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We consider N ¼ 2 four dimensional field theories compactified on a two torus in the presence of a
Uð1Þ magnetic field. We discuss the restrictions leading to theories with (2,2) supersymmetry or (0,2)
supersymmetry in two dimensions. The field theories live on D5 branes wrapped on four cycles of
Calabi-Yau 3-folds or 4-folds described as resolved ADE singularities or resolved conifold fibered over
a two torus.
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I. INTRODUCTION

Recently there has been a substantial amount of interest
dedicated to study various aspects of two dimensional (0,2)
theories living on branes. The first such brane configura-
tions were introduced about 20 years ago [1] as either D1
branes at singularities or brane boxes. The recent develop-
ments involve using brane tilings and orbifold reductions
from D3 probing Calabi-Yau 3-folds to D1 probing Calabi-
Yau 4-folds [2], compactifying F-theory on Calabi-Yau
5-folds [3], or reducing N ¼ 1 four dimensional theories
on Riemann surfaces [4]. Some important properties like
(0,2) trialities have been discovered and their connection to
N ¼ 1 four dimensional theories opened the gate to
exciting developments [5]. Other interesting (0,2) theories
in two dimensions were constructed as AdS3 solutions of
M theory and type IIB supergravity [6].
A different approach was initiated by Kutasov and Lin in

[7,8] with D4 branes stretched between orthogonal NS
branes. The field theory on D4 branes is N ¼ 1 in four
dimensions which is further compactified on a two torus to
get a two dimensional (2,2) theory. The supersymmetry can
be broken by either turning on a D-term or a magnetic flux
on the two torus. When both are considered and the D-term
is equal to the magnetic flux, the supersymmetry is partially
preserved and one gets a two dimensional (0,2) theories.
The value of the D-term and the magnetic field can be read
from the various rotations of the D4 branes.
The T-dual picture of the Kutasov-Lin results was

considered in [9] based on the T-duality between brane
configurations with D4 branes stretched between orthogo-
nal NS branes and D5 branes wrapped on 2-cycles of
resolved conifold configurations [10].
A nonzero D-term corresponds to rigid P1 cycles [11].

To obtain two dimensional theories the D5 branes are
wrapped on four cycles which are P1 fibers over the two
torus. The equality between the D-term and the magnetic

field appears when imposing the covariant spinor condition
on the wrapped D5 branes.
In this work we go one step further and consider a larger

class of two dimensional (0,2) theories arising from 2-torus
compactification of N ¼ 2 four dimensional theories with
non-zero magnetic field and non zero D term. The four
dimensional field theories live on D5 branes wrapped on
resolution cycles of ALE spaces. If the D-term and the
magnetic field are equal, we show that the two dimensional
SUSY is broken from (4,4) to (2,2). Adding a super-
potential as a polynomial in the chiral adjoint field breaks
N ¼ 2 toN ¼ 1 in four dimensions and we see that the two
dimensional supersymmetry is broken from (2,2) to (0,2).
There are various aspects covered in this work:
(1) In Sec. II we consider the asymptotically locally

Euclidean (ALE) spaces and their resolutions fibered
over a two torus. For A1 singularity and its reso-
lutions, one interesting observation is that the
patches covering the resolution P1 are square root
fiber bundles and this restricts the model to tensor
products of even degree. In the present work we only
consider models with fibers of degree zero when the
fiber group becomes the zero Picard group which is a
dual torus. This has four 2-torsion points and each 2-
torsion point gives rise to a different (0,2) theory.

(2) In Sec. III we consider the existence of covariant
spinors on the wrapped D5 branes on four cycles of
Calabi-Yau 3-folds and 4-folds. The supersymmetry
preservation implies a geometric equality between the
magnetic flux and D-term, also involving the NS flux
through the P1 cycle and the area of the two torus.

(3) In Sec. IV we discuss how the multiplets of the four
dimensional N ¼ 2 theory reduce to multiplets of a
(2,2) supersymmetric theory in two dimensions when
compactified on a two torus. In the presence of
nonzero D-terms and magnetic flux the supersym-
metry is partially broken to (2,2) in two dimensions.
The N ¼ 2 supersymmetry in four dimensions is
broken to N ¼ 1 by adding a superpotential for the*rtatar@liverpool.ac.uk
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chiral adjoint field.When reducing to two dimensions
on a two torus with magnetic flux, the superpotential
breaks (2,2) supersymmetry to (0,2) supersymmetry.

(4) In Sec. V we consider the deformations of brane
configurations which map a (4,4) two dimensional
theory into a (0,2) two dimensional theory. The (4,4)
two dimensional theory lives on D4 branes sus-
pended between parallel NS branes. By rotating the
D4 branes one reaches the (2,2) supersymmetric
theory and a further rotation of the NS branes
provide the (0,2) theory.

This work is a first step toward building a large set of
(0,2) two dimensional theories. There are many results in
[10] which can be reconsidered after compactification on a
two torus.

II. CALABI-YAU MANIFOLDS AS FIBRATIONS
OVER T2

We start by describing the Calabi-Yau 3-folds and
4-folds as fibration of singular spaces and their resolutions
over a two torus.

A. Calabi-Yau threefolds

In this subsection we consider the case of Calabi-Yau
3-folds as ALE spaces and their resolutions fibered over a
two torus. One important aspect is the appearance of square
root line bundles which require a careful treatment of
2-torsion line bundles.
Consider the A1 singularity in C3, i.e., the space C2=Z2.

This can be embedded in C3ðx0; x1; x2Þ as a hypersurface

A∶ x0x1 − x22 ¼ 0 ð1Þ

which has a singularity at the origin. To smooth it out we
blow up C3 at the origin by replacing (0,0,0) with an
exceptional divisor P2. When we follow a path in the
hypersurface A toward the origin, we land on the excep-
tional P2 in the blow-up which provides a set ½X0; X1; X2�
on P2 related by the quartic X0X1 − X2

2 ¼ 0, which is
isomorphic to a P1 resolution cycle.
The resolution P1 cycle can be wrapped by D5 branes to

provide an N ¼ 2 SUSY theory in four dimensions.
The normal bundle to P1 in the resolved space is
Oð−2Þ ⊕ Oð0Þ. The Oð0Þ coordinate is denoted as X
and the Oð−2Þ part can be understood as following: the
P1 is covered by two affine pieces, one with X1 ≠ 0
parametrized by ξ ¼ X0=X2 and one with X0 ≠ 0 para-
metrized by η ¼ X1=X2. The gluing between the two pieces
is given by

η ¼ ξ−1; X0 ¼ X1ξ
2: ð2Þ

When C2=Z2 is fibered over a two torus the complex
coordinates ofC3ðx0; x1; x2Þ are promoted to being sections

of line bundles L0, L1, L2 over the torus and the local
Calabi-Yau threefold is given by relation (1) in the four
dimensional complex variety L0 ⊕ L1 ⊕ L2 → T2. The
line bundles obey L0 ⊗ L1 ¼ L2 ⊗ L2.
We now consider the resolution of the C2=Z2 singularity

as the fiber in a Calabi Yau 3-fold. The coordinates x0, x1,
x2 are replaced by X0, X1, X2 and we use the same notation
for their interpretations as line bundles: L0, L1, L2. The
affine coordinates of the two coordinates patches of the P1

fibers η and ξ given in (2) are sections of the line bundle L
satisfying the condition L0 ⊗ L−1

1 ¼ L ⊗ L for ξ and L1 ⊗
L−1
0 ¼ L ⊗ L for η. In general a line bundle has a nonzero

degree which is the number of zeroes minus the number of
poles in any holomorphic section. For simplicity, in the
current work we limit to the case of zero degree. If we
consider the complex surface S obtained by fibering P1

over T2, for zero degree line bundle the volume of S is
given by the product of the volume of the P1 fiber and the
area of the T2 base.
A formula like L0 ⊗ L−1

1 ¼ L ⊗ L implies that the line
bundle L is the square root of the tensor product of line
bundles L0 ⊗ L−1

1 . If it exists, the square root line bundle is
not unique in general and two square root line bundles
differ by a 2-torsion line bundle.
We briefly remind what the 2-torsion point of a two torus

are. The 2-torus is the quotient T2 ¼ C=Λ obtained by
dividing the complex plane by a lattice Λ ¼ Z2. The torus
admits the involution x → −x and for every y also admits
the involution x → 2y − x, which fixes y. The question is
for which y the combined result of the involutions takes x
into x. This would mean that 2y − x ¼ −x or 2y ¼ 0. This
is the definition of 2-torsion points on the torus and there
are 4 such points for a two torus.
The Picard group is the group of holomorphic line

bundles. In case of line bundles of zero degree, one deals
with the zero Picard group Pic0ðT2Þ which is a dual torus
and has four 2-torsion points. The 2-torsion condition is
written as ~L ⊗ ~L ¼ E where is E is a trivial bundle. So
once the product L0 ⊗ L−1

1 is defined as L ⊗ L, there are 4
different values for L ⊗ ~L which cannot be distinguish
when considering L ⊗ L.
The A1 discussion can be generalised to any A-D-E

singularity which can be blown up to a smooth space where
the singular point is replaced by a collection of rational
curves P1

i . For an A, D, E group of rank n, there is a
collection of n P1 cycles, each having an Oð−2Þ fiber
bundle. The total space of the normal bundle over the ith
P1
i is

ηi ¼ ξ−1i ; X0i ¼ X1iξ
2
i ; i ¼ 1;…; n: ð3Þ

The D5 branes are wrapped on n complex surfaces Si
obtained by fibering the n various P1

i over T2. In case we
have line bundles of degree 0, the volumes of each Si is the
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product of the volume of the P1
i fiber and the volume of the

T2 base.
X0i corresponds to a line bundle L0i, X1i to a line bundle

L1i and ξi to a line bundle Li. The consistency condition
requires that for each P1

i

L0i ⊗ L−1
1i ¼ Li ⊗ Li: ð4Þ

Each Li comes with its own 2-torsion point in the
dual torus.

B. Calabi-Yau fourfolds

The Calabi-Yau fourfolds as resolved/deformed conifold
singularities fibered over T2 were considered in [9,12].
The Calabi-Yau fourfolds are obtained by fibering

conifold type geometries x0x1 ¼ x2x3 over two tori. The
xi, i ¼ 0, 1, 2, 3 become line bundles Li, i ¼ 0, 1, 2, 3
satisfying the condition

L0 ⊗ L1 ¼ L2 ⊗ L3: ð5Þ

The conifold singularity is resolved by replacing the
origin with a P1

i with homogeneous coordinates u, v such
that x0u ¼ x2v and the affine coordinates of the two
patches of the P1

i fiber are z ¼ u=v, w ¼ v=u. They are
sections of L0 ⊗ L−1

2 and L2 ⊗ L−1
0 respectively.

When deforming the Calabi-Yau threefolds into Calabi-
Yau fourfolds, we need to also consider the change in the
Eq. (2). The simplest deformation of the fiber is

X0 ¼ X1ξ
2 þ Xξ; ð6Þ

where X is the coordinate of the Oð0Þ part of the normal
bundle inside the Calabi-Yau threefold. We see that the
consistency condition requires

L0 ⊗ L−1
1 ¼ L ⊗ L ð7Þ

and

L0 ¼ LX ⊗ L: ð8Þ

We see that line bundle over X can be written in terms of
L0, L1, L so it depends on the choice of the 2-torsion point
inherited form the Calabi-Yau threefold. It would be
interesting to see the dependence of the two dimensional
field theories on the choice of the 2-torsion point.

III. FIELD THEORY ON WRAPPED D5 BRANES

A. D5 branes wrapped on 2-cycles of
Calabi-Yau 2-folds

We start with D5 branes wrapped on 2-cycles of SU(2)
holonomy manifolds. The sizes of the 2-cycles are non-
vanishing due to either having a nonzero NS field or a real

Kahler modulus. In reality there exists a three dimensional
space of deformations of the ALE metric for each of the P1

cycles:
(i) a complex parameter α corresponding to integral of

the holomorphic 2-form over the P1.
(ii) a real parameter j corresponding to the integral of

Kahler form on the P1.
Together with the integral of the NS field BNS on P1,

bNS ¼
R
P1 BNS, we get a 5 parameter family of deforma-

tions and the stringy volume is ðj2 þ b2NS þ jαj2Þ1=2. In
terms of the field theory parameters, α corresponds to a
field theory F-term and r to a field theory D-term. In the
current work we limit to the discussion of SUSY breaking
when turning on D-terms so we set α ¼ 0 and the volumes
becomes ðj2 þ b2NSÞ1=2.
The two important limits of ðj2 þ b2NSÞ1=2 are j ¼ 0

which corresponds to a fractional D3 brane and bNS ¼ 0
which corresponds to D5 branes wrapping rigid 2-cycles.
The two solutions can be interpolated by uplifting to M
theory and performing boosts [13]. The boost along t and
x11 direction is

t → cosh βt − sin βx11; x11 → − sinh βt cos βz11: ð9Þ

The boost parameter β, the NS field BNS, the Kahler
volume J and the dilaton are related as

BNS ¼ sinh βe−2ΦJ: ð10Þ

TheN ¼ 1 interpolating solution between rigid branes and
fractional branes of [13] has been generalized to N ¼ 2
models in [14]. For a constant dilaton Φ ¼ Φ0, (10) can be
integrated over P1 and implies

b ¼ sinh βe−2Φ0j: ð11Þ
The calibration conditions do not change if we turn on
magnetic flux or NS flux. For D5 branes wrapping a
2-cycle inside an SUð2Þ holonomy manifold with no
magnetic or NS flux, the solution corresponds to the usual
calibration condition of a 2-cycle in a K3 manifold given
by the condition

ðJ;ReðΩÞ; ImðΩÞ ¼ ðcos θ; sin θ cosϕ; sin θ sinϕÞvolP1

ð12Þ
where θ and ϕ are constant angles along the two-cycle. We
can add to J two types of antisymmetric tensors in two
dimensions, one is the magnetic fluxM and the other is the
NS field. As discussed in [15], the antisymmetric tensors do
not change the calibrations conditions and the supersym-
metry is preserved. The only difference is that instead of
J ¼ cos θvolP1 , we would have J þ iBNS ¼ eiθvolP1 and
J tan θ ¼ BNS such that the coupling constant of the field
theory on the wrapped D5 branes is

FROM N ¼ 2 SUPERSYMMETRY IN FOUR … PHYSICAL REVIEW D 96, 066022 (2017)

066022-3



j cos θ þ b sin θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ b2

q
: ð13Þ

As θ is related to the boosting parameter β, we also see that
for D5 branes wrapping two P1 cycles with values b1, b2
for

R
P1
i
BNS and j1, j2 for

R
P1 J, the two cycles should be

calibrated such that

b1
j1

¼ b1
j1

; ð14Þ

otherwise the supersymmetry is fully broken.

B. D5 branes wrapped on 4-cycles of
Calabi-Yau 3-folds

We now want to consider the case when the supersym-
metry is preserved in the presence of both NS flux BNS and
magnetic fluxM. To do this we consider a four cycle S as a
nontrivial P1 fibration over T2. The condition of preserving
supersymmetry when D5 branes wrap four-cycles is

ðJP1 þ iBNSÞðAT2 þ iMÞ ¼ eiθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgþMjp

ffiffiffiffiffijgjp volS ð15Þ

where volS is the volume of the four cycle.
This relation can be split into a real part

JP1AT2 − BNSM ¼ cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgþMjp
ffiffiffiffiffijgjp volS ð16Þ

and an imaginary part

JP1M þ BNSAT2 ¼ sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgþMjp
ffiffiffiffiffijgjp volS: ð17Þ

When the magnetic flux and the NS flux BNS are set to zero,
the Eqs. (16)–(17) are satisfied for θ ¼ 0 which reduces to
the original condition that the four cycle is holomorphic

JP1AT2 ¼ volS: ð18Þ

We see that the Eq. (16) is also satisfied when JP1AT2 ¼
BNSM for θ ¼ π

2
. This is the geometric version of the

equality between the D-term and the magnetic flux which
first appeared in [7].
Our result is that the four cycle S is holomorphic when

JP1AT2 ¼ BNSM. This is the geometrical relation between
the rigidity parameter JP1 for the P1 cycle and the magnetic
flux M through T2 and is the equivalent of the equality
between the D term and the magnetic flux in field theory,
considered in the next section.

C. D5 branes wrapped on 4-cycles of
Calabi-Yau four-folds

As we aim to describe supersymmetric theories with
(0,2) supersymmetry in 2 dimensions, we consider wrap-
ping D5 branes on 4-cycles of Calabi-Yau fourfolds. We
consider the Calabi-Yau fourfolds as resolved conifold
geometries fibered over a two torus.
Fortunately the result of the previous subsections and the

ones of [9] allow us to directly build these geometries. We
turn on a magnetic fluxM and make the P1 cycle rigid such
that JP1AT2 ¼ BNSM which ensures (2,2) supersymmetry
in two dimensions. The second step is to change the P1

normal bundle from Oð0Þ ⊕ Oð−2Þ to Oð−1Þ ⊕ Oð−1Þ
without changing the JP1AT2 ¼ BNSM relation which
ensures the preservation of (0,2) supersymmetry.
The setup can be made more complicated if the processes

of modifying the normal bundle to P1, turning on the
magnetic flux and making the cycle rigid are all done at the
same time. We plan to consider this more general consid-
eration in a future publication.

IV. FIELD THEORY: FROM N = 2,
d = 4 TO (0,2), d = 2

A. N = 2, d = 4 theory

1. Theory without flavors

Consider an N ¼ 2, d ¼ 4 theory with a gauge group
SUðNcÞ and no flavors. An N ¼ 2 vector multiplet
consists of an N ¼ 1 vector multiplet ðλ; AμÞ and an
N ¼ 1 chiral multiplet ðϕ;ψÞ in the adjoint representation
of the group SUðNCÞ. We denote the N ¼ 1 chiral
multiplet by Φ. The two supersymmetry transformations
are

(i) the first SUSY transformation acts inside theN ¼ 1
vector or chiral multiplets and relates λ to Aμ and ϕ
to ψ respectively.

(ii) the second SUSY transformation is obtained by
rotating the fermions λ and ψ into each other

λ → iψ ; ψ → −iλ ð19Þ

2. Theory with flavors

We now add flavor fields as N ¼ 2 hypermultiplets. An
N ¼ 2 hypermultiplet consists of an N ¼ 1 chiral multi-
plet ðQ;ϕQÞ and anN ¼ 1 antichiral multiplet ð ~Q†;ϕ†

~Q
Þ.Q

and ~Q† are in the same representation of the gauge group
which implies that Q and ~Q are in conjugate representation
of the gauge group. For hypermultiplets the two super-
symmetry transformations act as:

(i) the first SUSY transformation acts inside the two
N ¼ 1 chiral multiplets and connectsQwith ϕQ and
( ~Q† and ϕ†

~Q
) respectively.
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(ii) the second SUSY transformation is obtained by
rotating Q and ~Q† into each other.

For SUðNcÞ gauge group with Nf flavors in the
fundamental representation, Q and ~Q† are in the funda-
mental representation which implies that ~Q is in the
antifundamental representation. The coupling between
the matter fields and the N ¼ 2 vector multiplet is written
in the N ¼ 1 superspace as

R
d2θQΦ ~Q.

B. From N = 2, d = 4 to (2,2), d = 2

1. Equal magnetic flux and D term lead to (2,2), d = 2

We now want to discuss the breaking of supersymmetry
to (2,2) in two dimensions. To do this we apply a similar
procedure to the one in [7] but when the starting point is an
N ¼ 2, d ¼ 4 theory instead of N ¼ 1, d ¼ 4 theory. We
consider that the flavors are charged with respect to an
external Uð1Þ group. The fields Q and ~Q† have the same
charge under the Uð1Þ group which implies that the fields
Q and ~Q have opposite charges. The current supermultip-
lets of the N ¼ 2, d ¼ 4 theory are coupled to an external
N ¼ 2, d ¼ 4 vector multiplet with the fermion content λ
and ψ .
Consider that the four dimensional theory lives in the

ðx0; x1; x2; x3Þ space and the directions ðx1; x2Þ are com-
pactified on a two torus. We chose the expectation value of
the magnetic field through the torus to be F12 ¼ M which
breaks both supersymmetries

δξλ ¼ Fμνσ
μνξ; δξ0ψ ¼ −iFμνσ

μνξ0 ð20Þ
The second equation arises from the map λ → iψ and

ψ → −iλ when interchanging the two SUSY transforma-
tions generated by ξ and ξ0.
To preserve supersymmetry, we turn on a nonzero D field

for the external Uð1Þ group and we encounter the super
Bogomol’nyi limit of the model treated in [16]. They
considered N ¼ 1, d ¼ 4 supersymmetric QED theory
with three chiral superfields Φ0;Φþ;Φ− with charges 0,
1, −1. In our case the field Q has positive charge and takes
the place of Φþ, ~Q has negative charge and takes the place
of Φ− whereas the N ¼ 1 chiral multiplet component of
the N ¼ 2 vector multiplet is uncharged and replaces Φ0.
The transformations of λ and ψ0 components of the

N ¼ 1 gauge multiplet and the N ¼ 1 neutral chiral
multiplet are [16]

δξλ ¼ ðFμνσ
μν þ iDÞξ ð21Þ

and

δξ0ψ0 ¼ ð−iFμνσ
μν −DÞξ0: ð22Þ

D field is related to the charged scalar fields due to the
presence of the terms D2 þDϕ†Tϕ in the Lagrangian
which gives D ¼ jϕþj2 − jϕ−j2.

Consider now the resulting two dimensional spacetime
of the form R1;1 × T2 with R1;1 spanned by ðx0; x3Þ and T2

described by the coordinates ðx1; x2Þ. The magnetic flux
has zero components only through the 2-torus, F12 ¼ B.
The 4-dimensional spinors ξ and ξ0 are doublets ðξ−; ξþÞ;
ðξ0−; ξ0þÞ of right and left R1;1 spinors. The 2-dimensional
supersymmetry is (4,4) and the possible partially broken
supersymmetry could be (4,0), (0,4), or (2,2) supersym-
metry in two dimensions. To see which one is actually
obtained, we first consider the choiceD ¼ Bwhich implies
that the theory preserves (0,2) SUSY coming from ξ and
(2,0) SUSY coming from ξ0, they combine to provide
a (2,2) SUSY. For the case D ¼ −B the theory preserves
(2,0) SUSY coming from ξ and (0,2) SUSY coming from ξ0
which combine to provide a (2,2) SUSY. We conclude that
for D ¼ �B, the two supersymmetries are partially broken
and we remain with (2,2) supersymmetry in two dimen-
sions. It is not clear how to obtain (0,4) or (4,0) models (see
[17,18] for considerations of such examples).

2. Fields in the (2,2), d = 2 theory

We now discuss the surviving fields and superpotential
in the (2,2), d ¼ 2 theory. The starting point is a (4,4) two
dimensional theory which is obtained by reducing a four
dimensional N ¼ 2 theory on a torus. The N ¼ 2 theory
has N ¼ 2 vector multiplets and N ¼ 2 hypermultiplets.
When reduced to the (4,4) two dimensional theory, the four
dimensional vector multiplet decomposes into a (2,2),
d ¼ 2 chiral multiplet denoted by Φ and a twisted chiral
mutiplet λ. The four dimensional chiral multiplet decom-
poses into two (2,2) chiral multiplets Q and ~Q in conjugate
representations of the gauge group.
There is also a superpotential ~QΦQ integrated over the

(2,2) superspace θ1;þθ1;−. We can write the (2,2) multiplets
in terms of (0,2) components

Q ¼ Qð0;2Þ þ
ffiffiffi
2

p
θ−Λð0;2Þ

Q − iθ−θ̄−ðD0 −D3ÞQð0;2Þ; ð23Þ

~Q ¼ ~Qð0;2Þ þ
ffiffiffi
2

p
θ− ~Λð0;2Þ

~Q
− iθ−θ̄−ðD0 −D3Þ ~Qð0;2Þ; ð24Þ

Φ ¼ Φð0;2Þ þ
ffiffiffi
2

p
θ−Λ0;2

Φ − iθþθ̄þðD0 þD3ÞΦð0;2Þ; ð25Þ

where Qð0;2Þ, ~Qð0;2Þ and Φð0;2Þ are (0,2) chiral superfields

and Λð0;2Þ
Q ; ~Λð0;2Þ

~Q
and Λ0;2

Φ;þ are the corresponding (0,2)

Fermi superfields. The (0,2) superfields have themselves
expansions as

Qð0;2Þ ¼ qþ
ffiffiffi
2

p
θþψþ − iθþθ̄þðD0 þD3Þq; ð26Þ

~Qð0;2Þ ¼ ~qþ
ffiffiffi
2

p
θþ ~ψþ − iθþθ̄þðD0 þD3Þ ~q; ð27Þ

Φð0;2Þ ¼ ϕþ
ffiffiffi
2

p
θþψϕ;þ − iθþθ̄þðD0 þD3Þϕ; ð28Þ

and similar ones for the Fermi superfields.
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We now discuss what happens when the (4,4), d ¼ 2
SUSY is broken to (2,2), d ¼ 2 due to the combined effect
of turning on a magnetic field and a D term. To do this we
need to consider the effect on the N ¼ 2 hypermultiplet.
This contains an N ¼ 1 chiral multiplet with scalar
component Q and an N ¼ 1 antichiral multiplet with
scalar component ~Q†. Both Q and ~Q† transform in the
same representation of the gauge group. If we turn on an
extra Uð1Þ gauge group, Q and ~Q† are required to have the
same charge e which means that ~Q has charge −e. The
vector multiplet for the original gauge group is not charged
under the extra Uð1Þ so the superpotential ~QΦQ has zero
charge, as it should.
We now identify the massless fields present in the two

dimensional (2,2) theory after the first step of SUSY
breaking, when the contributions of the magnetic field
and the D-term are taken into account. As in [7], we
consider a free complex scalar charged under a Uð1Þ gauge
field which is represented by a background gauge field
A2 ¼ Bx1. The Klein-Gordon equation for ϕ corresponds
to the Landau problem for a particle in magnetic field with a
mass spectrum

m2
n ¼ ð2nþ 1ÞjeBj; ð29Þ

which can be made zero by turning on the D component of
the vector multiplet, leading to the mass spectrum

m2
n ¼ ð2nþ 1ÞjeBj − eD: ð30Þ

For B > 0 we see that the fields with positive charge e > 0
give rise to massless two dimensional scalars whereas the
ones with negative charge e < 0 do not. Nevertheless, there
are also spin 1=2 field with a spectrum [7]

m2þ ¼ ð2nþ 1ÞjeBj − eB; m2
− ¼ ð2nþ 1ÞjeBj þ eB:

ð31Þ

We see that the right-moving fermions can be massless for
positive e and for B ¼ D they can be combined with the
corresponding massless scalars to give rise to (0,2) chiral
multiplets. Therefore the 4 dimensional fields Q reduce to
two dimensional (0,2) chiral multiplets denoted by Φe>0

Q

with an expansion

Φe>0
Q ¼ ϕe>0

Q;þ þ
ffiffiffi
2

p
θþψe>0

Q;þ − iθþθ̄þðD0 þD3Þϕe>0
Q ;

ð32Þ

where ϕe>0
Q is the massless complex scalar field and ψe>0

Q;þ is
the corresponding massless complex right-moving fermion.
Due to the absence of a massless two dimensional scalar

from the spectrum for negative magnetic charge, a four
dimensional fields ~Q with negative magnetic charge

reduces to a two dimensional (0,2) Fermi superfields with
the following expansion:

Λe>0
~Q

¼ ψe>0
~Q

−
ffiffiffi
2

p
θþFe>0 − iθþθ̄þðD0 þD3Þψe>0

~Q

−
ffiffiffi
2

p
θ̄þEe>0 ð33Þ

where E is a chiral superfield which is combination of other
chiral superfields in the theory. The fields Φe>0

Q and Λe>0
~Q

combine into a (2,2) chiral multiplet.
The chiral multiplet inside the N ¼ 2, d ¼ 4 vector

multiplet is not charged under the magnetic field and will
be a full (2,2) two dimensional chiral multiplet with the
following θ− expansion

Φ2;2 ¼ ΦΦ þ
ffiffiffi
2

p
θ−ΛΦ − iθþθ̄þðD0 −D3ÞΦΦ ð34Þ

where ΦΦ is a (0,2) chiral superfield and ΛΦ is a (0,2)
Fermi superfield.
TheN ¼ 2, d ¼ 4 theory with Nf flavors has a SUðNfÞ

flavor symmetry and a Uð1ÞR × SUð2ÞR R-symmetry. The
N ¼ 1, Q components of the N ¼ 2 hypermultiplet trans-
form in the fundamental representation of SUðNfÞ and the

N ¼ 1, ~Q components in the antifundamental representa-
tion of SUðNfÞ. We chose the supersymmetry breaking
magnetic field to represent a Uð1Þ group inside SUðNÞf.
The Uð1Þ charges for the N ¼ 1 components of the i-th
N ¼ 2 hypermultiplet are related by ei ¼ −~ei where ei is
the charge of Qi and ~ei the charge of ~Qi. The global
symmetry would then be an SUðNfÞ acting on the Q fields

times an SUðNfÞ acting on the ~Q fields.
But this is not the full story. As discussed in [7], the

anomaly freedom constraints for a global Uð1Þ orthogonal
to the gauge group require an extra condition on ei and ~ei:

X
i

ei ¼
X
i

~ei ¼ 0 ð35Þ

and we use the same choice as in [7] to take Nf=2 of the ei
and Nf=2 of the ~ei to be þ1 and the rest to be −1. The
global symmetry is in general broken to SUðNf=2Þ4 ×
Uð1Þ but there is a superpotential inherited from theN ¼ 2
theory

Z
dθðQe¼1Φ ~Qe¼−1 þQe¼−1Φ ~Qe¼1Þ ð36Þ

which breaks the global symmetry from SUðNf=2Þ4 to

SUðNf=2Þ1 × SUðNf=2Þ2. The fields Qe¼1 and ~Qe¼−1

belong to the fundamental and antifundamental represen-
tations of SUðNf=2Þ1 whereas Qe¼−1 and ~Qe¼1 belong to
the fundamental and antifundamental representations of
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SUðNf=2Þ2. The fieldΦ is not charged under SUðNf=2Þ1×
SUðNf=2Þ2.
The θ− expansions for the reduction of the field Qe¼þ1

and Qe¼1 (or ~Qe¼þ1 and ~Qe¼1) are

Q2;2 ¼ ΦQ; ~Q2;2 ¼
ffiffiffi
2

p
θ−Λ ~Q; ð37Þ

due to the absence of the (0,2) Fermi superfield and (0,2)
chiral superfield respectively.
We can now see what is the reduction of the four

dimensional superpotential
R
d2θQΦ ~Q. In the (2,2) two

dimensional theory notations this would be

Z
dθþdθ−ΦQðΦΦ þ

ffiffiffi
2

p
θ−ΛΦÞ

ffiffiffi
2

p
θ−Λ ~Q: ð38Þ

The integration over θ− provide the superpotential

Z
dθþ

ffiffiffi
2

p
ΦQΦΦΛ ~Q þ : ð39Þ

The original N ¼ 2, d ¼ 4 theory has both Q and ~Q† in
the same representation of the gauge group. They also have
the same charge þ1 under the extra global Uð1Þ group. At
the same time, Q† and ~Q also have the same charge −1
under extra global Uð1Þ group. The previous argument
implies that, after the reduction to 2 dimensions, the field
Q† reduces to a (0,2) Fermi field ΛQ whereas ~Q† reduces to
a (0,2) chiral superfieldΦ ~Q. The fieldsΦQ and ΛQ together
form a (2,2) multiplet

Φð2;2Þ
Q ¼ ΦQ þ

ffiffiffi
2

p
ΛQ − iθ−θ̄−ðD0 −D3ÞΦQ; ð40Þ

and Φ ~Q and Λ ~Q also form a (2,2) multiplet

Φð2;2Þ
~Q

¼ Φ ~Q þ
ffiffiffi
2

p
Λ ~Q − iθ−θ̄−ðD0 −D3ÞΦ ~Q; ð41Þ

The conclusion is that our reduction of theN ¼ 2, d ¼ 4

theory on a T2 with magnetic flux gives rise to a (2,2)
supersymmetric theory in 2 dimensions with (2,2) matter

chiral multiplets Φð2;2Þ
Q and Φð2;2Þ

~Q
.

The coupling between the matter fields and the gauge
fields is represented by a (0,2) superpotential. In [7] a
superpotential of interest for a collection of Λa ¼ ϕ− −ffiffiffi
2

p
θþF Fermi superfields and Φi ¼ ϕi þ

ffiffiffi
2

p
θþψþ chiral

superfields was

Z
d2xdθþΛaJaðΦiÞ ¼

Z
d2x

�
FaJa þ ψ−aψþi

∂Ja
∂ϕi

�

ð42Þ

where Ja are holomorphic functions of the chiral super-
fields Φi. In our case the superpotential inherited from the

N ¼ 2, d ¼ 4 theory couples one Fermi superfield Λ ~Q and
two chiral superfields ΦΦ and ΦQ of the form:

Z
d2xdθþΛ ~QΦΦΦQ

¼
Z

d2xðF ~QϕΦϕQ þ ψ−; ~Qψþ;Φϕq þ ψ−; ~QϕΦψþ ~QÞ: ð43Þ

The term ψ−; ~QϕΦψþ ~Q provides the usual description of the
Coulomb branch related to a vacuum expectation value for
the field ϕ.

C. From (2,2), d = 2 to (0,2), d = 2

In four dimensions a theory with N ¼ 1 SUSY and
fields Q, ~Q in the (anti) fundamental representations of the
gauge group is obtained by adding a general polynomial in
the N ¼ 1 chiral multiplet Φ to the term QΦ ~Q:

Xn
k¼1

1

kþ 1
TrΦkþ1 þQΦ ~Q ð44Þ

which implies the extremum condition

Xn
k¼1

TrΦk þQ ~Q ¼ 0: ð45Þ

This relates the vevs of the flavor fields to the one of the
scalar Φ.
After compactification to four dimensions and partially

breaking the SUSY to (2,2), in (0,2) language we can write
the potential as Φn

ΦΛΦ so the total superpotential is

Z
dθþð

ffiffiffi
2

p
ΦQΦΦΛ ~Q þΦn

ΦΛΦÞ ð46Þ

whose derivative with respect to ΦΦ implies

Z
dθþð

ffiffiffi
2

p
ΦQΛ ~Q þΦn−1

Φ ΛΦÞ ¼ 0: ð47Þ

The solution of this equation would provide a (0,2) field
theory in two dimensions.

V. BRANE CONFIGURATIONS AND
GEOMETRIES WITH D AND F TERMS

A. N = 2, d = 4, UðNcÞ theories
1. Geometric engineering

We first consider the IIB picture where the gauge group
lives on D5 branes wrapped on 2-cycles. The geometry
corresponds to a resolved xy ¼ z2 singularity where the
singular x ¼ y ¼ z ¼ 0 point is replaced by a P1 cycle with
normal bundle Oð0Þ ⊕ Oð−2Þ. By wrapping D5 branes on
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the P1 cycle, the field theory living on the D5 branes is
N ¼ 2, d ¼ 4, UðNcÞ. We have a 5 parameter family of
deformations in type IIB string theory:

(i) two choices for a two form composed of the NS field
BNS and the RR field BRR.

(ii) the holomorphic volume of the P1 cycle defined by

α ¼
Z
P1

dxdy
z

ð48Þ

(iii) the real Kahler modulus which is the integral of the
Kahler form k

r ¼
Z
P1

k ð49Þ

The stringy volume of the P1 cycle is V ¼ ðB2
NS þ r2 þ

α2Þ1=2 and the coupling constant of the field theory on the
D5 branes is

1

g2
¼ V

gs
: ð50Þ

The real parameter r is related to the value of D-term (the
real value of the D field inside the N ¼ 1 vector multiplet
component of theN ¼ 2 vector multiplet) and the complex
parameter α is related to the value of the F-term (the
complex value of the F field inside the N ¼ 1 chiral
multiplet Φ component of the N ¼ 2 vector multiplet).

2. Brane configurations

The T-dual of the geometric picture is a brane configu-
ration containing the following:

(i) two NS branes oriented along (012345) directions
(ii) Nc D4 branes in the (01236) directions suspended

between the NS branes.
The D4 branes can move along the NS branes in the (45)

directions, spanning the Coulomb branch and preserving
the full N ¼ 2 supersymmetry. The coupling constant of
the N ¼ 2, SUðNcÞ theory is proportional to the distance
between the NS branes in the x6 directions.
What about the directions x7, x8, x9? We can move the

NS branes with respect to each other in these direction,
keeping the D4 branes suspended between the NS branes.
The x7 displacement corresponds to the geometric real
blow-up parameter r of the D and the x8, x9 displacements
to the deformation complex parameter α. The steps from
r ¼ 0, α ¼ 0 to r ≠ 0, α ≠ 0 are understood in brane
configurations as
(a) r ¼ 0, α ¼ 0 to r ¼ 0, α ≠ 0 corresponds to separating

the NS branes in the x8, x9 directions.
(b) r ¼ 0, α ≠ 0 to r ≠ 0, α ≠ 0 corresponds to separating

the NS branes in the x7 directions.

B. SUSY breaking N = 2, d = 4 to N = ð2;0Þ,
d = 2 for UðNcÞ × UðNf Þ

1. Geometric engineering

We now consider the A2 singularity xy ¼ z3 and its
resolutions. The singular x ¼ y ¼ z ¼ 0 point is replaced
by a two P1 cycles with overlapping Oð0Þ ⊕ Oð−2Þ
normal bundles. By wrapping Nc D5 branes on the first
P1 cycle andNf D5 branes on the secondP1 cycle, the field
theory living on their world volume is N ¼ 2, d ¼ 4,
UðNcÞ × UðNfÞ. EachP1 cycle has a 5 parameter family of
deformations in type II B string theory including the NS
and RR 2-forms, the holomorphic volumes α1, α2 and the
real Kahler parameters r1, r2:

αi ¼
Z
P1
i

dxdy
z

; ri ¼
Z
P1
i

k; i ¼ 1; 2: ð51Þ

Besides the gauge multiplets for UðNcÞ ×UðNfÞ there are
also N ¼ 2 hypermultiplets which are collections of
N ¼ 1 chiral multiplets Q and ~Q transforming in
ðNc; ~NfÞ and ð ~Nc; NfÞ representation. In this work we
consider the α1, α2 parameters to be zero, the D term r1 for
the gauge group remains at zero whereas the D term r2 for
the flavor group is nonzero.
In order to partially preserve the supersymmetry we

compactify on a torus with magnetic flux. When compac-
tifying on a T2, the N ¼ 2, d ¼ 4 theory becomes
N ¼ ð4; 4Þ, d ¼ 2, UðNcÞ ×UðNfÞ. As we saw in the
previous section, turning on a magnetic flux equal to the
D term implies that the supersymmetry is broken to
N ¼ ð2; 2Þ, d ¼ 2. Therefore, we consider a fibration of
the resolved A2 singularity over a two torus.

2. SUSY breaking in brane configurations

Consider the compactification two torus to be in the x1,
x2 directions. The above two steps of supersymmetry
breaking can be described in brane configurations as
follows:
(1) breaking to N ¼ ð2; 2Þ, D ¼ 2.—having a nonzero

D term r ≠ 0 implies a rotation of the D4 branes in
the x6, x7 plane by an angle θ such tan θ ¼ r.
(i) having a nonzero flux M ≠ 0 implies a rotation

of the D4 branes in the x1, x2 plane by an angle
θ such tan θ ¼ M.

The NS branes are left unrotated. If r ¼ M, the supersym-
metry is partially preserved as (2,2) in 2 dimensions.
(2) breaking to N ¼ ð2; 0Þ, D ¼ 2.

A mass for the adjoint fields Φ1, Φ2 corresponds
to rotating the NS branes in the (4589) plane. The
N ¼ ð0; 2Þ two dimensional configuration is ob-
tained from the N ¼ ð4; 4Þ two dimensional con-
figuration by rotating the D4 branes in the (1267)
plane and the NS branes in the (4589) plane.

RADU TATAR PHYSICAL REVIEW D 96, 066022 (2017)

066022-8



VI. CONCLUSIONS

In this work we covered the steps describing the breaking
of N ¼ 2 supersymmetry in four dimensions to (0,2)
supersymmetry in two dimensions. The theories live on
D5 branes wrapped on 2-cycles inside Calabi-Yau 3-folds
or 4-folds and the supersymmetry is partially broken after a
further compactification on a two torus with magnetic flux.
The magnetic flux is made equal to the volume of the 2
cycle to preserve (2,2) in two dimensions and a further
deformation of the normal bundle to the 2-cycle leads to
(0,2) theory in two dimensions. We left a collection of
issues for future publications. On one hand the line bundles

considered in this work are of zero degree and it is
important to generalize to bundles of even degree (we
need an even number to allow the definition of the square
root bundle). It is also important to understand the different
types of geometric deformations as line bundles over the
two torus.
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