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Bianchi attractors are near horizon geometries with homogeneous symmetries in spatial directions. We
construct supersymmetric Bianchi attractors in N ¼ 2; d ¼ 4, 5 gauged supergravity. In d ¼ 4, we
consider gauged supergravity coupled to vector and hypermultiplets. In d ¼ 5, we consider gauged
supergravity coupled to vector multiplets with a generic gauging of symmetries of the scalar manifold and
theUð1ÞR gauging of the R-symmetry. Analyzing the gaugino conditions, we show that when the fermionic
shifts do not vanish, there are no supersymmetric Bianchi attractors. This is analogous to the known
condition that for maximally supersymmetric solutions, all of the fermionic shifts must vanish. When the
central charge satisfies an extremization condition, some of the fermionic shifts vanish and supersymmetry
requires that the symmetries of the scalar manifold are not gauged. This allows supersymmetric Bianchi
attractors sourced by massless gauge fields and a cosmological constant. In five dimensions in the Bianchi I
class, we show that the anisotropic AdS3 ×R2 solution is 1=2 BPS (Bogomol'nyi-Prasad-Sommerfield).
We also construct a new class of 1=2 BPS Bianchi III geometries labeled by the central charge. When the
central charge takes a special value, the Bianchi III geometry reduces to the known AdS3 × H2 solution. For
the Bianchi V and VII classes, the radial spinor breaks all of supersymmetry. We briefly discuss the
conditions for possible massive supersymmetric Bianchi solutions by generalizing the matter content to
include tensor, hypermultiplets, and a generic gauging on the R-symmetry.
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I. INTRODUCTION

In recent years, intensive research on extremal black
holes in anti–de Sitter (AdS) space have unveiled relations
between seemingly unrelated fields such as gravity and
condensed matter systems. In AdS/CFT, extremal black
holes provide the bulk gravitational description of zero
temperature ground states in strongly coupled field theories
[1]. At the quantum critical point, the field theory descrip-
tion is strongly coupled and exhibits phase transitions at
zero temperature due to quantum fluctuations [2,3]. The
presence of diverse phases in the field theory predict an
equally large number of dual extremal geometries in the
bulk. It is an interesting program to identify and classify
various possible extremal geometries. Some of the earlier
work in this direction have identified extremal geometries
that exhibit Lifshitz and hyperscaling violations [4–9]. Of
more recent research interest are extremal black branes dual
to field theories with reduced symmetries [10–21]. Some of
these examples are anisotropic and display interesting
phenomena such as violation of the KSS bound [22] when
the anisotropy becomes much larger than the temper-
ature [23].

In five dimensions, homogeneous anisotropic extremal
black brane geometries have been constructed in [13,14].
The metrics display manifest homogeneous symmetries in
three spatial directions. It is well known that the Killing
vectors that generate these symmetries form algebras that are
isomorphic to real Lie algebras in dimension three. These
real Lie algebras have been well studied and arewell-known
through the Bianchi classification [24,25]. The five dimen-
sional geometries that display manifest homogeneous sym-
metries in three spatial directions are referred to as the
“Bianchi attractors.” These near horizon geometries are
exact solutions to Einstein-Maxwell theories with massive/
massless gauge fields and a cosmological constant.1

Black holes inN ¼ 2 supergravity exhibit a phenomenon
known as the attractor mechanism [27–30]. In a black hole
background, moduli fields flow to fixed point values at the
horizon irrespective of their asymptotic values at spatial
infinity. The fixed point values are determined entirely in
terms of the charges carried by the black hole. As a result, the
Bekenstein-Hawking entropy of the black hole is deter-
mined in terms of its charges. Although initial studies have
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1The terminology attractor is used because the horizon
geometries solve the field equation exactly. Interpolating numeri-
cal solutions have been constructed in [26], justifying the
terminology. However, analytic solutions are much harder to find.
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focused on supersymmetric black holes, it has been realized
that the attractor mechanism is a consequence of extremality
[31]. Subsequently the attractormechanism is generalized to
nonsupersymmetric extremal black holes [32,33].
In recent years, an enormous effort has gone into

generalizing the attractor mechanism to gauged super-
gravities [34–41]. Significant progress has been made
especially for dyonic AdS4 black holes [42]. Large N
index computations in the dual twisted mass deformed
ABJM theory find perfect matching of the microstate
counting with the Bekenstein-Hawking entropy of the
black hole [43,44]. It is interesting to ask if the attractor
mechanism generalizes to black brane geometries in AdS.
In this light, the first step is to embed these geometries in
supergravity in order to study their properties such as
supersymmetry and stability.
Some steps in this direction have been taken [35,45] and

explicit examples of Bianchi attractors in N ¼ 2 gauged
supergravity are constructed. However, it turns out that the
geometries are nonsupersymmetric and are unstable under
linearized fluctuations unless certain conditions are satis-
fied [46,47]. The conditions are such that there must exist a
critical point of the effective potential, and the Hessian of
the effective potential evaluated at the solution must have
positive eigenvalues. For nonsupersymmetric extremal
black hole solutions, the above two conditions are sufficient
to guarantee a stable Bianchi attractor in gauged super-
gravity. However supersymmetric solutions always satisfy
these conditions and guarantee stability.
In this work, we look for supersymmetric Bianchi

attractor geometries in N ¼ 2 gauged supergravity. As a
warmup, we study d ¼ 4 gauged supergravity coupled to
vector and hyper multiplets with a generic gauging of the
symmetries of the hyper Kähler manifold. In four dimen-
sions the homogeneous symmetries are along the two spatial
directions, and the corresponding Lie algebras are of two
types, namely Bianchi I and Bianchi II. Bianchi I geom-
etries, such asAdS5 [41] and z ¼ 2Lifshitz solution [48,49],
arewell-known solutions in this theory. In theBianchi I case,
we construct a 1

4
BPS AdS2 ×R2 geometry sourced by

timelike gauge fields. In the Bianchi II case, a 1
8
BPSAdS2 ×

H2 solution sourced by magnetic fields has been found
recently in [50].We construct a AdS2 × H2 solution sourced
by timelike gauge fields and find that the radial spinor breaks
all of the supersymmetry. The Bianchi I and Bianchi II
classes we studied in four dimensions correspond to the
symmetries of R2 and H2. These are the only possible
Bianchi classes of metric that one can construct in 3þ 1
dimensions with homogeneous symmetries in two spatial
directions. Of course, there exist more general manifolds
like T2 [34,51], however they do not belong to the Bianchi
class, and we do not consider them in our analysis.
In d ¼ 5, there exist a richer class of Bianchi attractor

geometries. We consider the N ¼ 2 gauged supergravity
coupled to vector multiplets with a generic gauging of both

symmetries of the very special manifold and the Uð1ÞR
subgroup of the SUð2ÞR symmetry group. From the
gaugino conditions, we find that there are no supersym-
metric Bianchi attractors when the fermionic shifts in the
supersymmetry variations are nonvanishing.2 This is in the
same spirit as the general analysis for maximally super-
symmetric solutions [41,52]. This result holds for a generic
gauging of the scalar manifold, is dependent on the choice
of the gauge field configuration that sources the solution,
and is independent of the functional form of the Killing
spinor. The basic argument is that the constant part of the
Killing spinor should be a simultaneous eigenspinor of
commuting matrices that can appear in the gaugino con-
ditions. We find that for the known gauge field configu-
rations that generate Bianchi type solutions, this does not
happen in general. Independently, we have checked that a
radial Killing spinor breaks supersymmetry.
When the central charge Z of the solution satisfies an

extremization condition, some of the fermionic shifts in the
gaugino variations vanish. This is a reasonable condition to
impose for any plausible geometry that can be an attractor
solution. Given this condition, supersymmetry invariance
then requires that the effective mass term vanish at the
attractor point.3 This condition allows Bianchi attractor
solutions sourced by massless gauge fields since at the
attractor point, the “effective mass terms” in gauged super-
gravity are proportional to g2. There are no further con-
ditions from the gaugino variations and hence the
supersymmetry of the solutions are entirely determined
by theKilling spinor equation that follows from the gravitino
variation. It is crucial to observe that the Killing spinor
equation depends only on the gauge coupling constant of the
R-symmetry gauging, hence it follows that theKilling spinor
integrability conditions (see Eq. 31 of [35]) do not depend on
the gauging of the scalar manifold.
We construct Bianchi solutions sourced by massless

gauge fields and a cosmological constant in the Bianchi I,
Bianchi III, Bianchi V, and Bianchi VII classes. In the
Bianchi I case, we find the anisotropic AdS3 × R2 geom-
etry recently studied in [23,53] to be 1=2 BPS. We also
construct a supersymmetric class of 1=2 BPS Bianchi III
geometries labeled by the central charge Z. When
the central charge of the solution takes special values,
the geometry reduces to the known AdS3 × H2 [54]. The
Killing spinors in both of these cases come in pairs where
one spinor is purely radial and the other spinor depends on
both radial and transverse coordinates other than R2=H2

directions. Moreover, the constant part of the spinors are
eigenspinors of the radial Dirac matrix in all of the above

2In gauged supergravity literature, the supersymmetry varia-
tions in the gaugino and hyperino that are proportional to the
gauge coupling constant are referred to as fermionic shifts.

3One way to possibly avoid this is to consider tensor
multiplets. We comment on this in Sec. IV C.
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cases. For the Bianchi V and Bianchi VII classes, we find
that the radial spinor breaks all supersymmetry. These are
the main new results of this paper.
Finally, the presence of hyper and tensor multiplets can

allow for some massive Bianchi attractor solutions in some
special cases. In particular, our results from the gaugino and
Killing spinor conditions for the nonsupersymmetric cases
continues to hold even after including hypermultiplets and
SUð2ÞR gauging as the Killing spinor equation is not
affected seriously by this addition. However, addition of
tensor multiplets will affect the analysis and depend
crucially on the tensor field configuration in addition to
new gaugino and hyperino conditions. We comment on the
possibilities in Sec. IV C, leaving a detailed analysis for
future work.
The paper is organized as follows. In Sec. II, we briefly

describe homogeneous symmetries and motivate Bianchi
attractors. Following this, we present the analysis for the
d ¼ 4 Bianchi attractors in N ¼ 2 gauged supergravity in
Sec. III. We move on to the five-dimensional case in
Sec. IV. In subsection Sec. IVA we present our main
argument for the absence of massive supersymmetric
Bianchi attractors in gauged supergravity with Uð1ÞR
gauging and gauging of the symmetries of the very special
manifold. Subsequently we analyze the Killing spinor
equations for the massless cases in Sec. IV B. In
Sec. IV C, we comment on the possible generalizations
and necessary conditions when hyper and tensor multiplets
are included with generic gauging. We present our con-
clusions and summarize in Sec. V. In Appendix Sec. A, we
provide useful supplementary material on spinors in d ¼ 4,
5 and summarize our conventions.

II. HOMOGENEOUS SYMMETRIES
AND BIANCHI ATTRACTORS

In this section, we describe the homogeneous sym-
metries in two and three dimensions classified by the
Bianchi classification of Lie algebras. Towards the end we
describe the “Bianchi attractors.” These are proposed near
horizon geometries of extremal black branes with homo-
geneous symmetries in the spatial directions [13]. Consider
a manifold M endowed with a metric gμν that is invariant
under a given set of isometries. The Killing vectors Xi that
generate the isometries close to form an algebra

½Xi; Xj� ¼ Cij
kXk; ð1Þ

where Ck
ij are structure constants and they obey the usual

Jacobi identity. The symmetry group of the manifold is
isomorphic to an abstract Lie groupG, whose Lie algebra is
generated by the algebra of Killing vectors.
A homogeneous manifold has identical metric properties

at all points in space. Any two points on a homogeneous
space are connected by a symmetry transformation. The

symmetry group of a homogeneous space of dimension d is
isomorphic to the group corresponding to d dimensional
real Lie algebra [24,25]. On the other hand, given the real
Lie algebra in a dimension d, it is possible to write the
corresponding metric with manifest homogeneous sym-
metries as follows. First, one finds a basis of invariant
vectors ei that commute with the Killing vectors Xi

½Xi; ei� ¼ 0; ð2Þ

then the metric with homogeneous symmetries can be
expressed in terms of one forms ωi dual to the invariant
vectors ei as

ds2 ¼ gijωi ⊗ ωj; ð3Þ

where gij are constants. The invariant one forms satisfy the
relation

dωk ¼ 1

2
Cij

kωi ∧ ωj; ð4Þ

where Cij
k are the same structure constants that appear in

the algebra of the Killing vectors. The real Lie algebras of
dimension three fall into nine classes and are given by the
well known Bianchi classification. The structure constants
and invariant one forms are listed in detail in [25] (or see
Appendix A of [13]).
In this work, we investigate the supersymmetry con-

ditions on various Bianchi attractor geometries described in
[13]. The geometries have the general structure

ds2 ¼ −gttðrÞdt2 þ gijðrÞdωi ∧ dωj þ dr2; ð5Þ

where i ¼ 1, 2 in case of four dimensions and the ωi are
invariant one forms corresponding to the homogeneous
symmetries of two dimensional real Lie algebras described
above. In five dimensions i ¼ 1, 2, 3, and the correspond-
ing ωi are invariant one forms given by the usual Bianchi
classification. The functions gttðrÞ and gijðrÞ have a general
form eβr, where β are positive exponents. These metrics can
be constructed as solutions to Einstein-Maxwell theories
with massive/massless gauge fields and a cosmological
constant. As long as the matter stress-tensor preserves the
symmetries of the metric, explicit solutions can be con-
structed for a wide range of parameters of the theory of
interest.

III. BIANCHI ATTRACTORS IN N = 2; d = 4
GAUGED SUPERGRAVITY

In this section, we describeN ¼ 2; d ¼ 4 gauged super-
gravity with nV vector and nH hyper multiplets. We use the
notations and conventions of [48,55], the relevant con-
ventions are summarized in Appendix A 1. The gravity
multiplet consists of a metric gμν, a graviphoton A0

μ and an
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SU(2) doublet of gravitinos ðψA
μ ;ψμAÞ of opposite chirality,

where A ¼ 1, 2 is an SU(2) index. The vector multiplet
consists of a complex scalar zi, a vector Ai

μ, where i ¼
1; 2…nV and an SU(2) doublet of gauginos ðλiA; λīAÞ with
opposite chirality. The hyper multiplets contain scalars
qX, where X ¼ 1;…4nH and two hyperinos ðζα; ζαÞ,
ðα ¼ 1…2nHÞ of opposite chirality. The bosonic part of
the Lagrangian of the N ¼ 2 theory takes the form

L ¼ −
1

2
Rþ gij̄D

μziDμz̄j̄ þ gXYDμqXDμqY

þ iðN̄ΛΣF−Λ
μν F−Σμν − NΛΣFþΛ

μν FþΣμνÞ
þ Vðz; z̄; qÞ; ð6Þ

where NΛΣ are the period matrices.4 The self/antiself dual
field strengths are defined as

F�Λ
μν ¼ 1

2

�
FΛ
μν �

i
2
ϵμνρσFΛρσ

�
; ð7Þ

where the usual field strength is defined as FΛ
μν ¼

1
2
ð∂μAΛ

ν − ∂νAΛ
μ Þ. The gauge covariant derivatives are

defined as

Dμzi ¼ ∂μzi þ Ki
ΛA

Λ
μ

DμqX ¼ ∂μqX þ AΛ
μKX

ΛðqÞ; ð8Þ

where Ki
Λ are Killing vectors that gauge the symmetries of

the Kähler manifold, and KX
Λ are Killing vectors that gauge

the symmetries of the Quaternionic Kähler manifold.
Gauging introduces a potential that is given by

Vðz; z̄; qÞ ¼ ððgij̄Ki
ΛK

j̄
Σ þ 4gXYKX

ΛK
Y
ΣÞL̄ΛLΣ

þ ðgij̄fΛi fΣj̄ − 3L̄ΛLΣÞPx
ΛP

x
ΣÞ; ð9Þ

where fΛi ¼ ð∂i þ 1
2
∂iKÞLΛ. Here K is the Kähler poten-

tial. The triplet Px
Λ; x ¼ 1, 2, 3 are real Killing prepotentials

on the quaternionic Kähler manifold. The supersymmetry
transformations of the fermionic fields are given by

δψμA ¼DμϵA þ iSABγμϵB þ 2iðImNÞΛΣLΣF−Λ
μν γ

νϵABϵ
B

δλiA ¼ iDμziγμϵA − gij̄f̄Σj̄ ðImNÞΛΣF−Λ
μν γ

μνϵABϵB þWiABϵB

δζα ¼ iUBβ
X DμqXγμϵAϵABϵαβ þNA

αϵA; ð10Þ

where

SAB ¼ i
2
ðσrÞ C

A ϵBCPr
ΛL

Λ

WiAB ¼ ϵABkiΛL̄
Λ þ iðσrÞ B

C ϵCAPr
Λg

ij̄fΛj̄

NA
α ¼ 2UA

αXK
X
ΛL̄

Λ: ð11Þ

In the above, UA
αX are vielbeins on the quaternionic

manifold. The covariant derivative on the spinor ϵA is
defined as

DμϵA ¼ ∇μϵA þ i
2
ðσrÞBAAΛ

μPr
ΛϵB; ð12Þ

where ∇μ is the covariant derivative defined with respect to
the usual spin connection. For the rest of the discussion, we
assume a generic gauging of the symmetries of hyper-
multiplet manifold.
At the attractor point the scalars are independent of

spacetime coordinates,

zi ¼ const; qX ¼ const: ð13Þ

The supersymmetry variations (10) at the attractor point
then reduce to

δψμA ¼ DμϵA þ iSABγμϵB þ 2iðImNÞΛΣLΣF−Λ
μν γ

νϵABϵ
B

δλiA ¼ −gij̄f̄Σj̄ ðImNÞΛΣF−Λ
μν γ

μνϵABϵB þWiABϵB

δζα ¼ iUBβ
X KX

ΛA
Λ
μ γ

μϵAϵABϵαβ þ NA
αϵA: ð14Þ

Setting the gravitino variations to zero, we get the Killing
spinor equation

∂μϵA þ 1

4
ωμ

abγabϵA þ i
2
ðσxÞBAPx

ΛA
Λ
μ ϵB þ iSABγμϵB

þ 2iðImNÞΛΣLΣF−Λ
μν γ

νϵABϵ
B ¼ 0: ð15Þ

In the rest of the section, we evaluate the Killing spinor
equation (15), the gaugino and hyperino equations on the
background of Bianchi geometries and derive the condi-
tions for supersymmetry.

A. Bianchi I

Metrics with Bianchi I symmetry in the spatial directions
have been studied in the gauged supergravity literature, the
simplest of them being the supersymmetric AdS4 solution
[41]. A supersymmetric Lifshitz solution with exponent
z ¼ 2 has also been constructed earlier in gauged super-
gravity by [48,49]. In this section, following the analysis of
[48], we present the supersymmetry conditions for a simple
Bianchi I type—AdS2 × R2 solution.5

4These are functions of zi and can be expressed in terms of the
sections MΛ ¼ NΛΣLΣ.

5Magnetic AdS2 × R2 solutions and their stability have been
well explored in the literature (see for instance [56–58]).
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The AdS2 ×R2 metric has the form

ds2 ¼ R2
0

σ2
ðdt2 − dσ2Þ − R2

0ðdy2 þ dρ2Þ: ð16Þ

The Killing vectors along the spatial directions X1 ¼
∂y; X2 ¼ ∂ρ generate the Bianchi I algebra

½X1; X2� ¼ 0: ð17Þ

It is easy to construct this metric as a solution to the
equations of motion that follow from the gauged super-
gravity action (6). It is supported by an electrically-charged
gauge field whose ansatz we choose to be

AΛ ¼ EΛ

σ
dt: ð18Þ

It is straightforward to check that this configuration solves
the equations of motion. The Killing spinor equations (15)
evaluated in the above background are

γ0σ

R0

∂tϵA −
γ1

2R0

ϵA þ iGB
Aγ

0

2R0

ϵB þ iSABϵB

þ iN
2R2

0

γ01ϵABϵ
B ¼ 0 ð19Þ

γ1σ

R0

∂σϵA þ iSABϵB þ iN
2R2

0

γ01ϵABϵ
B ¼ 0 ð20Þ

γ2

R0

∂yϵA þ iSABϵB −
N
2R2

0

γ23ϵABϵ
B ¼ 0 ð21Þ

γ3

R0

∂ρϵA þ iSABϵB −
N
2R2

0

γ23ϵABϵ
B ¼ 0; ð22Þ

where we have defined

N ¼ ðImNΛΣÞLΣEΛ; GB
A ¼ ðσxÞBAPx

ΛE
Λ ð23Þ

for brevity. We choose the following radial ansatz for the
Killing spinor

ϵA ¼ fðσÞχA; ð24Þ
where χA is a constant spinor. The difference of (20) and
(19) leads to

γ1σ

R0

∂σϵA þ γ1

2R0

ϵA −
iGB

Aγ
0

2R0

ϵB ¼ 0: ð25Þ

The above equation has a simple solution

fðσÞ ¼ 1ffiffiffi
σ

p ; ð26Þ

provided we impose the condition

EΛPx
Λ ¼ 0: ð27Þ

We note that this same condition has enabled a super-
symmetric Lifshitz solution in 4d N ¼ 2 gauged super-
gravity [48]. Thus, the Killing spinor equations reduce to
the algebraic conditions

−
γ1

2R0

χA þ iSABχB þ iN
2R2

0

γ01ϵABχ
B ¼ 0 ð28Þ

iSABχB −
iN
2R2

0

γ01ϵABχ
B ¼ 0; ð29Þ

where we have substituted γ23 ¼ −iγ01γ5 and used
γ5ϵ

A ¼ −ϵA. It is straightforward to recast the above
equations into the projection conditions

χA ¼ 2iN
R

ϵABγ
0χB ð30Þ

χA ¼ −4iRSABγ1χB: ð31Þ
These projection conditions are very similar to the con-
ditions obtained for the 4d Lifshitz case by [48] (cf.
Eqs. 67–68). Squaring the first projection condition (30)
we get

jNj ¼ R0

2
: ð32Þ

Mutual consistency of the two projectors leads to the
equation

χA ¼ 4R0SABγ10ϵBCχC; ð33Þ
whose self consistency gives the condition

X3
x¼1

ðPx
ΛL

ΛÞ2 ¼ −
1

4R2
0

: ð34Þ

Note that the triplet of Killing prepotentials Px
Λ are real

functions on the quaternionic manifold. However, the
symplectic sections LΛ are complex functions in general.
For simplicity, we can choose the Killing prepotential to lie
along the x ¼ 3 direction.6 Thus, the final projection

6Note that this sets

P3
ΛL

Λ ¼ i
2R0

: ð35Þ

It is easy to check that this choice is consistent with the projection
condition (31). Substituting the above in (31) we get

χA ¼ iðσ3Þ D
A ϵBDγ

1χB; ð36Þ

that is self consistent.
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conditions that follow from the gravitino Killing spinor
equations are

χA ¼ iϵABγ0χB

χA ¼ ðσ3Þ C
A γ10χC: ð37Þ

These are mutually self-consistent projection conditions,
and together they preserve 1

4
of the supersymmetry. We now

proceed to analyze the gaugino and hyperino conditions
in (14).
Setting the hyperino variation (14) to zero, we get the

algebraic condition

iUAβ
X KX

Λ
EΛ

R0

γ0ϵBϵBAϵαβ þ 2UA
αXK

X
ΛL̄

ΛϵA ¼ 0: ð38Þ

We can use the 1
4
BPS projectors (37) to simplify the above

expression to get

UA
XαK

X
Λ

�
EΛ

R0

þ 2L̄Λ
�
χA ¼ 0: ð39Þ

An obvious way to solve the condition is to set
EΛ ¼ −2L̄ΛR0. In fact, this leads to the correct equation
of motion [second of (B7)]. However, this leads to an
inconsistency with the known identity (see Eq. 4.38 of [55])
ImNΛΣLΛL̄Σ ¼ − 1

2
that is true for anyN ¼ 2 supergravity.

Note that this was also observed earlier in [48] for the 4d
Lifshitz solution. However, we can solve the hyperino
conditions by choosing the Killing vectors to be degenerate
on the quaternionic manifold. In other words,

KX
Λ

�
EΛ

R0

þ 2L̄Λ
�

¼ 0: ð40Þ

The gaugino conditions in (14) upon using the 1
4
BPS

projections have the very simple form

g{j̄f̄Σj̄

�
ð−ImNÞΛΣ

EΛ

R2
0

þ iP3
Σ

�
¼ 0: ð41Þ

This concludes the set of conditions that follow from
supersymmetry requirements. To summarize, the final set
of conditions for a 1

4
BPS AdS2 × R2 solution are

EΛP3
Λ ¼ 0; ImNΛΣLΛEΣ ¼ R0

2
;

P3
ΛL

Λ ¼ i
2R0

; KX
Λ

�
EΛ

R0

þ 2L̄Λ
�

¼ 0;

g{j̄f̄Σj̄

�
−ImNΛΣ

EΛ

R2
0

þ iP3
Σ

�
¼ 0: ð42Þ

In addition, one has to impose the gauge field equations of
motion (B4).

B. Bianchi II

In this section, we discuss the supersymmetry conditions
for a Bianchi II (AdS2 × EAdS2) solution of the form

ds2 ¼ R2
0

σ2
ðdt2 − dσ2Þ − R2

0

ρ2
ðdy2 þ dρ2Þ: ð43Þ

As discussed in Sec. II, the symmetries along the spatial
directions correspond to that of EAdS2. Like the previous
solution, the AdS2 × EAdS2 solution can also be con-
structed using a timelike gauge field (18) as a source,
since it preserves the Bianchi II symmetry along the
(y; ρ) directions. However, the electric solution is non-
supersymmetric unlike the magnetic case.7 We present the
details of the computation in Appendix Sec. B 2. We now
move on to the five-dimensional case, where there is a
wider variety of solutions with Bianchi symmetries in the
spatial directions.

IV. BIANCHI ATTRACTORS IN N = 2; d = 5
GAUGED SUPERGRAVITY

We begin with a brief introduction to N ¼ 2; d ¼ 5
gauged supergravity coupled to nV vector multiplets with a
generic gauging of the very special manifold S and the
Uð1ÞR subgroup of the SUð2ÞR symmetry group [52].8 The
bosonic part of the Lagrangian reads as

ê−1L ¼ −
1

2
R −

1

4
aIJFI

μνFJμν −
1

2
gxyðϕÞDμϕ

xDμϕy

þ ê−1

6
ffiffiffi
6

p CIJKϵ
μνρστFI

μνFJ
ρσAK

τ − VðϕÞ; ð44Þ

where ê ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gμν

p
. Here, ϕx are nV þ 1 scalars in the

vector multiplet. The metric gxy is defined on the very
special manifold that exists in the 5d theory. The gauge
covariant derivatives are defined by

Dμϕ
x ¼ ∂μϕ

x þ gAI
μKx

I ðϕÞ
Dμψνi ¼ ∇μψνi þ gRAI

μP
j
Iiψνj; ð45Þ

where AI
μ are the vectors in the vector multiplet and g is the

gauge coupling constant. The covariant derivative ∇ is

7See [50] for magnetic black hole solutions interpolating
between AdS2 × H2 and hyperscale violating solutions at
infinity.

8Please note that in all of five dimensions, we use the mostly
plus metric signature.
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defined with the usual spin connection. For the purposes of
this paper, we restrict ourselves to the case where the gauge
group is Abelian. In the fermionic covariant derivatives, gR
is the Uð1ÞR gauge coupling constant. The quaternionic
prepotential for the Uð1ÞR gauging is a singlet

PIij ¼ −VIδij; ð46Þ

where VI are the Fayet-Illioupoulos parameters. Note that
in the above expression, δij does not play the role of ϵij as a
raising or lowering operator. The potential in the (44) is
defined in terms of the quaternionic prepotentials

VðϕÞ ¼ −g2Rð2PijPij − Pa
ijP

aijÞ; ð47Þ

with the definitions

Pij ¼ hIPIij; Pa
ij ¼ haIPIij; haI ¼ faxhxI; ð48Þ

where fax are vielbeins on the very special manifold S. Note
that the potential is unaffected by the gauging of S. The
addition of hypermultiplets and tensor multiplets will
change the shape of the potential, however, to get the
AdS vacuum, it is sufficient to gauge the Uð1ÞR symmetry.
The bosonic sector of the supersymmetry transforma-

tions are

δϵψμi¼Dμϵiþ
i

4
ffiffiffi
6

p hIFνρIðγμνρ−4gμνγρÞϵiþ
iffiffiffi
6

p gRγμϵjPij

δϵλ
a
i ¼−

i
2
faxDμϕ

xγμϵiþ
1

4
haI F

I
μνγ

μνϵiþgRϵjPa
ij: ð49Þ

The λai (i ¼ 1, 2 and a ¼ 1;…nV) are gauginos in the
vector multiplets and ϵi is a symplectic majorana spinor.
The covariant derivative is defined as

Dμϵi ≡ ∂μϵi þ
1

4
ωμ

abγabϵi þ gRAI
μPIijϵ

j: ð50Þ

See Appendix Sec. A 2 for our notations and conventions of
5d gamma matrices.
We are interested in Bianchi type near horizon solutions

to (49) that satisfy attractor conditions. It is well known that
at the attractor point, the moduli are constants independent
of spacetime coordinates

ϕx ¼ const: ð51Þ

The field equations that follow from (44) are given in [35].
The supersymmetry transformations at the attractor point
take the form

δϵψμi¼Dμϵiþ
i

4
ffiffiffi
6

p hIFνρIðγμνρ−4gμνγρÞϵiþ
iffiffiffi
6

p gRγμϵjPij

δϵλ
a
i ¼−

i
2
gfaxAI

μKx
I γ

μϵiþ
1

4
haI F

I
μνγ

μνϵiþgRϵjPa
ij: ð52Þ

In the following sections, we evaluate the spinor conditions
on the Bianchi attractor backgrounds. As discussed in
Sec. II, the Bianchi type metrics have the generic form9

ds2 ¼ ηabeaeb ¼ L2ð−e2βtrdt2 þ ηijðrÞωi ⊗ ωj þ dr2Þ;
ð53Þ

where ea, a ¼ 0;…4, are one forms, and L is a positive
constant that measures the size of the spacetime. The
ωi, i ¼ 1;…3 are one forms manifestly invariant under
the homogeneous symmetries described by the Bianchi
classification.

A. The gaugino conditions

In this section, we solve the gaugino conditions

δϵλ
a
i ¼ −

i
2
gfaxAI

μKx
I γ

μϵi þ
1

4
haI F

I
μνγ

μνϵi − gRϵjhaI V
Iδij ¼ 0;

ð54Þ

where we have substituted (46) and (48). In gauged
supergravity literature, the terms in the supersymmetry
variations that are proportional to the gauge coupling
constants are referred to as fermionic shifts. For maximal
supersymmetry, all of the fermionic shifts in the gaugino
conditions must vanish [35,52]. From the integrability
conditions of Eq. 31 of [35], it follows that the only
maximally supersymmetric Bianchi type solution is AdS5.
Our first result will be to argue that the above result is also
true for solutions with matter, in this case the Bianchi type
geometries. Then we will require some of the fermionic
shifts to vanish and explore conditions for supersymmetric
solutions.
First, we focus on the cases when none of the fermionic

shifts vanish. Preserving some amount of supersymmetry
from the gaugino and hyperino conditions requires that the
algebraic conditions on the constant part of the spinor ζi be
not too restrictive. In other words, the matrices that project
out the various components of ζi must commute with one
another. The projection conditions that can appear on the
spinor in the equations (54) are entirely dependent on the
gauge field configurations. Typically, the Bianchi type
solutions are sourced by either timelike or spacelike
massive gauge fields and a cosmological constant
[13,14,35]. (In particular, see Appendix B of [13] for
various choices of gauge field configurations that solve the

9In this coordinate system, the boundary of the Poincaré AdS
metric lies at r → ∞.
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equations of motion.) At the attractor point, the scalars are
constant and effective mass terms for the gauge fields

g2KIJðϕÞAIμAJ
μ ð55Þ

appear due to the presence of the gauge covariant deriv-
atives in the supergravity action (44). Here, KIJ is the
Killing norm defined as gxyKx

IK
y
J. The mass terms are

proportional to the norm of the Killing vectors and to the
square of the gauge coupling constant. We analyze two
possible cases separately below.

1. Nonvanishing fermionic shifts

To begin with, we keep our analysis very generic with
respect to the gauging of the scalar manifold (model
independent) but specific only to the field content that
generates the solution. By this, we mean that there are no
specific conditions that the Killing vectors on S are
required to satisfy. We first consider the case where the
gauge fields have only the time component turned on. The
Bianchi metrics that have been constructed so far
[13,14,35] are sourced by timelike or spacelike gauge
fields. Timelike gauge fields are of the form

A ¼ AðrÞdt
dA ¼ ∂rAðrÞdr ∧ dt: ð56Þ

In order to solve the gaugino conditions (54), it is
necessary to impose projection conditions on the constant
part of the spinor ϵi. From the timelike gauge field
configuration, it is clear that the following conditions have
to be imposed in (54)10

γ0ϵi ¼ �iϵi

γ04ϵi ¼ �ϵi: ð57Þ

The first projector appears in the Aμγμ terms, while the
second appears in the Fμνγμν terms. While each of the
projectors is well defined, it is clear that the two conditions
are mutually incompatible since the projections (57) are
mutually orthogonal. Thus, when the fermionic shifts do
not vanish, all solutions sourced by timelike gauge fields
break supersymmetry. Thus, with a timelike gauge field,
under gauging it is not possible to obtain supersymmetry
preserving projection conditions. Note that this is com-
pletely independent of the functional dependence of the
Killing spinor.
Let us now consider the case with gauge fields having

spacelike components turned on. (For examples, see
[13,14,35])

A ¼ Aðx; rÞωi

dA ¼ ∂rAðx; rÞdr ∧ ωi þ ∂xjAðx; rÞdxj ∧ ωi

þ 1

2
Aðx; rÞCjk

iωj ∧ ωk; ð58Þ

where x ¼ xi; i ¼ 1, 2, 3 are the directions that have
homogeneous symmetries. In this case, it is easy to see
from (54) that the projections that can appear are

γiϵi ¼ �ϵi

γi4ϵi ¼ �iϵi

γijϵi ¼ �iϵi: ð59Þ

In any given configuration for the space like gauge field,
the first projector always appears. Depending on the precise
functional dependence, the second/third or both second and
third projectors can appear. In any case, we see that the first
projector in (59) is mutually orthogonal to both the second
and third. Thus, even with a spacelike gauge field, under
generic conditions it is not possible to obtain supersym-
metry preserving conditions. Note that this too is com-
pletely independent of the functional dependence of the
Killing spinor. Thus, when the fermionic shifts do not
vanish, all massive Bianchi attractors are nonsupersym-
metric in gauged supergravity with generic gauging of the
scalar manifold.
For all of the solutions in this class, we have studied

the Killing spinor equations independently and find that
the radial spinor breaks supersymmetry. The solutions
constructed in [35] are all of this type and are all
nonsupersymmetric.

2. Vanishing fermionic shifts

The other possibilities to solve (54) are situations where
some of the fermionic shifts vanish in special cases. From
the studies of the attractor mechanism for black holes in
d ¼ 5 ungauged supergravity, it is known that attractor
solutions solve the gaugino conditions [54,59] with the
extremization of central charge

∂xðZÞ ¼ ∂xðhIQIÞ ¼ 0; hIVI ¼ 1: ð60Þ

Imposing the attractor conditions on (54),11 we find that the
gaugino conditions reduce to

δϵλ
a
i ¼ −

i
2
gfaxAI

μKx
I γ

μϵi ¼ 0: ð61Þ

Note that the square of this fermionic shift term is propor-
tional to

10The spacetime coordinates are xμ ¼ ðt; x1; x2; x3; rÞ, while
the corresponding tangent space indices run over a ¼ 0;…4.

11The FI parameters VI are arbitrary and can be scaled to
satisfy this condition.
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g2gxyAI
μAμJKx

IK
y
J; ð62Þ

the mass term discussed in the introduction of this section.
Thus, for preserving supersymmetry, we have to set the
effective mass term to zero. This can be achieved in two
ways.
(a) The trivial choice is g ¼ 0 or no gauging of the scalar

manifold S.
(b) The other more nontrivial possibility is to find a

Killing direction in S that satisfies KI
xQI ¼ 0 at the

attractor point.
Note that for the class of models discussed in [60,61],
studied earlier explicit solutions were constructed and
analyzed in [35,46], and it can be checked that the condition
KI

xQI ¼ 0 is not satisfied. However, note that using this
condition would kill the effective mass terms in the field
equations of motion (see Eq. 18, Eq. 22 of [35]), which is
problematic and would only lead to massless solutions.
We pause here to briefly summarize the conclusions of

this section. Analyzing the gaugino conditions, we have the
results that in N ¼ 2 gauged supergravity with a generic
gauging of the symmetries of scalar manifold and a Uð1Þ
gauging of the SUð2ÞR symmetry,
(a) There are no massive Bianchi attractor solutions that

preserve any amount of supersymmetry for a generic
gauging when the fermionic shifts do not vanish.

(b) When the extremization condition is met ∂xðZÞ ¼ 0,
supersymmetry allows only massless Bianchi
solutions.12

(c) For massless Bianchi solutions, the gaugino condi-
tions are completely solved by the attractor conditions
(60), and there are no additional projection conditions.
The amount of supersymmetry preserved is com-
pletely determined by the Killing spinor equations.

These solutions can be easily constructed in Einstein-
Maxwell theory with a cosmological constant. Actually,
all of them can be also constructed easily, for instance in the
Uð1ÞR gauged supergravity model studied in [47].
The last and final possibility for this section corresponds to

vacuum solutions in the absence of matter. In this case, the
gaugino conditions are trivial. The supersymmetry conditions
are completely determined by theKilling spinor equation that
follows from the gravitino variation. The solution space
includes the well-known AdS5 solution [41,52,60], Bianchi
III AdS3 × H2, and Bianchi V AdS2 × H3 solutions, sourced
only by a cosmological constant. The results of this section
can get modified by addition of tensor and hyper multiplets.
We comment on this briefly in Sec. IV C.

B. The gravitino conditions: Killing spinor equation

In this section, we analyze the gravitino Killing spinor
equation for the Bianchi solutions sourced by massless

gauge fields. We describe new supersymmetric Bianchi I
and Bianchi III solutions in detail. We also find new
nonsupersymmetric Bianchi V and Bianchi VII solutions,
these are summarized in Appendix Sec. D.
For the Uð1ÞR gauged supergravity (46), the Killing

spinor equation we need to solve is of the form

Dμϵi þ
i

4
ffiffiffi
6

p hIFνρIðγμνρ − 4gμνγρÞϵi þ
iffiffiffi
6

p gRγμϵikϵk ¼ 0;

ð63Þ

where

Dμϵi ≡ ∂μϵi þ
1

4
ωμ

abγabϵi þ gRAI
μVIϵi

kϵk; ð64Þ

where we have used the attractor conditions (60). Note that
we have used the notation ϵkjδij ¼ ϵi

k, where ϵi
k is

numerically same as −ϵik. It follows that ϵi
kϵi

l ¼ −δil.
We need to remember that δij is just one component of the
general triplet in PIij, and hence, one cannot use δij or ϵik

to raise or lower the R symmetry index [52,61].13 In
the following, we solve the Killing spinor equations for
various Bianchi type geometries.

1. Supersymmetric Bianchi I: Anisotropic AdS3 ×R2

The anisotropic AdS3 × R2 solution can be easily
constructed with magnetic fields and a cosmological
constant.14 The metric has the simple form

e0 ¼ erdt; e1 ¼ erω1; e2 ¼ jBj
2

ω2;

e3 ¼ jBj
2

ω3; e4 ¼ dr: ð65Þ

The magnetic fluxes in the x2, x3 directions generate
anisotropy but preserve the rotational symmetries of R2.
The solution (65) has been of considerable interest in
computations of shear viscosities in anisotropic phases
[23,53]. The invariant one forms

ωi ¼ dxi; i ¼ 1; 2; 3; ð66Þ

and all commute with one another and satisfy dωi ¼ 0 of
the Bianchi I algebra. In (65) jBj ¼ BIBI is the strength of
the magnetic field. We choose our gauge field ansatz such
that

12This possibility appears to be relaxed when tensor multiplets
are included, we comment on this briefly in Sec. IV C

13We thank Antoine Van Proeyen for useful communication
regarding this issue.

14See for example the isotropic solution in the Uð1Þ3 trunca-
tion of type II supergravity on S5 by [57]. For general geometries
of the type AdS3 × Σg in STU model of supergravity and their
dual field theory interpretation see [62–65].
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FI
x2x3 ¼ BI: ð67Þ

The Killing spinor equations in the background are of the
form

γ0e−r∂tϵi −
1

2
γ4ϵi −

iffiffiffi
6

p
�
Z
2
γ23ϵi þ gRϵikϵk

�
¼ 0 ð68Þ

γ1e−r∂x1ϵi þ
1

2
γ4ϵi þ

iffiffiffi
6

p
�
Z
2
γ23ϵi þ gRϵikϵk

�
¼ 0 ð69Þ

γ2∂x2ϵi þ
iffiffiffi
6

p jBj
2

ð−Zγ23ϵi þ gRϵikϵkÞ ¼ 0 ð70Þ

γ3∂x3ϵi þ
iffiffiffi
6

p jBj
2

ð−Zγ23ϵi þ gRϵikϵkÞ ¼ 0 ð71Þ

γ4∂rϵi þ
iffiffiffi
6

p
�
Z
2
γ23ϵi þ gRϵikϵk

�
¼ 0; ð72Þ

where Z ¼ hIBI is the central charge. In the above, we have
chosen the following condition

BIVI ¼ 0: ð73Þ

This condition is the five-dimensional analogue of (27).
It is easy to obtain the following differential equations

from the above set

γ0∂tϵi þ γ1∂x1ϵi ¼ 0

γ2∂x2ϵi − γ3∂x3ϵi ¼ 0

γ4∂rϵi þ γ0e−r∂tϵi −
1

2
γ4ϵi ¼ 0

γ4∂rϵi − γ1e−r∂x1ϵi −
1

2
γ4ϵi ¼ 0: ð74Þ

Notice the similarity of the above equations to the ones we
have obtained in AdS5 case (C4), except the second
equation that suggests that the x2, x3 directions can scale
differently as compared to the x1 direction. There are two
independent solutions to the above equations

ϵi ¼ e
r
2ζþi ; γ4ζ

þ
i ¼ ζþi ð75Þ

ϵi ¼ ðe−r
2 þ e

r
2ðtγ0 þ x1γ1 þ αðx2γ2 þ x3γ3ÞÞÞζ−i ;

γ4ζ
−
i ¼ −ζ−i ; ð76Þ

where α is a real parameter. The projection, due to the radial
Dirac matrix, has the same effect as in the AdS case,
namely the projector preserves one half of the supersym-
metry in each of ζ�. Substituting the solution (76) in the x2,
x3 equations (70)–(71) we find that α ¼ 0. Thus, the Killing
spinor (76) is independent of the R2 directions.

The remaining equations give rise to the conditions

1

2
ζ�i þ iffiffiffi

6
p

�
Z
2
γ23ζ

�
i þ gRϵikζ�k

�
¼ 0 ð77Þ

−Zγ23ζ�i þ gRϵikζ�k ¼ 0: ð78Þ

It is easy to see that the above two equations give rise to the
conditions

γ23ζ
�
i ¼ ϵi

kζ�k

jZj ¼ jgRj ¼
ffiffiffi
6

p

3
: ð79Þ

The projection above breaks half of the remaining super-
symmetries in each of ζ�. As a result, each of ζ� generate 1

4

of the supersymmetry. Thus the solution (65) is a 1
2
BPS

solution.

2. Supersymmetric Bianchi III and AdS3 × H2

In this section we construct a superymmetric Bianchi III
type solution sourced by a massless gauge field

e0 ¼ Leβrdt; e1 ¼ Lω1; e2 ¼ Leβrω2;

e3 ¼ Lω3; e4 ¼ Ldr; ð80Þ

where the invariant one forms are

ω1 ¼ e−x
1

dx2; ω2 ¼ dx3; ω3 ¼ dx1: ð81Þ

The spatial part of the metric has the symmetries ofH2 ×R.
The symmetry algebra, due to these Killing vectors,
form the Bianchi III algebra in the Bianchi classification
in three dimensions. The subalgebra generated by the
Killing vectors of H2 generate the Bianchi II algebra in
two dimensions.
We choose the gauge field to have components along the

ω1 direction

AI ¼ BIe1: ð82Þ

The Killing spinor equations evaluated in the background
are (Z ¼ hIBI)

e−βrγ0∂tϵi −
β

2
γ4ϵi −

iffiffiffi
6

p
�
1

2
Zγ13ϵi þ LgRϵikϵk

�
¼ 0

ð83Þ

ex
1

γ1∂x2ϵi −
γ3
2
ϵi þ LgRBIVIγ1ϵi

kϵk

þ iffiffiffi
6

p ð−Zγ13ϵi þ LgRϵikϵkÞ ¼ 0 ð84Þ
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e−βrγ2∂x3ϵi þ
β

2
γ4ϵi þ

iffiffiffi
6

p
�
1

2
Zγ13ϵi þ LgRϵikϵk

�
¼ 0

ð85Þ

γ3∂x1ϵi þ
iffiffiffi
6

p ð−Zγ13ϵi þ LgRϵikϵkÞ ¼ 0 ð86Þ

γ4∂rϵi þ
iffiffiffi
6

p
�
1

2
Zγ13ϵi þ LgRϵikϵk

�
¼ 0: ð87Þ

As before we can obtain the following equations from
above

γ0∂tϵi þ γ2∂x3ϵi ¼ 0

e−βrγ0∂tϵi −
βγ4
2

ϵi þ γ4∂rϵi ¼ 0

e−βrγ2∂x3ϵi þ
βγ4
2

ϵi − γ4∂rϵi ¼ 0

ex
1

γ13∂x2ϵi þ ∂x1ϵi þ
ϵi
2
þ LgRBIVIγ13ϵi

kϵk ¼ 0: ð88Þ

The AdS3 part of the Killing spinor will preserve some
supersymmetry provided we assume that the Killing spinor
does not depend on the H2 part. We get the following
conditions from the above set of equations

ϵi ¼ e
βr
2 ζþi ; γ4ζ

þ
i ¼ ζþi ð89Þ

ϵi ¼ ðe−βr
2 þ e

βr
2 ðtγ0 þ x3γ2ÞÞζ−i ; γ4ζ

−
i ¼ −ζ−i ð90Þ

γ13ζ
�
i ¼ ϵi

kζ�k ; 4L2g2RðBIVIÞ2 ¼ 1: ð91Þ

As discussed in the previous sections, the two projectors
above combine to break half of the total supersymmetries of
the solution. Substituting the above relations in the Killing
spinor equation we find

β

2
ζ�i þ iffiffiffi

6
p

��
Z
2
þ LgR

�
ϵi

kζ�k

�
¼ 0 ð92Þ

ð−Z þ LgRÞϵikζ�k ¼ 0: ð93Þ

Consistency of the above equations yields the conditions

LgR ¼ Z; β ¼
ffiffiffi
3

2

r
Z; 4L2g2RðBIVIÞ2 ¼ 1: ð94Þ

Thus, we have a one parameter family of 1
2
BPS Bianchi III

solutions labeled by the central charge Z.
When the central charge takes the value (79) (the one

corresponding to the AdS3 ×R2 solution), it follows from
(94) that

L ¼ 1; β ¼ 1: ð95Þ

This is the AdS3 × H2 solution constructed in [54].15

We have repeated the above analysis for electric Bianchi
V, vacuum Bianchi V, and magnetic Bianchi VII cases.
However, in these cases the radial spinor breaks all
supersymmetry. The details are summarized in Appendix
Sec. D. This concludes our analysis of supersymmetric
solutions in gauged supergravity with Uð1ÞR gauging. In
the following section, we explore possible generalizations
to find new supersymmetric solutions.

C. Including hyper and tensor multiplets

In this section, we briefly comment about the pos-
sibilities of new supersymmetric solutions due to addi-
tion of tensor or hypermultiplets. We will provide formal
arguments as explicit solutions such as the ones con-
structed in [35] have not been explored yet in specific
models with tensor/hypermultiplets. The addition of
tensor/hyper multiplets modifies the supersymmetry
transformations (49). Let us first consider the gravitino
equation [52]

δϵψμi ¼ Dμϵi

þ i

4
ffiffiffi
6

p h ~MH
~Mνρðγμνρ − 4gμνγρÞϵi þ

iffiffiffi
6

p gRγμϵjPij

ð96Þ

where H ~M
μν ¼ fFI

μν; BJ
μνg, I ¼ 0…nV and J ¼ 1;…; nT ,

BJ
μν is an antisymmetric tensor that belongs to the tensor

multiplet. The scalars h ~M ¼ fhI; hJg are similarly func-
tions of scalars from the vector and tensor multiplets
respectively. The addition of hypermultiplets allows more
general R symmetry gauging of the full SUð2ÞR sym-
metry group,

PijðqÞ ¼ hIPIijðqÞ ¼ hIPr
IðqÞðσrÞij; ð97Þ

where the potentials are now SU(2) valued functions of
the hyperscalars in the hypermultiplet.
First, let us consider the case of hypermultiplets turned

on, but no tensor multiplets. In this case, the only difference
is that the quaternionic prepotential is a SU(2) triplet
function of the hyperscalars instead of a singlet for the
Uð1ÞR case. Hence for N ¼ 2 gauged supergravity with
SUð2ÞR gauging, including vector and hypermultiplets, and
a generic gauging of the symmetries of the very special
manifold and the quaternionic Kähler manifold, the Killing
spinor results that pertain to nonsupersymmetric solutions

15It is also possible to construct the vacuum AdS3 × H2

solution. However, this breaks all supersymmetry, unlike the
charged solution. (see Appendix Sec. D 1)
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in Sec. IV B continue to hold.16 Of course, this does not
affect the gaugino conditions, but in addition, there are new
conditions from hyperino equations. We will discuss them
shortly.
With tensor multiplets turned on in addition there are

more possibilities. If the tensor fields are oriented carefully,
there are possibilities of subtle cancellations that can
potentially lead to interesting new solutions with super-
symmetry preserving projection conditions. However, in
the models that have been studied before in [35], we have
not found any such possibility. Nevertheless, this requires
an independent analysis, and it is helpful to obtain some
conditions from gaugino and hyperino conditions first to
aid in this direction.
The addition of tensor multiplets also changes the

analysis of the gaugino conditions in an interesting way.
The gaugino equations acquire an additional term due to
tensor multiplets [52]

δϵλ
~a
i ¼ −

i
2
gAI

μf ~a
~xK

~x
I γ

μϵi þ
1

4
h ~a

~M
H ~M

μνγ
μνϵi − gRϵjP ~a

ij

þ g

ffiffiffi
6

p

4
hIK ~x

I f
~a
~xϵi ¼ 0; ð98Þ

where ~x ¼ 0, nV þ nT labels the moduli ϕ~x in the vector
and tensor multiplets. The vielbeins f ~a

~x live on the tangent
space corresponding to the very special manifold S. If we
continue to impose a straightforward generalization of the
attractor conditions (60)17

∂ ~xððQIhIðϕ�Þ þ BJhJðϕ�ÞÞ ¼ 0; hIðϕ�ÞP~x
I ðq�Þ ¼ 1

ð99Þ

the gaugino equations reduce to

δϵλ
~a
i ¼ gf ~a

~xK
~x
I

�
−iAI

μγ
μ þ

ffiffiffi
6

p

2
hI
�
ϵi ¼ 0: ð100Þ

It can be solved for an electric solution by imposing the
conditions

γ0ϵi ¼�iϵi; gf ~a
~xðϕ�ÞK ~x

I ðϕ�Þð�QI þ 2
ffiffiffi
6

p
hIðϕ�ÞÞ ¼ 0;

ð101Þ

or by imposing the conditions

QIK ~x
I ðϕ�Þ ¼ 0; hIðϕ�ÞK ~x

I ðϕ�Þ ¼ 0 ð102Þ

for either of electric or magnetic solutions. In addition, one
also has the hyperino conditions [52] at the attractor point

δζA ¼ gfAXiK
X
I

�
−iAI

μγ
μ þ

ffiffiffi
6

p

2
hI
�
ϵi ¼ 0: ð103Þ

In the above, KX
I are similarly Killing vectors on the

quaternionic manifold Q, fAXI are vielbeins on Q, and g is
the gauge coupling constant for the gauging of the
symmetries on Q. Note that (103) is structurally similar
to the gaugino condition (100) after imposing attractor like
conditions (99). Thus, for electric solutions, we can impose

γ0ϵi ¼ �iϵi;

gfA~Xiðq�ÞKX
I ðq�Þð�QI þ 2

ffiffiffi
6

p
hIðϕ�ÞÞ ¼ 0; ð104Þ

or by imposing the conditions

QIKX
I ðq�Þ ¼ 0; hIðϕ�ÞKX

I ðq�Þ ¼ 0 ð105Þ

for either of electric or magnetic solutions. It is interesting
to note that the conditions in (102) and (105) namely,

hIðϕ�ÞK ~x
I ðϕ�Þ ¼ 0; hIðϕ�ÞKX

I ðq�Þ ¼ 0; ð106Þ

appear in flow equations that preserve supersymmetry in
AdS (see Eq. 2.60 of [41]). So it seems reasonable to
impose the above conditions to find Bianchi attractor
solutions that potentially flow to an asymptotic AdS
geometry. However the conditions

QIKX
I ðq�Þ ¼ 0; QIK ~x

I ðϕ�Þ ¼ 0 ð107Þ

are problematic, as they kill the effective mass terms in the
field equations [35] and would still lead to massless
solutions. Thus, one possibility to find more interesting
massive Bianchi solutions in theN ¼ 2 theory with vector,
tensor, and hypermultiplets with generic gauging, is to
consider solutions sourced by timelike gauge fields. Then,
the gaugino and hyperino equations are satisfied by the
attractor condition (99), the projections (101), and (104).
However, solving the Killing spinor equation would require
great care in choosing the tensor field configuration, as we
would require a projection condition on the spinor that
would commute with that of (101) and (104). We have not
found any such solution in the models considered earlier in
[35,46]. Perhaps instead of trying to find explicit solutions
and then verifying supersymmetry, it may be useful to
carefully analyze the Killing spinor integrability conditions
together with the flow conditions (106) to determine the
possible supersymmetric Bianchi attractor solutions in this
theory. We hope to report this in a future work.

16For the supersymmetric solutions Eq. (65) and Sec. IV B 2
addition of tensor and hypermultiplets imposes additional new
relations from the hyperscalar equations and the tensor field
equations of motion. Moreover, the parameter space is also
enhanced, so one can possibly find new such solutions. It will be
interesting to see if the solutions in Eq. (65) and Sec. IV B 2
continue to remain supersymmetric in suitable models.

17Here ϕ� and q� are constant attractor values of the moduli
and BI are the tensor charges.
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V. SUMMARY

In this paper, we analyzed the supersymmetry of Bianchi
attractors in N ¼ 2 d ¼ 4, 5 gauged supergravity. In
d ¼ 4, we studied the supersymmetry of Bianchi I and
II attractors sourced by electric fields. In the Bianchi I case,
we studied an AdS2 × R2 metric sourced by a timelike
gauge field. We analyzed the gaugino and Killing spinor
equations and found that the radial spinor and its projection
condition preserved 1=4 of the supersymmetry. In the
Bianchi II case, we constructed an electric AdS2 × H2

solution and found that the radial spinor breaks all
supersymmetry.18 The main lesson we learned from this
exercise is that the radial spinor plays an important role in
preserving supersymmetry. These results are special cases
of the more general analysis of [34,51].
In d ¼ 5 N ¼ 2 gauged supergravity, we considered the

theory with a generic gauging of symmetries of the scalar
manifold and a Uð1ÞR gauging of the R-symmetry. The
Bianchi attractor geometries that can be constructed are
sourced by massive or massless gauge fields. For a generic
gauging of the scalar manifold and R-symmetry, when the
fermionic shifts in the gaugino and hyperino conditions do
not vanish, the projection conditions that need to be
imposed on the Killing spinor depend entirely on the
gauge field/field strength configuration. We showed that,
for the known field configurations that source the Bianchi
type geometries, there are no supersymmetric projections
possible. Independently, we showed that the radial spinor
breaks supersymmetry for all metrics of this class. Thus, for
a generic gauging of the scalar manifold and when the
fermionic shifts do not vanish, there are no supersymmetric
Bianchi attractors. This result for Bianchi type geometries
is similar to the result for maximally supersymmetric
solutions [41,52].
When the central charge of the theory satisfies an

extremization condition at the attractor point19

∂iZ ¼ 0; ð108Þ

some of the fermionic shifts vanish. Supersymmetry
invariance of the resultant equations allowed only massless
solutions. This prompts the search for Bianchi type metrics
sourced by massless gauge fields and cosmological con-
stant. We constructed new Bianchi I, Bianchi III, Bianchi V,
and Bianchi VII classes of solutions sourced by massless
gauge fields and a cosmological constant. Since the
gaugino conditions are completely solved in these cases,
the supersymmetry preserved by the geometries are deter-
mined by the Killing spinor equation. In the Bianchi I class,
we constructed an anisotropic 1=2 BPS AdS3 × R2 solution
where the anisotropy is generated by a magnetic field. The

supersymmetry is entirely due to the AdS3 part and the
Killing spinor does not depend on the R2 directions. We
also constructed a one parameter family of 1=2 BPS
Bianchi III geometries, labeled by the central charge.
When the central charge of the Bianchi III geometry takes
the same value as that of AdS3 ×R2, the solution reduces to
the known 1=2 BPS AdS3 × H2 solution [54]. For the
Bianchi V and Bianchi VII classes the radial spinor breaks
all supersymmetry, and hence, these are nonsupersymmet-
ric geometries. However, the parameters that characterize
these solutions can be chosen in accordance with the
stability criterion discussed in [47].
In Sec. IV C we explored the possible conditions to find

more interesting Bianchi attractor geometries with massive
gauge fields. Solutions with timelike gauge fields and
suitable tensor field configurations may give rise to
supersymmetry preserving projection conditions in the
Killing spinor equation. However, this has not worked
so far in the models considered in [35,46]. We hope to
explore this more further in future works.
Having constructed some of the simplest supersymmet-

ric Bianchi attractors, it is interesting to find such solutions
in theories with more supersymmetry. It will also be
interesting to uplift these solutions to higher dimensional
supergravity. The Killing spinor equations suggest that, in
most cases, if the geometry has an AdSn part that factorizes,
the corresponding Killing spinor is sufficient to preserve
the supersymmetry of the whole solution. Having an AdS
part may enable the construction of more general Bianchi
attractor geometries. Finally, it will be most interesting
to construct analytic solutions that interpolate to AdS.
A related issue is the embeddability of the Bianchi algebra
in the Poincaré or the conformal algebra. The Bianchi I
and Bianchi VII algebras are subalgebras of the Poincaré
algebra. The other Bianchi algebras have scaling type
generators and may presumably be obtained from a
truncation of the conformal algebra.
In this work, we studied Bianchi attractors in d ¼ 4, 5.

Earlier works have constructed Bianchi attractors as
generalized attractors in gauged supergravity [35,45,46].
In the studies of black holes in ungauged supergravity, there
have been studies on the 4d/5d correspondence where the
relation between the potential and critical points in d ¼ 4
and d ¼ 5 have been elucidated [67]. Similar studies have
been performed for gauged supergravity relating black
strings in d ¼ 5 and AdS2 × S2 in d ¼ 4 [68]. It would be
interesting to explore the relation between generalized
attractor potentials in d ¼ 4 and d ¼ 5 and their critical
points.
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APPENDIX A: CONVENTIONS

1. Gamma matrices and Spinors in four dimensions

The Clifford algebra in four spacetime dimensions is

fγa; γbg ¼ 2ηab ðA1Þ
with the metric convention ηab ¼ fþ;−;−;−g.20 The
Dirac matrices in four dimensions can be chosen to be

γ0 ¼ I2 ⊗ σ1

γ1 ¼ iσ1 ⊗ σ2

γ2 ¼ iσ2 ⊗ σ2

γ3 ¼ iσ3 ⊗ σ2; ðA2Þ
where σi, i ¼ 1, 2, 3 are the usual Pauli matrices, and I2 is
the two dimensional unit matrix. We define the chirality
matrix to be γ5 ¼ −iγ0γ1γ2γ3 and the charge conjugation
matrix C ¼ iγ2γ0 ¼ γ1γ3. The charge conjugation matrix C
has the property Ct ¼ −C ¼ C−1.
In four dimensions, we can impose the Weyl condition

on a four component spinor such that

γ5ϵA ¼ ϵA

γ5ϵ
A ¼ −ϵA; ðA3Þ

where the conjugate spinor is defined as

ϵA ¼ ðϵAÞc ¼ γ0C−1ðϵAÞ� ¼ −γ0CðϵAÞ�: ðA4Þ

We use the following decomposition of the spinors in
some sections. Using the fact that ½γ5; C� ¼ 0, we can
decompose the spinor into simultaneous eigenstates of C
and γ5 as follows

ϵA ¼
�

0

Cþ
A jþi

�
þ
�

0

C−
Aj−i

�
; ðA5Þ

where Cþ
A and C−

A are complex coefficients. The two
component states jþi; j−i

jþi ¼ 1ffiffiffi
2

p
�
1

i

�
; j−i ¼ 1ffiffiffi

2
p

�
1

−i

�
ðA6Þ

are eigenstates of σ matrices

σ1j�i ¼ �ij ∓i; σ2j�i ¼ �j�i; σ3j�i ¼ j ∓i:
ðA7Þ

2. Gamma matrices and spinors in five dimensions

In this section, we summarize our notations and con-
ventions for spinors in five dimensions. We mostly follow
our conventions of [52]. The Clifford algebra in five
spacetime dimensions is

fγa; γbg ¼ 2ηab ðA8Þ
where the metric signature that is mostly plus. The Dirac
matrices in five dimensions are

γ0 ¼ −iσ2 ⊗ σ3

γ1 ¼ −σ1 ⊗ σ3

γ2 ¼ I2 ⊗ σ1

γ3 ¼ I2 ⊗ σ2

γ4 ¼ −iγ0γ1γ2γ3 ¼ σ3 ⊗ σ3 ðA9Þ
where σi, i ¼ 1, 2, 3 are the usual Pauli matrices and I2 is
the two dimensional unit matrix. The charge conjugation
matrix C has the property Ct ¼ −C ¼ C−1 and,

CγaC−1 ¼ ðγaÞt ðA10Þ
where C ¼ Bγ0, with B ¼ γ3 such that B�B ¼ −1. The
spinors in the theory carry an SU(2) index which is raised
and lowered using ϵij

Xj ¼ ϵjiXi; Xj ¼ Xiϵij; ðA11Þ
with ϵ12 ¼ ϵ12 ¼ 1.
Spinors in d ¼ 5 satisfy a symplectic majorana con-

dition. To apply this condition, one needs B�B ¼ −1, even
number of Dirac spinors ψ i, i ¼ 1;…; 2n and an antisym-
metric real matrix Ωij with Ω2 ¼ −12n. The symplectic
majorana condition on a generic spinor reads as

ψ�
i ¼ ΩijBψ j ðA12Þ

or equivalently [52] as
20We follow the conventions of [48] for N ¼ 2; d ¼ 4 gauged

supergravity.
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ψ̄ i ≡ ðψ�
i Þtγ0 ¼ ðψ iÞtC: ðA13Þ

For N ¼ 2 supersymmetry i ¼ 1, 2, and using Ωij ¼ ϵij
(A12) reads as

ψ�
1 ¼ γ3ψ2: ðA14Þ

Note that this condition does not reduce the degrees of
freedom as compared to a single unconstrained Dirac
spinor. This is because one needs at least a pair of Dirac
spinors to apply the symplectic majorana condition (A12).
However, it does make the R-symmetry manifest.
Antisymmetrization of indices in the Dirac matrices is

done with the following convention

γa1a2…an ¼ γ½a1a2…an� ¼
1

n!

X
σ∈Pn

SignðσÞγaσð1Þγaσð2Þ…γaσðnÞ :

ðA15Þ
In d ¼ 5 only I; γa; γab form an independent set, other
matrices are related by the general identity for d ¼ 2kþ 3

γμ1μ2…μs ¼ −i−kþsðs−1Þ

ðd − sÞ! ϵμ1μ2…μsγμsþ1…μd : ðA16Þ

We also list some useful identities involving various Dirac
matrices [69],

½γa; γb� ¼ 2γab

½γh; γabc� ¼ 2γhabc

½γabc; γegh� ¼ ηefηgpηhkð2γabcfpk − 36δ½ab½fpγc�k�Þ: ðA17Þ

APPENDIX B: BIANCHI SOLUTIONS
IN 4D GAUGED SUPERGRAVITY

In this section, we list the field equations of the Bianchi I
(AdS2 × R2) solution in N ¼ 2; d ¼ 4 gauged supergrav-
ity. We are interested in an attractor type solution where the
scalars ðz; qÞ are constants independent of spacetime
coordinates and only the hypermultiplets are charged under
Abelian gauging. The field equations can be derived from
an effective Lagrangian [48]

Leff ¼ −
1

2
Rþ ImNΛΣFΛ

μνFΣμν − Vðz; z̄; qÞ
þ gXYKX

ΛK
Y
ΣA

Λ
μAμΣ: ðB1Þ

1. Bianchi I: AdS2 ×R2

We write the AdS2 ×R2 in a convenient coordinate
system as

ds2 ¼ R2
0

σ2
ðdt2 − dσ2Þ − R2

0ðdy2 þ dρ2Þ: ðB2Þ

This metric can be easily supported by an electric gauge
field, we choose our gauge field ansatz to be

AΛ ¼ EΛ

σ
dt: ðB3Þ

The gauge field equations are

gXYKX
ΛK

Y
ΣE

Λ ¼ 0: ðB4Þ
There are nv þ 1 equations for the nv þ 1 variables EΛ. At
the attractor point, the scalars are constants, as a result all
the spacetime derivatives drop and the scalar field equations
reduce to the extremization of an effective potential
(attractor potential)

∂
∂qX Veff ¼ 0;

∂
∂zi Veff ¼ 0

Veff ¼ Vðz; z̄; qÞ − gXYKX
ΛK

Y
Σ
EΛEΣ

R2
0

þ ImNΛΣ
EΛEΣ

2R4
0

:

ðB5Þ
There are nV scalar equations for zi and 4nH hyperscalar
equations for qX. The Einstein equations are

0 ¼ R2
0Veff þ 2gXYKX

ΛK
Y
ΣE

ΛEΣ − ImNΛΣ
EΛEΣ

R2
0

0 ¼ −R2
0Veff þ ImNΛΣ

EΛEΣ

R2
0

−
1

R2
0

¼ Veff ; ðB6Þ

where Veff is defined in (B5). The above equations can be
recast as the following conditions

Vðz; z̄; qÞ ¼ −
1

2R2
0

;

ImNΛΣEΛEΣ

R2
0

¼ −1;

gXYKX
ΛK

Y
ΣE

ΛEΣ ¼ 0; ðB7Þ
to be satisfied for a given specific model.

2. Nonsupersymmetric electric Bianchi II

In this section, we discuss the supersymmetry conditions
for a Bianchi II (AdS2 × EAdS2) solution of the form

ds2 ¼ R2
0

σ2
ðdt2 − dσ2Þ − R2

0

ρ2
ðdy2 þ dρ2Þ: ðB8Þ

As discussed in Sec. II, the symmetries along the spatial
directions correspond to that of EAdS2. Like the previous
solution, the AdS2 × EAdS2 solution can also be con-
structed using a timelike gauge field (18) as source since it
preserves the Bianchi II symmetry along the (y; ρ) direc-
tions. The Killing spinor equations on this background are
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γ0σ

R0

∂tϵA−
γ1

2R0

ϵAþ
iGB

Aγ
0

2R0

ϵBþ iSABϵBþ
iN
2R2

0

γ01ϵABϵ
B¼0;

γ1σ

R0

∂σϵAþ iSABϵBþ
iN
2R2

0

γ01ϵABϵ
B¼0;

γ2ρ

R0

∂yϵA−
γ3

2R0

ϵAþ iSABϵB−
N
2R2

0

γ23ϵABϵ
B¼0;

γ3ρ

R0

∂ρϵAþ iSABϵB−
N
2R2

0

γ23ϵABϵ
B¼0;

ðB9Þ

where we have defined the quantities N and GB
A in (23).

Taking the difference of the first and second equations of
(B9), and similarly the difference of the third and fourth
equations in (B9), we get the pair of differential equations

σ

R0

ðγ0∂t − γ1∂σÞϵA −
γ1

2R0

ϵA þ iGB
Aγ

0

2R0

ϵB ¼ 0;

ρ

R0

ðγ2∂y − γ3∂ρÞϵA −
γ3

2R0

ϵA ¼ 0: ðB10Þ

Since the AdS2 × EAdS2 metric factorizes into a product
form, with two radii ρ and σ, we choose a Killing spinor
ansatz of the form

ϵA ¼ 1

ρmσn
χA; ðB11Þ

where χA is a constant spinor, while m, n take real values.
This form of the ansatz is also consistent with the Bianchi II
symmetry of the metric. Substituting the above in (B10) we
get the conditions

ð2n − 1Þγ1ϵA þ iGB
Aγ

0ϵB ¼ 0;

ð2m − 1Þγ3ϵA ¼ 0; ðB12Þ

that can be solved by

m ¼ n ¼ 1

2
; EΛPx

Λ ¼ 0: ðB13Þ

With the ansatz (B11) and the condition (B13), the
remaining Killing spinor equations give the conditions

ðγ1 þ γ3ÞϵA ¼ 4iR0SABϵB

ðγ1 − γ3ÞϵA ¼ 2iNγ01

R0

ϵABϵ
B: ðB14Þ

Unlike the AdS2 × R2 case, these conditions are not as
simple to work with. However, we can simplify them by
multiplying from the left by γ1 and writing in terms of the
charge conjugate matrix C ¼ γ1γ3 as

ð−1þ CÞχA ¼ 4iR0SABγ01CðχBÞ�

ð−Cþ 1ÞχA ¼ 2iN
R0

ϵABðχBÞ�; ðB15Þ

where we have used χB ¼ −γ0CðχBÞ�. We now show that
the above condition breaks all of supersymmetry. Since
½γ5; C� ¼ 0 (see Sec. A 1), it is convenient to use a
decomposition of the spinor χA in a basis of simultaneous
eigenstates of γ5 and C as follows

χA ¼
�

0

Cþ
A jþi

�
þ
�

0

C−
Aj−i

�
; ðB16Þ

where Cþ
A and C−

A are complex coefficients21 and j�i are
eigenstates of the Pauli matrices. Substituting in the second
equation in (B15), we obtain

ð1 − iÞCþ
A jþi þ ð1þ iÞC−

Aj−i

¼ 2iN
R0

ϵABððCþ
B Þ�j−i þ ðC−

BÞ�jþiÞ: ðB17Þ

Linear independence of the states jþi and j−i gives rise to
the constraints

ð1 − iÞCþ
A ¼ 2iN

R0

ϵABðC−
BÞ�

ð1þ iÞC−
A ¼ 2iN

R0

ϵABðCþ
B Þ�: ðB18Þ

It is straightforward to see that both of these constraints
cannot be satisfied simultaneously as their mutual consis-
tency leads to

Cþ
A

�
1þ 2ijNj2

R2
0

�
¼ 0: ðB19Þ

Since jNj2 is real, it follows that the only possible solution
is that all the C�

A vanish and hence the metric (B8) breaks
all the supersymmetry.

APPENDIX C: BIANCHI I SUPERSYMMETRIC
AdS5 IN GAUGED SUPERGRAVITY

As a warm up, let us begin our analysis with the simplest
known AdS5 metric written in terms of the one forms

e0 ¼ Lerdt; e1 ¼ Lerω1;

e2 ¼ Lerω2; e3 ¼ Lerω3; e4 ¼ Ldr; ðC1Þ
where L is the AdS scale. The invariant one forms

ωi ¼ dxi; i ¼ 1; 2; 3; ðC2Þ

21Since (A ¼ 1, 2) there are eight independent constants in ϵA
as it should be for a N ¼ 2 spinor in four dimensions.
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and all commute with one another and satisfy dωi ¼ 0, a
characteristic of the Bianchi I algebra. Since we are
discussing the Uð1ÞR case, the gaugino conditions are
trivial.22

The Killing spinor equation (63) in the background (C1)
reads as,

e−rγ0∂tϵi −
1

2
γ4ϵi −

iffiffiffi
6

p LgRϵikϵk ¼ 0;

e−rγ1∂x1ϵi þ
1

2
γ4ϵi þ

iffiffiffi
6

p LgRϵikϵk ¼ 0;

e−rγ2∂x2ϵi þ
1

2
γ4ϵi þ

iffiffiffi
6

p LgRϵikϵk ¼ 0;

e−rγ3∂x3ϵi þ
1

2
γ4ϵi þ

iffiffiffi
6

p LgRϵikϵk ¼ 0;

γ4∂rϵi þ
iffiffiffi
6

p LgRϵikϵk ¼ 0: ðC3Þ

The following equations can be obtained after some
algebraic manipulations

γ0∂tϵi þ γa∂xaϵi ¼ 0;

γa∂xaϵi − γb∂xbϵi ¼ 0;

γ4∂rϵi þ e−rγ0∂tϵi −
1

2
γ4ϵi ¼ 0;

γ4∂rϵi − e−rγa∂xaϵi −
1

2
γ4ϵi ¼ 0; ðC4Þ

where a ¼ 1, 2, 3. There are two independent solutions to
the above equations

ϵi ¼ e
r
2ζþi ; γ4ζ

þ
i ¼ ζþi ðC5Þ

ϵi ¼ ðe−r
2 þ e

r
2ðxmγmÞÞζ−i ; γ4ζ

−
i ¼ −ζ−i : ðC6Þ

Each of the spinors (C5) and (C6) preserves 1
2

the
supersymmetry and the full solution enjoys a N ¼ 2
supersymmetry. Substituting the above in (C3) we get
the consistency condition

ζ�i ¼∓ 2iffiffiffi
6

p LgRϵikζ�k : ðC7Þ

It follows that (note that ϵikϵlk ¼ −δli)�
1 −

2

3
L2g2R

�
ζ�i ¼ 0: ðC8Þ

This of course is the equation of motion for AdS5 metric,
thus we see that supersymmetry conditions automatically
guarantee the equation of motion.

APPENDIX D: NONSUPERSYMMETRIC
SOLUTIONS IN 5D GAUGED SUPERGRAVITY

1. Bianchi III—vacuum AdS3 × H2

In this section, we present the killing spinor equations for
the vacuum AdS3 × H2 solution. This however breaks
supersymmetry explicitly, unlike the charged case. The
simplified equations (88) are

γ0∂tϵi þ γ2∂x3ϵi ¼ 0;

e−rγ0∂tϵi −
γ4
2
ϵi þ γ4∂rϵi ¼ 0;

e−rγ2∂x3ϵi þ
γ4
2
ϵi − γ4∂rϵi ¼ 0;

ex
1

γ13∂x2ϵi þ
ϵi
2
þ ∂x1ϵi ¼ 0: ðD1Þ

Any solution necessarily depends on the H2 coordinates
and breaks supersymmetry. The AdS3 part of the equations
[first three of (D1)] are solved by the usual

ϵi ¼ e
r
2ζþi ; γ4ζ

þ
i ¼ ζþi

ϵi ¼ ðer
2ðγ0tþ γ2x3Þ þ e−

r
2Þζ−i ; γ4ζ

−
i ¼ −ζ−i ; ðD2Þ

whereas the H2 part of the equations [the last equation in
(D1)] are solved by

ϵi ¼ e−
x1
2 ζ−i ; γ3ζ

−
i ¼ −ζ−i

ϵi ¼ ðe−x1
2 γ1x2 þ e

x1
2 Þζþi ; γ3ζ

þ
i ¼ ζþi : ðD3Þ

We see that ζ� are required to be simultaneous eigenspinors
of both γ3 and γ4 in order to solve the full set of
equations (D1).23 However, that is impossible since the
matrices anticommute. Thus, the product space in the
vacuum case breaks all supersymmetry. In the charged
case, we are able to avoid the spinor being an eigenspinor
of γ3 due to the condition (91). This is consistent with the
conclusion from the integrability condition eq. 31 of [35]
that AdS5 is the unique maximally supersymmetric vacuum
solution in the theory.

2. Bianchi V

The Bianchi V solution constructed in [13] is of the form

e0 ¼ Leβtrdt; e1 ¼ Lω1; e2 ¼ Lω2;

e3 ¼ Lω3; e4 ¼ Ldr; ðD4Þ
where the invariant one forms are given by

ω1 ¼ e−x
1

dx2; ω2 ¼ e−x
1

dx3; ω3 ¼ dx1: ðD5Þ
The Bianchi V geometry in this case has the form of
AdS2 × H3. The metric is sourced by a massless timelike
gauge field

22For more general AdS critical points see [41,60]. 23The general solution is a combination of (D2) and (D3).
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AI ¼ EIe0: ðD6Þ
The Killing spinor equations in this background take the
form (Z ¼ EIhI)

e−βtrγ0∂tϵi −
βt
2
γ4ϵi þ gRLEIVIγ0ϵi

kϵk

þ iffiffiffi
6

p ðβtZγ04ϵi − LgRϵikϵkÞ ¼ 0;

ex
1

γ1∂x2ϵi −
1

2
γ3ϵi þ

iffiffiffi
6

p
�
βt
2
Zγ04ϵi þ LgRϵikϵk

�
¼ 0;

ex
1

γ2∂x3ϵi −
1

2
γ3ϵi þ

iffiffiffi
6

p
�
βt
2
Zγ04ϵi þ LgRϵikϵk

�
¼ 0;

γ3∂x1ϵi þ
iffiffiffi
6

p
�
βt
2
Zγ04ϵi þ LgRϵikϵk

�
¼ 0;

γ4∂rϵi −
iffiffiffi
6

p ðβtZγ04ϵi − LgRϵikϵkÞ ¼ 0:

ðD7Þ
We can write down the following differential equations
after some algebraic manipulations

e−βtrγ0∂tϵi þ γ4∂rϵi −
βt
2
γ4ϵi þ gRLEIVIγ0ϵi

kϵk ¼ 0;

γ1∂x2ϵi − γ2∂x3ϵi ¼ 0;

ex
1

γ13∂x2ϵi þ ∂x1ϵi þ
ϵi
2
¼ 0;

ex
1

γ23∂x3ϵi þ ∂x1ϵi þ
ϵi
2
¼ 0:

ðD8Þ
Following the arguments given in the previous section, we
can solve the AdS2 part of the equations [first in (D8)] by

ϵi ¼ e
βtr
2 ζþi ; γ4ζ

þ
i ¼ ζþi

ϵi ¼ ðeβtr
2 γ0tþ e−

βtr
2 Þζ−i ; γ4ζ

−
i ¼ −ζ−i ; ðD9Þ

provided we set EIVI ¼ 0. If EIVI ≠ 0 in this case, even
the radial spinor breaks all supersymmetry. Similarly theH3

part of the equations [last three of (D8)] can be solved by

ϵi¼e−
x1
2 ζ−i ; γ3ζ

−
i ¼−ζ−i

ϵi¼ðe−x1
2 ðγ1x2þγ2x3Þþe

x1
2 Þζþi ; γ3ζ

þ
i ¼ ζþi : ðD10Þ

Once again, we see that the ζ� are required to be
simultaneous eigenspinors of γ3 and γ4, that is impossible
since the matrices do not commute.24 Thus, the solution
breaks all supersymmetry. The same arguments apply for
the vacuum Bianchi V AdS2 × H3 solution.

3. Bianchi VII

The Bianchi VII metric is expressed in terms of the
following one forms

e0 ¼ Leβtrdt; e1 ¼ Ldx1;

e2 ¼ Leβrðcosðx1Þdx2 þ sinðx1Þdx3Þ;
e3 ¼ Lλeβrð− sinðx1Þdx2 þ cosðx1Þdx3Þ;
e4 ¼ Ldr; ðD11Þ
where λ is a squashing parameter. The gauge field ansatz is
of the form

AI ¼ BIe2; ðD12Þ
where BI are constants. The Killing spinor equations in the
above background take the form (Z ¼ hIBI)

e−βtrγ0∂tϵi −
βt
2
γ4ϵi

þ iffiffiffi
6

p
�
Z
2

�
βγ24 −

γ13
λ

�
ϵi − LgRϵikϵk

�
¼ 0;

γ1∂x1ϵi −
ð1þ λ2Þ

4λ
γ123ϵi

−
iffiffiffi
6

p
�
Z
2

�
βγ24 þ

2γ13
λ

�
ϵi − LgRϵikϵk

�
¼ 0;

e−βrγ2ðcos x1∂x2 þ sin x1∂x3Þϵi
þ ð1 − λ2Þ

4λ
γ123ϵi þ

β

2
γ4ϵi þ LgRBIVIγ2ϵi

kϵk

þ iffiffiffi
6

p
�
Z
2

�
γ13
λ

þ 2βγ24

�
ϵi þ LgRϵikϵk

�
¼ 0;

e−βrγ3ð− sin x1∂x2 þ cos x1∂x3Þϵi −
ð1 − λ2Þ

4λ
γ123ϵi þ

β

2
γ4ϵi

þ iffiffiffi
6

p
�
−
Z
2

�
βγ24 þ

2γ13
λ

�
ϵi þ LgRϵikϵk

�
¼ 0;

γ4∂rϵi þ
iffiffiffi
6

p
�
Z
2

�
γ13
λ

þ 2βγ24

�
ϵi þ LgRϵikϵk

�
¼ 0:

ðD13Þ

After a few algebraic steps, we get the following differential
equations

e−βrγ3ð− sin x1∂x2 þ cos x1∂x3Þϵi − γ1∂x1ϵi

þ λ

2
γ123ϵi þ

β

2
γ4ϵi ¼ 0;

e−βrγ2ðcos x1∂x2 þ sin x1∂x3Þϵi
þ ð1 − λ2Þ

4λ
γ123ϵi − γ4∂rϵi þ

β

2
γ4ϵi

þ LgRBIVIγ2ϵi
kϵk ¼ 0; ðD14Þ

24In this case too, the general solution of (D8) is a combination
of (D9) and (D10).
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that are solved by the radial spinor

BIVI ¼ 0; γ1234ϵi ¼ ϵi; β ¼ λ

ϵi ¼ e
ð3β2−1Þ

4β rζi: ðD15Þ
Substituting (D15) back into (D13) we obtain

−
βt
2
γ4ϵi þ

iffiffiffi
6

p
�
Z
2

ðβ2 − 1Þ
β

γ24ϵi − LgRϵikϵk

�
¼ 0;

−
�
1þ β2

4β

�
γ4ϵi þ

iffiffiffi
6

p
�
Z
2

ðβ2 þ 2Þ
β

γ24ϵi − LgRϵikϵk

�
¼ 0;

3β2 − 1

4β
γ4ϵi þ

iffiffiffi
6

p
�
Z
2

ð2β2 þ 1Þ
β

γ24ϵi þ LgRϵikϵk

�
¼ 0:

ðD16Þ

The equations (D16) lead to the projections

γ4ζi ¼ −iϵikζk; ðβt þ 2βÞ2 ¼ 6L2g2R

γ2ζi ¼ −iζi;
�
β2 − 1

β2 þ 1

�
2

¼ 3Z2

2
;

βt ¼
β4 þ 4β2 − 1

2βð1þ β2Þ : ðD17Þ

It is clear that the additional projection condition due to γ2
breaks all of the supersymmetry. Thus, the Bianchi VII
solution (D11) is nonsupersymmetric. However, the
Bianchi VII algebra is a subalgebra of the Poincaré algebra,
and hence, it is also part of the super Poincaré algebra. It is
possible that there are more general solutions in this class
that may be supersymmetric.
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