
Vacuum expectation value of twist fields

A. V. Belitsky
Department of Physics, Arizona State University Tempe, Arizona 85287-1504, USA

(Received 17 June 2017; published 21 September 2017)

Twist fields emerge in a number of physical applications ranging from entanglement entropy to
scattering amplitudes in four-dimensional gauge theories. In this work, their vacuum expectation values are
studied in the path integral framework. By performing a gauge transformation, their correlation functions
are reduced to field theory of matter fields in external Aharonov-Bohm vortices. The resulting functional
determinants are then analyzed within the zeta-function regularization for the spectrum of Bessel zeros, and
concise formulas are derived.
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I. INTRODUCTION

Twist fields (or operators) Vα are ubiquitous in quantum
physics. They emerge in various contexts, ranging from
orbifold conformal field theories [1–3] to correlation
functions defining entanglement entropy [4–6] or scattering
amplitudes in four-dimensional gauge theories [7–9],
just to name a few. Their defining property is a nontrivial
monodromy when an elementary field X is taken around it,
as it acquires a phase e2πiα. This corresponds to the short-
distance operator product expansion

XðzÞVαð0Þ ¼ z−α∶ Xð0ÞVαð0Þ∶þ � � � : ð1:1Þ

The Vα operators are reminiscent of the (dis)order vari-
ables in the two-dimensional Ising model introduced by
Kadanoff and Ceva [10], with the well-known Mandelstam
fermion [11] being the product of the two. Their continuum
field theory as quantum kinks (with α ¼ 1=2) was proposed
by Sato, Miwa and Jimbo [12] and Schroer and Truong [13],
where they were shown to be defined by composite, non-
polynomial and, therefore, not manifestly local operators of
elementary quantum fields. These considerations were
further generalized in Refs. [14,15] to theories with matter
fields being fundamental scalars (along with fermions)
within the framework of the path integral. It was demon-
strated there that correlation functions of twist fields in
two-dimensional quantum field theory can be reformulated
as statistical mechanics of matter fields with Aharonov-
Bohm fluxes, with relativistic invariance of the former
stemming from gauge invariance of functional determinant
in the latter.
However, except for twist operators with elementry

fermion fields, where techniques based on bosonization
[1–3] or Fujikawa anomaly [16] in the path integral
measure [14] allow one to bypass direct calculation of
determinants, no explicit results are available in the
formalism of the path integral for correlation functions
of Vα ’s for theories with fundamental massless scalars. In
the massive fermionic and scalar cases, there is a number of

considerations based on various techniques for twist-field
correlation functions: form factor expansions [5,17],
Fredholm determinant representations [18], reduction to
nonlinear differential equations of the Painlevé V type [19],
angular quantization [6,20]. Vacuum expectation in the
massive case in noncompact space1 was addressed in
Refs. [20,21]. However, the majority of the above tech-
niques cannot be immediately applied to the CFT setup. In
this paper we start filling the gap and provide a calculation
for the vacuum expectation value of a single twist operator
for fundamental scalar fields in compact space within the
framework of the zeta-function regularization [22].
Our subsequent presentation is organized as follows. In

the next section, we provide a brief recapitulation of a field-
theoretical description of the twist operator in the language
of the Aharonov-Bohm vortices and relate its vacuum
expectation values to the diagonalization problem of the
Laplacian in an external gauge field. The problem is shown
to be reduced to the analysis of the Bessel zeta function.
As a starting point in the explanation of the calculational
framework, we demonstrate all salient features for a simpler
example of a double Barnes zeta function in Sec. III. Next,
in Sec. IV, we apply it to the case at hand and provide the
main result of this paper, and we summarize in Sec. V.

II. TWIST FIELD AS AHARONOV-BOHMVORTEX

The twist field that obeys the operator algebra (1.1) was
shown to admit the following form [14,15]:

VαðxÞ ¼ exp

�
2πiα

Z
C½x;∞�

dzμεμνjνðzÞ
�
; ð2:1Þ

1This consideration provides the result in the opposite limit to
what we are going to consider in this work. Namely, for a
compact massive model, the vacuum average is a function of
two variables, hVαi ¼ MhαFαðM=RÞ with the function Fα de-
pending on the ratio of the mass M to the size R of the compact
space. While [20] calculated Fαð0Þ, we are after M → 0 and thus
Fαð∞Þ.
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where the integral in the exponential runs along an arbitrary contourC½x;∞� from the operator insertion to infinity. It creates a
bare Bloch wall in the terminology of Ref. [23] on the curve C½x;∞�. The integrand is determined by the U(1) current, which
for the complex scalar reads

jμ ¼ ð∂μϕ
�Þϕ − ϕ�ð∂μϕÞ: ð2:2Þ

The vacuum expectation value of the (s)calar twist operator is then determined by the path integral

hVs
αi ¼

Z
½Dϕ��½Dϕ�e−

R
d2zðDμϕðzÞÞ�DμϕðzÞ

�Z
½Dϕ��½Dϕ�e−

R
d2zð∂μϕðzÞÞ�∂μϕðzÞ; ð2:3Þ

where the exponent of the twist operator was cast in the
form of a two-dimensional integral of the interaction of the
U(1) scalar current with an external gauge field

2π

Z
C½x;∞�

dzμεμνjνðzÞ ¼
Z

d2zjμðzÞAμðz; xÞ;

Aμðz; xÞ ¼ −2πεμν
Z
C½x;∞�

dz0νδð2Þðz0 − zÞ;

ð2:4Þ

and, in addition, a quadratic term in Aμ was added in order
to eliminate the path dependence of the correlation function
[14]. In this manner, the exponential weight becomes a
conventional scalar action with the minimal U(1) coupling
via the covariant derivative

Dμ ¼ ∂μ − iαAμ: ð2:5Þ

In what follows, we will set x ¼ 0 and drop this argument
altogether. In the language of gauge fields, the independence
of the choice of C gets reformulated as a gauge independ-
ence of the functional integral under a phase transformation
of the scalar field. We will use this property momentarily.
The resulting path integral can be computed as

hVs
αi ¼

det ∂2

detD2
: ð2:6Þ

Making use of the freedom to choose the path for the line
integral (2.4), we can align it with the positive x-axis,
dz0μ ¼ δμ1dz01, such that its Cartesian components become

A1ðzÞ ¼ 0; A2ðzÞ ¼ 2πθðz1Þδðz2Þ: ð2:7Þ

The computation of the determinant in the above gauge
field requires nontrivial boundary conditions, see, e.g.,
[24]. One notices, however, that this configuration is
a two-dimensional analogue of the Dirac string with the
magnetic induction BðzÞ ¼ εμν∂μAνðzÞ ¼ 2πδð2ÞðzÞ. The
same field is generated by the Aharonov-Bohm vortex (in
polar coordinates)

ArðzÞ ¼ 0; AθðzÞ ¼
1

r
; ð2:8Þ

as can be easily established by conventional analysis,
see, e.g., [25], with a regularized potential Aε

θðzÞ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ε2

p
such that BðzÞ ¼ limε→0ε

2=½rðr2 þ ε2Þ3=2� ¼
2πδð2ÞðzÞ. The two configurations are in fact related by
a gauge transformation Aμ → Aμ þ iU�∂μU, which can-
cels the Dirac string and leaves instead the covariant
Aharonov-Bohm potential

AμðzÞ ¼
zνενμ
z2

: ð2:9Þ

which defines now the covariant derivative (2.5).
To compute the determinant of the covariant Laplacian

D2, we have to solve the corresponding spectral problem.
To generate a discrete spectrum of eigenvalues, one
imposes a Dirichlet boundary condition at r ¼ R. In polar
coordinates, the equation admits the form

� ∂
∂ ln r − i

∂
∂θ þ α

�� ∂
∂ ln rþ i

∂
∂θ − α

�
Φðr; θÞ

¼ −E2r2Φðr; θÞ: ð2:10Þ

Separating the variables

Φðr; θÞ ¼ RðrÞeimθ; ð2:11Þ

with integer m ¼ 0;�1;�2;… arising from the single-
valuedness of the wave function Φ, the solution for RðρÞ is
given in terms of the Bessel function

RðrÞ ¼ JjmþαjðErÞ þ cNjmþαjðErÞ: ð2:12Þ

The vanishing of RðrÞ and the origin and the Dirichlet
boundary condition RðRÞ ¼ 0 forces us to set c ¼ 0 and
provides a quantization condition for the eigenenergy E,

EðαÞ
m;n ¼ jjmþαj;n=R; ð2:13Þ
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where jjmþαj;n are the positive zeros of the Bessel function.
We assume that 0 < α < 1 since, as is well known, only the
fractional part of α induces a nontrivial Aharonov-Bohm
effect.
The vacuum expectation value of the vortex operator is

then given by the ratio of eigenvalue products

hVs
αi ¼

Y∞
m¼−∞

Y∞
n¼1

�
EðαÞ
m;n

Eð0Þ
m;n

�2

: ð2:14Þ

Making use of the zeta-function regularization [22], we can
rewrite this as

ln
det ∂2

detD2
¼ Z0

1ð0; αÞ þ Z0
2ð0; αÞ þ Z0

2ð0;−αÞ
− Z0

1ð0; 0Þ − 2Z0
2ð0; 0Þ; ð2:15Þ

where the prime stands for the derivative with respect to the
first argument and we introduced one- and two-dimensional
functions

Z1ðs; αÞ ¼
X∞
n¼1

ðEðαÞ
0;nÞ−2s;

Z2ðs; αÞ ¼
X∞
m¼1

X∞
n¼1

ðEðαÞ
m;nÞ−2s: ð2:16Þ

The former, i.e.,Z1, is a generalization of the Riemann zeta
function from the spectrum of positive integers to the zeros
of the Bessel function. It was thus dubbed the Bessel zeta
function in Refs. [26,27]; it is also known as the Raleigh
function [28] for even integers s ¼ 2; 4; 6;…. We will refer
to Z1=2 as single/double Bessel zetas.

III. WARM-UP: BARNES DOUBLE ZETA

Before we move on to the analysis of the Bessel zeta
functions, let us consider a simpler example first. For large
values of the order of the Bessel function, the leading
two terms in the asymptotic expansion of its zeros read
jmþα;n ¼ πð2nþmþ α − 1=2Þ=2þOð1=nÞ. Thus, it calls
for consideration of a generalization of the Hurwitz zeta
function

ζðs; αÞ ¼
X∞
n¼0

ðnþ αÞ−s ð3:1Þ

to the two-dimensional case, i.e.,

Zðs; αÞ ¼
X∞
m¼1

X∞
n¼1

ðnþmþ αÞ−2s; ð3:2Þ

which is a particular case of the Barnes double zeta
function2 [29]. In fact, it is rather straightforward to
reduce it to the former by means of the Abel-Plana
summation formula [30], which is widely used in analyses
of the Casimir effect, see, e.g., [31]. One immediately finds
Hermite’s formula

Zðs; αÞ ¼ −
1

2
ζð2s; 1þ αÞ þ ζð2s − 1; 1þ αÞ

2s − 1

þ i
Z

∞

0

dt
e2πt − 1

½ζð2s; 1þ αþ itÞ

− ζð2s; 1þ α − itÞ�: ð3:3Þ

However, this consideration cannot be extended to the
case of the Bessel zeta functions, so one has to resort to
other techniques [32]. As we will advocate in the next
section, it is more efficient to deal with the resolvent rather
than the heat kernel that is traditionally used in the
calculation of operator determinants by means of zeta
function method [33]. For the case at hand, we introduce

Rðσ; mþ αÞ ¼
X∞
n¼1

1

σ − ðnþmþ αÞ2=ðmþ αÞ2 ; ð3:4Þ

and write

Zðs; αÞ ¼
X∞
m¼1

ðmþ αÞ−2s
Z
Cþ

dσ
2πi

σ−sRðσ; mþ αÞ;

where the integration contour Cþ is shown in Fig. 1 (left
panel) with σ0 ¼ ð2þ αÞ2=ð1þ αÞ2. Introducing a poten-
tial U for the resolvent,

FIG. 1. Integration contour (left panel) for resolvent representation of the zeta function and its deformation (right panel).

2Notice, however, that summations start from one rather than
zero, which corresponds to the shift in inhomogeneity α.
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Rðσ; mþ αÞ ¼ −U 0ðσ; mþ αÞ ð3:5Þ

we can remove the σ derivative off U by integrating by parts
in Eq. (3.10) on the one hand,

Zðs; αÞ ¼ −s
X∞
m¼1

ðmþ αÞ−2s
Z
Cþ

dσ
2πi

σ−s−1Uðσ; mþ αÞ;

ð3:6Þ

and sum up the infinite series on the other, making use of
the infinite product representation for the Euler gamma
functions (or rather their product),

Uðσ;mþ αÞ

¼ − ln
Y∞
n¼1

�
1−

ðmþ αÞ2σ
ðnþmþ αÞ2

�

¼ ln
Γð1þ ðmþ αÞð1− ffiffiffi

σ
p ÞÞΓð1þ ðmþ αÞð1þ ffiffiffi

σ
p ÞÞ

Γ2ð1þmþ αÞ :

ð3:7Þ

The function
P∞

n¼1ðmþ αÞ−2sRðσ; mþ αÞ is not ana-
lytic in s in the vicinity of s ¼ 0, which is needed for
the computation of the derivative. However, the singularity
can only arise from the 1=ðmþ αÞ term in the large m
expansion ofRðσ; mþ αÞ, as can be seen from the Laurent
series for the Hurwitz zeta function,

ζð2sþ 1; 1þ αÞ ¼ 1

2s
− ψð1þ αÞ þOð2sÞ;

which will thus reduce the overall power of s from two to
one. Thus, it is instructive to split U into two contributions,

Uðσ; mþ αÞ ¼ Vðσ; mþ αÞ þ 1

mþ α
WðσÞ; ð3:8Þ

where WðσÞ can immediately be found from the asymp-
totic Stirling series for the Euler gamma functions in
the left-hand side by going to the first power suppressed
term [30]. It is

WðσÞ ¼ 1

6ð1 − σÞ ; ð3:9Þ

and we find

Zðs; αÞ ¼ −s
X∞
m¼1

ðmþ αÞ−2s
Z
Cþ

dσ
2πi

σ−s−1Vðσ; mþ αÞ

þ s
6
ζð2sþ 1; 1þ αÞ: ð3:10Þ

Since for the calculation of the determinant all we need is
to track of the terms linear in s, the dominant contribution
emerges from the small and large σ regions of the
integrand. To have a better convergence in the latter
domain, we use the Schwinger representation for the σ−s

factor (with ℜeσ > 0) in the integrand

σ−s ¼ Γ−1ðsÞ
Z

∞

0

dtts−1e−tσ

¼ Γ−1ðsÞ
Z

1

0

dtts−1e−tσ þOðs2Þ; ð3:11Þ

with the integral representation in the second line valid up to
higher order terms in s, which are irrelevant for the current
analysis. The function Vðσ; mþ αÞ is analytic at σ ¼ 0, we
move the integration contour Cþ to the left of the imaginary
axis and pick up the pole of the integrand at the origin,

Z
Cþ

dσ
2πi

e−tσ

σ
Vðσ; mþ αÞ

¼ −Vð0; mþ αÞ þ
Z
C−

dσ
2πi

e−tσ

σ
Vðσ; mþ αÞ; ð3:12Þ

as shown in Fig. 1 (right panel), and making use
of Vð0; mþ αÞ ¼ −Wð0Þ=ðmþ αÞ ¼ −1=½6ðmþ αÞ�, as
can be easily found from Eq. (3.8). The remaining integral
is performed over the contour C−. To evaluate this last term,
we rescale the integration variable σ → σ=t and expand the
integrand for small t. We then can deform the C− contour to
large values of jσj and, thus, rely only on the asymptotic
behavior of Vðσ; mþ αÞ [32,34,35],

Vðσ; mþ αÞ

¼
�
mþ αþ 1

2

�
lnð−σÞ þ 2

�
mþ αþ 1

2

�
lnðmþ αÞ

þ lnð2πÞ − 2 lnΓð1þmþ αÞ þ � � � ; ð3:13Þ

with ellipses standing for irrelevant (subleading) contribu-
tions. Evaluating emerging σ integrals,

Z
C−

dσ
2πi

e−tσ

σ
lnð−σÞ ¼ − ln ðeγEtÞ;

Z
C−

dσ
2πi

e−tσ

σ
¼ 1;

ð3:14Þ

and performing the trivial t integration, we finally obtain3

3Had we introduced terms with subleading powers of
1=ðmþ αÞn>1 in Eq. (3.8), these can be immediately seen to induce
onlyOðsÞ effect in the right hand side of Eq. (3.15). For example, for
the next nontrivial term −ð1þ 3σÞ=½ð1 − σÞ3ðmþ αÞ3, we get an
extra term in the right-hand side of Eq. (3.15) of the form
½1 − ð1þ 2sÞΓð2þ sÞ�ζð2sþ 3; 1þ αÞ=180, which is obviously
∼s at small s. These are thus irrelevant for the calculation of the first
derivative of Zðs; αÞ.
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ΓðsÞZðs;αÞ ¼ ζ0ð2s; 1þ αÞ þ 2ζ0ð2s − 1; 1þ αÞ

þ 1

6
Γð1þ sÞζð2sþ 1; 1þ αÞ

− ζð2s; 1þ αÞ lnð2πÞ þ 1

2

�
γE −

1

s

�

× ½ζð2s; 1þ αÞ þ 2ζð2s − 1; 1þ αÞ�
þ 2χðs;αÞ þOðsÞ; ð3:15Þ

making use of the definition (3.1). Here, we introduced a
function

χðs;αÞ ¼
X∞
m¼1

ðmþ αÞ−2s lnΓð1þmþ αÞ

−
1

12
ζð2sþ 1; 1þ αÞ; ð3:16Þ

which is finite for s ¼ 0, but not each of them separately. We
will not perform any further reduction of this result since the
current formwill be used for simplification of the Bessel zeta
function, which we are turning to in the following section. In
fact, we can find a simple form for the function χ for s ¼ 0,

χð0; αÞ ¼ 1

12
ψð1þ αÞ − 1

2

�
1

2
þ α

�
lnð2πÞ − ζð−1; 1þ αÞ

− ζ0ð−1; 1þ αÞ − 1

2
ζ0ð0; 1þ αÞ

þ i
Z

∞

0

dt
e2πt − 1

ln
Γð1þ αþ itÞ
Γð1þ α − itÞ ; ð3:17Þ

where we have used Lerch’s formula ζ0ð0; αÞ ¼
lnΓðαÞ= ffiffiffiffiffiffi

2π
p

.

IV. ONE-VORTEX DETERMINANT

Now we are in a position to address to the main object
of the present paper. A key observation for an amenable
calculation of the Bessel zeta functions (2.16) is to deal
with the Bessel function per se rather than its zeros. This
can be accomplished by making use of the infinite product
representation [28]

JνðσÞ ¼
ðσ=2Þν
Γð1þ νÞ

Y∞
n¼1

�
1 −

σ2

j2ν;n

�
; ð4:1Þ

and then following up the same routine as in the previous
section.

A. Single Bessel zeta

Taking advantage of Eq. (4.1) allows one to find a
concise form of the resolvent. Let us start with Z1, which
reads

Z1ðs; αÞ ¼
Z
Cþ

dσ
2πi

σ−sR1ðσ; αÞ ð4:2Þ

and the potential derived from the resolvent being

R1ðσ;αÞ ¼ −U 0
1ðσ; αÞ; U1ðσ;αÞ ¼ − ln

IαðR
ffiffiffiffiffiffi
−σ

p Þ
ð−σÞα=2 :

ð4:3Þ

Here, we passed to the function of imaginary argument for
better convergence, IνðσÞ ¼ i−νJνðiσÞ. As in the previous
section, making use of Eq. (3.11) and moving the integra-
tion contour to the left of the imaginary axis, we find

ΓðsÞZ1ðs; αÞ ¼ U1ð0;αÞ − s
Z

1

0

dtts−1

×
Z
C−

dσ
2πi

e−tσ

σ
U1ðσ; αÞ þOðsÞ; ð4:4Þ

with

U1ð0; αÞ ¼ ln
2αΓð1þ αÞ

Rα : ð4:5Þ

The remaining integral is found again by studying the
large-jσj asymptotics of the integrand,

U1ðσ; αÞ ¼
1

2

�
αþ 1

2

�
lnð−σÞ þ 1

2
lnð2πRÞ þ � � � ; ð4:6Þ

such that by means of the results (3.14), we finally derive

ΓðsÞZ1ðs; αÞ ¼ −
1

2

�
αþ 1

2

��
2 lnR − γE þ

1

s

�

þ ln
2α−1=2Γð1þ αÞffiffiffi

π
p þOðsÞ; ð4:7Þ

with the first derivative being [27,36]

Z0
1ð0; αÞ ¼ −

�
αþ 1

2

�
lnRþ ln

2α−1=2Γð1þ αÞffiffiffi
π

p : ð4:8Þ

This is a simple manifestation of the Gelfand-Yaglom
theorem [37] for the determinant of a one-dimensional
Laplacian with conical singularity.

B. Double Bessel zeta

Last but not least, we move on to the two-dimensional
Bessel zeta function. We follow to the letter the step-by-
step procedure advocated in Sec. III such that all symbols
used there in generic expressions have to be merely dressed
with the label 2. The resolvent is traded
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R2ðσ; mþ αÞ ¼ −U 0
2ðσ; mþ αÞ; ð4:9Þ

for a potential

U2ðσ; mþ αÞ ¼ − ln
Y∞
n¼1

�
1 −

ðmþ αÞ2R2σ

j2mþα;n

�

¼ − ln Imþαððmþ αÞR ffiffiffiffiffiffi
−σ

p Þ

þ ðmþ αÞ ln ðmþ αÞR ffiffiffiffiffiffi
−σ

p
2

− lnΓð1þmþ αÞ: ð4:10Þ

Splitting it as in Eq. (3.8), the W2 function accompanying
the (mþ α) pole is extracted from the uniform expansion of
the Bessel function [38]

W2ðσÞ ¼ −U1ðR
ffiffiffiffiffiffi
−σ

p Þ;

U1ðzÞ ¼
1

8
ð1þ z2Þ−1=2 − 5

24
ð1þ z2Þ−3=2; ð4:11Þ

with the integral of this being

Z
Cþ

dσ
2πi

σ−s−1W2ðσÞ ¼ −
Γðsþ 1

2
Þ

12ΓðsÞΓð1
2
Þ
�
1

s
þ 5

�
R2s:

ð4:12Þ

The shift of the integration contour, as in Eq. (3.12), allows
one to pick the contribution at σ ¼ 0,

V2ð0; mþ αÞ ¼ −
1

12ðmþ αÞ ; ð4:13Þ

and evaluate the rest in the large-jσj asymptotic domain,

V2ðσ; mþ αÞ ¼ 1

2

�
mþ αþ 1

2

�
lnð−σÞ

þ
�
mþ αþ 1

2

�
lnððmþ αÞRÞ

− ln
2mþα−1=2Γð1þmþ αÞffiffiffi

π
p þ…:

ð4:14Þ

The remaining steps are identical to the ones in the previous
section and we ultimately find

ΓðsÞZ2ðs; αÞ ¼ ζ0ð2s − 1; 1þ αÞ þ 1

2
ζ0ð2s; 1þ αÞ

þ 1

2

�
γE −

1

s
− 2 ln

R
2

�
ζð2s − 1; 1þ αÞ

þ 1

4

�
γE −

1

s
− 2 lnð2πRÞ

�
ζð2s; 1þ αÞ

þ Γðsþ 1
2
Þ

12Γð1
2
Þ ð1þ 5sÞζð2sþ 1; 1þ αÞR2s

þ χðs; αÞ þOðsÞ: ð4:15Þ

Notice the appearance of the very same function (3.16),
which allows us to eliminate it in favor of a concise
representation for the Barnes double zeta function (3.3).
This concludes all the necessary calculations required for
evaluation of the determinant.

V. DISCUSSION

Calculation of the first derivative at s ¼ 0 of the deduced
one- and two-dimensional Bessel zeta functions provides
the result for the vacuum expectation value of the scalar
twist operator,

hVs
αi ¼ csαR−hsα ; ð5:1Þ

where hsα ¼ αð1 − αÞ is the well-known conformal dimen-
sion of the twist field [1] and the normalization constant is

csα ¼ 2αð1−αÞΓð1þ αÞ exp
�
χð0; αÞ þ χð0;−αÞ − 2χð0; 0Þ

−
1

12
½ψð1 − αÞ þ ψð1þ αÞ þ 2γE�

�
: ð5:2Þ

In this derivation, we reduced ζð−n; αÞ for negative integer
values s ¼ −n to the Bernoulli polynomials ζð−n; αÞ ¼
−Bnþ1ðαÞ=ðnþ 1Þ with the first two being B1ðαÞ ¼ α − 1

2
,

B2ðαÞ ¼ α2 − αþ 1
2
, see, e.g., [30].

In a similar fashion, one can compute the one-point
function of the fermion twist operator by inserting the
fermion U(1) current jμ ¼ ψ̄σμψ in Eq. (2.1). This time the
determinant of the Dirac operator has to be evaluated with
spectral boundary conditions as was advocated in Ref. [14],
and it reads

hVf
αi ¼

det=D
det=∂

¼ −Z0
2ð0; αÞ − Z0

2ð0;−αÞ þ 2Z0
2ð0; 0Þ ¼ cfαR−hfα ;

ð5:3Þ

with the conformal dimension hfα ¼ α2 [1–3] and the
normalization being
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cfα ¼ 2α
2

exp

�
−χð0;αÞ − χð0;−αÞ þ 2χð0; 0Þ

þ 1

12
½ψð1 − αÞ þ ψð1þ αÞ þ 2γE�

�
: ð5:4Þ

The technique presented in the main body of the paper
can be used as a stepping stone for consideration of higher
point functions; in particular, it is feasible to apply it to
two-point correlations. However, for three points and
beyond, a more efficient framework would be to use

the Burghelea-Friedlander-Kappeler gluing formula [39]
for determinants on surfaces with conical singularities, as
was recently discussed in Ref. [40]. Here, the vacuum
expectation value found above becomes an intrinsic
building block.
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