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Defining a new r-matrix compatible with the scalar product at the basis of the Chern-Simons action for a
particle coupled to (2þ 1) Lorentzian gravity with cosmological constant, I show how deformed
symmetries of κ-de Sitter and, in the vanishing cosmological limit, of κ-Poincaré kind, arise naturally
as quantum deformation of three dimensional gravity. I obtain, moreover, the noncommutative spacetime
associated with these kinds of symmetries.
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I. INTRODUCTION

The possibility for relativistic symmetries to be
deformed at the Planck scale (1=Mp ∼ 10−19 GeV=c2)
has attracted much attention in the last 15 years particularly
for its implications in quantum gravity phenomenology.
Models of quantum spacetime relying on this assumption
have been indeed at the basis of the so-called DSR (doubly
special relativity, or, in a more general connotation,
deformed relativistic symmetries) approach [1–3] to quan-
tum gravity phenomenology [4], whose main goal is to find
experimental opportunities to test Planck scale modifica-
tions of relativistic laws of motion. In this approach the
relativistic symmetries are modified at the Planck scale in a
way that preserves the relativity principle, in the sense that
no preferred reference frame needs to be introduced [1].
Even if still at its dawn, this research program has

obtained several results especially concerning the oppor-
tunity to observe Planck scale signatures in the propagation
of ultrahigh energy particles from transient astrophysical
sources [4] (see [5] for the most recent results), where the
cosmological distance traveled acts as an amplifier for the
tiny Planck-scale effects. In this context the interplay
between Planck-scale effects and the ones due to spacetime
curvature/expansion of cosmological models becomes
crucial [6–8]. This puts the construction and study
of models of quantum spacetimes with nonvanishing
cosmological constant at the top of the quantum gravity
phenomenology agenda.
κ-Poincaré symmetries [9,10] and their generalization to

κ-de Sitter1 provide one of the most interesting frameworks
on which to realize these kinds of quantum spacetime

models. The mathematical formalism at the basis of these
constructions is the one of the Hopf algebraic approach to
quantum groups (see for instance [11]), which allows a
description on the same footing of the deformed symmetry
group and its (deformed) algebra. It is relevant for the
arguments presented in this manuscript to notice that these
structures are characterized by a “quantum duality princi-
ple” establishing a correspondence between quantum
universal enveloping algebras (i.e. Hopf algebras) and
quantum dual (Lie-Poisson) groups [12–14]. This duality
can be expressed in terms of a classical r-matrix encoding
the coalgebraic properties of a given Hopf algebra in its
“semiclassical” limit given by the related bialgebra.
Whether or not quantum spacetime models based on

these kinds of deformed symmetries arise from more
fundamental approaches to quantum gravity remains still
an open question. Some hints that four dimensional
quantum gravity could give rise, at low energy limit, to
an effective description of quantum spacetime of the kind
above mentioned, have been put forward in the literature
[15–17] (see also [18] for some recent results). For three
dimensional quantum gravity the situation is closer to an
assessment. The fact that in three dimensions gravity
[19,20] can be described by a topological field theory,
which has no dynamical degrees of freedom, renders the
theory, and the study of its symmetries, much more
manageable. It follows that three dimensional quantum
gravity can be used as a toy model for testing some of the
features that are presumed to characterize a (four dimen-
sional) physical theory of quantum gravity. In such a
framework, an effective theory can be achieved both for
particles [21,22] and for quantum fields [23] coupled to
gravity. The study of the symmetries characterizing these
effective theories has brought some evidence in favor of a
description of an emerging quantum spacetime in terms of
κ-deformed symmetries [15,23,24] (see also [25,26] for a
κ-deformed Carrollian limit of these theories).
However these preliminary results are still mostly based

on semiheuristic arguments, and most importantly they are
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1The κ-Poincaré Hopf algebra has been originally derived as a

contraction of a specific q deformation, in the Hopf algebraic
sense, of the de Sitter group known as q-de Sitter [9]. In this
manuscript I refer to κ-de Sitter symmetries to indicate a generic
class of q deformations of de Sitter symmetries that reduce to
κ-Poincaré in a suitable limit for vanishing cosmological
constant.
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missing a complete derivation of the full κ-Poincaré or κ-de
Sitter Hopf algebra (that includes the coalgebraic sector).
On the other side it has been argued in more systematic
analyses relying on a Chern-Simons formulation of 3D
gravity coupled to particles that κ-Poincaré symmetries are
indeed not compatible with 3D gravity [27]. Such a
conclusion is reached by noticing that the r-matrix used
in the literature to characterize the κ-Poincaré (and κ-de
Sitter) Hopf algebras is not compatible with the Ad-
invariant bilinear form (the Killing form) associated with
the Lie algebra of the gauge group of the Chern-Simons
action with cosmological constant, as instead required for
the construction of the phase space of particles, described
as punctures on the space of Chern-Simons theory [27–29].
The aim of this work is to show on the contrary that κ-de

Sitter and κ-Poincaré symmetries arise naturally in Chern-
Simons formulation of ð2þ 1ÞD gravity with cosmological
constant coupled to particles. The results I obtain, which
seem to contradict the previous results [27], are achieved
through the definition of a new r-matrix which is compat-
ible with the scalar product of Chern-Simons 3D gravity.
The new r-matrix proposed in this paper turns out to be the
implementation for the Lorentzian case of an r-matrix
obtained in a recent work by the author where loop
quantum gravity (LQG) quantization techniques have been
applied to 3D Euclidean gravity [30].
The manuscript is organized as follows: In Sec. II I

define the notation for the symmetry group underlying the
Chern-Simons action for (Lorentzian) ð2þ 1ÞD gravity
with cosmological constant: the Lie group generated by the
three dimensional de Sitter algebra. I show how the group
can be recast as SO(3,1), whose Lie algebra can then be
split into two mutually commuting suð2Þ Lie algebras with
complex conjugated parameters. In Sec. III I briefly outline
the Chern-Simons action and construct the new r-matrix
from the Killing form associated with the Lie algebra of its
gauge (symmetry) group. The splitting of the group
described in Sec. II sets the stage for the following analysis
of Sec. IV, where I implement the method proposed in [14],
which relies on the quantum duality principle, to construct
the Hopf algebraUqðsu2Þ from the quantization of the dual
group associated with the bialgebra of each of the two
suð2Þ copies. The Hopf algebra obtained by recombining
together the two Uqðsu2Þ copies as Uqðsu2Þ ⊕ Uq−1ðsu2Þ
will describe the deformed symmetry generators for the
effective particle theory, the κ-de Sitter symmetries. In
Sec. V I construct the Hopf algebra dual to κ-de Sitter, by
calculating the Sklyanin Poisson brackets from the invari-
ant vector fields on the two suð2Þ copies and their
associated r-matrix, and then recombining the two spaces.
The space obtained in this way can be interpreted as the
coordinate space for the action of κ-de Sitter symmetries,
i.e. the generalization for Λ ≠ 0 [Lambda being the
(positive) cosmological constant] of the three dimensional
κ-Minkowski space. Finally, in Sec. VI, I study the Λ → 0

limit of the κ-de Sitter Hopf algebra, showing how it
contracts to ð2þ 1ÞD κ-Poincaré. It is important to notice
that for the coalgebra not to diverge in the Λ → 0 limit it is
crucial that the new r-matrix constructed in Sec. III has the
property that it generates two deformed suð2Þ copies
whose deformation parameters are inverse with respect
to each other: qL ¼ q−1R ¼ q.
In the following I assume units for which the speed of

light c as well as the Planck constant ℏ are set to 1.

II. ALGEBRA OF SYMMETRIES IN
DE SITTER SPACETIME

In four dimensional gravity, the de Sitter algebra arises as
the algebra of spacetime symmetry generators for a solution
of Einstein equations describing a homogeneous and
isotropic empty universe with positive cosmological con-
stant Λ. Indeed in this case the spacetime is maximally
symmetric and admits, in four dimensions, 10 symmetry
generators that can be identified with the generalization, to
a spacetime expanding with a constant rate2 H¼ _a=a∼

ffiffiffiffi
Λ

p
,

of the special relativistic generators of translations, boosts,
and rotations. A thorough description of “de Sitter special
relativity” can be found in [31], where the construction of
the algebra is mostly based on the study of [32]. In this
manuscript I rely on this physical definition, and define the
three dimensional de Sitter group as the reduction to three
dimensions of the one reported in [31].
Denoting time translation, space translations, boosts, and

rotation, respectively, as E, Pa, Na, andM, with a ¼ ð1; 2Þ,
the ð2þ 1ÞD de Sitter group can be described by the Lie
algebra3

½E;Pa� ¼ ΛNa; ½P1; P2� ¼ ΛM;

½Na; E� ¼ −Pa; ½Na; Pb� ¼ −δabE; ½N1; N2� ¼ −M;

½M;Na� ¼ ϵabNb; ½M;Pa� ¼ ϵabPb; ½M;E� ¼ 0; ð1Þ

where Λ > 0 has dimensions of an inverse length squared.
The de Sitter group in three dimensions is the Lorentz

group SO(3,1). By means of the maps

E ¼ −
ffiffiffiffi
Λ

p
K3; Pa ¼ −

ffiffiffiffi
Λ

p
ϵabJb;

M ¼ J3; Na ¼ −Ka; ð2Þ

the algebra (1) is explicitly written as soð3; 1Þ

½Ji; Jj� ¼ ϵijkJk; ½Ji; Kj� ¼ ϵijkKk;

½Ki; Kj� ¼ −ϵijkJk; ð3Þ

2Where H is the Hubble parameter defined in terms of the
derivative with respect to time of the universe scale a.

3Here and in the following, unless otherwise specified,
repeated indexes are intended to be summed.
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ϵijk being the Levi-Civita symbol, with sum over repeated
indexes, and i; j ¼ ð1; 2; 3Þ. A finite dimensional repre-
sentation can be explicitly obtained in terms of 4 × 4 real
skew-symmetric matrices

ðMABÞKL ¼ ηAKδBL − ηBKδAL

where ηAB ≡ diagf1;−1;−1;−1g ð4Þ

with A;B ¼ ð0; 1; 2; 3Þ, as

ρðJiÞ ¼
1

2
ϵijkMjk; ρðKiÞ ¼ M0i: ð5Þ

The matricesMAB satisfy the commutation rules [soð3; 1Þ]

½MAB;MCD�
¼ fηADMBCþ ηBCMAD − ηACMBD− ηBDMACg: ð6Þ

One can then define an element of SO(3,1) through the
exponential map4

g ¼ exp

�
1

2
αABMAB

�
¼ exp ðjiρðJiÞ þ kiρðKiÞÞ: ð7Þ

Here ji and ki are real parameters associated respectively
with the “rotation” and “boost” part of the Lorentz group.
As explicitly shown by the matrices (4)–(5), in their finite
dimensional representation, Ji is anti-Hermitian, while Ki
is Hermitian, accordingly to the fact that the Ki sector is
noncompact, differently from the Ji sector:

J�i ¼ −Ji; K�
i ¼ Ki: ð8Þ

Exploiting the isomorphism5 soð3; 1ÞC ≈ suð2Þ ⊕C
suð2Þ we complexify the Lie algebra soð3; 1Þ and choose
the basis

Li ¼
1

2
ðJi þ iKiÞ; Ri ¼

1

2
ðJi − iKiÞ: ð9Þ

These generators satisfy the suð2Þ algebra

½Li; Lj� ¼ ϵijkLk; ½Ri; Rj� ¼ ϵijkRk; ½Li; Rj� ¼ 0:

ð10Þ

Thus we have split soð3; 1ÞC in two mutually commuting
suð2Þ copies, which we call “left” and “right” copies. The
group element (7) becomes

g ¼ glgr ¼ exp fliρðLiÞg exp friρðRiÞg ð11Þ

with the two sets of parameters for the left and right copies
being related by complex conjugation:

li ¼ ji − iki; ri ¼ ji þ iki; li ¼ r�i : ð12Þ

We further reexpress the left and right suð2Þ copies in
Cartan-Weyl basis as

HL ¼ iL3; XL
� ¼ iðL1 � iL2Þ;

HR ¼ iR3; XR
� ¼ iðR1 � iR2Þ; ð13Þ

closing the algebra

½HI;HJ� ¼ 0; ½HI; XJ
�� ¼ �δIJXJ

�;

½XIþ; XJ
−� ¼ 2δIJHJ; I; J ¼ L; R: ð14Þ

From (8) we find the reality conditions

~H ¼ H; ~X� ¼ X�∓: ð15Þ

The left and right group elements become, respectively,

gl ¼ exp ð ~hLρðHLÞ þ ~xLþρðXLþÞ þ ~xL−ρðXL
−ÞÞ;

gr ¼ exp ð ~hRρðHRÞ þ ~xRþρðXRþÞ þ ~xR−ρðXR
−ÞÞ; ð16Þ

where

~xLþ ¼ −
i
2
ðl1 − il2Þ; ~xL− ¼ −

i
2
ðl1 þ il2Þ; ~hL ¼ −il3;

~xRþ ¼ −
i
2
ðr1 − ir2Þ; ~xR− ¼ −

i
2
ðr1 þ ir2Þ; ~hR ¼ −ir3:

ð17Þ

The notation for the coordinate set f ~h; ~xþ; ~x−g will be
clarified in the following.
To make contact with the notation used frequently in the

3D gravity literature, we introduce also the generators

J 0 ¼ −J3; J a ¼ Ka;

P0 ¼
ffiffiffiffi
Λ

p
K3; Pa ¼

ffiffiffiffi
Λ

p
Ja; ð18Þ

satisfying the algebra

½J μ;J ν� ¼ ϵμνρJ ρ; ½J μ;Pν� ¼ ϵμνρPρ;

½Pμ;Pν� ¼ −ΛϵμνρJ ρ; ð19Þ

where μ; ν ¼ ð0; 1; 2Þ and here the indexes have to be
raised and lowered through the Lorentzian metric
η ¼ diagð1;−1;−1Þ. The algebra (19) admits two Casimir

4Notice that for soð3; 1Þ the exponential map is surjective and
covers the whole SO(3,1) group.

5It can be proved indeed that soð3; 1ÞC ≈ soð4; CÞ≈
suð2Þ ⊕C suð2Þ.
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C1 ¼ PμPμ − ΛJ μJ μ; C2 ¼ PμJ μ; ð20Þ

and satisfies the reality conditions [using (19) and (8)]

J �
0 ¼ −J 0; J �

a ¼ J a;

P�
0 ¼ P0; P�

a ¼ −Pa: ð21Þ

III. THE CHERN-SIMONS PARTICLE ACTION
WITH COSMOLOGICAL CONSTANT

AND A NEW r-MATRIX

Amodel of ð2þ 1ÞD gravity with cosmological constant
coupled to particles can be formulated [19,27,28] in terms
of a Chern-Simons action with de Sitter as gauge group G,
where, assuming the manifold M to be decomposed as the
Cartesian product Σ ×R of a 2D Riemannian surface
(space) and a segment of the real line (time), the particles
are described as punctures (conical defects) on Σ. We
consider only the case of a single particle and define
coordinate x0 ¼ t on R and local coordinates x⃗ ¼ ðx1; x2Þ
on Σ, denoting x⃗ 0 the puncture coordinates on Σ.
The gauge field is defined as the Cartan connection on

the de Sitter group, i.e. the algebra valued one-form A ∈ g

A ¼ ωμJ μ þ eμPμ ð22Þ
with ωμ ¼ ωα

μdxα and eμ ¼ eαμdxα, respectively, the spin
connection and the dreibein. The Chern-Simons action for
the gauge field A is

SCS ¼ κ

Z
M

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
B
: ð23Þ

Here κ ¼ 1=ð4πGÞ plays the role of the gravity coupling
constant, and in ð2þ 1ÞD has dimensions of a mass. The
brackets h·iB indicate the inner product [19] between
all the generators Tμ of g in the action with respect to
the bilinear form corresponding to the second Casimir (20),
explicitly

BðJ μ;PνÞ ¼ ημν; BðJ μ;J νÞ ¼ 0; BðPμ;PνÞ ¼ 0;

ð24Þ

so that for instance the quadratic term in (30) isZ
M
hA ∧ dAiB ¼ BðTμ; TνÞ

Z
M

ðAμ ∧ dAνÞ: ð25Þ

Decomposing the connection accordingly to the product
structure M ¼ Σ × R as A ¼ A0dtþ AΣ, and introducing
the spatial curvature FΣ ¼ dAΣ þ AΣ ∧ AΣ, the action (31)
can be decomposed as

SCS ¼ κ

Z
R
dt

Z
Σ
h∂tAΣ ∧ AΣ þ A0FΣiB: ð26Þ

The time component of the connection A0 acts as a
Lagrange multiplier constraining the curvature to vanish
outside the puncture at x⃗0.
A puncture in M is decorated [27,28] with the action of

a free relativistic particle. The particle’s degrees of freedom
are encoded in an element ξ0 of the Lie algebra g� dual to
the Lie algebra g of G, defined by the coadjoint orbits of G.
Explicitly, in terms of the generators dual to (18),

ξ0 ¼ m ~P0 þ s ~J 0;

ξ ¼ Ad�ξ0 ¼ pμ ~Pμ þ jμ ~J μ∶ ð27Þ

ξ0 fixes the orbit by giving the values of the rest massm and
spin s of the particle, while ξ, obtained through the
coadjoint action of G on ξ0, encodes a generic state of
motion characterized by momentum pμ and angular
momentum jμ. The generators ~Pμ; ~J μ form a basis f~eig
of g�, satisfying the canonical duality relations h~ei; eji ¼
δij with the basis set Pμ;J μ ¼ feig of g. The coadjoint
action of an element g ∈ G is defined by the relation
hAd�g ~Y; Xi ¼ h ~Y; g−1Xgi for X ∈ g, ~Y ∈ g�. The dual gen-
erators are mapped to g by the map ϕ∶g� → g, which must
be compatible with the Ad-invariant bilinear form on g,
B∶g × g → C, so that h ~Y; Xi ¼ Bðϕð ~YÞ; XÞ. From (24) it
follows

ϕð ~J μÞ ¼ Pμ; ϕð ~PμÞ ¼ Jμ; ð28Þ

and the free particle action isZ
R
dthϕðξ0Þg−1∂tgiB: ð29Þ

The particle action is minimally coupled to the gauge field
[27,28] so that the total action is

S ¼
Z
R
dtL;

L ¼ κ

Z
Σ
h∂tAΣ ∧ AΣiB − hϕðξ0Þg−1∂tgiB

þ
Z
Σ
hA0ðκFΣ − ϕðξÞδ2ðx⃗ − x⃗0Þdx1 ∧ dx2ÞiB: ð30Þ

It can be shown (see for instance [33] for an explicit
derivation) that this action reduces in its metric formulation
to the action of ð2þ 1ÞD gravity with cosmological
constant coupled to a point particle.
In this construction the particle phase space variables

corresponding to momenta6 are described [28] by elements

6I refer in general to particle momenta denoting the whole
set of energy, spatial momentum, angular momentum, and
boost charges corresponding to translations and Lorentz
transformations.
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of the Poisson-Lie group G� associated with the coadjoint
orbit (27). The deformation quantization of the algebra of
momenta can be obtained (see [13], Chap. 8 of [11], and
also [14,27]) by relating the Poisson-Lie group to the
corresponding (coboundary) Lie bialgebra ðg; δÞ, where δ is
the cocommutator obtained from the r-matrix r associated
with g as7

δðXÞ ¼
X

ð½X; rð1Þ� ⊗ 1þ 1 ⊗ ½X; rð2Þ�Þ: ð31Þ

The r-matrix must be compatible with the bilinear invariant
form (24) so that its symmetrical part rþ is proportional to
its (tensorized) Casimir rþ ∝ 1

2
Bijei ⊗ ej. Fixing the anti-

symmetrical part r− of r so that the classical Yang-Baxter
equation (CYBE) is satisfied, the associated Lie bialgebra
is coboundary and quasitriangular, and is the semiclassical
limit of a quantum group of symmetries in the sense of
Hopf algebras (see e.g. [11], Chap. 8.1).
In the basis ðJ μ;PμÞ the Casimir is C2 of (20) and the

symmetric part of the r-matrix must be proportional to
(remember that indexes are raised and lowered with the
metric ημν ¼ diagð1;−1;−1Þ and repeated indexes are
summed)

rþ ¼ J μ ⊗ Pμ þ Pμ ⊗ J μ: ð32Þ

The CYBE8 ½½r; r�� ¼ ½r12; r13� þ ½r12; r23� þ ½r13; r23� ¼ 0
is satisfied if the antisymmetric part of the r-matrix is

r− ¼ imρϵ
ρμνðJ μ ⊗ Pν þ Pμ ⊗ J νÞ; ð33Þ

with mμ a unit timelike vector mμmμ ¼ 1, that can be fixed
to mμ ¼ ð1; 0; 0Þ.
The r-matrix is deformation quantized by introducing a

quantum deformation parameter (see e.g. [34]) z so that the
r-matrix becomes rz ¼ zðrþ þ r−Þ. The explicit form of
the deformation parameter is determined by the following
requirements:
(1) Since we are working with real Lie bialgebras, we

want the antisymmetric part of the r-matrix to be
real, so that the cocommutators are also real and they
generate a real dual Lie algebra (see next section). It
follows that z must be purely imaginary.

(2) The dimension of the deformation parameter is
determined [34,35] by the “primitive,” in the sense
of nondeformed, time-translation generator P0, so
that ½z� ¼ ½P0�−1, as it will become clearer in the
following sections. Thus z must have dimensions of
a mass, i.e. it must be proportional to κ. This

corresponds with the definition of a “timelike”
r-matrix in the language of [34,35].

Substituting then z ¼ i=κ the deformed r-matrix is

rz ¼
i
κ
ðJ μ ⊗ Pμ þ Pμ ⊗ J μÞ

−
1

κ
ϵijðJ i ⊗ Pj þ Pi ⊗ J jÞ: ð34Þ

Notice that the hermiticity of the generators (21) are such
that the r-matrix satisfy a well-defined reality condition
rð�⊗�Þ ¼ τðrÞ, where τ is the flip operator [τða ⊗ bÞ ¼
ðb ⊗ aÞ]. This means [11] that the corresponding quantum
R-matrix is “real,” and the associated “quantum inverse
Killing form” Q ¼ R21R is self-adjoint.
We can now use the splitting of the algebra defined in the

previous section to rewrite the r-matrix in terms of the two
copies of su2 generators. Combining (18) with (9) and (13)
we obtain

rz ¼
2

ffiffiffiffi
Λ

p

κ
ðHL ⊗ HL −HR ⊗ HR

þ XLþ ⊗ XL
− − XRþ ⊗ XR

−Þ: ð35Þ

Due to the fact that the two suð2Þ copies are mutually
commuting, this r-matrix is the sum of the contributions of
the r-matrices for the two suð2Þ copies: rz ¼ rL þ rR
where R ¼ RlRr, and we can consider them separately.
Notice that for each of the two copies it has the form

rL;R ¼ zL;RðHL;R ⊗ HL;R þ XL;R
þ ⊗ XL

−Þ;
zL ¼ −zR ¼ 2

ffiffiffiffi
Λ

p
=κ: ð36Þ

From (15) it follows that rð�⊗�Þ
L;R ¼ τðrÞ and z is real. These

reality conditions coincide with the ones for Uqðsuð2ÞÞ,
where q ¼ exp z is real and Rð�⊗�Þ ¼ τðRÞ (see [11],
Chap. 3). We will see indeed in the next section that we will
recover these Hopf algebras upon quantization.
The r-matrix (35) turns out to be the Lorentzian version

of the r-matrix obtained in [30] for the 3D Euclidean case
through LQG quantization techniques. In [30] it was
underlined how the opposite sign of the deformation
parameters of the two quantized suð2Þ copies, which in
that context arose from the quantization of the holonomy
relative to each of the two copies, is necessary for the
convergence of the contraction limit Λ → 0 of the Hopf
algebra of symmetries. We will obtain an analogous result
for the Lorentzian case in Sec. VI.

IV. DERIVATION OF THE κ-DE SITTER
ALGEBRA OF SYMMETRIES

As stated above, in the approach outlined in the previous
section, once the coadjoint orbit of G is fixed by the values

7The notation is r ¼ P
ir

ð1Þ
i ⊗rð2Þi ¼ P

rð1Þ⊗rð2Þ with the
summation indexes omitted.

8The notation is such that rij ¼
P

1⊗ � � �⊗rð1Þ⊗1⊗ � � �⊗
rð2Þ⊗ � � �⊗1 is r in its ith and jth factor.
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of the particle’s mass and spin, the particle’s momenta (and
angular momenta) are the parameters of the dual Poisson-
Lie group G�. Its infinitesimal counterpart is the Lie
bialgebra ðg�; δ�Þ obtained from the deformed r-matrix
rz. As explained in detail in [14], by virtue of the quantum-
duality principle, which establishes a correspondence
between a quantum universal enveloping algebra (a Hopf
algebra) and a quantum dual group, the quantization as a
Hopf algebra of G� together with its Poisson structure
provides the Hopf algebra ðUzðgÞ;ΔzÞ. Finally, this will be
the (Hopf) algebra of the symmetry generators correspond-
ing to momenta and angular momenta of the particle, i.e.
the time and space translation and Lorentz generators. The
aim of this section is then to evaluate this (Hopf) algebra
relying on the splitting of the de Sitter group in two suð2Þ
copies described in the previous sections and in the method
introduced in [14].

A. The dual Lie bialgebra g� and the dual group G�

Starting from the r-matrix (36) one can construct the
(coboundary) Lie bialgebra ðgL;R; δL;RÞ for each of the two
suð2Þ copies introduced in the previous sections. Since,
apart from the sign of the deformation parameter, the
r-matrix has the same form for each of the two copies, in
the following I omit the subscript L or R denoting the
structures related to the two suð2Þ copies, which however
must not be confused with the structures related to the
de Sitter algebra g and group G used in the other sections.
A Lie bialgebra is defined (see [11], Chap. 8) by the Lie

algebra g and the cocommutators δ through the structure
constants cijk and fijk as

g∶ ½ei; ej� ¼ cijkek; δ∶ δðeiÞ ¼ fijkei ⊗ ej: ð37Þ

For the case under consideration the structure constants
cijk are given by (14), while from (14) and (36) we find,
using (31),

δðHÞ ¼ 0; δðXþÞ ¼ zXþ ∧ H; δðX−Þ ¼ zX− ∧ H;

ð38Þ

where a ∧ b ¼ a ⊗ b − b ⊗ a. The fact that the bialgebra
is coboundary is guaranteed by the Ad invariance of the
symmetric part of its r-matrix.
The dual Lie bialgebra (see [11] Chap. 8) ðg�; δ�Þ with

basis feig ¼ f~eig is defined by dualization according to

h½~ei; ~ej�; eki ¼ h~ei ⊗ ~ej; δðekÞi;
hδð~ekÞ; ei ⊗ eji ¼ h~ek; ½ei; ej�i: ð39Þ

This amounts, considering the canonical dualization
h~ei; eji ¼ δij, to interchanging the role of the structure
constants:

g�∶ ½ei; ej� ¼ fijkek; δ�∶ δ�ðeiÞ ¼ cjkiej ⊗ ek: ð40Þ

In the basis feig∶ f ~H; ~Xþ; ~X−g we thus find

½ ~H; ~X�� ¼ −z ~X�; ½ ~Xþ; ~X−� ¼ 0; ð41Þ

δ�ð ~HÞ ¼ 2 ~Xþ ∧ ~X−; δ�ð ~X�Þ ¼ � ~H ∧ ~X�: ð42Þ

Following the line of reasoning of [14], in order to know
if ðg�; δ6Þ is a coboundary, we must check if there exists an
r-matrix ~r whose skew-symmetric part generates the
cocommutators (42) through Eq. (31). It is easy to show
by parametrizing

~rA ¼ α ~H ∧ ~Xþ þ β ~H ∧ ~X− þ γ ~Xþ ∧ ~X− ð43Þ

that the equation

δ�ðeiÞ ¼ ~rAð1Þ ⊗ ½ei; ~rAð2Þ� þ ½ei; ~rAð1Þ� ⊗ ~rAð2Þ ð44Þ

with δ�ðeiÞ given by (42) has no solution. Thus the
bialgebra ðg�; δ�Þ is noncoboundary. This implies that, in
order to evaluate the Poisson structure on G�, one cannot
use the definition of the Sklyanin bracket, which, for an
r-matrix r ¼ rijei ⊗ ej in a basis feig of a Lie algebra g is

fa; bg ¼ 1

2
rij · ððXR

i ∧ XR
j − XL

i ∧ XLÞða ⊗ bÞÞ; ð45Þ

where XR
i and XL

i are, respectively, right and left vector
fields for the generator ei.
In [14] an alternative method was proposed to evaluate

the Poisson structure on G�. For the case under consid-
eration the problem can be solved algebraically. Starting
from the adjoint representation of g� ðρð~eiÞÞjk ¼ −fijk,
from which we get

ρð ~HÞ ¼

0
B@

0 0 0

0 z 0

0 0 z

1
CA; ρð ~XþÞ ¼

0
B@

0 −z 0

0 0 0

0 0 0

1
CA;

ρð ~X−Þ ¼

0
B@

0 0 −z
0 0 0

0 0 0

1
CA; ð46Þ

a generic group element of G� can be constructed as the
ordered product of exponentials

g� ¼ exp ðhρð ~HÞÞ exp ðxþρð ~XþÞÞ exp ðx−ρð ~X−ÞÞ

¼

0
B@

1 −zxþ −zx−
0 ezh 0

0 0 ezh

1
CA: ð47Þ
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Notice that we could consider a different ordering pre-
scription, corresponding to a different parametrization of
the group, as for instance

g� ¼ exp ð ~hρð ~HÞ=2Þ exp ð~xþρð ~XþÞÞ
× exp ð~x−ρð ~X−ÞÞ exp ð ~hρð ~HÞ=2Þ

¼

0
B@

1 −zez ~h=2 ~xþ −zez ~h=2 ~x−
0 ez ~h 0

0 0 ez ~h

1
CA: ð48Þ

The two sets of coordinates are connected by the map

~h ¼ h; ~x� ¼ e−zh=2x�: ð49Þ

In order to define the Hopf algebra on G� we must
construct the coproduct ΔG� (I omit in the following the
subscript G�). This can be derived solving a set of func-
tional equations which reflect the fact that the coproduct
map for coordinate functions on G� is the pullback of the
group multiplication law in (dual) algebraic form, so that
the coassociativity of the coproduct is the associativity of
group multiplication (see [14] for the details). In our case
this amounts to solving the equation

0
B@

Δ1 −zΔxþ −zΔx−
0 Δezh 0

0 0 Δezh

1
CA

¼

0
B@

1 ⊗ 1 −zxþ ⊗ 1 −zx− ⊗ 1

0 ezh ⊗ 1 0

0 0 ezh ⊗ 1

1
CA

×

0
B@

1 ⊗ 1 −z1 ⊗ xþ −z1 ⊗ x−
0 1 ⊗ ezh 0

0 0 1 ⊗ ezh

1
CA ð50Þ

from which we get

Δ1 ¼ 1 ⊗ 1; Δh ¼ h ⊗ 1þ 1 ⊗ h;

Δx� ¼ x� ⊗ ezh þ 1 ⊗ x�: ð51Þ

Notice that in the alternative parametrization of G� defined
in (48) we would have

Δ1 ¼ 1 ⊗ 1; Δ ~h ¼ ~h ⊗ 1þ 1 ⊗ ~h;

Δ~x� ¼ ~x� ⊗ ez ~h=2 þ e−z ~h=2 ⊗ ~x�: ð52Þ

B. The Poisson structure on G�

The Poisson structure λ on G� has to satisfy two
requirements:

(i) The group (co)multiplication has to be a Poisson
map with respect to λ

fΔG� ðaÞ;ΔG� ðbÞgλ ¼ ΔG� ðfa; bgλÞ ∀ a; b ∈ G�:

ð53Þ

(ii) The linearization of λ should coincide with the Lie
algebra defined by the structure tensor cijk defin-
ing δ�.

First we assume that the brackets are of the form

fxi; xjgλ ¼ Qij ¼
X
k;l

βijklFkFl ð54Þ

where βijkl are arbitrary coefficients and Fi are among the
set of functions appearing as matrix entries of group
elements ofG� and in the coproducts for the coordinates xi:

fFig ≔ f1; h; xþ; x−; ezhg; ð55Þ

i.e. the Poisson brackets are homogeneous quadratic in
terms of functions included within the set fFig. The
homomorphism condition (53) becomes

Xd
k;l¼1

�
ðQkl⊗1Þ

� ∂Δxi
∂ðxk⊗1Þ ·

∂Δxj
∂ðxl⊗1Þ

�

þð1⊗QklÞ
� ∂Δxi
∂ð1⊗xkÞ

·
∂Δxj

∂ð1⊗xlÞ
��

¼ΔQij: ð56Þ

Let us consider the equation term by term. For the terms
Q0þ and Q0− we have

ΔQ0þ ¼ Q0þ ⊗ ezh þ 1 ⊗ Q0þ;

ΔQ0− ¼ Q0− ⊗ ezh þ 1 ⊗ Q0−: ð57Þ

These are easily solved by

Q0þ ¼ α0þðezh − 1Þ þ β0þxþ þ γ0þx−;

Q0− ¼ α0−ðezh − 1Þ þ β0−xþ þ γ0−x−; ð58Þ

where I renamed the constant coefficients to be determined.
The term Qþ− gives

ΔQþ− ¼ Qþ− ⊗ e2zh þ 1 ⊗ Qþ−

þ zxþ ⊗ Q0−ezh − zx− ⊗ Q0þezh: ð59Þ

This is solved by

Qþ− ¼ αþ−ðe2zh − 1Þ − zα0þx− þ zα0−xþ

þ z
2
β0−x2þ −

z
2
γ0þx2− − zβ0þxþx− ð60Þ
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and

γ0− ¼ −β0þ: ð61Þ

Thus we are left with 6 parameters to be determined. We
must impose now the second condition, the one on the
linearization of the brackets; i.e. we must impose that

Xd
k¼1

∂Qij

∂xk
����
fxig¼0

xk ¼ cijkxk: ð62Þ

At linear order, the brackets (58) and (60) become

fh; xþg0 ¼ zα0þhþ β0þxþ þ γ0þx−;

fh; x−g0 ¼ zα0−hþ β0−xþ − β0þx−;

fxþ; x−g0 ¼ 2zαþ−h − zα0þx− þ zα0−xþ: ð63Þ

Comparing the brackets with (14) we find

α0þ ¼ γ0þ ¼ α0− ¼ β0− ¼ 0;

β0þ ¼ 1; αþ− ¼ 1

z
; ð64Þ

so that we finally obtain

fh; x�g ¼ �x�; fxþ; x−g ¼ e2zh − 1

z
− zxþx−: ð65Þ

Together with the coproducts (51), these brackets define
the Poisson-Hopf algebra associated with the dual Lie
bialgebra ðg�; δ�Þ. In terms of the alternative set of
coordinates ~xi defined in (49) the Poisson-Lie brackets are

f ~h; ~x�g ¼ �~x� f~xþ; ~x−g ¼ 2
sinh ðz ~hÞ

z
: ð66Þ

Even though the calculations were easier in the basis fxig,
the basis f~xig, due to its symmetries, is more suitable for
quantization, as I show in the next section.

C. Quantization as a Hopf algebra

The quantization as a Hopf algebra of the Poisson-Hopf
group ðG�; λ;ΔÞ consists in promoting the group coordi-
nates to noncommutative generators. In general we have to
face ordering ambiguities. However, contrary to the basis
fxig, where on the right-hand side of the Poisson-Lie
brackets there appear products of xþ and x−, in the basis of
coordinates f~xig the nonlinear terms on the right-hand side
are all functions of coordinates which have vanishing
Poisson brackets between themselves. It thus follows that
in the basis f~xig the quantization is straightforwardly

obtained by substituting the Poisson brackets f·; ·g with
the commutators ½·; ·� between the Hopf algebra generators.
I choose this basis and indicate the Hopf generators with
the same symbols used for the ones of the starting Lie
algebra ðH;Xþ; X−Þ, since they will describe a combina-
tion of the generators of the deformed relativistic sym-
metries for the particle, in the same way the suð2Þ
generators were a combination of the symmetries of de
Sitter spacetime (see Sec. II).
Finally, we have obtained the Hopf algebra of generators

½H;X�� ¼ �X�; ½Xþ; X−� ¼
sinh ðzHÞ

z=2
;

ΔH ¼ H ⊗ 1þ 1 ⊗ H;

ΔX� ¼ X� ⊗ ezH=2 þ e−zH=2 ⊗ X�: ð67Þ

Notice that if we rescale the generators as

X� →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z=2

sinh ðz=2Þ

s
X� ð68Þ

we obtain the SUqð2Þ algebra in its usual form (as in
Majid’s book)

½H;X�� ¼ �X�; ½Xþ; X−� ¼
sinh ðzHÞ
sinh ðz=2Þ ;

ΔH ¼ H ⊗ 1þ 1 ⊗ H;

ΔX� ¼ X� ⊗ ezH=2 þ e−zH=2 ⊗ X�: ð69Þ

We can now obtain the Hopf algebra of the generators of
time and space translations, boosts, and rotations, combin-
ing the maps (2), (9), and (13) as

E ¼
ffiffiffiffi
Λ

p
ðHL −HRÞ; M ¼ −iðHL þHRÞ;

P1 ¼
ffiffiffiffi
Λ

p

2
ðXLþ − XL

− þ XRþ − XR
−Þ;

P2 ¼ −
i

ffiffiffiffi
Λ

p

2
ðXLþ þ XL

− þ XRþ þ XR
−Þ;

N1 ¼
1

2
ðXLþ þ XL

− − XRþ − XR
−Þ;

N2 ¼ −
i
2
ðXLþ − XL

− − XRþ þ XR
−Þ: ð70Þ

Considering that relations (69) hold for both L and R
copies, but keeping in mind that zL ¼ −zR ¼ 2

ffiffiffiffi
Λ

p
=κ, we

obtain, combining (70) with (69) for the respective L and R
Uqðsuð2ÞÞ copies,
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½E;Pa� ¼ ΛNa; ½Na; E� ¼ −Pa;

½P1; P2� ¼ Λ
sin ð ffiffiffiffi

Λ
p

M=κÞ
sinh ð ffiffiffiffi

Λ
p

=κÞ cosh ðE=κÞ;

½Na; Pb� ¼ −δab
ffiffiffiffi
Λ

p sinh ðE=κÞ
sinh ð ffiffiffiffi

Λ
p

=κÞ cos ð
ffiffiffiffi
Λ

p
M=κÞ;

½N1; N2� ¼ −
sin ð ffiffiffiffi

Λ
p

M=κÞ
sinh ð ffiffiffiffi

Λ
p

=κÞ cosh ðE=κÞ;

½M;Na� ¼ ϵa
bNb; ½M;Pa� ¼ ϵa

bPb; ½M;E� ¼ 0: ð71Þ

ΔE ¼ E ⊗ 1þ 1 ⊗ E; ΔM ¼ M ⊗ 1þ 1 ⊗ M;

ΔPa ¼ Pa ⊗ e
1
2
E=κ cos

� ffiffiffiffi
Λ

p

2κ
M

�
þ e−

1
2
E=κ cos

� ffiffiffiffi
Λ

p

2κ
M

�
⊗ Pa

− ϵab

� ffiffiffiffi
Λ

p
Nb ⊗ e

1
2
E=κ sin

� ffiffiffiffi
Λ

p

2κ
M

�
−

ffiffiffiffi
Λ

p
e−

1
2
E=κ sin

� ffiffiffiffi
Λ

p

2κ
M

�
⊗ Nb

�
;

ΔNa ¼ Na ⊗ e
1
2
E=κ cos

� ffiffiffiffi
Λ

p

2κ
M

�
þ e−

1
2
E=κ cos

� ffiffiffiffi
Λ

p

2κ
M

�
⊗ Na

− ϵab

�
1ffiffiffiffi
Λ

p Pb ⊗ e
1
2
E=κ sin

� ffiffiffiffi
Λ

p

2κ
M

�
−

1ffiffiffiffi
Λ

p e−
1
2
E=κ sin

� ffiffiffiffi
Λ

p

2κ
M

�
⊗ Pb

�
: ð72Þ

These relations define the Hopf algebra, which I denote
κ-de Sitter, characterizing the relativistic symmetry gen-
erators of a particle in ð2þ 1ÞD (Lorentzian) gravity with
cosmological constant.

V. THE NONCOMMUTATIVE
κ-DE SITTER SPACETIME

In the previous sections we derived the deformed algebra
of symmetry generators, which we denoted as κ-de Sitter,
by “quantizing” the Poisson brackets between the coor-
dinates of the dual group G�

L;R for each of the L and R
copies. Since the Lie bialgebra ðg�; δ�Þ is not coboundary,
we followed an analytic procedure to derive the Poisson
structure on G�

L;R. For the coordinates of the group GL;R,
whose Lie bialgebra ðgL;R; δL;RÞ is coboundary, we can
obtain the Poisson structure directly from the Sklyanin
bracket (45), which I here rewrite for clarity:

fa; bg ¼ 1

2
rij · ððXR

i ∧ XR
j − XL

i ∧ XLÞða ⊗ bÞÞ: ð73Þ

Parametrizing a generic element of GL;R as (for simpli-
city I omit the subscript L and R in the rest of this section
unless otherwise specified)

g ¼ exp ð ~hρðHÞ þ ~xþρðXþÞ þ ~x−ρðX−ÞÞ; ð74Þ

we obtain the left- and right-invariant vector fields defined,
for a basis feig of g, by the relations

XR
eifðgÞ¼

d
dt

����
t¼0

fðe−teigÞ; XL
eifðgÞ¼

d
dt

����
t¼0

fðgeteiÞ; ð75Þ

as

XL
H ¼ 1

2
csch

�
λ

2

�
sech

�
λ

2

��
λ coshðλÞ þ 1

4

�
sinhðλÞ

λ2
−
coshðλÞ

λ

�
h2
�
∂h

þ 1

2

�
−1þ 1 − λ cothðλÞ

2λ2
h

�
xþ∂xþ þ 1

2

�
1þ 1 − λ cothðλÞ

2λ2
h

�
x−∂x− ;

XL
Xþ ¼

��
−1þ 1 − λ cothðλÞ

2λ2
h

�
x−

�
∂h þ

�
λ cothðλÞ þ 1

2
hþ 1 − λ cothðλÞ

2λ2
x−xþ

�
∂xþ þ

�
1 − λ cothðλÞ

2λ2
x2−

�
∂x− ;

XL
X−

¼
��

1þ 1 − λ cothðλÞ
2λ2

h

�
xþ

�
∂h þ

�
1 − λ cothðλÞ

2λ2
x2þ

�
∂xþ þ

�
λ cothðλÞ − 1

2
hþ 1 − λ cothðλÞ

2λ2
x−xþ

�
∂x− ; ð76Þ
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XR
H ¼−

1

2
csch

�
λ

2

�
sech

�
λ

2

��
λcoshðλÞþ 1

4
h2
�
sinhðλÞ

λ2
−
coshðλÞ

λ

��
∂h

−
1

2

�
1þ 1− λcothðλÞ

2λ2
h

�
xþ∂xþ −

1

2

�
−1þ 1− λcothðλÞ

2λ2
h

�
x−∂x−

XR
Xþ ¼−

��
1þ 1− λcothðλÞ

2λ2
h

�
x−

�
∂h−

�
λcothðλÞ− 1

2
hþ 1− λcothðλÞ

2λ2
x−xþ

�
∂xþ −

�
1− λcothðλÞ

2λ2
x2−

�
∂x−

XR
X−

¼−
��

−1þ 1− λcothðλÞ
2λ2

h

�
xþ

�
∂h−

�
1− λcothðλÞ

2λ2
x2þ

�
∂xþ −

�
λcothðλÞþ 1

2
hþ 1− λcothðλÞ

2λ2
x−xþ

�
∂x− : ð77Þ

Substituting these vector fields together with the com-
ponents r¼rijei⊗ej of the r-matrix (36) in (73) we obtain

f ~h; ~x�g ¼ −z~x�; f~xþ; ~x−g ¼ 0: ð78Þ

Notice that, as a consequence of the choice of parametri-
zation (74), the Poisson brackets (78) coincide exactly with
the Lie brackets (41) of the dual algebra g�, and not just
to linear order in the generators as it is true for any
parametrization.
We can trace back the Poisson brackets between the

coordinates (t; xa; θ; ξa) associated (“dual”) with the physi-
cal symmetry generators ðE; Pa; J; NaÞ, considering the
group element of de Sitter

gdS ¼ expðtρEþ xaρPa þ θρJ þ ξaρNaÞ ¼ gLgR: ð79Þ

Combining the maps (12), (17), and (2) one obtains

t ¼ 1

2
ffiffiffiffi
Λ

p ð ~hL − ~hRÞ; θ ¼ i
2
ð ~hL þ ~hRÞ;

x1 ¼ 1

2
ffiffiffiffi
Λ

p ð~xLþ − ~xL− þ ~xRþ − ~xR−Þ;

x2 ¼ i

2
ffiffiffiffi
Λ

p ð~xLþ þ ~xL− þ ~xRþ þ ~xR−Þ;

ξ1 ¼ 1

2
ð~xLþ þ ~xL− − ~xRþ − ~xR−Þ;

ξ2 ¼ i
2
ð~xLþ − ~xL− − ~xRþ þ ~xR−Þ: ð80Þ

Using these relations and (78) we find

ft; xag ¼ −
1

κ
xa; ft; ξag ¼ −

1

κ
ξa;

fθ; xag ¼ −
1

κ
ϵabξ

b; fθ; ξag ¼ −
Λ
κ
ϵabxb

fθ; tg ¼ fξa; ξbg ¼ fxa; xbg ¼ fξa; xbg ¼ 0: ð81Þ

We see that the Poisson brackets are linear in the
coordinates exactly. It follows that the quantization can
be performed trivially by substituting the Poisson brackets

with commutators promoting the coordinates to noncom-
mutative coordinates

½t̂; x̂a� ¼ −
1

κ
x̂a; ½t̂; ξ̂a� ¼ −

1

κ
ξ̂a;

½θ̂; x̂a� ¼ −
1

κ
ϵabξ̂

b; ½θ̂; ξ̂a� ¼ −
Λ
κ
ϵabx̂b

½θ̂; t̂� ¼ ½ξ̂a; ξ̂b� ¼ ½x̂a; x̂b� ¼ ½ξ̂a; x̂b� ¼ 0: ð82Þ

These relations can be understood as the ones defining
the noncommutative spacetime on which the κ-de Sitter
symmetries defined in the previous section act covariantly.
The subset of commutation between the coordinates ðt̂; x̂aÞ
“dual” to the translation generators ðE;PaÞ can be iden-
tified with the ones of κ-Minkowski spacetime

½t̂; x̂a� ¼ −
1

κ
x̂a; ½x̂a; x̂b� ¼ 0: ð83Þ

However we see that we have also nonvanishing commu-
tators between θ̂ and ξ̂a that depend on the cosmological
constant and are peculiar of the spacetime associated with
κ-de Sitter.

VI. CONTRACTION TO κ-POINCARÉ AND
κ-MINKOWSKI AND BICROSSPRODUCT BASIS

In this last section I show how the contraction limit for a
vanishing cosmological constant is well defined, and leads
to κ-Poincaré [9,10]. Taking the limit Λ → 0 in Eqs. (71)
and (75), we find

½E;Pa� ¼ 0; ½P1;P2� ¼ 0; ½Na;E� ¼−Pa;

½Na;Pb� ¼−δabκ sinh ðE=κÞ; ½N1;N2� ¼−M coshðE=κÞ;
½M;Na� ¼ ϵa

bNb; ½M;Pa� ¼ ϵa
bPb; ½M;E� ¼ 0: ð84Þ

ΔE¼E⊗ 1þ1⊗E;

ΔM¼M⊗ 1þ1⊗M; ΔPa ¼Pa ⊗ e
1
2
E=κþe−

1
2
E=κ ⊗Pa;

ΔNa ¼Na ⊗ e
1
2
E=κþe−

1
2
E=κ ⊗Na

−
1

2κ
ϵabðPb ⊗ e

1
2
E=κM−e−

1
2
E=κM⊗PbÞ: ð85Þ
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It is important to stress how, in order to have a convergent
limit in the contraction Λ → 0, it is crucial that the
deformation parameters zL and zR for the two
Uqðsuð2ÞÞ copies (qL;R ¼ exp zL;R) have opposite sign,
a feature that was also noticed in [30] in a different
quantization scenario for the Euclidean case.
The noncommutative coordinates become, in the limit

Λ → 0,

½t̂; x̂a� ¼ −
1

κ
x̂a; ½t̂; ξ̂a� ¼ −

1

κ
ξ̂a; ½θ̂; x̂a� ¼ −

1

κ
ϵabξ̂

b;

½θ̂; t̂� ¼ ½ξ̂a; ξ̂b� ¼ ½x̂a; x̂b� ¼ ½ξ̂a; x̂b� ¼ ½θ̂; ξ̂a� ¼ 0: ð86Þ

The algebra (84), (85) is the κ-Poincaré algebra in
standard basis [9]. It is well known that it is possible to
redefine the generators in order to obtain the so-called
bicrossproduct basis [10]. The change of basis can be
performed (see for instance [36] for the AdS case) at the
k-de Sitter level, before taking the limit Λ → 0, through the
maps

~E ¼ E; ~M ¼ M;

~Pa ¼ e−
1
2κE

�
cos

� ffiffiffiffi
Λ

p

2κ
M

�
Pa − ϵab

ffiffiffiffi
Λ

p
sin

� ffiffiffiffi
Λ

p

2κ
M

�
Nb

�
;

~Na ¼ e−
1
2κE

�
cos

� ffiffiffiffi
Λ

p

2κ
M

�
Na − ϵab

1ffiffiffiffi
Λ

p sin

� ffiffiffiffi
Λ

p

2κ
M

�
Pb

�
:

ð87Þ

We find the algebra

½ ~E; ~Pa� ¼ Λ ~Na; ½ ~Na; ~E� ¼ − ~Pa;

½ ~P1; ~P2� ¼
Λ
2

sin ð2 ffiffiffiffi
Λ

p
~M=κÞ

sinh ð ffiffiffiffi
Λ

p
=κÞ ;

½ ~N1; ~N2� ¼ −
1

2

sin ð2 ffiffiffiffi
Λ

p
~M=κÞ

sinh ð ffiffiffiffi
Λ

p
=κÞ ;

½ ~Na; ~Pb� ¼ −
δab

ffiffiffiffi
Λ

p

sinhð
ffiffiffi
Λ

p
κ Þ

�
1 − e−2 ~E=κ

2
− sin2

� ffiffiffiffi
Λ

p

κ
~M

��

−
δab
2κ

ð ~P2 − Λ ~N2Þ þ 1

κ
ð ~Pa

~Pb − Λ ~Na
~NbÞ;

½ ~M; ~Na� ¼ ϵa
b ~Nb; ½ ~M; ~Pa� ¼ ϵa

b ~Pb; ½ ~M; ~E� ¼ 0;

ð88Þ

and coalgebra

Δ ~E ¼ ~E ⊗ 1þ 1 ⊗ ~E; Δ ~M ¼ ~M ⊗ 1þ 1 ⊗ ~M;

Δ ~Pa ¼ e− ~E=κ ⊗ ~Pa þ ~Pa ⊗ cos

� ffiffiffiffi
Λ

p

κ
~M

�

−
ffiffiffiffi
Λ

p
ϵab ~Nb ⊗ sin

� ffiffiffiffi
Λ

p

κ
~M

�

Δ ~Na ¼ e− ~E=κ ⊗ ~Na þ ~Na ⊗ cos

� ffiffiffiffi
Λ

p

κ
~M

�

−
ffiffiffiffi
Λ

p
ϵab ~Pb ⊗ sin

� ffiffiffiffi
Λ

p

κ
~M

�
ð89Þ

which reduces to the standard κ-Poincaré Hopf algebra in
bicrossproduct basis [10] for Λ → 0.

VII. CONCLUSIONS

In this paper I have shown how the deformation-
quantization of the Chern-Simons action for three dimen-
sional Lorentzian gravity with cosmological constant
coupled to a point particle leads to relativistic symmetries
of κ-de Sitter type. These are defined as the Hopf algebra of
symmetry generators which tends, in the limit of vanishing
Λ, to the three dimensional version of the κ-Poincaré
symmetries [9,10] both in standard and bicrossproduct
basis.
This result seems to contradict some previous observa-

tion [27] asserting that the κ-Poincaré symmetries are not
compatible with 3D gravity. The difference with respect to
previous approaches resides in the implementation of a
new r-matrix encoding the deformation-quantization,
compatible with the scalar product at the basis of the
Chern-Simons action.
In order to obtain the result presented in this paper, I took

advantage of a splitting of the three dimensional de Sitter
algebra in terms of two mutually commuting suð2Þ, and I
applied the methods proposed in [14], based on the
“quantum duality principle.”
I obtained, moreover, the noncommutative spacetime

associated with this set of deformed symmetries. Having at
disposal both the set of symmetries and the defining
spacetime commutators, it would be interesting to study
the kinematical implications of the construction here
presented for a particle living in such a three dimensional
scenario. This would provide a toy model on which to test
some of the implications of κ-deformed relativistic sym-
metries with nonvanishing cosmological constant.
At the same time it would be worth investigating

the possibility of generalizing the results here presented
to the four dimensional case. Even if a Chern-Symons
formulation of 4D gravity is not available, the construction
of mutually dual Poisson-Lie groups is possible, as for
instance shown in [37]. It would be interesting to perform a
similar construction for a 4D generalization of the r-matrix
proposed in this manuscript.
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