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We derive an approximate analytical formula for the spectral density of the q-body Sachdev-Ye-Kitaev
(SYK) model obtained by summing a class of diagrams representing leading intersecting contractions.
This expression agrees with that of Q-Hermite polynomials, with Q a nontrivial function of q ≥ 2

and the number of Majorana fermions N. Numerical results, obtained by exact diagonalization, are in
excellent agreement with this approximate analytical spectral density even for relatively small N ∼ 8.
For N ≫ 1 and not close to the edge of the spectrum, we find that the approximate analytical spectral
density simplifies to ρasymðEÞ ¼ exp½2arcsin2ðE=E0Þ= log η�, where ηðN; qÞ is the suppression factor
of the contribution of intersecting Wick contractions relative to nested contractions and E0 is the ground-
state energy per particle. This spectral density reproduces the known result for the free energy in the
large-q and large-N limit at arbitrary values of the temperature. In the infrared region, where the
SYK model is believed to have a gravity dual, the analytical spectral density is given by

ρðEÞ ∼ sinh½2π ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − E=E0Þ=ð− log ηÞp �. It therefore has a square-root edge, as in random matrix
ensembles, followed by an exponential growth, a distinctive feature of black holes and also of low-energy
nuclear excitations. Results for level statistics in this region confirm the agreement with random matrix
theory. Physically this is a signature that, for sufficiently long times, the SYK model and its gravity dual
evolve to a fully ergodic state whose dynamics only depends on the global symmetry of the system.
Our results strongly suggest that random matrix correlations are a universal feature of quantum black holes
and that the SYK model, combined with holography, may be relevant to modeling certain aspects of the
nuclear dynamics.
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I. INTRODUCTION

Majorana fermions in zero spatial dimensions with
q-body infinite-range random interactions in Fock space,
commonly termed Sachdev-Ye-Kitaev (SYK) models
[1–11], are attracting a great deal of attention as one of
the simplest strongly interacting systems with a possible
gravity dual [12]. Previously, a closely related model with
Majorana fermions replaced by Dirac fermions at finite
chemical potential was intensively investigated in nuclear
physics [13–18], and later in the study of spin liquids [19].
In the limit of a large number N of Majorana fermions,

there is already a good understanding of many features of
the model including thermodynamic properties [1,2,20],
correlation functions [2,8,20], generalizations to nonran-
dom coupling [21], higher spatial dimensions and different
flavors of Majorana fermions [10]. All evidence points to a
gravity-dual interpretation [12] of the model in the low-
temperature, strong-coupling limit. More specifically, it is
believed that, in this limit, the gravity dual of the SYK
model is related to an anti–de Sitter (AdS) background in
two bulk dimensions, AdS2 [5,11,22], which likely

describes the low-energy sector of a string-theory dual to
a gauge theory in higher dimensions. Related recent work
can be found in Refs. [23–34].
One of the main appeals of the SYK model is the

possibility to study explicitly finite N effects which are
holographically dual to quantum gravity corrections [1,12].
Indeed, evidence for the existence of a SYK gravity dual is
not restricted to large-N features such as a finite entropy at
zero temperature or a finite specific heat coefficient but also
includes properties controlled by subleading effects such as
the exponential growth of the spectral density [2,35], the
pattern of conformal symmetry breaking—or, for inter-
mediate times of the order of the Ehrenfest time (a time
scale of order logℏwhen quantum corrections start to affect
substantially the classical motion, closely related to the
scrambling time [36] originally introduced in the context of
black hole physics), the universal exponential growth of
certain out-of-time-ordered correlators [1,2,37]. The latter
is also a well-known feature [38] of quantum chaos—
namely, quantum features of classically chaotic systems.
Exponential growth of the spectral density together

with random matrix correlations of the eigenvalues is a
feature that is also well known in nuclear physics (see
Refs. [39,40]), in particular for compound nuclei. These are
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excited nuclei, where the energy of the incoming channel
has been distributed over all nucleons. Because the dynam-
ics is chaotic, all information on the formation of the
compound nucleus is lost, and the quantum state is
determined by the total energy and the exact quantum
numbers. In this sense, a compound nucleus has no hair.
However, it has “quantum hair” in the form of resonances
which have been measured experimentally [41]. It turns out
that fluctuations of the compound nucleus cross section
obtained from these experiments agree well with random
matrix theory predictions [42]. This implies that the S-matrix
distribution is determined by causality or analyticity, ergo-
dicity and the maximization of the information entropy [43].
Interestingly, qualitatively similar features have recently

been found [35,44,45] for the SYK model. More specifi-
cally, the quantum chaotic nature of the model has been
confirmed by showing that for long time scales, of the order
of the Heisenberg time, level statistics are well described by
random matrix theory [46,47]. The relation of this finding
with features of the gravity dual has yet to be explored, as
the analysis of spectral correlations carried out in these
papers concerns the bulk of the spectrum and not the
infrared tail related to the physics of the gravity dual.
Moreover, the exponential growth of the SYK spectral
density, a strong indication of the existence of a gravity
dual, is based on a perturbative 1=N calculation [1,2] that
may be spoiled by nonperturbative effects.
Here we address these two problems simultaneously.

We obtain an analytical form for the spectral density of theq-
body SYK model, for any q, by explicit evaluation of the
moments for a large number of fermions, taking into account
the leading intersecting contractions. The combinatorial
factors are evaluated explicitly by using the Riordan-
Touchard formula [48–50], derived originally in the theory
of cords diagrams. We find that the moments of the density
are equal to those of Q-Hermite polynomials [51], with
QðN; qÞ a nontrivial function of N and q that we compute
explicitly. Agreement with exact numerical results for N ≤
34 is excellent in spite of theN ≫ 1 approximation involved
in the analytical calculation. Our calculation follows the
steps outlined in Ref. [52] for a closely related spin-chain
model and in Ref. [35] of the SYKmodel, but we keep q ≥ 2
fixed and N ≫ 1 rather than considering the scaling limit
N → ∞ with q2=N fixed studied in these papers. In the
infrared limit, the spectral density has a square-root singu-
larity, as in randommatrix theory. Indeed, a detailed analysis
of level statistics in this spectral region confirms excellent
agreement with random matrix theory predictions. This
suggests that, for sufficiently long times, a quantum black
hole, characterized by fast scrambling [36], an exponential
growth of low-energy excitations [53] and a finite Lyapunov
exponent [37], reaches a fully ergodic and universal state
which only depends on global symmetries of the system.
Finally, we note that the particular case q=

ffiffiffiffi
N

p
fixed and

N → ∞ was recently studied [35] for the SYK model,

where the techniques of Ref. [52] were also employed to
compute the infrared limit of the spectral density. In our
result for the spectral density, which agrees with those of
Ref. [35] in this limit, we do not take this double scaling
limit for the contribution of the nonintersecting diagrams.
Despite the approximations involved in the analytical
result, the agreement with numerical results for q ¼ 4,
obtained by exact diagonalization for values of N as small
as N ¼ 8, is excellent.
Next, we introduce the model, compute analytically the

spectral density, and compare it with numerical results. We
closewith concluding remarks and a discussion of our results.

II. MODEL AND CALCULATION OF THE
SPECTRAL DENSITY

We study N strongly interacting Majorana fermions,
introduced in Ref. [1], with infinite-range q-body inter-
actions. For q ¼ 4, the Hamiltonian is given by

H ¼ 1

4!

XN
i;j;k;l¼1

Jijklχiχjχkχl; ð1Þ

where χi are Majorana fermions that verify

fχi; χjg ¼ 2δij: ð2Þ
We note that this is the same algebra as Dirac γ-matrices,
which will facilitate the analytical evaluation of the
moments. For that reason, we will use in many instances
the notation γ to refer to the fields χ.
The coupling Jijkl is a Gaussian random variable with

probability distribution

PðJijklÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nq−1

2ðq − 1Þ!πJ2

s
exp

�
−

Nq−1J2ijkl
2ðq − 1Þ!J2

�
; ð3Þ

where J sets the scale of the distribution.
The average spectral density can be evaluated from the

moment-generating function

ρðEÞ ¼ 1

2π

Z
∞

−∞
dt e−iEthTreiHti; ð4Þ

where the brackets denote averaging over the probability
distribution (3). Since the ensemble is invariant under
J → −J, we have that ρð−EÞ ¼ ρðEÞ so that the odd
moments vanish. The moment-generating function, given by

hTreiHti ¼
X∞
k¼0

ðitÞ2k
ð2kÞ! hTrH

2ki; ð5Þ

therefore follows from the moments

M2p ¼ hTrH2pi: ð6Þ

If we use the shorthand notation for the Hamiltonian
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H ¼
X
α

JαΓα; ð7Þ

where Γα is the product of four γ-matrices, the moments are

�
Tr

�X
α
JαΓα

�
2p
�
: ð8Þ

Since we have a Gaussian distribution, the calculation of the
average requires us to consider all possible Wick contrac-
tions.After averaging, the result is given by a product of pairs
of two factors Γα. If the factors are adjacent, we can use the
fact that

Γ2
α ¼ 1: ð9Þ

If the factors are not adjacent, we have to commute the
factors, using [45]

ΓαΓβ − ð−1ÞqþrΓβΓα ¼ 0; ð10Þ

where r is the number of γ-matrices that Γα and Γβ have in
common. Generally, this is a difficult task, because we have
to also keep track of correlationswith other factorsΓα, but the
fourth, sixth, and eighth moments can be evaluated
exactly [45].
The simplest case is the limit N → ∞ for fixed p. To

leading order in N, there are no common γ-matrices; the Γα

commute and the moments are simply given by

hJ2αip2N=2ð2p − 1Þ!!; ð11Þ

which are the moments of a Gaussian distribution [45].
For large N ≫ 1 but finite N, different Γ’s have some γ-

matrices in common. An exact analytical evaluation of an
arbitrary high moment is a hard combinatorial task. We
show below that the calculation is substantially simplified if
one employs Eq. (10) to commute Γ factors but ignores
correlations. Although we cannot justify rigorously the
exact range of validity of the approximation, it is worth
mentioning that for the low moments, where an explicit
calculation is possible, this approximation is exact up to
1=N2 corrections. It is also exact [52] in the large-N limit
with q ∝ Nα and α > 1=2. Moreover, we shall see that it
leads to a spectral density that agrees well with exact
diagonalization results even for small N ≥ 10.
Let us consider

TrΓαΓβ � � �ΓαΓβ � � � ; ð12Þ

where the dots denote additional factors Γγ . We keep α
fixed and consider the contribution from the sum over β.
Commuting Γα and Γβ gives a factor

Xq
r¼0

ð−1Þqþr

�
q

r

��
N − q

q − r

�
; ð13Þ

where r is the number of common χ fields which, as was
mentioned previously, are represented by Dirac γ-matrices.
Choosing them out of the q γ-matrices of Γα gives a factor
ðqrÞ. The remaining (q − r) γ-matrices in Γβ still all have to
be different from those in Γα. This gives a factor ðN−q

q−rÞ,
resulting in the combinatorial factor of Eq. (13). If Γα and
Γβ were commuting, the sum over β would give a factor
ðNqÞ. Therefore, the suppression factor is given by

ηN;q ¼
�
N

q

�−1 Xq
r¼0

ð−1Þqþr

�
q

r

��
N − q

q − r

�
: ð14Þ

For large N, at fixed q, only the r ¼ 0 and r ¼ 1 terms
contribute to the sum of the suppression factor Eq. (14),
resulting in

η ∼ ð−1Þqe−2q2=N; ð15Þ

where we have used that for N ≫ q we can make the
expansion

Γ2½N − q�
Γ½N�Γ½N − 2q� ¼ 1 −

q2

N
þOð1=N2Þ: ð16Þ

This corresponds to the Poisson distribution used in
Ref. [35].
The contractions contributing to the 2pth moment can be

characterized according to the number of crossings αp. If
there are αp crossings, the diagram is suppressed by a factor
η
αp
N;q. The sum over all crossings is evaluated by means of
the Riordan-Touchard formula [48,49], resulting in the
following expression for the moments:

M2p

Mp
2

¼
X
αp

η
αp
N;q

¼ 1

ð1 − ηN;qÞp
Xp
k¼−p

ð−1Þkηkðk−1Þ=2N;q

�
2p

pþ k

�
: ð17Þ

These are the moments of the spectral density ρQH

corresponding to the Q-Hermite polynomials with Q ¼ η
[50–52]. Therefore, there is no need to calculate the Fourier
transform of the moment-generating function in order to
compute the spectral density in Eq. (4). The final result for
the spectral density [52] of the SYK model [Eq. (1)] is

ρðEÞ ¼ ρQHðEÞ

¼ cN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðE=E0Þ2

q Y∞
k¼1

�
1 − 4

E2

E2
0

�
1

2þ ηk þ η−k

��
;

ð18Þ
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where ηN;q ≡ η is the suppression factor defined in
Eq. (14), cN is a normalization constant determined by
imposing that the total number of states is 2N=2, and

E2
0 ¼

4σ2

1 − η
ð19Þ

is the average value of the square of the ground-state energy
per particle; i.e., the ground-state energy is NE0, with the
variance σ [45] given by

σ2 ¼
�
N

q

�
J2ðq − 1Þ!

Nq−1 : ð20Þ

We note that the product in Eq. (18) can also be expressed
in terms of a q-Pochhammer symbol. It is also valid
for η < 0.
It is natural to ask for the precise requirements for the

validity of Eq. (17). Corrections to this result arise when
three or more factors Γα have one or more γ-matrices in
common. Since this is a condition on two summation
indices, this correction is expected to be of order 1=N2. We
have worked out the exact analytical results for the fourth
moment, which is identical to the Q-Hermite result; the
sixth moment M6=M3

2 (see Ref. [45]); and M8=M4
2 for

arbitrary q, and we have verified that indeed the difference
with the moments (17) is of order q3=N2 and increases with
the order of the moments (this scaling occurs for large
values of N ≫ q2 where the moments are close to
Gaussian). Exact results for higher-order moments are
not known, but the results below indicate the moments
Eq. (17) are close to the exact results. For example, for
N ¼ 34, the numerical result for the tenth moment differs
by only 2% from theQ-Hermite result. However,N ¼ 34 is
still far from the large-N limit where the density is

Gaussian: the eighth moment is only 25, as opposed to
105 for a Gaussian distribution.
In principle, large corrections to the analytical prediction

above are still possible when the order of the moments
becomes N. In general, high-order moments can have a
strong impact on extreme eigenvalues which control the
zero-temperature entropy and specific heat coefficient.
However, as we will discuss below, our analytical results
agree for all temperatures with the large-N, large-q limit of
the partition function previously derived in Ref. [2].
Finally, we note that in Ref. [35], instead of using the

exact suppression factor [Eq. (14)], η was approximated by
a Poisson distribution, which is valid in the scaling limit
where q2=N is kept fixed [52] for N → ∞, but not for
general q.
Below we will show, by comparison to exact numerical

results, that the above expression for the spectral density,
with η given by Eq. (14), is close to the exact numerical
result for q ¼ 4, even for values of N as low as N ¼ 8,
where the suppression factor is negative. Before that, we
work out simplifications of the spectral density [Eq. (18)]
valid in the tail and the bulk of the spectrum.

III. SIMPLE FORM OF THE SPECTRAL
DENSITY FOR N ≫ 1

In this section, we derive a simple asymptotic form for
the spectral density. The derivation follows the steps in
Ref. [35], but we keep q ≥ 2 fixed and do not take the limit
E → E0. In this way we obtain an analytical form that can
be applied to the entire spectrum of the Hamiltonian, except
very close to the edge, and for any q with η > 0 with the
only assumption of N ≫ 1. For completeness, we repro-
duce the steps given in Ref. [35].
Writing the product in Eq. (18) as the exponent of a sum

of logarithms, we obtain after a Poisson resummation

ρQHðEÞ ¼ cN exp

�
1

2

X∞
n¼−∞

Z
dxe2πinx log

�
1 −

E2

E2
0

�
1

cosh2x=2 log η

���
: ð21Þ

The integral over x can be performed analytically, resulting in

ρQHðEÞ ¼ cN exp

�
−
1

2

X∞
n¼−∞

1 − cosh½ 4nπlog η arcsinðE=E0Þ�
n sinhð2nπ2= log ηÞ

�
: ð22Þ

The n ¼ 0 term in the sum has to be treated separately as the limit n → 0. ForN → ∞, we have that η → 1 so that for n ≠ 0,
we can approximate the hyperbolic functions by a single exponent, leading to

ρBetheðEÞ ¼ cN exp

�
2arcsin2ðE=E0Þ

log η
þ log

�
1 − exp

�
−

2π

log η

�
j arcsinðE=E0Þj −

π

2

����

¼ cN exp

�
2arcsin2ðE=E0Þ

log η

��
1 − exp

�
−

4π

log η

�
j arcsinðE=E0Þj −

π

2

���
: ð23Þ
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For N → ∞, the second factor can be ignored for
jEj < jE0j, resulting in a very simple asymptotic form
for the spectral density:

ρasymðEÞ ¼ cN exp

�
2arcsin2ðE=E0Þ

log η

�
; ð24Þ

which for finite N ≫ 1 is an excellent approximation
of the spectral density except in the region close to the

edge E0. Here a different asymptotic expression can be
worked out by simply noticing that for E → E0, arcsinðxÞ is
approximated by

arcsin½E=E0� ¼
π

2
−

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðE=E0Þ

p
: ð25Þ

Inserting this into Eq. (23) gives

ρsinhðEÞ ≈ cN exp

�
π2

2 log η
−
2π

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðE=E0Þ

p
log η

��
1 − exp

�
4π

log η

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðE=E0Þ

p ��

¼ 2cN exp

�
π2

2 log η

�
sinh

�
2π

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðE=E0Þ

p
− log η

�
: ð26Þ

For the limiting case q;N → ∞ with q2=N fixed, and still
E → E0, this expression of the spectral density was also
obtained in Ref. [35].
We stress that this asymptotic form is an expected feature

of field theories with a gravity dual, as this exponential
growth is observed both in systems with conformal
symmetry and in black holes [53]. The same exponential

growth has also been predicted for the low-energy excita-
tions of nuclei [54].
Having derived the approximate analytical result, we

now proceed to compare the spectral densities [Eqs. (23)
and (24)] with the exactQ-Hermite form [Eq. (18)]. Results
depicted in Fig. 1 for different sizes N show that the simple
asymptotic expression in Eq. (24) agrees reasonably well

FIG. 1. We compare the Q-Hermite spectral density ρQHðEÞ [Eq. (18)] of the SYK Hamiltonian (black curve) to two different
asymptotic forms, ρBetheðEÞ [Eq. (23)] (red dashed curve) and ρasymðEÞ [Eq. (24)] (blue dotted curve), all normalized to area 1. Results
are given for N ¼ 18, N ¼ 24, N ¼ 32 and N ¼ 64. For N ≥ 32, the three curves are barely distinguishable. In all plots, the spectral
density is normalized to 1 and J ¼ 2=3. We note that this is also the value of J in our previous paper [45].
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with the exact result even for comparatively small N ¼ 18.
Indeed, it is barely distinguishable from the exact result in
Eq. (18) for N ¼ 32, while for N ¼ 64 it can be used all the
way to the edge of the spectrum.
We now proceed to compare these approximate analyti-

cal results with numerical results from exact diagonaliza-
tion of the Hamiltonian [Eq. (1)]. By using standard exact
diagonalization routines in MATLAB, we have obtained
the full spectrum of the Hamiltonian [Eq. (1)] for many
disorder realizations so that, for a given size N ≤ 34, the
total number of eigenvalues is more than 107. In Fig. 2, we
show the exact numerical spectral density (red) and
compare it to the analytical result [Eq. (18)] for N ¼ 16,
N ¼ 24, N ¼ 32 and N ¼ 34. The agreement is excellent.
For N ¼ 32 and N ¼ 34, we also show the large-N limit of
ρQHðEÞ denoted by ρasymðEÞ and the form obtained from
the expansion about E ¼ E0, which is denoted by ρsinhðEÞ.
We find that ρasymðEÞ is very close to the Q-Hermite result,
while ρsinhðEÞ is only accurate for the extreme tail of the
spectral density. Note that the analytical results do not have
fitting parameters.
In order to further clarify the extent of the accuracy of the

analytical spectral density, we extend the comparison to the
deep infrared part of the spectrum (left plot of Fig. 3),
where finite-size effects are expected to be more relevant.

The numerical density is still very close to the analytical
prediction, but we have found some deviations. For
instance, the hard edge predicted analytically is replaced
by a smooth tail. Remarkably, the analytical edge of the
spectrum [Eq. (19)] is still surprisingly close to the
numerical result. Since not all subleading 1=N corrections
were included in the derivation of the spectral density,
stronger discrepancies were expected for the values of N
we work with. It is actually rather unexpected that the
analytical result is so close to the numerical calculation.
Still, we would like to understand why a tail, and not an

edge, is observed in the numerical spectral density. We shall
see in the next section that the level statistics of the model
in this infrared region are still described by random matrix
theory. We note that because of the stiffness of the
spectrum, eigenvalues in random matrix theory fluctuate
“collectively,” which, due to ensemble average, smooths
out the edge of the spectrum. This is particularly true for the
lowest eigenvalue E0, which is a stochastic variable, while
the theoretical prediction Eq. (19) is the ensemble average.
In order for a more accurate comparison, one has to either
take into account the distribution of E0 or simply remove
the fluctuations of E0. We choose the latter. In the right plot
of Fig. 3, we show the spectral density relative to the first
eigenvalue. To have the same scale on the x-axes, we have

FIG. 2. Comparison of the numerical spectral density of the SYK Hamiltonian [Eq. (1)] (red) for N ¼ 16, N ¼ 24, N ¼ 32 and
N ¼ 34, obtained by exact diagonalization, with the analytical prediction ρQHðEÞ [Eq. (18)] (black). In the bottom two figures, we also
include ρasymðEÞ [see Eq. (24)], which is the large-N limit of ρQHðEÞ, and ρsinhðEÞ [see Eq. (26)], which is the expansion of ρQHðEÞ near
the edge of the spectrum. The agreement is excellent. Even though there are no free parameters, the curves are almost indistinguishable.
As in the previous figure, the spectral density is normalized to 1 and J ¼ 2=3.
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added the ensemble average of the first eigenvalue to all
eigenvalues. This clearly reveals the square-root edge of the
average spectral density predicted theoretically.
This finding leads us to the prediction that the distribu-

tion of E0 is the one given by random matrix theory for the
distribution of the smallest eigenvalue—namely, the Tracy-
Widom distribution [55]. In Fig. 4, we show the distribution
of the smallest eigenvalue of the SYK model and compare
it to the Tracy-Widom distribution of the corresponding
random matrix ensemble. Results are given for N ¼ 24
(left), which is in the universality class of the Gaussian
orthogonal ensemble, and for N ¼ 28 (right), which is in
the universality class of the Gaussian symplectic ensemble.
There are no fitting parameters, but the numerical data have
been shifted and rescaled to reproduce the average and
variance of the Tracy-Widom distribution. We find good
agreement, which is another indication that the spectrum of
the SYK Hamiltonian has a square-root edge.
We now employ the analytical form of the spectral

density to study the free energy. We start with the density
[Eq. (24)], which is valid everywhere except in the tail. The
partition function in this case is given by

ZðβÞ ¼
Z

E0

−E0

dE cNe
−βEþ2arcsin2ðE=E0Þ

log η : ð27Þ

For log η → 0, the partition function can be evaluated by a
saddle-point approximation, resulting in the free energy

βF ¼ βĒ −
2arcsin2ðĒ=E0Þ

log η
; ð28Þ

where Ē satisfies the saddle-point equation

β ¼ 4

E0 log η
arcsinðĒ=E0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðĒ=E0Þ2

p : ð29Þ

If we define the new variable

arcsin
Ē
E0

¼ πv
2
; ð30Þ

the saddle-point equation can be written as

FIG. 3. The tail of the spectral density for N ¼ 32 and 400 disorder realizations. In the right figure, E0 − hE0i has been subtracted
from all eigenvalues, while in the left figure no subtractions have been made. The agreement is excellent, despite the fact that finite-N
effects, not fully captured in our theoretical analysis, should be stronger in this region. Even without this subtraction, the agreement is
still very good.

FIG. 4. Distribution of the lowest eigenvalue for N ¼ 24 (left) and N ¼ 28 (right) for ensembles of 50,000 and 15,000 disorder
realizations, respectively, compared to the random matrix prediction for the Tracy-Widom distribution. The numerical data have been
shifted and rescaled to reproduce the average and variance of the Tracy-Widom distribution. The agreement is excellent, which confirms
that the low-energy limit of the SYK model is fully ergodic and well described by random matrix theory.
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βJ ¼ πv
cos πv

2

; ð31Þ

with J ¼ ðE0=2Þ log η. In terms of these variables, the free
energy at the saddle point is given by

βF ¼ 2

log η
πv tan

πv
2

−
ðπvÞ2
2 log η

: ð32Þ

In the large-N limit, we have that log η → −2q2=N, and this
expression together with Eq. (31) reduces to the result
derived in Ref. [2], which is obtained in the large-q
limit for arbitrary values of the temperature. In the low-
temperature limit, the fluctuations about the saddle point
give a factor 1=β3=2, resulting in the low-temperature limit
of the partition function [2]:

ZðβÞ ∝ β−3=2 exp

�
βjE0j þ

N
2
log2þ π2

2 logη
þ 2π2

βjE0jlog2η
�
:

ð33Þ

We note that the analytical evaluation of the partition
function related to the tail of the spectrum [Eq. (26)], that
includes 1=N corrections, reproduces this result identically.
In conclusion, the analytical form of the spectral density,

which includes a class of 1=N corrections that results in
moments which differ only at order 1=N2 from the exact
result, agrees very well with exact numerical results. This is
especially surprising close to the edge of the spectrum
where higher-order 1=N effects, which have not been
included in the theoretical analysis, are expected to be
more relevant. We can only speculate that in systems with
infinite-range interactions, a mean field approach becomes
exact in the large-N limit and therefore, for finite N,
fluctuations may be weaker than in systems with short-
range interactions.

IV. APPLICATIONS IN NUCLEAR PHYSICS
AND HOLOGRAPHY

The SYK and related models have been employed to
study different aspects of nuclear physics, condensed
matter and, more recently, holographic dualities. We now
discuss how the results of the previous section help us
better understand these systems. We start with holographic
dualities. It was previously known [1,22] that 1=N correc-
tions, combined with the saddle-point approximation, lead
to a spectral density that grows exponentially for energies
close, but not too close, to the ground-state energy. This is
considered to be a distinctive feature of quantum black
holes in the semiclassical limit and also in conformal field
theories through the Cardy formula. Our results confirm
this feature for any q, beyond the perturbative approach of
Refs. [1,2]. In addition, it predicts—also for any q > 2—
that ρðEÞ ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − E0

p
for E → E0. This square-root edge,

typical of random matrix ensembles, has been found in
Refs. [35,52], but only in the slightly unphysical limit
of q ∝

ffiffiffiffi
N

p
.

In mesoscopic physics or quantum chaos, the occurrence
of random matrix theory is related to full quantum
ergodicity in the long time limit [47]—namely, the system
evolves, for sufficiently long times, to a structureless and
fully entangled state where only global symmetries char-
acterize the dynamics. These are dynamical features, while
the spectral density is only related to thermodynamical
properties, which requires further checks to confirm quan-
tum ergodicity of the SYK model and its gravity dual. For
that purpose we have studied level statistics in the infrared
region, where the spectral density is given by Eq. (26).
We note that level statistics of the SYK model have been

studied previously [35,44,45]. However, these papers focus
only on the central part of the spectrum that is not related to
properties of the gravity dual. By contrast, we have studied
the statistics of the low-lying eigenvalues—namely, the
infrared part of the spectrum. Sincewe are interested in long-
time dynamics of the order of the Heisenberg time, we
investigate the level spacing distributionPðsÞ, defined as the
probability to find two neighboring eigenvalues separated
by a distance s ¼ ðEiþ1 − EiÞ=Δ, whereΔ is the mean level
spacingΔ (see Ref. [45] for details of the calculation like the
unfolding procedure). In Fig. 5,we depict results forPðsÞ for
N ¼ 24 and N ¼ 32, considering only 1.5% of the lowest
eigenvalues. As in the central part of the spectrum [44,45], it
follows closely the prediction of the Gaussian orthogonal
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FIG. 5. Level spacing distribution PðsÞ resulting from exact
diagonalization of the SYK Hamiltonian [Eq. (1)] forN ¼ 32 and
400 realizations (squares), and for N ¼ 24 and 10000 realizations
(circles). We only consider the infrared part of the spectrum,
about 1.5%, which is related to the gravity dual of the model. As
in the bulk of the spectrum [44,45], we observe excellent
agreement with the Gaussian orthogonal ensemble (GOE) result.
This strongly suggests that full ergodicity, typical of quantum
systems described by random matrix theory, is also a universal
feature of quantum black holes.
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ensemble (GOE). The good agreement shows that the
eigenvalues of the SYK Hamiltonian fluctuate according
to random matrix theory all the way to the ground-state
region. This shows that the SYK Hamiltonian is chaotic in
the infrared domain. This is a further confirmation of the full
ergodicity of the SYKmodel in the long-time limit, and it is
in agreement with the result of the previous section, that
the distribution of the smallest eigenvalue is given by the
Tracy-Widom distribution.
This is a strong indication that not only the SYK model

but also its gravity dual, a certain type of quantum black
hole, are systems whose long-time dynamics only depend
on global symmetries and always lead to a completely
featureless and ergodic quantum state. It is well known that
random matrix ensembles are characterized by global
symmetries only. It would be interesting to explore whether
a similar classification characterizes the long-time dynam-
ics of quantum black holes.
Nuclear physics is another area in which our results are

of potential interest. A central feature of the excitations of
complex nuclei is captured by Bethe’s [54] expression that
predicts an exponential growth of the density of states
for energy close, but not too close, to the edge of the
spectrum. Interestingly, the exponential growth predicted
by the Bethe formula is very similar to that of Eq. (26).
Experimental results agree, at least qualitatively, with this
simple analytical expression. This is not fully understood,
because interactions are typically strong, while Bethe’s
expression is derived assuming noninteracting fermions in
a mean field potential. Our results help explain this puzzle,
as the exponential growth also occurs in the SYK model,
and likely in generalizations thereof, in which fermions are
strongly interacting. This is also a strong indication that
holography may be a powerful tool to model certain aspects
of the physics of strongly interacting nuclei.

V. CONCLUSIONS

We have obtained an approximate analytical form for the
spectral density of the SYK model which reproduces the
large-q and large-N result for the partition function and
agrees very well with numerical results for q ¼ 4 and N as
small as 8. This result was obtained by an explicit
evaluation of the energy moments taking into account

exactly a class of intersecting diagrams combined with the
use of the Riordan-Touchard formula [48,49]. For moments
of order 2p ≪ N, this approximation only differs at order
1=N2 from the exact result for the SYK model. For N ≫ 1,
and E not close to the ground state, the spectral density
simplifies to ρasymðEÞ ¼ exp½2arcsin2ðE=E0Þ= log η�. In the
infrared limit, the analytical expression for the spectral
density has a square-root singularity, as in random matrix
ensembles, followed by an exponential growth. Agreement
with exact numerical results is excellent and is consistent
with moments that are accurate including order-1=N
corrections. Our results also agree with the free energy
in the large N, q limit studied in Ref. [2] by completely
different methods though we do not make the assumption
q ≫ 1 in our analysis. We do not claim that the analytical
spectral density, Eq. (18), is exact for any q ≥ 2 up
to corrections of order 1=N2, because moments of order
N may have a different large-N scaling, and may contribute
significantly to the tail of the spectrum. Nevertheless,
we reproduce the zero-temperature entropy and low-
temperature limit of the specific heat to leading order in
1=q2. Apparently, in the large-q limit, the correction to the
large- ordermoments is suppressed.We hope to address this
issue in a future publication.
We have also shown that level statistics in the infrared

region are well described by random matrix theory for
energy separations of the order of the Heisenberg time.
Provided that the SYK model has a gravity dual in this
quantum limit, our results indicate that, for sufficiently long
times, quantum black holes relax universally to a fully
ergodic and structureless state, where the dynamics is only
dependent on the global symmetries of the system. These
are exactly the properties of compound nuclei, which have
a long history of being described in terms of random matrix
theory.
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