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We show how to construct correlators for the CFT1 which is dual to noncommutative AdS2 (ncAdS2).
We do it explicitly for the example of the massless scalar field on Euclidean ncAdS2. ncAdS2 is the
quantization of AdS2 that preserves all the isometries. It is described in terms of the unitary irreducible
representations, more specifically discrete series representations, of soð2; 1Þ. We write down symmetric
differential representations for the discrete series and then map them to functions on the Moyal-Weyl plane.
The Moyal-Weyl plane has a large distance limit which can be identified with the boundary of ncAdS2.
Killing vectors can be constructed on ncAdS2 which reduce to the AdS2 Killing vectors near the boundary.
We, therefore, conclude that ncAdS2 is asymptotically AdS2, and so the AdS=CFT correspondence should
apply. For the example of the massless scalar field on Euclidean ncAdS2, the on-shell action, and resulting
two-point function for the boundary theory, are computed to leading order in the noncommutativity
parameter. The computation is nontrivial because nonlocal interactions appear in the Moyal-Weyl
description. Nevertheless, the result is remarkably simple and agrees with that of the commutative scalar
field theory, up to a rescaling.
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I. INTRODUCTION

The AdS=CFT correspondence [1] has been one of the
main themes in theoretical physics for the last 20 years (see,
e.g. [2] for some recent review). This conjectured corre-
spondence is the explicit realization of the holographic
principle [3,4]. In the case of the AdS=CFT correspondence
this principle is realized in the form of the weak/strong
duality between the quantum gravity in the bulk of an
asymptotically AdS space and a conformal field theory
(CFT) on the conformal boundary of this space. The
original proposal was made for the case of AdS5 × S5

geometry, in addition to a variety of asymptotically AdS
spaces of different dimensions. A well studied case is that
of AdS3=CFT2 correspondence. This is due to the fact that
the conformal symmetry in two dimensions is infinite
dimensional and, as a consequence, the corresponding
CFTs are very well studied. It would seem that going
one dimension down should simplify things even more.
Unfortunately, this is not the case. AdS2=CFT1 correspon-
dence [5] appears far from being settled. There are several
reasons why this seemingly simple case is more compli-
cated on both sides of the duality. For example, the
geometry of AdS2 is distinct from AdSn, n > 2 because
it has two disconnected timelike boundaries. On the CFT
side, there is a realization of CFT1 (which is actually
conformal quantum mechanics rather then field theory),
the de Alfaro-Fubini-Furlan (dAFF) model, which has
been known for some time [6]. Although it lacks an

SOð2; 1Þ-invariant ground state, it was argued in [7] that
despite this fact one still can have correlators consistent
with the correspondence. Another realization of CFT1 is
matrix quantum mechanics, which is obtained from the
dimensional reduction of ten-dimensional super-Yang-
Mills theory [8–12]. Recently a completely different
realization of AdS2=CFT1 was suggested in [13,14].
There it was conjectured that gravity on (nearly) AdS2 is
dual to the so-called Sachdev-Ye-Kitaev models (see
references in [13,14]). Though this proposal has attracted
considerable attention, in general, the case of AdS2=CFT1

correspondence is still begging for better understanding. In
this situation any effort in this direction should be welcome.
In this paper, we want to study aspects of the

AdS2=CFT1 correspondence in a noncommutative setting,
namely when the geometry on the gravity side of the
correspondence is replaced by the noncommutative version
of (Euclidean) AdS2. In this regard, two questions natu-
rally arise:
(1) Why would one like to make the geometry non-

commutative?
(2) How can we study the noncommutative generali-

zation of the correspondence when, as we men-
tioned above, even the commutative case is not yet
settled?

Concerning the first question, we can argue as follows.
There is a general belief (supported by multiple arguments)
[15] that the quasiclassical regime of quantum gravity
should appear as a quantum field theory on some non-
commutative background. In this regard, making the AdS2
space noncommutative should correspond to the inclusion
of some quantum gravitational corrections. Since it is
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conjectured that the AdS=CFT correspondence is exact
even at the quantum level, it is worthwhile to take non-
commutative effects into account in order to see explicitly
how (or if) the correspondence applies. AdS2 is an ideal
candidate for examining noncommutative effects. This is
because it is possible to construct a noncommutative
version, ncAdS2, of AdS2 in such a manner that preserves
the isometry group SOð2; 1Þ [16–19]. (This does not mean
that the Killing vectors retain their commutative form under
the deformation.) A similar example of a noncommutative
space is the fuzzy sphere S2F [20–27]. (See [23] for an
explicit efficient construction for recovering the commu-
tative limit.) Like ncAdS2, it has the feature of an
undeformed isometry, which proved to be both physically
and mathematically useful. Unlike S2F, the notion of a
boundary can be defined for ncAdS2, and this is done
purely in terms of states of the unitary irreducible repre-
sentations (UIRR’s) of SOð2; 1Þ, or more generally its
universal cover. The noncommutative version of Killing
vectors for AdS2 reduces to the commutative form at the
boundary. In this sense, ncAdS2 can be said to be
asymptotically AdS2, and the AdS=CFT correspondence
principle should then be applicable.
We have only a partial answer to the second question. Of

course, we will not be able to construct the full correspon-
dence. Instead, our goal is more modest: We want to study
the perturbative corrections to the correlator functions of
operators on the boundary induced by the bulk-to-boundary
and bulk-to-bulk propagators, and see if they preserve the
form which is compatible with conformal symmetry. It is
possible that the conformal symmetry gets deformed, and
this was recently shown in [28] where a model of conformal
quantum mechanics in κ-spacetime was considered. This
led to noncommutative corrections to the scaling dimen-
sions. We will see, on the other hand, that such a result does
not follow from our construction of ncAdS2, which is
essentially unique when one insists on preserving the
isometry group when passing to the noncommutative
theory.
We shall assume the usual prescription for the AdS=CFT

correspondence, namely, that the connected correlation
functions for operators O spanning the CFT are generated
by the on-shell field theory action on the corresponding
asymptotically AdS space, and that the boundary values ϕ0

of the fields are sources associated with O. In this article,
we specialize to the case of a single massless scalar field.
This provides a particularly simple example, in part
because of the fact that solutions to the field equation
on AdS2 are regular at the boundary, i.e., jϕ0j < ∞.
Moreover, we find that this property is preserved when
passing to the noncommutative theory.
Before going to the noncommutative theory, we first

briefly recall how the correspondence works for a massless
scalar field Φð0Þ on Euclidean AdS2. One starts with the
action

S½Φð0Þ� ¼ 1

2

Z
R×Rþ

dtdzfð∂zΦð0ÞÞ2 þ ð∂tΦð0ÞÞ2g; ð1:1Þ

where it is convenient to use Fefferman-Graham coordi-
nates, ðz; tÞ, z ≥ 0;−∞ < t < ∞, which we review in
Sec. II. The AdS2 boundary occurs at z ¼ 0. Variations
δΦð0Þ of Φð0Þ in (1.1) give

δS½Φð0Þ� ¼ −
Z
R×Rþ

dtdzδΦð0Þð∂2
z þ ∂2

t ÞΦð0Þ

−
Z
R
dtð∂zΦð0ÞδΦð0ÞÞjz¼0: ð1:2Þ

Extremizing the action with Dirichlet boundary conditions
yields the field equation

□Φð0Þ ¼ ð∂2
z þ ∂2

t ÞΦð0Þ ¼ 0: ð1:3Þ

Since the equation is second order, we should impose
two boundary conditions to obtain a unique solution.
Solutions which are everywhere (and in particular at
z → ∞) regular can be expressed in terms of the boundary
value of the field, ϕ0ðtÞ ¼ Φð0Þð0; tÞ, using the boundary-
to-bulk propagator [29]1

Φð0Þðz; tÞ ¼
Z
R
dt0Kðz; t; t0Þϕ0ðt0Þ;

Kðz; t; t0Þ ¼ z=π
z2 þ ðt − t0Þ2 : ð1:4Þ

Denote such solutions by Φsol½ϕ0�. They are then substi-
tuted back into the action (1.1), which can also be written as

S½Φð0Þ� ¼ −
1

2

Z
R×Rþ

dtdzΦð0Þ
□Φð0Þ

−
1

2

Z
R
dtðΦð0Þ∂zΦð0ÞÞjz¼0 ð1:5Þ

to obtain the on-shell action. This leaves only the boundary
term

1This result is simple to show in two dimensions: (1.4)
is a solution to the field equation (1.3) since it can be
written as Φð0Þðz; tÞ ¼ fðtþ izÞ þ gðt − izÞ, where fðtþ izÞ ¼
i
2π

R
R dt0 ϕ0ðt0Þ

tþiz−t0 and gðt − izÞ ¼ fðtþ izÞ�. In the limit z → 0, the
Sokhotski formula gives 1

tþiz−t0 → −iπδðt − t0Þ þ Pð 1
t−t0Þ, where

P denotes the principal value, and so limz→0Φð0Þðz; tÞ ¼ ϕ0ðtÞ.
To see that (1.4) is regular at z → ∞, we can write it as

Φð0Þðz; tÞ ¼ π

z

Z
R
dt0

ϕ0ðt0Þ
1þ ðt−t0Þ2

z2

;

which for suitable ϕ0 tends to zero as z → ∞.
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S½Φsol½ϕ0�� ¼ −
1

2

Z
R
dtΦsol½ϕ0�∂zΦsol½ϕ0�jz¼0 ð1:6Þ

¼ −
1

2π

Z
R
dt

Z
R
dt0

ϕ0ðtÞϕ0ðt0Þ
ðt − t0Þ2 : ð1:7Þ

In the AdS=CFT correspondence, one identifies S½Φsol½ϕ0��
with the generating functional of the n-point connected
correlation functions for the operators O associated with
ϕ0. Here, both O and ϕ0 are functions of only t,

hOðt1Þ � � �OðtnÞi ¼
δnS½Φsol½ϕ0��

δϕ0ðt1Þ � � � δϕ0ðtnÞ
����
ϕ0¼0

: ð1:8Þ

So the two-point function in this example is

hOðtÞOðt0Þi ¼ −
1

2π

1

ðt − t0Þ2 : ð1:9Þ

The goal of this article is to repeat the above procedure
for scalar fields on Euclidean ncAdS2. The action (1.1) is
replaced by an operator trace. No additional terms analo-
gous to the Gibbons-Hawking-York boundary term[30]
need to be added to the action for the variational problem to
be well defined. The field equation (1.3) gets replaced by an
equation involving infinitely many derivatives in t, but still
only two derivatives in z. Then again only two boundary
conditions on a t-slice are required to obtain unique
solutions. Regular solutions can be found order by order
in the noncommutativity parameter, which can once again
be expressed in terms of its boundary values ϕ0. Following
an analogous procedure to the above, we obtain the
leading-order correction to the two-point function (1.9).
The outline of the article is as follows: In Sec. II, we

review Euclidean AdS2 for which we consider two different
parametrizations, one are what we call canonical coordi-
nates and the other are Fefferman-Graham coordinates. A
Poisson bracket is attached to AdS2 in a manner consistent
with the isometries. The Poisson brackets imply that the
time is canonically conjugate to the radial coordinate,
which is conventionally interpreted as the energy scale
for the boundary CFT. In Sec. III, we “quantize” the
Poisson manifold, and as we indicated previously, we do it
in a manner that preserves the AdS2 isometries. The result
is ncAdS2, which is described by the UIRR’s of the
universal cover of SUð1; 1Þ. Of the different nontrivial
UIRR’s, i.e., the principal, supplemental, and discrete
series, only the discrete series has a limit back to
Euclidean AdS2, and it is the subject of Sec. IV.2

Following [31], we utilize properties of the generalized
Laguerre polynomials to write down a symmetric

differential representations for the discrete series. The
differential operators can then be mapped to functions
on the Moyal-Weyl plane, and so one arrives at a conven-
ient Moyal-Weyl description of ncAdS2. Furthermore, a
boundary can be defined on the Moyal-Weyl plane which
coincides with the boundary of AdS2 in the commutative
limit. The Killing vectors for AdS2 have a straightforward
analogue in the noncommutative theory and are constructed
in Sec. V. They are realized by infinite-order derivative
operators on the Moyal-Weyl plane, and as stated above,
they preserve the isometry algebra and reduce to the
commutative form near the boundary. We explore massless
scalar field theory on ncAdS2 in Sec. VI. An explicit
expression for the dynamics of the massless scalar field on
ncAdS2 is given. Although it describes a free scalar field on
ncAdS2, after being mapped to the Moyal-Weyl plane the
scalar field picks up nontrivial nonlocal interactions with
the background. Just as with the case of the Killing vectors,
the field equation essentially reduces to the commutative
equation near the boundary. The field equation can be
consistently obtained from the action principle upon
imposing Dirichlet boundary conditions, and this is
because we find no noncommutative corrections to the
boundary term from variations of the action. The on-shell
action, and resulting two-point function for the boundary
theory, are computed in Sec. VII to leading order in the
noncommutativity parameter. We find that the results agree
with those of the commutative scalar field theory, up to a
rescaling. In the Appendix, we collect some useful results
about the Moyal-Weyl star product used in the calculations
presented in the Secs. V, VI, and VII.

II. EUCLIDEAN AdS2: CANONICAL
COORDINATES VERSUS

FEFFERMAN-GRAHAM COORDINATES

AdS2 can be defined in terms of embedding coordinates
Xμ, μ ¼ 0, 1, 2, along with a scale parameter l0. In the
case of the Euclidean version of AdS2, Xμ span three-
dimensional Minkowski space with invariant interval
ds2 ¼ dXμdXμ, where indices raised and lowered using
the ambient metric tensor η ¼ diagð1; 1;−1Þ. AdS2 is
defined by the constraint

XμXμ ¼ −l2
0; ð2:1Þ

and l2
0 > 0. The constraint describes a double-sheeted

hyperboloid embedded in 3d Minkowski space-time. AdS2
has three Killing vectors Kμ which generate the SOð2; 1Þ
isometry group and get identified with the generators of the
global conformal symmetry on the boundary. Thus

½Kμ; Kν� ¼ ϵμνρKρ: ð2:2Þ

Our convention for the Levi-Civita symbol is ϵ012 ¼ 1. The
action of the Killing vectors on the embedding coordinates is

2The principal series has a limit to Lorentzian AdS2, [17] while
the supplemental series has no continuum limit.
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ðKμXνÞ ¼ ϵμνρXρ: ð2:3Þ

For the purpose of quantization we attach a Poisson
bracket to the AdS manifold. In two dimensions, one can
introduce a Poisson bracket which respects the isometry
group and, therefore, the global conformal symmetry at the
boundary. Expressed in terms of the embedding coordi-
nates it is

fXμ; Xνg ¼ ϵμνρXρ: ð2:4Þ

In comparing with (2.3), the action of Killing vectors on
functions on AdS2 can the be written as Kμ ¼ fXμ; ·g.
Two choices of coordinates on the surface are useful for

us. One choice is fðx; yÞ;−∞ < x; y < ∞g, defined by

X0 ¼ −y; X1 ¼ −
1

2l0

e−xy2 þ l0 sinh x;

X2 ¼ −
1

2l0

e−xy2 − l0 cosh x: ð2:5Þ

It covers a single hyperboloid (X2 < 0). In terms of these
coordinates, the metric tensor induced on the surface from
the 3d Minkowski metric is given by

ds2 ¼ l2
0dx

2 þ ðdy − ydxÞ2; ð2:6Þ

while the three Killing vectors are

K0 ¼ ∂x; K1 ¼ 1

l0

e−xy∂x − X2∂y;

K2 ¼ 1

l0

e−xy∂x − X1∂y: ð2:7Þ

The coordinates ðx; yÞ have the feature that they are
canonically conjugate. That is, upon assuming that

fx; yg ¼ 1; ð2:8Þ

and using (2.5), we recover the invariant Poisson
brackets (2.4). For this reason refer to ðx; yÞ as canonical
coordinates.
A more familiar parametrization of the hyperboloid is

given by the Fefferman-Graham coordinates ðz; tÞ

z ¼ e−x; t ¼ 1

l0

e−xy: ð2:9Þ

Whereas the canonical coordinates span R2, ðz; tÞ cover the
half-plane, z ≥ 0;−∞ < t < ∞. r ¼ z−1 can be regarded
as a radial variable. It can be expressed linearly in terms of
the embedding coordinates,

r ¼ z−1 ¼ 1

l0

ðX1 − X2Þ: ð2:10Þ

The AdS2 boundary is the open curve at z ¼ 0 or r → ∞. In
terms of the canonical coordinates, the boundary corre-
sponds to both x and y going to infinity, with e−xy finite.
The metric tensor when expressed in Fefferman-Graham
coordinates is given by

ds2 ¼ l2
0

z2
ðdz2 þ dt2Þ; ð2:11Þ

and the Killing vectors take the form

K− ¼ −∂t; K0 ¼ −t∂t − z∂z;

Kþ ¼ ðz2 − t2Þ∂t − 2zt∂z; ð2:12Þ

where K� ¼ K2 � K1. We see that in the limit z → 0, one
recovers the standard form for the global conformal
symmetry generators on the boundary

K− → −∂t; K0 → −t∂t; Kþ → −t2∂t: ð2:13Þ

They generate, respectively, translations, dilatations and
special conformal transformations on the boundary. In
terms of the Fefferman-Graham coordinates the Poisson
bracket which yields the soð2; 1Þ Lie algebra (2.4) is

ft; zg ¼ 1

l0

z2: ð2:14Þ

From (2.10), it also follows that

fr; tg ¼ 1

l0

: ð2:15Þ

In the AdS=CFT correspondence the radial variable is often
regarded as the energy scale for the boundary CFT, and so it
is reasonable to find that it is canonically conjugate to the
time t. Note that in passing to the quantum theory we
cannot simply replace the variables r and t with self-adjoint
operators since r is only defined on the half-line. An
alternative way to proceed to the quantum theory will be
given in the following section.
We note that if do yet another change of coordinates from

ðz; tÞ to complex coordinates ζ ¼ tþ iz and ζ̄ ¼ t − iz, the
Killing vectors become Kμ ¼ Lμ þ L̄μ, where Lμ, along
with their complex conjugates L̄μ, are the standard global
conformal symmetry generators on the complex plane

L− ¼ −∂ζ; L0 ¼ −ζ∂ζ; Lþ ¼ −ζ2∂ζ: ð2:16Þ

The Poisson bracket (2.14) written in terms of ζ and ζ̄ will
become

fζ; ζ̄g ¼ i
2l0

ðζ − ζ̄Þ2: ð2:17Þ
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This bracket can be quantized using the methods of [23] to
produce a star-product written directly in terms of the
Fefferman-Graham coordinates (it is expected to be highly
nontrivial). In this paper we will not follow this line.

III. ncAdS2

There is a straightforward quantization of the Poisson
manifold defined in the previous section, and the result is
ncAdS2 [16–19]. The first step is to replace the three
embedding coordinates Xμ by Hermitian operators X̂μ. The
analogue of the constraint (2.1) in this setting is

X̂μX̂μ ¼ −l21; ð3:1Þ

where 1 is the identity and l2 > 0 in the Euclidean version
of ncAdS2. Furthermore, following the usual quantization
procedure, the Poisson brackets (2.4) are promoted to
commutation relations,

½X̂μ; X̂ν� ¼ iαϵμνρX̂ρ: ð3:2Þ

α and l are two real parameters with units of length. (3.1)
and (3.2) define ncAdS2, which is a solution to certain
matrix models [17–19], which we describe below. The
commutation relations (3.2) define the soð2; 1Þ algebra,
while (3.1) fixes a value of the soð2; 1Þ Casimir operator.
Analogous to (2.10), one can construct an operator analogue
of the radial coordinate from the Hermitian operators X̂μ

r̂ ¼ 1

l
ðX̂1 − X̂2Þ: ð3:3Þ

We obtain the spectrum and eigenfunctions of this operator
in Sec. IV.
Both (3.1) and (3.2) are preserved under the action of

SOð2; 1Þ, X̂μ → Rμ
νX̂

ν, where R is a SOð2; 1Þ matrix.
This is the analogue of isometry transformations on AdS2.
We shall construct the noncommutative analogues
of the Killing vectors (2.7) and (2.12) which generate
such transformations in Sec. V. In addition to the
SOð2; 1Þ symmetry, Eqs. (3.1) and (3.2) are invariant under
unitary transformations X̂μ → ÛX̂μÛ†, where Û is a unitary
operator.
To show that (3.1) and (3.2) can be obtained from matrix

models [17–19] one can introduce three infinite-dimen-
sional Hermitian matrices Yμ, μ ¼ 0, 1, 2, with an action
SM consisting of two terms

SMðYÞ ¼ Tr

�
−
1

4
½Yμ; Yν�½Yμ; Yν� − 2

3
iαϵμνλYμYνYλ

�
;

ð3:4Þ

where Tr denotes a matrix trace and we again assume the
ambient metric ημν ¼ diagð1; 1;−1Þ. Dynamics can be

defined by adapting a variational principle to this system.
Extremizing SM with respect to variations in Yμ leads to

½½Yμ; Yν�; Yν� − iαϵμνλ½Yν; Yλ� ¼ 0: ð3:5Þ

They are clearly solved by setting Yμ ¼ X̂μ. Like ncAdS2,
the matrix equations (3.5) possess SOð2; 1Þ invariance, as
well as invariance under unitary transformations (where Û
now denotes an infinite-dimensional unitary matrix). The
matrix equations have an additional translational symmetry,
Yμ → Yμ þ vμ1, where 1 is the unit matrix and vμ are real,
which is broken by the ncAdS2 solution. Other matrix
models have ncAdS2 solutions. For example, one can add a
mass term, TrYμYμ, to (3.4), and consequently a linear term
to the equations of motion (3.5), as was done in [19]. This
term explicitly breaks the translation symmetry.
To recover AdS2 from ncAdS2, we need to define the

commutative limit. It is ðα;lÞ → ð0;l0Þ. In that limit, (3.1),
(3.2) and (3.3) go to (2.1), (2.4) and (2.10), respectively.
Here α plays the role of ℏ. It will also be necessary to define
the notion of a boundary limit in the noncommutative
theory. A natural choice for this is that the limit of the
expectation value of r̂ becomes large. This limit can be
made more precise upon specifying the Hilbert space of the
system, which we do below.
The states of ncAdS2 belong to unitary irreducible

representations of SOð2; 1Þ, or equivalently SUð1; 1Þ,3
which are the principal, supplemental, and discrete series
representations. They are in general labeled by two
parameters, which we denote by ϵ0 and k. One can take
a basis in a given representation to be eigenvectors
fjϵ0; k; m >; m ¼ integerg of X̂2. The integer m is raised
and lowered by X̂þ ¼ X̂1 þ iX̂0 and X̂− ¼ X̂1 − iX̂0,
respectively. Thus,

X̂þjϵ0; k; mi ¼ −αcmjϵ0; k; mþ 1i; ð3:6Þ

X̂−jϵ0; k; mi ¼ −αcm−1jϵ0; k; m − 1i; ð3:7Þ

X̂2jϵ0; k; mi ¼ −αðϵ0 þmÞjϵ0; k; mi; ð3:8Þ

where the coefficient cm is

cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ ϵ0 þmþ 1Þðϵ0 − kþmÞ

p
ð3:9Þ

which ensures that the basis vectors are orthonormal
hϵ0; k; mjϵ0; k; m0i ¼ δm;m0 . For any irreducible representa-
tion the Casimir operator is fixed by

X̂μX̂μjϵ0; k; mi ¼ −α2kðkþ 1Þjϵ0; k; mi: ð3:10Þ

3More precisely, it is the universal cover of these groups,
because we our only concerned with representations of the
commutation algebra (3.2).
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Upon comparing with (3.1), we then get�
kþ 1

2

�
2

¼ 1

4
þ l2

α2
: ð3:11Þ

We note that the right-hand side of (3.11) diverges in the
commutative limit. Therefore, the commutative limit cor-
responds to the limit of representations with k → �∞.
From (3.3), the expectation value of the radial position
vector r̂ for any eigenvector jϵ0; k; mi is α

l ðϵ0 þmÞ. Since
the expectation value grows with m one can associate the
boundary of ncAdS2 with m → ∞.
As is well known there are three different types of

nontrivial unitary irreducible representations of SUð1; 1Þ:
the principal, supplemental, and discrete series representa-
tions. These series are distinguished by their allowed values
for k. The principal series representation has k ¼ − 1

2
− iρ,

where ρ is real. This means that Casimir in (3.10) is positive
and l in (3.1) is imaginary. This corresponds to the
Lorentzian version of ncAdS2 which we are not consid-
ering here. Moreover the limit ρ → ∞, α → 0 yields
Lorentzian AdS2, which was pointed out in [17]. As our
interest is in recovering Euclidean AdS2, we do not
examine the principal series. The supplemental series
has k real, but restricted to − 1

2
< k < 0. The Casimir in

(3.10) is again positive and l is imaginary. But since we
cannot take the limit k → ∞ in this case, the supplemental
series has no commutative limit.4 We can say that this case
describes purely quantum Lorentzian ncAdS2. For these
reasons we shall also not consider the supplemental series.
We note that m ranges over all positive and negative
integers for the principal and supplemental series. This
means that the expectation values of r̂ are not restricted to
being positive. Moreover, m → ∞ and m → −∞ are
permissible limits of the states, which can be associated
with two boundaries for the noncommutative version of
Lorentzian AdS2.
In the case of two discrete series representations, D�ðkÞ,

k can be an arbitrary negative number.5 Therefore, the
Casimir in (3.10) is negative (and hence l is real) for
k < −1, and so these representations describe Euclidean
ncAdS2.

6 Moreover, the limit that k goes to either þ∞ or
−∞ exists, so the discrete series has a limit to Euclidean

AdS2.m takes on only positive integers (including zero) for
the discrete series representation DþðkÞ, and negative
integers for D−ðkÞ, defining two distinct noncommutative
analogues of AdS2 hyperboloids.

IV. DISCRETE SERIES REPRESENTATIONS

Here following [31], we utilize properties of the gener-
alized Laguerre polynomials to write down a symmetric
differential representations of X̂μ for the discrete series
representations DþðkÞ and D−ðkÞ. We do this by obtaining
eigenstates of the radial coordinate operator r̂ in (3.3).
We begin with DþðkÞ. Here ϵ0 ¼ −k is a positive

number. These representations have a lowest state
j−k; k; 0i, which from (3.7) is annihilated by X̂−. For
brevity we denote this state by jk; 0 >, and all other states
in the X̂2 eigenbasis by jk;mi, m ¼ positive integer. Next
denote the eigenvector of the radial position operator (3.3)

by gjr; k >þ ∈ DþðkÞ, and with some abuse of notation, we
call the eigenvalue the Fefferman-Graham coordinate r,

r̂ gjr; k >þ ¼ r gjr; k >þ; ð4:1Þ
gjr; k >þ can be expanded in the X̂2 eigenbasis,

gjr; k >þ ¼
X∞
m¼0

ψþ
k;mðrÞjk;mi: ð4:2Þ

Recursion relations for the coefficients ψþ
k;mðrÞ follow from

the definition of r̂, (3.3), along with (3.6) and (3.7),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þðm − 2kÞ

p
ψþ
k;mþ1ðrÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm − 1 − 2kÞ

p
ψþ
k;m−1ðrÞ

þ 2

�
k −mþ l

α
r

�
ψþ
k;mðrÞ ¼ 0; ð4:3Þ

which is also valid for m ¼ 0 since then the second term
vanishes, and so all coefficients are determined from
ψþ
k;0ðrÞ. The recursion relations (4.3) agree with those of

the generalized Laguerre polynomials LðγÞ
m , m being a non-

negative integer, upon setting

ψþ
k;mðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!

ðm − 2k − 1Þ!

s
Lð−2k−1Þ
m

�
2lr
α

�
: ð4:4Þ

The domain for LðγÞ
m is the half-line, and so just as in the

commutative theory, r ≥ 0. A single boundary occurs in
this case, corresponding to r → ∞. The dominant poly-
nomials near the boundary have large m, which is con-
sistent with the previous result that the expectation value of
r̂ grows with m.
The generalized Laguerre polynomials obey the differ-

ential equation,

4Also, from (3.11) it is clear that jlj < α
2
. So, again, this means

that this space is an extremely quantum object without any
commutative limit.

5If one were to specialize to UIRR’s of SUð1; 1Þ, rather than its
universal covering group, then one can show that k is restricted to
the negative half-integer numbers [32,33]. But since here we are
only concerned with representations of the algebra (3.2), this
restriction is not necessary.

6The non-negative Casimir for k ∈ ½−1; 0Þ describes an
extremely quantum space, so it does not make much sense to
say that for these values of kwe have a Lorenzian ncAdS2. In any
case, we are interested in the quasiclassical regime, i.e. when k is
large.
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ζ
d2

dζ2
LðγÞ
m ðζÞ þ ðγ þ 1 − ζÞ d

dζ
LðγÞ
m ðζÞ þmLðγÞ

m ðζÞ ¼ 0;

ð4:5Þ

and the orthogonality conditions7Z
∞

0

dζζγe−ζLðγÞ
m ðζÞLðγÞ

n ðζÞ ¼ 1

n!
Γðnþ γ þ 1Þδn;m: ð4:6Þ

Upon writing ψþ
k;mðrÞ ¼ ð2lα Þke

l
αrrkþ1

2uþk;mðrÞ and using
(4.4), these two relations can be expressed as

−
α

2l

�
d
dr

r
d
dr

−
ðkþ 1

2
Þ2

r
−
l2

α2
r

�
uþk;mðrÞ

¼ ðm − kÞuþk;mðrÞ; ð4:7ÞZ
∞

0

druþk;mðrÞuþk;nðrÞ ¼ δn;m; ð4:8Þ

respectively. In comparing (4.7) with the eigenvalue equa-
tion (3.8), we get a symmetric differential representation πk

of X̂2 on L2ðRþ; drÞ

πkðX̂2Þ ¼ α2

2l

�
d
dr

r
d
dr

−
ðkþ 1

2
Þ2

r
−
l2

α2
r

�
ð4:9Þ

The corresponding differential representations for the
remaining ncAdS2 operators X̂0 and X̂1 are obtained
using πkð½r̂; X̂2�Þ ¼ iα

l π
kðX̂0Þ to get the former and then

πkð½X̂0; X̂2�Þ ¼ −iαπkðX1Þ to get the latter. The results are

πkðX̂0Þ ¼ iα

�
r
d
dr

þ 1

2

�
; ð4:10Þ

πkðX̂1Þ ¼ α2

2l

�
d
dr

r
d
dr

−
ðkþ 1

2
Þ2

r
þ l2

α2
r

�
: ð4:11Þ

As the consistency check, note that, from (3.3), (4.9), and
(4.11), it follows that r̂ is really diagonal in this repre-
sentation, πkðr̂Þ ¼ r.
For the discrete series D−ðkÞ, ϵ0 ¼ k and m are negative

integers including zero. The radial eigenvector is

gjr; k >− ¼
X−∞
m¼0

ψ−
k;mðrÞ jk;mi; ð4:12Þ

ψ−
k;mðrÞ ¼ ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−mÞ!

ð−m − 2k − 1Þ!

s
Lð−2k−1Þ
−m

�
−
2lr
α

�
;

ð4:13Þ

which now is defined only for r ≤ 0. The boundary now is

at r → −∞, where the polynomials LðγÞ
m ðζÞ with large

negative m dominate. The above analysis can be repeated
for D−ðkÞ to obtain expression for the symmetric differ-
ential representation of the suð1; 1Þ basis. The results
are again given by (4.9) and (4.11), now acting on
functions spanned by fu−k;mðrÞ; r ≤ 0g, which are defined

by ψ−
k;mðrÞ ¼ ð2lα Þke−

l
αrð−rÞkþ1

2u−k;mðrÞ.
The linear operators in (4.9)–(4.11) act on L2ðRþ; drÞ.

Denote the space of square-integrable space of functions on
Rþ by fψðrÞg. It is convenient to replace r by x ¼ log r and
replace (4.9), (4.10), and (4.11) by linear operators ~πkðX̂μÞ
that on act L2ðR; dxÞ, spanned by ffðxÞ ¼ ex=2ψðexÞg. The
result can be expressed in terms of self-adjoint operators x̂
and ŷ on L2ðR; dxÞ, where x̂ has a trivial action on
functions, x̂fðxÞ ¼ xfðxÞ, and ŷ is the self-adjoint differ-
ential operator ŷ ¼ −iα∂x. Then x̂ and ŷ satisfy the
Heisenberg commutation relation

½x̂; ŷ� ¼ iα1; ð4:14Þ
with 1 being the identity. For ~πkðX̂μÞ, we get

~πkðX̂0Þ ¼ −ŷ;

~πkðX̂1Þ ¼ −
1

2l
ŷe−x̂ŷ −

α2

2l
kðkþ 1Þe−x̂ þ l

2
ex̂;

~πkðX̂2Þ ¼ −
1

2l
ŷe−x̂ŷ −

α2

2l
kðkþ 1Þe−x̂ − l

2
ex̂: ð4:15Þ

Since x̂ and ŷ satisfy (4.14), any function F̂ ðx̂; ŷÞ can be
mapped to function F ðx; yÞ, called a symbol, on the
Moyal-Weyl plane, which we take to be spanned by
commuting variables x and y. Then x and y are the symbols
of x̂ and ŷ, respectively.8 The product ½F̂ Ĝ�ðx̂; ŷÞ ¼
F̂ ðx̂; ŷÞĜðx̂; ŷÞ of any two functions of x̂ and ŷ is mapped
to the Moyal-Weyl star product ½F ⋆ G�ðx; yÞ, which is
written down in (A1) in the Appendix. We denote the
symbols of ~πkðX̂μÞ by Xμ. Then from (4.15),

X0 ¼ −y:

X1 ¼ −
1

2l
y ⋆ e−x ⋆ y −

α2

2l
kðkþ 1Þe−x þ l

2
ex:

X2 ¼ −
1

2l
y ⋆ e−x ⋆ y −

α2

2l
kðkþ 1Þe−x − l

2
ex: ð4:16Þ

These are the analogues of the embedding coordinates Xμ.
They do not satisfy the AdS2 constraint (2.1) using the
point-wise product. Rather using the star-product (A1),
they realize the defining relations (3.1) and (3.2) for
ncAdS2 on the Moyal plane

7This is defined only for γ > −1 (to avoid the logarithmic
divergence at ζ ¼ 0), which is satisfied in our case, k < −1.

8Here we are identifying the coordinates of the Moyal-Weyl
plane with the canonical coordinates of Sec. II. This is consistent
due to the fact that the two sets of coordinates coincide in the
commutative limit, as we show below.
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Xμ ⋆ Xμ ¼ −l2; ð4:17Þ

½Xμ;X ν�⋆ ¼ iαϵμνρXρ; ð4:18Þ

where ½F ;G�⋆ ¼ F ⋆ G − G ⋆ F is the star commutator of
any two functions F ðx; yÞ and Gðx; yÞ on the Moyal-Weyl
plane, and we have used (3.11). In the commutative limit
α → 0, the star product reduces to the point-wise product,
and the leading term in the star commutator is
½F ;G�⋆ → iαfF ;Gg, where f; g denotes the Poisson
bracket defined using (2.8). Thus x and y reduce to the
canonical coordinates of Sec. II. Moreover, using (3.11)
one can show that Xμ reduce to the AdS2 embedding
coordinates Xμ, Eq. (2.5), in the commutative limit.

V. KILLING VECTORS ON ncAdS2

From Sec. II, isometry transformations on AdS2 can be
obtained by taking Poisson brackets with Xμ. Given a
functionΦ on AdS2 an infinitesimal variation ofΦ induced
by the action of the SOð2; 1Þ isometry group is

δΦ ¼ ϵμðKμΦÞ ¼ ϵμfXμ;Φg; ð5:1Þ

where Kμ are the Killing vectors on AdS2 and ϵμ are
infinitesimal parameters. There is a natural generalization
to SOð2; 1Þ isometry transformations on ncAdS2, and
hence to Killing vectors K̂μ on ncAdS2. If Φ̂ is a function
on ncAdS2, its infinitesimal variation δncΦ̂ induced by the
action of SOð2; 1Þ is

δncΦ̂ ¼ ϵμðK̂μΦ̂Þ ¼ iϵμ½X̂μ; Φ̂�: ð5:2Þ

Alternatively, it can be mapped to infinitesimal trans-
formations on the Moyal-Weyl plane. If we call Φ the
symbol of Φ̂ and Kμ⋆Φ the symbol of K̂μΦ̂ then

δncΦ ¼ ϵμðKμ⋆ΦÞ ¼ iϵμ½Xμ;Φ�⋆: ð5:3Þ

Using (A1) and the expressions (4.16) for Xμ, we get

δncΦ ¼ αϵ0∂xΦþ iϵþ
2l

½y ⋆ e−x ⋆ y;Φ�⋆

þ iϵþα2

2l
kðkþ 1Þ½e−x;Φ�⋆ þ

iϵ−l
2

½ex;Φ�⋆; ð5:4Þ

where ϵ� ¼ ϵ2 � ϵ1. The variation can be explicitly com-
puted with the help of the identities (A2) in the Appendix.
One gets

½e�x;Φ�⋆ ¼ �iαe�xΔyΦ;

½y ⋆ e−x ⋆ y;Φ�⋆ ¼ −iαe−x
�
y2Δy þ 2y∂xSy

þ α2

4
ð1 − ∂2

xÞΔy

�
Φ; ð5:5Þ

where

ΔyΦðx; yÞ ¼ Φðx; yþ iα
2
Þ −Φðx; y − iα

2
Þ

iα

¼ 2

α
sin

�
α

2
∂y

�
Φðx; yÞ;

SyΦðx; yÞ ¼ Φðx; yþ iα
2
Þ þΦðx; y − iα

2
Þ

2

¼ cos

�
α

2
∂y

�
Φðx; yÞ: ð5:6Þ

The noncommutative variation can then be written as
δncΦ ¼ α

2
ðϵ−K−⋆ þ 2ϵ0K0⋆ þ ϵþKþ⋆ ÞΦ, where the noncom-

mutative analogues of the AdS2 Killing vectors are

K−⋆ ¼ −lexΔy; K0⋆ ¼ ∂x;

Kþ⋆ ¼ e−x

l

�
2y∂xSy þ

�
y2 þ l2 þ α2

4
ð1 − ∂2

xÞ
�
Δy

�
:

ð5:7Þ

By construction Kμ⋆ satisfy the soð2; 1Þ Lie algebra com-
mutation relations ½Kμ⋆; Kν⋆� ¼ ϵμνρK⋆ρ, where K2⋆ ¼
1
2
ðKþ⋆ þ K−⋆Þ and K1⋆ ¼ 1

2
ðKþ⋆ − K−⋆Þ. K0⋆ agrees with its

commutative analogue K0, while K1⋆ and K2⋆ are deforma-
tions of K1 and K2, (2.7), containing infinite-order poly-
nomials in ∂y. In the commutative limit ðα;lÞ → ð0;l0Þ,
Δy approaches a derivative operator ∂y and Sy approaches
the identity. It follows that we recover the AdS2 Killing
vectors in the commutative limit, Kμ⋆ → Kμ as α → 0.
The noncommutative analogues of the Killing vectors

can be re-expressed in Fefferman-Graham coordinates (2.9)
by replacing the action of Δy and Sy on the fields by

ΔtΦðz; tÞ ¼ Φðz; tþ iαz
2lÞ −Φðz; t − iαz

2lÞ
iα

¼ 2

α
sin

�
αz
2l

∂t

�
Φðz; tÞ;

StΦðz; tÞ ¼ Φðz; tþ iαz
2lÞ þΦðz; t − iαz

2lÞ
2

¼ cos

�
αz
2l

∂t

�
Φðz; tÞ; ð5:8Þ

respectively. Then,
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K−⋆ ¼ −
l
z
Δt; K0⋆ ¼ −t∂t − z∂z;

Kþ⋆ ¼ −2tðt∂t þ z∂zÞSt þ
l
z

�
t2 þ

�
1þ α2

4l2

�
z2
�
Δt

−
α2z
4l

ðt∂t þ z∂zÞ2Δt: ð5:9Þ

We again see that K0⋆ agrees with its commutative analogue
K0, while Kþ⋆ and K−⋆ are deformations of Kþ and K−,
(2.12), containing infinite-order polynomials in ∂t. As
before, the AdS2 Killing vectors are recovered in the
commutative limit, Kμ⋆ → Kμ as α → 0.
The expressions (5.9) for the Killing vectors on ncAdS2

can be used to examine another limit of interest, z → 0,
which corresponds to the boundary of ncAdS2. In that limit
ΔtΦ → z

l ∂tΦjz¼0 and StΦ → Φjz¼0, and so we obtain the
commutative result (2.13),

K−⋆ → −∂t; K0⋆ → −t∂t; Kþ⋆ → −t2∂t: ð5:10Þ

From ncAdS2 we thus recover the standard form for the
global conformal symmetry generators on the boundary.
We can then say that ncAdS2 is asymptotically AdS2.
Therefore, the AdS=CFT correspondence principle should
be applicable. We explore this possibility in the next section
with the example of massless scalar field theory.

VI. MASSLESS SCALAR FIELD
THEORY ON ncAdS2

Here we write down an explicit expression for the field
equation for a massless scalar field on ncAdS2. Although it
describes a free scalar field on ncAdS2, the scalar field
picks up nontrivial nonlocal interactions after being
mapped to the Moyal-Weyl plane. We show that these
interactions disappear near the boundary. The field equa-
tion can be consistently obtained from an action principle
upon imposing Dirichlet boundary conditions, and this is
because we find no noncommutative corrections to the
boundary term from variations of the action.
Say Φð0Þ is now a massless scalar field on AdS2. The

standard SOð2; 1Þ invariant action can be written in terms
of Poisson brackets with the embedding coordinates

S½Φð0Þ� ¼ 1

2l0

Z
AdS2

dμfXμ;Φð0ÞgfXμ;Φð0Þg; ð6:1Þ

where dμ is an invariant integration measure on AdS2.
When written in terms of canonical coordinates, it becomes

S½Φð0Þ� ¼ 1

2l0

Z
R2

dxdyfðy∂yΦð0Þ þ ∂xΦð0ÞÞ2

þ l2
0ð∂yΦð0ÞÞ2g; ð6:2Þ

while it reduces to (1.1) when written in terms of
Fefferman-Graham coordinates.
Upon promotingΦð0Þ to a field Φ̂ on ncAdS2, there is an

obvious generalization of (6.1) to an SOð2; 1Þ invariant
action for Φ̂. It is

Snc½Φ̂� ¼ −
1

2l
Tr½X̂μ; Φ̂�½X̂μ; Φ̂�; ð6:3Þ

where Tr denotes a trace operation. Here for simplicity we
assume that the ncAdS2 scale parameter is the same as the
commutative one, l ¼ l0; i.e., l has no α2 dependence.
(6.3) can be mapped to an action on the Moyal-Weyl plane,

Snc½Φ� ¼ −
1

2lα2

Z
R2

dxdy½Xμ;Φ�⋆ ⋆ ½Xμ;Φ�⋆; ð6:4Þ

where the trace has been replaced by 1
α2

R
R2 dxdy. Upon

applying (4.16) and (A3) in the Appendix, one gets

Snc½Φ� ¼ 1

2lα2

Z
R2

dxdyf−½y;Φ�2⋆
þ ½ex;Φ�⋆½y ⋆ e−x ⋆ yþ kðkþ 1Þe−x;Φ�⋆g;

ð6:5Þ

where we are ignoring all boundary terms because for the
moment we shall only be concerned with the field in the
bulk. (Boundary affects are taken into account below.)
Using (5.5), this becomes

Snc½Φ� ¼ 1

2l

Z
R2

dxdy

�
ð∂xΦÞ2

þ ΔyΦ
�
y2ΔyΦþ 2y∂xSyΦ −

α2

4
∂2
xΔyΦ

�
þ α2

�
kþ 1

2

�
2

ðΔyΦÞ2
�
; ð6:6Þ

up to boundary terms. Upon integrating by parts and usingZ
R2

dxdy

�
ð∂xSyΦÞ2 − α2

4
ð∂xΔyΦÞ2 − ð∂xΦÞ2

�
¼ 0;

it simplifies to

Snc½Φ� ¼ 1

2l

Z
R2

dxdy

�
ðyΔyΦþ ∂xSyΦÞ2

þ
�
α2

4
þ l2

�
ðΔyΦÞ2

�
: ð6:7Þ

This is an explicit expression for the bulk action in terms of
the canonical coordinates. In terms of Fefferman-Graham
coordinates, the action is
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Snc½Φ� ¼ 1

2

Z
R×Rþ

dtdz
1

z2

��
lt
z
ΔtΦ − ðt∂t þ z∂zÞStΦ

�
2

þ
�
α2

4
þ l2

�
ðΔtΦÞ2

�
: ð6:8Þ

(6.2) and (1.1) are recovered from the commutative limit,
α → 0, of (6.7) and (6.8), respectively.
We note that as one approaches the boundary z ¼ 0, the

action density goes to that of a massless scalar field on
commutative AdS2, with a rescaled time parameter t. Using
ΔtΦ → z

l ∂tΦjz¼0 and StΦ → Φjz¼0 as z → 0, the integrand
in (6.8) goes to9�

1þ α2

4l2

�
ð∂tΦÞ2 þ ð∂zΦÞ2; ð6:9Þ

as compared to the integrand in (1.1). This means that the
commutative free field equation is recovered near the
boundary, again with a rescaled coordinate,�

1þ α2

4l2

�
∂2
tΦþ ∂2

zΦ → 0; as z → 0; ð6:10Þ

and soΦ satisfies the equation for a massless scalar field on
an asymptotically AdS2 space.
The field equation for Φ can be written down for all z.

Variations in Φ in (6.4) yield

δSnc½Φ� ¼ −
1

2lα2

Z
R2

dxdyð½Xμ; δΦ�⋆ ⋆ ½Xμ;Φ�⋆
þ ½Xμ;Φ�⋆ ⋆ ½Xμ; δΦ�⋆Þ

¼ −
1

2lα2

Z
R2

dxdyð2½Xμ; δΦ�⋆ ⋆ ½Xμ;Φ�⋆
þ ½½Xμ;Φ�⋆; ½Xμ; δΦ�⋆�⋆Þ

¼ 1

lα2

Z
R2

dxdyδΦ ⋆ ½Xμ; ½Xμ;Φ�⋆�⋆

−
1

2lα2

Z
R2

dxdyð2½Xμ; δΦ ⋆ ½Xμ;Φ�⋆�⋆
þ ½½Xμ;Φ�⋆; ½Xμ; δΦ�⋆�⋆Þ: ð6:11Þ

From the first term, the field equation in the bulk is

½Xμ; ½Xμ;Φ�⋆�⋆ ¼ 0: ð6:12Þ

The remaining two terms [last two lines in (6.11)] are
only defined on the boundary. This is since the Moyal star
commutator of any two functions F and G on the Moyal-
Weyl plane is a total divergence. Following (A4)
in the Appendix, we can write the integral of ½F ;G�⋆
over D as

R
∂DðVxdxþ VydyÞ, where ∂D is the boundary

of D. Vx and Vy are computed up to order α2 in (A5).
For us the boundary is located at z ¼ 0, and soR
∂DðVxdxþ VydyÞ ¼

R
Vtjz¼0dt, where Vt ¼ l

z Vy. To
compute Vt for the first boundary term in (6.11) we set
F and G in (A4) equal to Xμ and δΦ ⋆ ½Xμ;Φ�⋆, respec-
tively, and then sum over μ. At leading order in α,
Vt ¼ −α2lδΦ∂zΦ. This is the commutative result. After
some work we get that the α2 corrections to this result go
like zn, n ≥ 1, which then vanish after setting z ¼ 0. To
compute Vt for the second boundary term in (6.11) we
set F and G in (A4) equal to ½Xμ;Φ�⋆ and ½Xμ; δΦ�⋆,
respectively, and then sum over μ. We find that all
contributions to Vt go like zn, n ≥ 1, which once again
vanish after setting z ¼ 0. We, thus, get that all non-
commutative corrections to the boundary terms vanish.
Although we have only checked this to order α2 we expect
that the result is true to all orders since they involve higher-
order derivatives which will produce higher powers in z in
Vt. The boundary term in (6.11) is then just the commu-
tative answer

−
Z

dtð∂zΦδΦÞ
���
z¼0

: ð6:13Þ

This means that we can fix the boundary value of the field

ϕ0ðtÞ ¼ Φð0; tÞ; ð6:14Þ
and the variational problem is well defined for Dirichlet
boundary conditions.
Alternatively, the field equation in the bulk can be found

directly from the Lagrangian density (6.7) with the help of
the identitiesZ
R2

dxdyðΔyAðx; yÞBðx; yÞ þ Aðx; yÞΔyBðx; yÞÞ ¼ 0;Z
R2

dxdyðSyAðx; yÞBðx; yÞ − Aðx; yÞSyBðx; yÞÞ ¼ 0;

ð6:15Þ
which are valid up to boundary terms. Note that the first
identity shows that under integration, Δy behaves as the
usual derivative satisfying the Leibnitz rule. Then the field
equation following from (6.7) is

ðΔyyþ ∂xSyÞðyΔy þ ∂xSyÞΦþ
�
α2

4
þ l2

�
Δ2

yΦ ¼ 0;

ð6:16Þ

9In passing from canonical coordinates to Fefferman-Graham
coordinates we used the commutative formulas (2.9) (with the
natural change l0 → l). On the other hand, one can reabsorb the
factor in (6.9) by rescaling t (or, z) in a quantum (or non-
commutative) version of (2.9). The commutative limit, of course,
of this transformation must coincide with (2.9). Because this does
not seem to bring any radical simplification, we will keep on
using the commutative change of variables (2.9).
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or in Fefferman-Graham coordinates,�
lΔt

t
z
− ðt∂t þ z∂zÞSt

��
l
t
z
Δt − ðt∂t þ z∂zÞSt

�
Φ

þ
�
α2

4
þ l2

�
Δ2

tΦ ¼ 0: ð6:17Þ

In both limits α → 0 and z → 0, (6.17) reduces to a second-
order differential equation. In the former, we recover the
commutative answer (1.3), while in the latter, (6.17)
reduces to the previously obtained result near the boundary
(6.10). Although (6.17) contains infinitely many orders in
derivatives with respect to t, it is only second order in
derivatives in z (just as in the commutative case). Then it
can be solved given sufficient data at the AdS boundary,
which we do to leading order in α2 in the next section.

VII. LEADING-ORDER SOLUTIONS AND THE
CFT1 CORRESPONDENCE

Here we compute the on-shell action and resulting two-
point function for the boundary theory to leading order in the
noncommutativity parameter. Expanding the field equa-
tion (6.17) up to the leading-order correction in α2 gives

□Φ −
α2

12l2
ft∂t þ z2∂2

t þ 9z∂z þ 2zt∂z∂t þ 3z2∂2
zg∂2

tΦ

þOðα4Þ ¼ 0: ð7:1Þ

Usingstandardtechniques[34],onecanwritedownasolutionto
(7.1) in termsof theboundaryvalueof the field (6.14),whichwe
can define to be independent of α2. We denote the solution by
Φsol½ϕ0�. We expand Φsol½ϕ0� in powers of α2 about the
commutative solution Φð0Þ, satisfying (1.3),

Φsol½ϕ0� ¼ Φð0Þ þ α2Φð1Þ þ � � � þ α2MΦðMÞ þ � � � ð7:2Þ

Φð0Þ is solved in (1.4) using the boundary-to-bulk propagator.
From (7.1), the leading-order noncommutative correctionΦð1Þ
satisfies

□Φð1Þ ¼ 1

12l2
ft∂t þ z2∂2

t þ 9z∂z þ 2zt∂z∂t

þ 3z2∂2
zg∂2

tΦð0Þ: ð7:3Þ

After using (1.4) on the right-hand side, we get

□Φð1Þ ¼ z
2πl2

Z
dt0F ðt; t0; zÞϕ0ðt0Þ;

F ðt; t0; zÞ ¼ z6 − ðtþ 35t0Þðt − t0Þz4 − 5ðt − 17t0Þðt − t0Þ3z2 − 3ðtþ 3t0Þðt − t0Þ5
ððt − t0Þ2 þ z2Þ5 : ð7:4Þ

We now apply the bulk-to-bulk propagator [35–37],

Gðz; t; z0; t0Þ ¼ 1

2π
tanh−1

�
2zz0

z2 þ z02 þ ðt − t0Þ2
�
; ð7:5Þ

satisfying □Gðz; t; z0; t0Þ ¼ −δðz − z0Þδðt − t0Þ, to obtain
an integral expression for Φð1Þ

Φð1Þðz; tÞ ¼ −
1

2πl2

Z
∞

0

dz0z0
Z

dt0

×
Z
dt00Gðz; t; ; z0; t0ÞF ðt0; t00; z0Þϕ0ðt00Þ: ð7:6Þ

This procedure can, in principle, be repeated to get any
higher-order correction ΦðMÞ to the commutative field.
We next use (1.4) and (7.6) to compute the on-shell

action. For this purpose, it is convenient to reexpress the
action (6.4) as

Snc½Φ� ¼ 1

2lα2

Z
dxdyΦ ⋆ ½Xμ; ½Xμ;Φ�⋆�⋆

−
1

2lα2

Z
dxdy½Xμ;Φ ⋆ ½Xμ;Φ�⋆�⋆: ð7:7Þ

From (6.12), the first term vanishes on-shell. The remaining
term is only defined on the boundary since the Moyal star
commutator is a total divergence. We can once again use
(A4) in the Appendix to compute it up to order α2 in (A5).
Setting F and G in (A4) equal to Xμ and Φ ⋆ ½Xμ;Φ�⋆,
respectively, and summing over μ, we get Vt ¼ l

z Vy ¼
α2lΦ∂zΦ at leading order in α. After some work we get
that the α2 corrections to this result go like zn, n ≥ 2, which
then vanish after setting z ¼ 0. This means that the
expression for the on-shell action receives no noncommu-
tative corrections (at least, at order α2)

Snc½Φsol½ϕ0��

¼ −
1

2lα2

Z
dxdy½Xμ;Φ ⋆ ½Xμ;Φ�⋆�⋆

���
Φ¼Φsol½ϕ0�

¼ −
1

2

Z
dtΦsol½ϕ0�∂zΦsol½ϕ0�

���
z¼0

: ð7:8Þ

This is identical to the commutative result (1.6).
It remains to substitute the solution (1.4) and (7.6) into

the action (7.8). This gives
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Snc½Φsol½ϕ0�� ¼ −
1

2

Z
dt

Z
dt0ϕ0ðtÞ

�
∂zKðz; t; t0Þ

���
z¼0

ϕ0ðt0Þ

−
α2

2πl2

Z
∞

0

dz0z0
Z

∞

−∞
dt00Kðz0; t; t0ÞF ðt0; t00; z0Þϕ0ðt00Þ þOðα4Þ

�
¼ −

1

2π

Z
dt

Z
dt0ϕ0ðtÞ

�
ϕ0ðt0Þ
ðt − t0Þ2 −

α2

2πl2

Z
∞

0

dz0
Z

∞

−∞
dt00

z02F ðt0; t00; z0Þϕ0ðt00Þ
z02 þ ðt − t0Þ2 þOðα4Þ

�
¼ −

1

2π

Z
dt

Z
dt0ϕ0ðtÞϕ0ðt0Þ

�
1

ðt − t0Þ2 −
α2

2πl2

Z
∞

0

dz0
Z

∞

−∞
dt00

z02F ðt00; t0; z0Þ
z02 þ ðt − t00Þ2 þOðα4Þ

�
; ð7:9Þ

where we used the identity ∂zGðz; t; z0; t0Þjz¼0 ¼ Kðz0; t; t0Þ.
The second term in parentheses in (7.9) is the leading
noncommutative correction. It can be exactly computed
using the integralZ

∞

0

dz
Z

∞

−∞
dt00

z2F ðt00; t0; zÞ
z2 þ ðt − t00Þ2 ¼

π=4
ðt − t0Þ2 : ð7:10Þ

This result means that the on-shell action merely undergoes
an overall rescaling

Snc½Φsol½ϕ0�� ¼ −
1

2π

Z
dt

Z
dt0ϕ0ðtÞϕ0ðt0Þ

×

��
1 −

α2

8l2

�
1

ðt − t0Þ2 þOðα4Þ
�
:

ð7:11Þ

Then from the AdS=CFT correspondence (1.8), n-point
correlation functions of quantum mechanical operators
OðtÞ on the one-dimensional boundary also undergo an
overall rescaling at leading order in the noncommutativity
parameter. For the two-point function we get

hOðtÞOðt0Þi ¼−
1

2π

�
1−

α2

8l2

�
1

ðt− t0Þ2þOðα4Þ: ð7:12Þ

Recall that at the beginning of Sec. VI, we fixed l equal to
the commutative length scale l0. If l instead depends on α,
we should replace l in the leading-order correction in
(7.12) by l0.

VIII. CONCLUDING REMARKS

We have shown that ncAdS2 has a commutative boun-
dary, implying that ncAdS2 is assymptotically AdS2. Then
from general arguments the AdS=CFT correspondence
should be applicable. We explicitly demonstrated this by
computing the two-point function on the boundary asso-
ciated with the massless scalar field on ncAdS2. The
dynamics for the scalar field contains nontrivial nonlocal
interactions, which is evident from the Moyal-Weyl plane
description. These interactions vanish at the ncAdS2

boundary. Our leading-order results show that the intro-
duction of noncommutativity on the AdS2 space does not
affect the boundary conformal theory, other than to gen-
erate a rescaling of the correlation functions. The conformal
dimension, which is one for the commutative theory, is
unaffected at leading order in α2. Higher-order computa-
tions are feasible. If the conformal dimension remains one
to all orders, the commutative and noncommutative theory
are equivalent within the context of the AdS=CFT corre-
spondence principle. Our results utilized the isometry
preserving commutation relations (3.2) which defines
ncAdS2. Different results may follow from other deforma-
tions of anti–de Sitter space. This was found recently for a
κ-deformed AdS2 spacetime [28]. There, the conformal
dimension was a nontrivial function of the noncommuta-
tivity parameter.
Concerning the issue of disconnected timelike bounda-

ries of AdS2 [5], we find that Euclidean ncAdS2 selects a
single boundary. This is because the boundary in this
system is described in terms of states of a particular discrete
series representation DþðkÞ (or D−ðkÞ), which has a lowest
(or highest) state. As a result, the eigenvalues of the radial
coordinate operator r̂ have a lower (or upper) bound,
namely zero, while the boundary corresponds to the
eigenvalue going to þ∞ (or −∞).
A number of generalizations of our work are possible.

Among them is the addition of a mass term Tr Φ̂2, or
interaction terms Tr Φ̂M to the action (6.3) of the scalar field
on ncAdS2. This will introduce further nonlocal inter-
actions in the Moyal-Weyl plane description and is likely to
lead to noncommutative corrections to the Breitenlohner-
Freedman bound [38]. The examination of other fields on
ncAdS2, such as spinors, gauge fields and spin-two fields is
another very natural extension of our work. A Dirac
operator has been proposed for ncAdS2, [39] which can
be utilized in writing down an action for spinors. Gauge
fields on AdS2 were recently examined in [40] and it may
be possible to check whether or not they have a non-
commutative generalization. Within the context of the
noncommutative theory, the spin-two fields should re-
present quantum gravity fluctuations. The massless scalar
field examined in this article required no Gibbons-
Hawking-York boundary term, nor holographic
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renormalization, as fields were asymptotically finite. Such
simplifications most likely will not apply for the other field
theories on ncAdS2.
Generalizations to ncAdSdþ1; d > 1 should prove even

more challenging. In this case there is no preferred choice
for the Poisson brackets or the resulting quantization, both
of which will necessarily break the AdSdþ1 isometry group,
and hence the conformal symmetry on the boundary. For
example, it may be desirable to posit the Poisson bracket
(2.15), since it states that the time is canonically conjugate
to the CFTd energy scale. However for d > 1 this Poisson
bracket breaks the full Lorentz (or Euclidean) symmetry on
the boundary. In another example, Poisson brackets on
AdS4 were given in [19] (Sec. VD2) which broke the
SOð3; 2Þ isometry group to SOð3Þ ⊗ SOð2Þ. Thus, more
complicated results for the correlation functions are
expected for d > 1.
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APPENDIX: SOME PROPERTIES OF THE
MOYAL-WEYL STAR PRODUCT

Given two functions F and G on the Moyal-Weyl plane
spanned by ðx; yÞ, their star product is defined by

½F ⋆ G�ðx; yÞ ¼ F ðx; yÞ exp
�
iα
2
ð∂⃖x ∂⃗y −∂⃖y ∂⃗xÞ

�
Gðx; yÞ:

ðA1Þ

This definition leads to the identities the following iden-
tities for the Moyal-Weyl star product

F ðxÞ ⋆ ¼ F
�
xþ iα

2
∂⃗y

�
; ⋆ F ðxÞ ¼ F

�
x −

iα
2
∂⃖y

�
;

GðyÞ ⋆ ¼ G
�
y −

iα
2
∂⃗x

�
; ⋆ GðyÞ ¼ G

�
yþ iα

2
∂⃖x

�
:

ðA2Þ

A property of the integral of the Moyal-Weyl star product
of two functions F and G on the Moyal-Weyl plane isZ
R2

dxdyF ⋆ G ¼
Z
R2

dxdyFGþ boundary terms: ðA3Þ

Correspondingly, the Moyal star commutator is a total
divergence. The integral of a star commutator of any two
functions F and G on the Moyal-Weyl plane can then be
written as a boundary integral,Z
D
dxdy½F ;G�⋆ðx; yÞ ¼

Z
D
dxdy½∂xVy − ∂yVx�ðx; yÞ

¼
Z
∂D
ðVxdxþ VydyÞ; ðA4Þ

where D is some two-dimensional domain, with boundary
∂D. Up to order α2, Vx and Vy are

Vx ¼ iα

�
−∂xFGþ α2

24
ð∂3

xF∂2
yGþ ∂x∂2

yF∂2
xG

− 2∂2
x∂yF∂x∂yGÞ þOðα4Þ

�
;

Vy ¼ iα

�
−∂yFGþ α2

24
ð∂3

yF∂2
xGþ ∂2

x∂yF∂2
yG

− 2∂x∂2
yF∂x∂yGÞ þOðα4Þ

�
: ðA5Þ
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