sphere, into Eqs. (18) and

(19) to obtain γ and Θmn
min, respectively. As mentioned

above, we solve for δGmn only near the asymptotic AdSdþ1

boundary, and then extract δE via holographic renormal-
ization [24]. The details of the holographic renormalization
appear in the Appendix, where we also check several Ward
identities. [In each case, the ∂thTtti from holographic
renormalization reproduces Eq. (9).] For each of d ¼ 2,
3, 4, we find that the FLOER is obeyed, as expected, while
the FLEE of Eq. (2) is violated.
a. Boundary dimension d ¼ 2: The holographic renorm-

alization for a massless scalar in AdS3 appears in Ref. [24].
Plugging a Minkowski metric at the AdS3 boundary and
ϕ0 ¼ −ct into the results of Ref. [24] yields

Gxx ¼
L2

z2

�
1þ z2gð2Þxx − z2 log ðz2=L2Þ2πGN

L
c2 þ � � �

	
;

ð54aÞ

hTxxi ¼
L

8πGN
gð2Þxx þ c2

�
1

4
− η

�
; ð54bÞ

hTμ
μi ¼

1

2
c2; ð54cÞ

where the term ∝ η in hTxxi is scheme dependent, and
comes from the finite counterterm

SCT ¼ η

Z
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detð~gμνÞ

q
~gμν∂μϕ∂νϕ; ð55Þ

added to the bulk action S in Eq. (51) (with d ¼ 2) at a
regulating cutoff surface z ¼ ϵ, with induced metric ~gμν.
Plugging hTxxi from Eq. (54b) into hTμ

μi ¼ 1
2
c2 from

Eq. (54c) then gives hTtti ¼ hTxxi − 1
2
c2.

The bulk stress-energy tensor T mn is quadratic in ∂mϕ
and hence ∝ c2. We treat T mn as a perturbation, and so
linearize Einstein’s equation, producing δGmn of order c2.
The change in energy inside the sphere jxj < R,
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δE ¼ ð2RÞδhTtti ¼ ð2RÞ L
8πGN

δgð2Þxx − ð2RÞc2
�
1

4
þ η

�
;

ð56Þ

is then ∝ c2, and in particular, δgð2Þxx ∝ c2. As mentioned
above, we compute δSEE from Eq. (14), with the result

δSEE ¼ δE
Tent

þ π

9
c2R2ð−6 log ð2R=LÞ þ 8þ 12ηÞ; ð57Þ

where Tent ¼ 3=ð2πRÞ, as in Eq. (3) with d ¼ 2. The δSEE
in Eq. (57) has some scheme dependence, via the term ∝ η,
and in particular, a shift of η produces a shift of the
argument of the logarithm in the term ∝ −R2 logð2R=LÞ.
Crucially, however, the choice of η is part of the definition
of the QFT, so η cannot depend on the size R of some
arbitrarily chosen subregion, and so η cannot affect the
coefficient of the term ∝ −R2 logð2R=LÞ. As a result, the
latter coefficient is scheme independent and hence physi-
cally meaningful.
As discussed in Sec. III, we naïvely expect the FLEE

of Eq. (2) to hold at sufficiently early times such
that t∂tE≲ 1=R. The diffeomorphism Ward identity
∇μTμν ¼ O∂νϕ0 implies ∂thTtti ¼ chOi, and hence
∂tE ¼ ð2RÞchOi. We thus expect the FLEE to hold for
t≲ ðchOi2R2Þ−1, which can be made arbitrarily long by
making c arbitrarily small, and can hence include the
regime t≃ R. As argued above, δE’s only dependence on c
is δE ∝ c2, and when t≃ R dimensional analysis requires
δE ∝ c2R or c2R logR. In that case, in the δSEE in Eq. (57)
the terms ∝ δE=Tent and ∝ c2R2 are of the same order, so
the FLEE of Eq. (2) is clearly violated, as advertised.
b. Boundary dimension d ¼ 3: The details of the holo-

graphic renormalization for a massless scalar in asymp-
totically AdS4 spacetimes appear in the appendix. In
particular, plugging a Minkowski metric at the AdS4
boundary and ϕ0 ¼ −ct into Eqs. (A1) and (A3b) yields

Gxx ¼
L2

z2

�
1þ z22π

GN

L2
c2 þ z3gð3Þxx þ � � �

	
; ð58aÞ

hTμνi ¼
3L2

16πGN
gð3Þμν ; ð58bÞ

and Tμ
μ ¼ 0, as expected in d ¼ 3. As in the d ¼ 2 case

above, a linearized perturbation δGmn is ∝ c2, so the change
in the energy inside the sphere jx⃗j < R is

δE ¼ ðπR2ÞδhTtti ¼ ðπR2Þ 3L2

16πGN
δgð3Þtt ; ð59Þ

where δgð3Þtt ∝ c2. The δE for the strip is identical, but with
ðπR2Þ → lVolðRÞ. As mentioned above, from Eq. (14) we
compute δSEE for the sphere,

δSEE ¼ δE
Tent

þ 2π

3
c2R2; ð60Þ

where Tent ¼ 2=ðπRÞ as in Eq. (3) with d ¼ 3, and for the
strip,

δSEE ¼ δE
Tent

þ π5=2

3
ffiffiffi
2

p
Γð3=4Þ2 c

2z�volðRÞ; ð61Þ

where Tent ¼ 4l=ðπ2z2�Þ with z� ¼ lΓð1=4Þ=2 ffiffiffi
π

p
Γð3=4Þ,

as in Eq. (4) with d ¼ 3. Via essentially the same arguments
as those below Eq. (57), for sufficiently small c we can
enter a regime where naïvely we expect the FLEE of Eq. (2)
to hold, but the two terms in Eq. (60) or (61) are of the
same order. The FLEE of Eq. (2) is then clearly violated, as
advertised.
c. Boundary dimension d ¼ 4: The details of the holo-

graphic renormalization for a massless scalar in asymp-
totically AdS5 spacetimes appear in the appendix. In
particular, plugging a Minkowski metric at the AdS5
boundary and ϕ0 ¼ −ct into Eqs. (A5) and (A8b) yields

Gxx ¼
L2

z2

�
1þ z2

2π

3

GN

L3
c2
�
1 − z2 logðz2=L2Þ2πGN

L3
c2
�

þ z4gð4Þxx þ � � �
	
; ð62aÞ

hTxxi ¼
L3

4πGN
gð4Þxx −

5π

18

GN

L3
c4; ð62bÞ

hTμ
μi ¼

2π

3

GN

L3
c4: ð62cÞ

Plugging hTxxi from Eq. (62b) into hTμ
μi from Eq. (62c)

then gives hTtti ¼ 3hTxxi − hTμ
μi. As in the d ¼ 2 case

above, a linearized perturbation δGmn is ∝ c2, so the change
in the energy inside the sphere jx⃗j < R is

δE ¼ 4

3
πR3δhTtti ¼

L3

GN
R3δgð4Þxx ; ð63Þ

where δgð4Þxx ∝ c2. As mentioned above, from Eq. (14) we
compute δSEE for the sphere,

δSEE ¼ δE
Tent

−
π2

9
c2R2ð5 − 6 log 2þ 6 log ðϵ=RÞÞ; ð64Þ

with UV cutoff z ¼ ϵ. The δSEE in Eq. (64) has some
scheme dependence, via the term ∝ c2R2 log ðϵ=RÞ, such
that rescaling ϵ shifts the terms ∝ c2R2. However, the
coefficient of the term ∝ c2R2 log ðϵ=RÞ is invariant under
rescalings of ϵ, i.e. is scheme independent, and hence is
physically meaningful.
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Via essentially the same arguments as those below
Eq. (57), for sufficiently small c we can enter a regime
where naïvely we expect the FLEE of Eq. (2) to hold, but
all terms in Eq. (64) are of order c2R2. The FLEE of Eq. (2)
is then clearly violated, as advertised.

B. Linear spatial dependence

In this subsection we consider the model of Ref. [25],
containing a Uð1Þ gauge field Am and massless scalars ϕI
with I ¼ 1;…; d − 1 in asymptotically AdSdþ1 spacetime.
We consider the solutions of Ref. [25] describing charged
black branes with ϕI linear in a spatial direction x, dual to
CFT states with nonzero chemical potential, μ, and x-linear
sources for a set of exactly marginal scalar operators OI .
The main result of Ref. [25] was that the x-linear sources
break translational symmetry in the CFTand hence produce
the effects of momentum relaxation, such as a Drude peak
in the Uð1Þ conductivity. We are instead interested in the
x-linear sources as perturbations of the CFTat nonzero μ. In
d ¼ 3 we will show that the FLEE in Eq. (2) is violated,
while both δSEE and δE are independent of t and x⃗, and
hence will trivially obey a FLOER involving any CFT
coordinate. Previous calculations of EE in the model of
Ref. [25] appear for example in Ref. [63].
The model of Ref. [25] has bulk action

S ¼
Z

ddþ1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGmnÞ

p

×

�
1

16πGN

�
Rþ dðd − 1Þ

L2
− F2

�
−
1

2

Xd−1
I¼1

ð∂ϕIÞ2
	
;

ð65Þ

where Fmn ¼ ∂mAn − ∂nAm. We consider the solutions of
Ref. [25] describing a static, charged black brane with
scalar hair linear in x,

Gmndxmdxn ¼
L2

u2

�
du2

fðuÞ − fðuÞdt2 þ dx⃗2
�
; ð66aÞ

At ¼ μ

�
1 −

�
u
uh

�
d−2

	
; ð66bÞ

ϕI ¼ α⃗I · x⃗; ð66cÞ

with horizon at u ¼ uh and all other components of Am
vanishing. The constant vector α⃗I in Eq. (66c) has compo-
nents ðαIÞi with i ¼ 1;…; d − 1 defined such that

Xd−1
I¼1

ðαIÞiðαIÞj ¼ α2δij; ð67Þ

with constant α2. The blackening function fðuÞ appearing
in the metric in Eq. (66a) is

fðuÞ ¼ 1 −M

�
u
L2

�
d
þ
�
uhμ
β

�
2
�
u
uh

�
2ðd−1Þ

−
8πGN

ðd − 2Þ α
2u2; ð68aÞ

M≡
�
1þ

�
uhμ
β

�
2

−
8πGN

ðd − 2Þ α
2u2h

	�
L2

uh

�
d

; ð68bÞ

β2 ≡ d − 1

d − 2

L2

2
: ð68cÞ

When α2 ¼ 0, this solution reduces to the AdSdþ1-
Reissner-Nordström charged black brane.
We henceforth specialize to d ¼ 3, the case for which the

holographic renormalization of this model was performed
in Ref. [25]. When d ¼ 3, the asymptotic change of
coordinates,

u ¼ z − z32πGNα
2 − z4

M
6L6

þOðz5Þ; ð69Þ

brings the metric in Eq. (66a) into the asymptotic FG form:

Gmndxmdxn ¼
L2

z2
ðdz2 þ gttdt2 þ gxxdx⃗2Þ; ð70aÞ

gtt ¼ −1þ z24πGNα
2 þ z3

2M
3L6

þOðz4Þ; ð70bÞ

gxx ¼ 1þ z24πGNα
2 þ z3

M
3L6

þOðz4Þ: ð70cÞ

The holographic renormalization in Ref. [25] then gives for
the energy density

hTtti ¼
3L2

8πGN
gð3Þxx ¼ M

8πGNL4
: ð71Þ

For sufficiently small α2, we may treat the terms ∝ α2 in

Eq. (68) as perturbations, and write Gmn ¼ Gð0Þ
mn þ δGmn,

with Gð0Þ
mn the AdS4-Reissner-Nordström metric, and δGmn

of order α2. In particular,

δgxx ¼ z24πGNα
2 − z3

8πGNα
2

3uh
þOðz4Þ: ð72Þ

Using Eq. (71) we thus find that the change in energy inside
a spherical subregion comes from the change in the order z3

term in the FG asymptotics,

δE ¼ ðπR2Þ 3L2

8πGN
δgð3Þxx ¼ −ðπR2ÞL

2α2

uh
; ð73Þ

and the change in energy inside a strip subregion is
identical, but with ðπR2Þ → lVolðRÞ.
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In contrast, δSEE depends on both δgð2Þxx and δgð3Þxx . Indeed, applying the results of Sec. II, we find for spherical and strip
subregions, respectively,

δSsphereEE ¼ volðS1Þ
8GN

Z
z⋆

0

dz

�
L
z

�
2

rg−1=2xx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gxxr02

q �
gxxr02

1þ gxxr02
þ 1

�
ðδgð2Þxx z2 þ δgð3Þxx z3…Þ; ð74aÞ

δSstripEE ¼ volðR1Þ
4GN

Z
z⋆

0

dz

�
L
z

�
2

g−1=2xx
ðg⋆xxz2=gxxz2⋆Þ2 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðg⋆xxz2=gxxz2⋆Þ2

p ðδgð2Þxx z2 þ δgð3Þxx z3…Þ: ð74bÞ

In the δSEE in Eq. (74), a contribution ∝ δE can only

possibly come from the terms involving δgð3Þxx , so the terms

involving δgð2Þxx represent violations of the FLEE of Eq. (2).
On the other hand, both δE and δSEE are independent of t
and x⃗, so a FLOER involving any CFT coordinate is
trivially obeyed, as advertised.
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APPENDIX: HOLOGRAPHIC
RENORMALIZATION OF MASSLESS SCALAR

In this appendix we present results for the holographic
renormalization of a massless scalar field ϕ coupled to an
asymptotically AdS4 or AdS5 metric Gmn. A massless
scalar field ϕ and metric Gmn are dual to a marginal scalar
operator O and the stress-energy tensor Tμν, respectively.
For a scalar of any mass coupled to gravity, a convenient
form of Einstein’s equations appears in Ref. [24]. For a

massless scalar, we solve the Einstein’s equations in
Ref. [24] asymptotically,3 and then compute hOi, hTμνi,
the diffeomorphism, and the Weyl Ward identities in terms
of the coefficients of ϕ and Gmn’s asymptotic expansions in
Eqs. (53) and (7), respectively. We use the results for hTμνi
and Tμ

μ in Sec. VA to compute the change in energy inside
a CFT subregion due to a t-linear source for O.
In contrast to the body of the paper, in this appendix

we choose units with L≡ 1, and we use notationffiffiffiffiffiffiffi
−G

p ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGmnÞ

p
, and similarly for other metrics.

d. Boundary dimension d ¼ 3: For a massless scalar field
ϕ coupled to an asymptotically AdS4 metric Gmn, we find

ϕ2 ¼
1

2
∇2ϕ0; ðA1aÞ

gð2Þμν ¼ −Rμν½gð0Þ� þ
1

4
R½gð0Þ� þ 8πGN∂μϕ0∂νϕ0

− 2πGNg
ð0Þ
μν ð∂ϕ0Þ2; ðA1bÞ

Trgð2Þ ¼ −
1

4
R½gð0Þ� þ 2πGNð∂ϕ0Þ2; ðA1cÞ

Trgð3Þ ¼ 0; ðA1dÞ

∇νgð2Þμν ¼ ∂μTrgð2Þ þ 16πGNϕ2∂μϕ0; ðA1eÞ

∇νgð3Þμν ¼ 16πGNϕ3∂μϕ0; ðA1fÞ

where ∇μ is with respect to gð0Þ, indices are raised and

lowered with gð0Þ, and TrgðNÞ ≡ gð0Þμν gðNÞμν. The renormal-
ized action is

Sren ¼ lim
ϵ→0



1

16πGN

�Z
d4x

ffiffiffiffiffiffiffi
−G

p
ðRþ 6Þ þ 2

Z
z¼ϵ

d3x
ffiffiffiffiffiffi
−~g

p
K½~g�

	
−
1

2

Z
d4x

ffiffiffiffiffiffiffi
−G

p
Gmn∂mϕ∂nϕ

þ 1

16πGN

Z
z¼ϵ

d3x
ffiffiffiffiffiffi
−~g

p
ð4þ R½~g� − 8πGN ~gμν∂μϕ∂νϕÞ

�
; ðA2Þ

3In our conventions the Riemann tensor has the opposite sign compared to that in Ref. [24].
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where ~gμν is the induced metric on a regulating cutoff
surface z ¼ ϵ, with extrinsic curvatureK½~g� and Ricci scalar
R½~g�. The final line of Eq. (A2) consists of counterterms at
z ¼ ϵ. Varying Sren in Eq. (A2) with respect to sources, we
obtain the one point functions

hOi ¼ 3ϕ3; ðA3aÞ

hTμνi ¼
3

16πGN
gð3Þμν ; ðA3bÞ

although the values of ϕ3 and gð3Þμν cannot be fixed by our
near-boundary analysis alone. Equations (A1d) and (A1f)

yield the diffeomorphism and Weyl Ward identities,
respectively,

∇μhTμνi ¼ hOi∂νϕ0; ðA4aÞ

hTμ
μi ¼ 0: ðA4bÞ

e. Boundary dimension d ¼ 4: For a massless scalar field
ϕ coupled to an asymptotically AdS5 metric Gmn, we find,
with the same conventions as in Eq. (A1),

ϕ2 ¼
1

4
∇2ϕ0; ðA5aÞ

ψ4 ¼ −
1

32
ð∇2Þ2ϕ0 þ

1

8

1ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p ∂μ

� ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
gð2Þμν∂νϕ0

�
−

1

16
∂μTrgð2Þgð0Þμν∂νϕ0 −

1

16
Trgð2Þ∇2ϕ0; ðA5bÞ

gð2Þμν ¼ −
1

2
Rμν½gð0Þ� þ

1

12
gð0Þμν R½gð0Þ� þ 4πGN∂μϕ0∂νϕ0 −

2πGN

3
gð0Þμν ð∂ϕ0Þ2; ðA5cÞ

hð4Þμν ¼ þ 1

4
Rμν½gð2Þ� þ

1

2
gð2Þμλ g

ð2Þλ
ν −

1

8
gð0Þμν Tr½ðgð2ÞÞ2� − 1

4
πGNg

ð0Þ
μν ð∇2ϕ0Þ2

−
1

2
πGNð∂μϕ0∂ν∇2ϕ0 þ ∂μ∇2ϕ0∂νϕ0Þ; ðA5dÞ

Trhð4Þ ¼ 0; ðA5eÞ

∇νhð4Þμν ¼ 4πGNψ4∂μ∇2ϕ0; ðA5fÞ

Trgð4Þ ¼ 1

4
Tr½ðgð2ÞÞ2� − 1

2
πGNð∇2ϕ0Þ2; ðA5gÞ

∇νgð4Þμν ¼ −
1

4
∂μTr½ðgð2ÞÞ2� þ 16πGNϕ4∂μϕ0 −

1

2
πGNð∇2ϕ0Þ∂μð∇2ϕ0Þ; ðA5hÞ

where ψ4 is the coefficient of the z4 log z2 term in ϕ’s asymptotic expansion. The renormalized action is

Sren ¼ lim
ϵ→0



1

16πGN

�Z
d5x

ffiffiffiffiffiffiffi
−G

p
ðRþ 12Þ þ 2

Z
z¼ϵ

d4x
ffiffiffiffiffiffi
−~g

p
K½~g�

	
−
1

2

Z
d5x

ffiffiffiffiffiffiffi
−G

p
Gmn∂mϕ∂nϕ

þ 1

16πGN

Z
z¼ϵ

d4x
ffiffiffiffiffiffi
−~g

p �
6þ 1

2
R½~g� þ 4πGN ~gμν∂μϕ∂νϕþ að4Þϵ2 log ϵ

��
; ðA6Þ

where the final line consists of counterterms at z ¼ ϵ, and

að4Þ ≡ 1

ϵ2

�
−
1

4
Rμν½~g�Rμν½~g� þ

1

12
R½~g�2 þ 4πGNRμν½~g�∂μϕ∂νϕ −

136

9
π2G2

Nð~gμν∂μ∂νϕÞ2 − πGNð∇2
~gϕÞ2

�
; ðA7Þ

where Rμν½~g� is the Ricci tensor of ~gμν, and ∇2
~g is with respect to ~gμν. Varying Sren in Eq. (A6) with respect to sources, we

obtain the one point functions

hOi ¼ 4ϕ4 þ 6ψ4 þ ϕ2Trgð2Þ; ðA8aÞ

hTμνi ¼
1

8πGN

�
2gð4Þμν þ 3hð4Þμν − gð2Þμλ g

ð2Þλ
ν þ 1

2
gð2Þμν Trgð2Þ þ 1

2
gð0Þμν Tr½ðgð2ÞÞ2� − 1

4
gð0Þμν ½Trgð2Þ�2 − gð0Þμν Trgð4Þ

�
: ðA8bÞ
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