
Long-range nonlocality in six-point string scattering:
Simulation of black hole infallers

Matthew Dodelson1 and Eva Silverstein1,2
1Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94306, USA

2Kavli Institute for Particle Astrophysics and Cosmology, Stanford, California 94025, USA
(Received 17 May 2017; published 14 September 2017)

We set up a tree-level six-point scattering process in which two strings are separated longitudinally
such that they could only interact directly via a nonlocal spreading effect such as that predicted by light-
cone gauge calculations and the Gross-Mende saddle point. One string, the “detector,” is produced at a
finite time with energy E by an auxiliary 2 → 2 subprocess, with kinematics such that it has sufficient
resolution to detect the longitudinal spreading of an additional incoming string, the “source.” We test
this hypothesis in a gauge-invariant S-matrix calculation convolved with an appropriate wavepacket
peaked at a separation X between the central trajectories of the source and produced detector. The
amplitude exhibits support for scattering at the predicted longitudinal separation X ∼ α0E, in sharp
contrast to the analogous quantum field theory amplitude (whose support manifestly traces out a tail
of the position-space wavefunction). The effect arises in a regime in which the string amplitude is not
obtained as a convergent sum of such QFT amplitudes, and has larger amplitude than similar QFT
models (with the same auxiliary four-point amplitude). In a linear dilaton background, the amplitude
depends on the string coupling as expected if the scattering is not simply occurring on the wavepacket
tail in string theory. This manifests the scale of longitudinal spreading in a gauge-invariant S-matrix
amplitude, in a calculable process with significant amplitude. It simulates a key feature of the dynamics
of time-translated horizon infallers.
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I. INTRODUCTION AND SETUP

Light cone [1] and saddle-point [2] calculations strongly
suggest a significant degree of longitudinal nonlocality in
string theory in the regime of large center-of-mass energy
compared to the string scale, E ≫ 1=

ffiffiffiffi
α0

p
. As reviewed in

[3,4], both analyses [1,2] lead to the relations1

ðΔX⊥Þ2 ≃ α0 log
E2

k2⊥
; ð1:1Þ

ΔXþΔX− ≃ α0 for k2⊥ > 1=α0 ð1:2Þ

for relativistic 2 → 2 scattering, where k⊥ denotes the
transverse momentum transfer in the process.2 As the
resolution in light-cone time ΔX− ≃ k2⊥=E improves at
large center-of-mass energy, the nonlocality in the Xþ
direction increases. A computation in [6], combining light-
cone and saddle-point techniques, explicitly derives the
cutoff on the mode number of worldsheet vacuum

fluctuations which corresponds to the finite light-cone time
resolution,3 as explained recently in [3]. More broadly, the
UV softness of string amplitudes in itself implies some
spreading of probability in position space.
However, the quantities computed in [1] are not man-

ifestly gauge invariant, and the embedding coordinates in
[2] are evaluated on complex saddle points and hence are
not directly applicable to the real geometry of the scattering
process. Therefore it is of interest to understand the role of
the relations (1.1) in real, gauge-invariant quantities. This
has been discussed in a number of very interesting works
such as [7–10], but the results on the basic question of long-
range interaction were inconclusive. In [4], we began a
detailed analysis of this using wavepackets convolved
against four- and five-point tree-level string scattering
amplitudes, exhibiting features—such as the deflection
of the traced-back trajectory of a scattered string wave-
packet before its center of mass would collide—which are
difficult to explain purely by the transverse spreading
ðΔX⊥Þ2. Excluding purely transverse nonlocality is impor-
tant, and the arguments in [4] are subtle, giving only
indirect indications of the long-range E=k2⊥ ≤ α0E pre-
dicted by (1.1).

1The Gross-Mende saddle point is slightly larger than the
longitudinal spreading scale, ΔXþΔX− ≃ α02k2⊥ [4,5]. This leads
to a k2⊥-dependent suppression factor in the four-point function [4].2The relevant decomposition into light-cone and transverse
directions is determined uniquely by requiring that k⊥ is shared
equally among the scattered strings, defining the “brick wall
frame” as in [6].

3In the Appendix A, we clarify the distinction between this
detector-dependent cutoff and the subtraction of the power-law
divergence in a similar sum over modes that enters into the string
mass spectrum in light-cone gauge.

PHYSICAL REVIEW D 96, 066009 (2017)

2470-0010=2017=96(6)=066009(26) 066009-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.066009
https://doi.org/10.1103/PhysRevD.96.066009
https://doi.org/10.1103/PhysRevD.96.066009
https://doi.org/10.1103/PhysRevD.96.066009


More generally, it is crucial to take into account the
possibility that fluctuations in the central positions of
strings could account for effects that would otherwise be
ascribed to the longitudinal spreading.4 In this work, we
will find that in an appropriate six-point scattering process,
the large scale of longitudinal spreading directly emerges at
the level of the peak wavepacket separation of the relevant
strings, in a kinematic regime we identify explicitly,
improving substantially on [4]. In this regime, moreover,
a simple tree-level quantum field theory analog model
would not interact as strongly at this separation, provided
that we identify its four-point couplings with the ampli-
tudes of certain subprocesses in the string theory (one of
which is Regge soft). In order to test the spreading
interpretation further, we summarize a result of [11] in a
weakly varying dilaton background, which yields string
coupling dependence consistent with scattering at this peak
wavepacket separation. As a result, the longitudinal spread-
ing prediction survives a substantial test.
Let us summarize the setup inmore detail.Wewill analyze

a 3 → 3 scattering process which directly exhibits the
expected scale α0E of longitudinal nonlocality. A four-point
subprocess produces a string at finite time (sayT ¼ 0) which
is kinematically set up to be an effective detector of the
longitudinal spreading of a third incoming source string.
According to the prediction of (1.1), this third incomer could
interactwith the putative detector even if its center crosses the
interaction region earlier, by a time scale of up to order α0E.
With separated Gaussian wavepackets for the trajectories of
A and C, with peak X ¼ XC − XA, longitudinal spreading
would produce contributions supported at X of order α0E,
a dynamical scale that is insensitive to the shape of the
wavepacket. This is in contrast to the corresponding process
in quantum field theory, for which scattering only occurs for
particle C delayed with respect to A; in that case any
contribution with X < 0 is ascribable to scattering a tail of
the wavefunction in position space.
By analyzing the amplitude for scattering between

localized external states, we perform a quantitative test
of the prediction that the third incomer interacts with the
putative detector at a separation in the Xþ direction of order
α0E.5 With Gaussian wavepackets for the trajectories of A
and C, with peak X ¼ XC − XA and position-space width
1=σ ≪ Eα0, we find a string theory amplitude AðXÞ which
exhibits a peak of support early in X by the predicted
amount. We take a relatively thin width σ in momentum
space in order to optimize the detector kinematics, which
leads to a somewhat coarse (but still sufficient) resolution in
position space. In sharp contrast, QFT comparison models

instead produce a distribution with width ∼1=σ at small X,
with Gaussian-suppressed support at large X consistent
with scattering on the tail of the wavepackets. If we identify
the four-point subprocess amplitudes in tree-level QFT
and string theory, then string theory produces parametri-
cally stronger scattering at X ∼ Eα0, and a further analysis
using a linear dilaton background fits with this picture
of the scattering geometry [11]. This result arises in a
regime in which the string theory amplitude is not obtained
as a convergent sum over QFT propagators (which we
compare and contrast to a special regime with such an
expansion).
The predicted long-range longitudinal nonlocality could

have far-reaching implications, becoming particularly inter-
esting when applied to horizon physics [3,12]. In that
context, the trajectories of test objects time-translated relative
to each other byΔt develop an exponentially large center-of-
mass energy squared s ∝ eΔt=2rs in the near-horizon region,
where rs is the curvature radius in the geometry. This region,
a Rindler patch of flat spacetime, is given by

ds2 ≈ −2dXþdX− þ dX2⊥ for XþX− ≪ r2s ; X2⊥ ≪ r2s :

ð1:3Þ

The large near-horizon energy arises even for weakly curved
geometries, with the evolution in the geometry gradually
building up a large relative boost. The two trajectories cross
the horizon displaced in the Xþ direction by an amount that
grows linearly with the center-of-mass energy.
In this situation, nonlocality that grows in a way com-

mensurate with the center-of-mass energy can lead to
interaction between the two infallers [12]. In [3],we analyzed
this explicitly for the nonlocality introduced by longitudinal
string spreading, finding awidewindowof parameterswhere
this occurs, given (1.1). This would not occur for weakly
interacting particles at the same order, and we characterized
this as a breakdown of effective quantum field theory in
horizon physics. (However, it is an interesting question
whether this would occur just as well for field theories such
asQCDwhich exhibitRegge behavior andmayhave a string-
theoretic formulation, somethingwe can investigate by using
holographic large-N gauge theories [13].)
In fact, the process described by our flat spacetime

six-point function provides a calculable simulation of the
configuration of early and late infallers in horizon physics.
In that problem, the two strings’ centers never cross paths
in the near-horizon region; as just noted they are widely
separated in Xþ, and appear in the near-horizon region as if
they had already moved past each other. That means that in
the Rindler patch, they are configured just like the source
and detector strings in our six-point process, as shown in
Fig. 1.6 It will be very interesting to apply this to articulate

4In [4], this was conditional on an assumption that the incoming
stringsdeflectdirectly into thecorrespondingoutgoingones inRegge
kinematics, and that scattering can occur at the peak trajectory—the
most probable central value among position wavepackets.

5Below we will be more precise about the factors multiplying
α0E in the interaction scales arising in various regimes. 6We thank D. Marolf for early discussions of a setup like this.
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more explicit predictions for observables in black hole
physics and cosmology.

A. Quantum field theory comparison models

We will explicitly compare and contrast the behavior of
the string theory amplitude just set up with two tree-level
field theory models, whose amplitudes appear below in
(4.26)–(4.27). The simplest is a six-point contact inter-
action, with a coupling λ6 ∼ g4s ; we will refer to this model
as QFT0. The second, QFT1, is a model with four-point
interactions λABÂD ∝ g2s and λCDĈ B̂ ∝ g2s , withD a massless
particle. The six-point scattering in this theory includes
massless D exchange, and we will focus on this model in
making our comparisons.

II. KINEMATICS, PREDICTED DETECTOR
RESOLUTION, AND POLE STRUCTURE

In order to set up the process described in the previous
section, we consider 3 → 3 string scattering. For simplicity
we work in kinematics for which the incoming and
outgoing strings move in three dimensions ðT; X; YÞ.
In general for relativistic string motion the wavefunctions
are linear combinations of vertex operators with momenta

ka ¼ ðωa; pa; qaÞ; a ¼ A; B;C;

kj ¼ −ωj;−pj; qjÞ; j ¼ Â; B̂; Ĉ ð2:1Þ

where

ωI ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
I þ q2I

q
; I ¼ A − C; Â − Ĉ: ð2:2Þ

Since we are working in a Minkowski spacetime back-
ground, the scattering amplitude contains an energy-
momentum conserving delta function. In the process of
interest, the strings are moving mainly in the X direction.
By working with appropriate wavepackets and incorporat-
ing the delta function in the amplitude, we will be able to
consistently restrict the momenta to this regime while still
localizing the strings sufficiently in position space to test
for longitudinal interaction.
We will work with on-shell wavefunctions (linear

combinations of momentum eigenstate vertex operators)
that are pure momentum eigenstates for the outgoing
strings B̂; Ĉ, and Â. We must also specify wavefunctions
for the incoming strings A, B, and C. For reasons that will
become clear below, in the longitudinal (X) direction we
will work with Gaussians of string-scale width for A and C
(with central values in position space separated by a
parameter X) and for B we will specify a wavefunction
supported only within a very small range of epB of order E.
Here and below, we use a tilde to denote momenta that are

integrated over in the wavepackets that we will explicitly
set up below.
Define the total energy-momentum as

ktot ¼ −ðkÂ þ kB̂ þ kĈÞ ¼ ðωtot; P;QÞ: ð2:3Þ

This is constant, fixed by the choice of momentum
eigenstates for strings Â; B̂; Ĉ. We will work in a frame
where the total transverse momentum vanishes (Q ¼ 0),
and P is of order −E. We are interested in a regime in which
A and C are moving toward negative x with momenta
pA, pC ∼ −E, and B is moving toward positive X with
momentum pB ∼ E, as depicted in Fig. 2.
We will find it sufficient, and simplest, to work at fixed

transverse momenta

qB ¼ 0; qA ¼ −qC ≡ q ð2:4Þ

and will consider separately the cases q ¼ 0 and q ≠ 0.
We solve the longitudinal (x-direction) momentum con-

servation condition with

~pA ¼ P − ~pB − ~pC: ð2:5Þ

Moreover, for all our wavepackets, once we impose energy
conservation ~pB will vary, if at all, within a small enough
range that the variation of A and C essentially cancel:
δ ~pA ≃ −δ ~pC. Thus δ ~pC is conjugate to the longitudinal
spatial separation ~X between C and A.
Next let us consider the energy-conserving delta

function

δðfð ~pB; ~pCÞÞ; ð2:6Þ

with

FIG. 1. The six-point process naturally simulates horizon
physics by producing a detector string D at finite longitudinal
separation ΔXþ from the source string C. From this perspective
strings A, B, and Â (drawn as dashed lines) are auxiliary external
legs, whose only purpose is to collide and produce D.
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fð ~pB; ~pCÞ ¼ ωAð ~pB; ~pCÞ þ ωBð ~pBÞ þ ωCð ~pCÞ − ωtot

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP − ~pB − ~pCÞ2 þ q2

q
þ j ~pBj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2
C þ q2

q
− ωtot: ð2:7Þ

The delta function sets this function to zero.
First consider the case q ¼ 0. Energy conservation

fixes ~pB

~pB ¼ 1

2
ðωtot þ PÞ ðq ¼ 0Þ ð2:8Þ

for

1

2
ðP − ωtotÞ < ~pC < 0 ðq ¼ 0Þ: ð2:9Þ

For q ¼ 0, if the trajectories of A and C are separated in the
longitudinal plane at one time, they never meet. We will
introduce Gaussian wavepackets with support well within
the endpoints of the range (2.9). This case of q ¼ 0 is
sufficient for our simplest test of spreading below in
Sec. VA.
Next let us consider q ≠ 0. In this case, there is a meeting

point of the A and C trajectories (as depicted below in
Fig. 4). Let us consider (2.7) as a function of ~pC at fixed ~pB.
It has a minimum at ~pC ¼ ðP − ~pBÞ=2. For sufficiently
large ~pB, this minimum is above zero and there is no
solution. For sufficiently small ~pB, there are two solutions.
In the regime where q ≪ jpj for all strings, this is given to
good approximation by

~p�
C ≡ 1

2

 
P − ~pB �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~pB − PÞ2 − 2ð ~pB − PÞq2

2ðωtot þ P − 2 ~pBÞ

s !
:

ð2:10Þ

At one special value of ~pB there is a single solution to
f ¼ 0, at which ~pA ¼ ~pC ¼ ðP − ~pBÞ=2. Losing the sol-
ution as we increase ~pB through this point has a simple
interpretation: it corresponds to a kinematic configuration
such that A and C cannot meet at a point if they cross the
T ¼ 0 plane at separate positions in x, since they are
moving at the same speed in the x direction. Thus there is
no support for a pointlike interaction between them. For
q ¼ 0 we will work with a wavepacket for B with nonzero
support only for a small range of ~pB. The amplitude,
including the energy-conserving delta function, will then
restrict the range of ~pC to be sufficiently small that we can
work in a simple kinematic regime.
In all of our calculations below, the wavepackets

will have significant support only for momenta satisfying
ωI ∼ E ≫ jqIj in which the kinematics simplifies to the
form

kA ¼ ðEA þ q2A=ð2EAÞ;−EA; qAÞ; ð2:11Þ

kB ¼ ðEB þ q2B=ð2EBÞ; EB; qBÞ; ð2:12Þ

kC ¼ ðEC þ q2C=ð2ECÞ;−EC; qCÞ; ð2:13Þ

kÂ ¼ ð−EÂ − q2
Â
=ð2EÂÞ; EÂ; qÂÞ; ð2:14Þ

kB̂ ¼ ð−EB̂ − q2
B̂
=ð2EB̂Þ;−EB̂; qB̂Þ; ð2:15Þ

kĈ ¼ ð−EĈ − q2
Ĉ
=ð2EĈÞ; EĈ; qĈÞ; ð2:16Þ

constrained by the energy-momentum conserving delta
function, as just discussed. The restricted support in
momentum space will entail a position-space tail, whose
effects we will include in our analysis.
The amplitude depends on kinematic invariants

KIJ ¼ 2α0kI · kJ ð2:17Þ
which provide a useful, albeit redundant, parametrization.
These are fixed (of order q2) between strings moving in the
same direction, and large in magnitude (of order �E2) for
strings moving in opposite directions. The intermediate
string D described above,

kD ¼ kC þ kB̂ þ kĈ ¼ −ðkA þ kB þ kÂÞ ð2:18Þ
and specifically the behavior of k2D as a function of EC,
will play an important role. Some of the invariants we will
refer to in our analysis are explicitly

FIG. 2. The setup for our process, showing trajectories of
interest which have support in the string amplitude. The central
trajectories of strings A and B collide at T ¼ X ¼ Y ¼ 0,
producing outgoing strings Â and B̂. We introduce the third
incoming string C, with kinematics such that string B̂ (and the
closely related off-shell string D) has optimal light-cone time
resolution to detect the longitudinal spreading of strings C and Ĉ
(shown in blue) as in (2.23). To simplify the interpretation, we
exclude a direct 2 → 2 interaction BC → ðBþ Cþ ĈÞ þ Ĉ by
computing the amplitude for vertex operator orderings such as
AÂCĈBB̂ which preclude such a subprocess.
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KAÂ ¼ α0
ðqAEÂ − ðqA þ qB þ qC þ qB̂ þ qĈÞEAÞ2

EAEÂ
;

ð2:19Þ

KCĈ ¼ α0
ðqCEĈ þ qĈECÞ2

ECEĈ
; ð2:20Þ

k2D ¼ KCĈ

α0
þ 4EB̂ðEC − EĈÞ þ

ðECqB̂ þ EB̂qCÞ2
EB̂EC

−
ðEĈqB̂ − EB̂qĈÞ2

EB̂EĈ
: ð2:21Þ

A. Detector and spreading prediction

The string worldsheet topology and vertex operator
ordering allows for a process in which A and B join to
produce strings D and Â, with D joining C to produce B̂
and Ĉ. In our analysis we will not assume this sequence of
events in spacetime, but in this subsection we will briefly
review the prediction [1,3] for a spreading-induced inter-
action between C and D in such a process.
If we view string D as a detector of string C’s spreading,

then for α0kþDk
−
D ≥ Oð1Þ the light-cone prediction is7 [1,3]

ΔXþ
spreading ∼

kþD
kþDk

−
D
∼

EB̂

kþDk
−
D
: ð2:22Þ

The last estimate here is applicable in the regime
jEC − EĈj ≪ E, for which String D and its continuation
into string B̂ have light-cone energy

−kþD ≃ −kþ
B̂
≃ ffiffiffi

2
p

EB̂: ð2:23Þ

The sign here corresponds to the fact that string B̂ is
outgoing, while string D is an incoming leg of the process
CD → Ĉ B̂ in which it is a putative detector of the
spreading of string C. According to the predictions of
longitudinal spreading [1,3,4,6], this implies sufficient
light-cone time resolution for string D or B̂ to detect string
C, with a predicted range bounded above by α0E (at high
energy with fixed momentum transfer).
It is important to note, as in [3,4], that the predicted

interaction between the string and the detector is causal: in
the free single-string state, the mode sum which determines
the mean square size of the string is quadratically divergent,
cut off by the energy resolution of the detector. A time
advance, in which interaction occurs without the centers of
the strings meeting, is not acausal in this context. In the

next subsection we briefly review the manifestation of
causality in the S-matrix, and its limitations.

B. Pole structure, causality, and the S-matrix

In tree-level quantum field theory, there is no spreading
phenomenon in light-cone gauge analogous to that in string
theory, and causality demands that point particles scatter
without time advances. In that case, one can work with
gauge-invariant local operators which commute outside the
light cone to establish causality and hence the absence of
time advances.
In string theory, we work with the S-matrix because we

do not have such simple local observables. The manifes-
tation of causality in the S-matrix is encoded in the iϵ
prescription at the poles, in that the Fourier transform of a
simple pole in momentum space gives a step function in
position space. The limitations on this arise because the
Fourier transform is not exactly what arises in computing
S-matrix amplitudes, since energies are positive and the
amplitude includes the energy-momentum conserving delta
function which is not analytic. But since the iϵ prescription
is the same in string theory and QFT [14,15], it is important
to understand the implications of S-matrix data alone for
scattering advances as a function of the center of mass of
each string.
At the level of the momentum-space amplitude, string

theory does not generally decompose into a convergent
sum of particle propagators. This will play a role in our
results below. The standard limitations on the information
contained in S-matrix amplitudes will also enter our
analysis. In general the connection between analyticity
and causality is not completely sharp in the S-matrix
[16,17]. Because the energies of the particles are positive,
one does not obtain the full Fourier transform, and hence
we do not precisely get a step function in time.8 In some
circumstances, this is a small effect. But assessing that for a
given scattering problem requires analyzing it in detail with
explicit wavepackets, taking into account the behavior of
the momentum-space amplitude over the range of momenta
supported.
A related limitation is the uncertainty principle: imper-

fect knowledge of the relative momenta of scatterers can
complicate the determination of their range of interaction.
Consider more specifically the process we are setting up in
this work. The trajectories for A and C on the peak of the
wavepackets we will set up in the generic case qA, qC ≠ 0
are depicted below in Fig. 4 in Sec. V. For pA − pC < 0 as
depicted there, scattering at T ¼ 0 would require longi-
tudinal nonlocality; conversely if pA − pC > 0 scattering at
T ¼ 0 is delayed, not requiring nonlocality. We will use
appropriate wavepackets to restrict the support of pA − pC
to be negative, as depicted. For a class of momentum

7See specifically Sec. 2.3 of [3] for the suppression of the
spreading radius for a timelike detector trajectory, corresponding
to α0kþDk

−
D ≥ 1 in (2.22). For α0kþDk

−
D < 1, the light-cone spread-

ing prediction is ΔXþ
spreading ∼ α0E. 8We expand on this via toy integrals in the Appendix C.
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ranges, the resulting amplitudes exhibit a sharp distinction
between quantum field theory and string theory.
In S-matrix amplitudes with wavepackets, the scattering

may appear advanced as a function of the peak position in
the wavefunction, but this may be consistent with purely
delayed scattering on its tail. We will present results that are
consistent with this interpretation in our tree-level QFT
comparison models, whose amplitudes track the tails of the
position space wavefunctions and exhibit strong depend-
ence on their parameters. In string theory, we will find
rather different behavior which is consistent with the
longitudinal spreading prediction. In a regime where the
amplitude is not obtained as a convergent sum over particle
propagators, we will see that its amplitude is larger than the
corresponding QFTone, provided that we identify the four-
point subprocess amplitudes in QFT and string theory.
The possibility that the scattering proceeds via longitudinal
spreading (as opposed to only occurring on the wavepacket
tail) passes a further test in [11] that we will summarize.

III. WAVEPACKETS

In order to understand aspects of the position space
geometry of the scattering process, it is useful to convolve
the momentum-space string amplitude with nontrivial
wavepackets for the strings A, B, and C. That is, we
consider linear combinations of on-shell vertex operators
for the incoming strings.
Before discussing our wavepackets in detail, let us

briefly review how they fit into the total probability for
scattering, taking into account relativistic normalization
factors.9 We will set up wavepackets for incomers A, B, and
C normalized as Z

d3k
ð2πÞ3 jΨðkÞj

2 ¼ 1: ð3:1Þ

Then the probability for A, B, and C to scatter into Â; B̂; Ĉ
within a momentum range d3kÂd

3kB̂d
3kĈ of outgoing

momenta kÂ;kB̂;kĈ is given by

P ¼
Y

j¼Â;B̂;Ĉ

d3kj

ð2πÞ3
1

2ωj
jhkÂ;kB̂;kĈjSjϕAϕBϕCij2 ð3:2Þ

where

jϕAϕBϕCi ¼
Y

a¼A;B;C

Z
d3ka

ð2πÞ3 ffiffiffiffiffiffiffiffi
2ωa

p ΨAðkAÞΨBðkBÞ

× ΨCðkCÞjkA;kB;kCi: ð3:3Þ
In the kinematic regimewhich will interest us, the factors of
ωI in the denominator will not vary substantially with the

kI supported by the wavepackets. As a result, we can pull
out those factors and focus on the behavior of the
momentum-space amplitude convolved with the wave-
packets ΨIðkIÞ, keeping in mind that the final result for
the amplitude includes the inverse powers of ω. We note
that these factors are common to string theory and quantum
field theory.
These factors must also be included in considering

the implications for black hole physics.10 In that setup,
however, the incoming energies ω which enter into the
relativistic normalization in the asymptotically flat region
of the black hole geometry are much smaller than the
center-of-mass energy of time-translated infallers in the
near-horizon region [3].

A. Wavepacket widths

Before getting into any details, let us comment on the
width of the wavepackets. The light-cone gauge spreading
prediction described above in Sec. II A is given in terms of
the momentum of the detector D, so we will work with
wavepackets that are supported in a window of momenta for
which longitudinal spreading is expected from that point of
view. At the same time, of course, wewish to resolve aspects
of the geometry of the process in position space sowe cannot
work with pure momentum eigenstates. We will see that we
can use wavepackets that localize sufficiently in momentum
and position space to satisfy both of these requirements.
Let us spell this out more explicitly, since it is a

somewhat subtle aspect of our analysis. We will include
wavepackets for A and C, whose relative position is
conjugate to the momentum variable δEC ∼ −δEA (as
discussed above, string A will solve the longitudinal
momentum conservation delta function, absorbing the
change δEC in C’s longitudinal momentum).
The required resolution in position space is not too

stringent in itself: we are interested in resolving the relative
positions of A and C within the large predicted spreading
scale ∼Eα0. In momentum space, however, requiring that
the wavepackets have their support reasonably close to the
optimal detector kinematics leads to a nontrivial condition.
In particular, let us require k2D to stay of order q2 in
magnitude, since according to (2.22) the spreading would
degrade strongly otherwise. We can translate that to a limit
on the support of δEC using (2.19)

k2D ¼ 4EB̂δEC þ…: ð3:4Þ

Restricting the support of k2D to within of order q2 restricts
δEC to within of order q2=E. This is a strong constraint
on the momenta. Fortunately, it is still within the broad
position space resolution we need, but the corresponding
wavepackets are quite wide in position space compared to

9See e.g. Chap. 4 of [18] for the relevant background and
conventions. 10We thank D. Stanford for a discussion of this point.
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string scale. Below, we will find the most interesting results
for wavepackets of this kind—of width ∼q=E in momen-
tum space (with the order q parameter being specificallyffiffiffiffiffiffi−ηp ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−kB · kB̂ þ kC · kĈ
p

). We will comment further on
the role of this parameter below.

B. Gaussian wavepackets for A and C

For A and C, we will work with Gaussian wavepackets,
centered on trajectories with momentum p ∼ −E, as in
the setup of Fig. 1. In momentum space the wavepackets
take the form

ΨX;pð ~pÞ ¼
1

π1=4σ1=2
expð−i ~pXÞ expð−ð ~p − pÞ2=2σ2Þ

ð3:5Þ

where ~p is a canonical momentum variable, and the
subscripts are parameters of the wavefunction. The position
space wavefunction is

ΨX;pð ~X; TÞ ¼
Z

d ~p

π1=4σ1=2
ei
ffiffiffiffiffiffiffiffiffiffi
~p2þq2

p
Tþi ~pð ~X−XÞe−ð ~p−pÞ2=2σ2 :

ð3:6Þ

At T ¼ 0 this is a Gaussian ∝ e−ð ~X−XÞ2=2σ2 centered at
~X ¼ X with width 1=σ. At other times, it is approximately
Gaussian centered on the trajectory T ¼ −ð ~X − XÞ. The
evolved position space wavepacket also has a contribution
with a power-law tail, but this is suppressed by e−p

2=2σ2. We
will center string A such that at the peak of its wavepacket,
it crosses T ¼ 0 at XA ¼ 0, and send C in with a peak
trajectory passing through X ≡ XC at T ¼ 0.

C. Wavepackets for string B

Let us next discuss wavepackets for string B. In the case
q ¼ 0, energy conservation fixes ~pB (2.8), and we can work
with any wavepacket for B with support at that value. The
remainder of this section is not essential for the reader
interested in the simplest test of spreading in q ¼ 0
kinematics, which is contained in Sec. VA below.

1. B wavepackets used in q ≠ 0 analysis

For our q ≠ 0 analysis below, we will consider wave-
functions which are sharply supported between two nearby
values of ~pB. One example of this is simply the step function

ΨXB;pB;min;pB;max
ð ~pBÞ

¼ 1ffiffiffiffiffiffiffiffiffi
ΔpB

p expð−i ~pBXBÞθðpB;max − ~pBÞθð ~pB − pB;minÞ

ð3:7Þ

where we defined

ΔpB ¼ pB;max − pB;min: ð3:8Þ

Here ~pB is the canonical momentum variable, and the
subscripts are parameters of the wavefunction. In our setup,
pB;min and pB;max are both of order E.
This wavepacket for B is sharply cut off in momentum

space, which will lead to a power-law tail in position space.
This may seem like a counterintuitive choice, given that
we would like to constrain the position space geometry.
However, as we will discuss in detail below [see Fig. 4 and
Eq. (5.26)], the resolution we need for B’s trajectory is
much weaker than that for A and C. The utility of the sharp
cutoff in ~pB is that this, in combination with the energy-
momentum conservation in the amplitude, sharply ensures
that (i) the strings are moving in the intended direction, and
(ii) the range of momentum integrated over is small enough
that δ ~pC is absorbed by δ ~pA to good approximation. This
simplifies the analysis and interpretation, leaving enough
structure in position space to strongly distinguish the
behavior of string theory and tree-level quantum field
theory.
If we take B to have zero transverse momentum (an

eigenstate with ~qB ¼ 0), the corresponding position space
wavefunction is

ΨX;pB;min;pB;max
ð ~XB; TÞ

¼ i
eipB;minðT−ð ~XB−XBÞÞ − eipB;maxðT−ð ~XB−XBÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πΔpB
p ðT − ð ~XB − XBÞÞ

: ð3:9Þ

Again XB is the peak of the wavefunction, not to be
confused with that of a position eigenstate. The corre-
sponding probability in position space is

jΨj2 ¼ 2

π

sin2ðΔpB
2
ðT − ð ~XB − XBÞÞÞ

ΔpBðT − ð ~XB − XBÞÞ2
: ð3:10Þ

This is nearly constant for jT − ð ~XB − XBÞj ≪ 1=ΔpB but
drops rapidly beyond that scale. We will put XB ¼ 0 in our
analysis, so that the peak of this wavepacket describes B
hitting A at X ¼ T ¼ 0. A variant of this which is useful is
to take a triangular region of support between pB;min and
pB;max,

Ψtrið ~pBÞ¼
ffiffiffiffiffiffiffiffiffi
3

ΔpB

s �
2

ΔpB
ð ~pB−pB;0Þþ1

�
pB;min< ~pB<pB;0;

Ψtrið ~pBÞ¼
ffiffiffiffiffiffiffiffiffi
3

ΔpB

s �
−

2

ΔpB
ð ~pB−pB;0Þþ1

�
×pB;0< ~pB<pB;max ð3:11Þ

where we defined
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pB;0 ¼
pB;min þ pB;max

2
ð3:12Þ

and we work at XB ¼ 0. The Fourier transform to position
space gives in this case

~Ψtrið ~XBÞ ¼
8
ffiffiffiffiffiffiffiffiffiffiffiffi
3ΔpB

p ffiffiffiffiffiffi
2π

p e−ipB0ð ~XB−TÞ
sin2
�
ΔpBð ~XB−TÞ

4

�
ðΔpBð ~XB − TÞÞ2 ;

ð3:13Þ

This has a tail ∝ 1=ð ~XB − TÞ2, and a finite variance in
position and momentum space.
Wewill analyze the amplitudes for QFTand string theory

convolved with these wavepackets. It will be useful for
interpreting the potential contribution from wavefunction
tails to check the sensitivity of these amplitudes to the
width σ of the Gaussians (3.6) and the difference between
the step function and triangular wavefunctions for B.
As mentioned above, we will work with pB;max; pB;min

such that the resulting range of pC values allowed by
energy-momentum conservation (2.10) satisfies

ΔpC ≪ ~pC ð3:14Þ

for all ~pC contributing to the amplitude. The required
range of pB can be obtained by differentiating the energy
conservation condition

P
a ~ωa ¼ ωtot, which gives

d ~pC

d ~pB
¼

~pA
~ωA
− 1

~pC
~ωC
− ~pA

~ωA

∼ −
E3

q2ð ~pC − ~pAÞ
: ð3:15Þ

The difference ~pC − ~pA is the separation between the two
solutions to energy conservation (2.10). Within each range
of solutions (Fig. 3), we have

ΔpC ∼
−E3

q2ðpC − pAÞ
ΔpB: ð3:16Þ

As a result, the integral is only over ~pC in the regime
~p ¼ ~pC − ~pA ≃ −ð ~EC − ~EAÞ. That is, for the above kin-
ematics with EI ≫ jqIj, we can satisfy energy-momentum
conservation to good approximation by absorbing a defor-
mation δ ~EC by δ ~EA ≃ −δ ~EC. This momentum variable is
conjugate to the separation ~XC − ~XA between the two
strings in position space at time T ¼ 0. To sum up, we
choose pB;min; pB;max such that over the full range of
support in momentum space, we have the hierarchy

jδECj≃ jδEAj ≪ EA ≃ EC: ð3:17Þ

This restricted range for ~pA and ~pC is dictated by the
amplitude along with the wavepacket for B, not the
wavefunctions for A and C.

IV. MOMENTUM-SPACE AMPLITUDE

In this section, we introduce the momentum-space string
amplitude and describe some of its key features within our
kinematic regime of interest. We will be interested in two
open string orderings and two kinematic regimes. We will
compare and contrast string theory with QFT, with the sign
of one of the kinematic variables playing an interesting
role. In one of the regimes, the amplitude can be expanded
into a convergent sum over QFT propagators 1

k2DþnD−iϵ
. In

the other regime, the analogous expansion in propagators
comes dressed with additional dependence on the detector
kinematics k2D. This will enable us to distinguish the
behavior of string theory in the latter regime from that
of QFT, which scatters on the tail of the wavepacket
for X < 0.
Before entering into the details, let us summarize the

result of this section. In our regime of interest, the relevant
piece of the amplitude will take the form

Að1Þ
4 Að2Þ

4 Bðα0k2D; ηÞ; ð4:1Þ

with η ¼ BB̂ − CĈ noninteger. (We will discuss the case of
integer η below as well; it has a different pole structure.)
Here the first two factors are the amplitude for the auxiliary
four-point process in our setup and the four-point amplitude
describing the process CD → Ĉ B̂. The last factor varies
strongly with the momentum variable ~pC conjugate to the
separation ~X between A and C, via its dependence on k2D.
When η > 0, this Beta function can be expanded into a
convergent sum over k2D propagators, while for η < 0 this is
not the case.

FIG. 3. The argument of the energy-conserving delta function
as a function of ~pC, for a given ~pB. The light intervals indicate the
corresponding ranges of solutions to energy conservation for ~pC,
given a small range of ~pB supported by our wavepacket. This
small range of ~pC enforced by energy conservation restricts our
calculations to a simple regime of the momentum-space ampli-
tude, while still localizing the longitudinal separation of A and C
using Gaussian wavepackets with good resolution (1=σ ≪ α0E).
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A. Open string orderings and gauge invariance

We will work with open strings, focusing on particular
orderings AÂCĈ B̂ B and AÂBB̂CĈ. In each of these cases,
strings B and C cannot simply scatter early into strings
Bþ Cþ Ĉ and Ĉ as that would violate gauge invariance.
This is useful because such scattering would introduce an
extra ambiguity of interpretation: even if the scattering is
supported for an early central trajectory ofC relative toA, that
could proceed simply viaBC → ĈðBþ Cþ ĈÞ followed by
ðBþ Cþ ĈÞA → B̂ Â. This is important because the inter-
nal Bþ Cþ Ĉ exchange could generate a spread amplitude
in X ¼ XC − XA, the separation between strings A and C in
our setup. As mentioned above, this separation is conjugate
to ~pC, on which k2D varies strongly. The kinematic variable
ðkB þ kC þ kĈÞ2 also varies strongly with ~pC. So spreading
in a case with Bþ Cþ Ĉ exchange would be more difficult
to test given this more prosaic interpretation of an early,
local four-point interaction involving B and C.
Gauge invariance in the orderings we consider do allow

an early five-point interaction CB → B̂ ĈðAþ ÂÞ followed
by a three-point interaction AðAþ ÂÞ → Â. A local field
theory with constant three- and five-point vertices joined by
an AÂ propagator would not produce spreading in X, as AÂ
does not vary strongly with ~pC. String spreading could
introduce an interaction between Â and D at large X.

B. Simplification near a pole

We would like to work with a complete expression for
the amplitude that we convolve with a wavepacket. At five
points, the integral over vertex operator positions yields a
closed form expression in terms of Beta functions and a 3F2

hypergeometric function. At six points this is not the
case, but we can obtain a complete expression if we work
sufficiently near a pole, factorizing the amplitude into a
three-point function times a five-point function. We will
first work this out for bosonic open string tachyon scatter-
ing in the relativistic regime E ≫ 1=

ffiffiffiffi
α0

p
, and then describe

the generalization to the superstring, for which the external
states and the leading poles are massless.
In the bosonic case, factorizing near the leading pole in

Aþ Â is a good approximation for

1þ KAÂ ≪
1

logðα0E2Þ ð4:2Þ

as can be seen as follows from the generalized operator
product expansion (OPE) analysis in [6]. Sufficiently near
the pole, the integral over worldsheet vertex operator
positions yI is dominated by the regime in which the
vertex operators for string A and string Â approach each
other, yAÂ → 0. In this regime, including the leading
correction to the OPE, gives [6]

eikAXðyAÞeikÂXðŷAÞ ∼ eiðkAþkÂÞXðyAÞþikAyÂA∂yXðyAÞ: ð4:3Þ

Contracting the correction term in the exponent with other
vertex operators in the amplitude, one finds that it is of
order yAÂKAI, where I indexes the other vertex operators.
The leading KAI that contribute are of order α0E2 (for
I ¼ B̂; B). This leads to an integral of the formZ

d logðyAÂÞeiyAÂα
0E2

eð1þKAÂÞ logðyAÂÞ: ð4:4Þ

The dominant contribution to this integral is at yAÂ of order
1=ðα0E2Þ (beyond which it is suppressed by the oscillatory
factor). Plugging back in and expanding in KAÂ gives a
series of the form

P
cnð1þ KAÂÞ logðα0E2Þ. The condition

for this to be a valid expansion is (4.2).
We must respect this condition consistently with the

linear combination of momentum eigenstates we take for
our wavepacket. In particular, by varying the first line of
(2.19) with respect to δEA ≃ −δEC, we find that since we
keep jδEAj≃ jδECj ≪ EA ≃ EC (3.17), the variation of
KAÂ is negligible.
Given this, we can derive a closed form expression for

the amplitude [19,20], as we will discuss in the following
subsections. We should emphasize that we will not work
right on the pole, but will keep a small but finite distance
away from it. We describe this kinematic regime in detail in
Appendix B.

C. Simplified amplitude from the
vertex operator integral

As we will discuss shortly, near one pole the amplitude
is given explicitly in terms of Beta functions and hyper-
geometric functions [19,20]. In this section we will derive
the simplified amplitude (4.1) in our kinematic regime
via the vertex operator integrals. Let us work for simplicity
in the bosonic theory, and define

IJ ¼ 1þ 2α0kI · kJ ¼ 1þ KIJ: ð4:5Þ

In this section, we will take these kinematic invariants large
(aside from AÂ ≪ 1), neglecting order one offsets that arise
in the exact amplitude.
For the ordering AÂBB̂CĈ, the integral over vertex

operator positions can be written as11

1

AÂ

Z
1

0

dyĈ

Z
yĈ

0

dyAÂy
α0k2D
AÂ

yBĈ
Ĉ
ð1 − yAÂÞAÂC

× ð1 − yĈÞCĈðyĈ − yAÂÞAÂ Ĉ; ð4:6Þ

where we have set yB ¼ 0, yC ¼ 1, and yB̂ ¼ ∞.

11See e.g. [14] for the relevant background on tree-level string
scattering and the integral expression for the momentum-space
amplitude.
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Wewill estimate the yĈ integral in two regimes of the yAÂ
integral. In our kinematics, BĈ ∼ 4E2α0, which is very
large. As a result, the factor yBĈ

Ĉ
implies that the yĈ integral

is dominated by yĈ ¼ 1. In more detail, the saddle-point
equation for yĈ is

BĈ
yĈ

−
CĈ

1 − yĈ
þ AÂ Ĉ
yĈ − yAÂ

¼ 0: ð4:7Þ

In our kinematics (described in detail in Appendix B), the
numerator of the third term is parametrically smaller than
the second, which is parametrically smaller than the first.
When yAÂ is not close to yĈ, the third term is negligible and
this equation has a solution

yĈ ≃ 1

1þ CĈ=BĈ
: ð4:8Þ

This reduces the integral to

1

AÂ
BĈ−CĈ

Z
1

0

dyAÂy
α0k2D
AÂ

ð1 − yAÂÞAÂCþAÂ Ĉ: ð4:9Þ

The final exponent can be simplified,

CAÂþ AÂ Ĉ ¼ ðkA þ kÂ þ kC þ kĈÞ2 − CĈ − AÂ

¼ BB̂ − CĈ − AÂ ¼ η − AÂ: ð4:10Þ

Given AÂ ≪ 1, what remains is the integral expression for
Bðk2Dα0; ηÞ times two four-point amplitudes, one of which
is near a pole and one in a Regge regime. This is the
contribution of interest in our application, as it varies
strongly with variations in δpC ∼ −δpA, the variable con-
jugate to the longitudinal separation of A and C. We will
comment on the contour integral for Bðk2Dα0; ηÞ further
below in Sec. VA 1 in a more specific kinematic regime of
interest; its dominant contribution indeed comes from yAÂ
far from 1 ∼ yĈ.
The remaining contribution comes from the region x ¼

yAÂ=yĈ ∼ 1 in the integral. This leads to weak dependence
on δpC ∼ −δpA, since the factor depending on k2Dα

0 in (4.6)
is now close to 1. This extra term is given explicitly below
in (4.22) and (4.23).

D. The closed form string theory
amplitude for two orderings

Let us now enter into further details of the momentum-
space string amplitude. We will start with the bosonic
theory. At the end of this section, we briefly describe the
small shifts (removing the tachyon pole) arising in the
superstring case. Finally, we will comment on the size of
the amplitude in different versions of our basic process
depending on the identification of the auxiliary process.

1. Ordering AÂCĈ B̂ B

One useful form of this amplitude is

AST ¼ 1

AÂ
Bðα0k2D − 1; BB̂ÞBðCĈ; B̂ ĈÞ

× 3F2ð1 − BĈ; α0k2D − 1; CĈ; α0k2D − 1

þ BB̂; B̂ ĈþCĈ; 1Þ ð4:11Þ

with the standard iϵ prescription, where we have used (4.5).
This is equal to the following sum:

1

AÂ

X∞
n¼0

ð1 − BĈÞn
n!

Bðα0k2D − 1þ n; BB̂ÞBðCĈþ n; B̂ ĈÞ:

ð4:12Þ

We can collect the factors in the nth term in the sum as

ΓðB̂ ĈÞ
Γð1 − BĈÞ

Γð1 − BĈþ nÞ
ΓðB̂ Ĉþnþ CĈÞ

ΓðCĈþ nÞ
n!

×
Γðα0k2D − 1þ nÞΓðBB̂Þ
Γðα0k2D − 1þ nþ BB̂Þ : ð4:13Þ

The sum here converges as long as

BB̂ Ĉ≡BB̂þ BĈþ B̂ Ĉ > 1: ð4:14Þ

For comparison with QFT, it is interesting to expand this
in terms of k2D propagators by expanding Bðα0k2D − 1þ
n; BB̂Þ in terms of its poles. We work in the regime where
the sum over n converges as in (4.14). This gives

ΓðB̂ ĈÞ
Γð1−BĈÞ

X
m

ð1−BB̂Þm
m!

X
n

Γð1−BĈþ nÞ
ΓðB̂ ĈþnþCĈÞ

ΓðCĈþ nÞ
n!

×
1

k2D;0 þ ðnþmÞ=α0 − iϵ
: ð4:15Þ

If we perform the sum over m first, it converges [giving
back the original Bðα0k2D − 1þ n; BB̂Þ]. However, the sum
over n does not generally converge if performed first; that
requires BĈþ B̂ Ĉ to be sufficiently large.
For special choices of kinematics, this amplitude sim-

plifies further. One useful example is to apply Saalschutz’s
theorem

3F2ða; b;−N; d; 1þ aþ b − d − N; 1Þ

¼ ðd − aÞNðd − bÞN
ðdÞNðd − a − bÞN

ð4:16Þ
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with

N ¼ BĈ − 1; BB̂ Ĉ ¼ 2; a ¼ α0k2D − 1;

b ¼ CĈ; d ¼ α0k2D − 1þ BB̂ ð4:17Þ

(with N a positive integer).
We can write this simplified amplitude in two useful

forms. First define

η≡ BB̂ − CĈ: ð4:18Þ

The sign of this variable will play an interesting role in the
dynamics. In terms of this we can use (4.16) to write the
amplitude as

BðCĈ; B̂ ĈÞ
AÂ

Bðα0k2D − 1; BB̂ÞΓðα
0k2D − 1þ BB̂ÞΓðηÞ

ΓðBB̂ÞΓðα0k2D þ ηÞ

×
Γðα0k2D − 1þ ηþ NÞΓðBB̂þ NÞ
Γðα0k2D − 1þ BB̂þ NÞΓðηþ NÞ : ð4:19Þ

This further simplifies to

BðCĈ; B̂ ĈÞ
AÂ

Bðα0k2D − 1; ηÞ

×
Γðα0k2D − 1þ ηþ NÞΓðBB̂þ NÞ
Γðα0k2D − 1þ BB̂þ NÞΓðηþ NÞ : ð4:20Þ

Within the kinematic regime of our setup, N ∼ BĈ ∼ E2α0
is much greater than the other variables in the arguments of
the Γ functions, so the last factor in (4.19) and (4.20) is
approximately 1.
In this regime, the amplitude is approximately given by

BðCĈ; B̂ ĈÞ
AÂ

Bðα0k2D − 1; ηÞ: ð4:21Þ

For η > 0, the last Beta function has a convergent expan-
sion in terms of massive D propagators. For η < 0 it does
not, but the function Bðα0k2D − 1; BB̂Þ in the equivalent
form (4.19) can be expanded in propagators, dressed by
additional k2D dependence.

2. Ordering AÂBB̂CĈ

For the ordering AÂBB̂CĈ, we obtain a similar form of
the amplitude without as many special kinematic choices.
It is simplest to write the five-point function as the sum of
two terms,

A ¼ BðCB̂; BB̂ÞBðAĈ Â;−ηÞ3F2ðBB̂; AĈ Â; α0k2D − 1þ η; 1þ η; CB̂þ BB̂; 1Þ
þ BðCB̂; CĈÞBðα0k2D − 1; ηÞ3F2ðCĈ; α0k2D − 1; AĈ Â−η; 1 − η; CB̂þ CĈ; 1Þ: ð4:22Þ

If η is not an integer, the hypergeometric functions reduce
to 1 and the answer is approximately

A ¼ CB̂−BB̂BðAĈ Â;−ηÞ þ CB̂−CĈBðα0k2D − 1; ηÞ: ð4:23Þ

The second term is similar to the simple form (4.21) above.
The first term will not vary strongly as we integrate over the

momentum variable ~pC conjugate to the separation be-
tween A and C.
In this ordering, the case where η is a negative integer

works out as follows. The hypergeometric function on the
first line of (4.22) has poles at negative integers η, while the
poles in the second line of (4.22) come from the beta
function out in front. The remaining finite part comes from
expanding the BðCB̂; BB̂Þ around negative integer η,

− logðCB̂Þ
X∞
n¼0

ð−1Þn
n!

ΓðBB̂þ nÞΓðAĈ ÂþnÞΓðα0k2D − 1þ ηþ nÞ
ΓðBB̂ÞΓðAĈ ÂÞΓðα0k2D − 1þ ηÞΓð1þ ηþ nÞ ðCB̂Þ

−BB̂−n: ð4:24Þ

The first surviving term is at n ¼ −η,

−
ð−1Þη
ð−ηÞ! logðCB̂Þ

ΓðCĈÞΓðAĈ Â−ηÞ
ΓðBB̂ÞΓðAĈ ÂÞ

Γðα0k2D − 1Þ
Γðα0k2D − 1þ ηÞCB̂

−CĈ: ð4:25Þ
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3. Integer η

Let us briefly comment on the special case of integer η.
For positive integer η, the function Bðα0k2D; ηÞ reduces to a
finite sum of propagators, and for negative integer η, the
function Bðα0k2D; ηÞ reduces to a polynomial in α0k2D of
order −η. However, the full amplitude contains a logarith-
mic factor (4.25) which also depends on pC.
The amplitude (4.25) is interesting, but physically

distinct from that of our main setup aimed at simulating
black hole infallers: it does not exhibit k2D poles corre-
sponding to production of the putative detector. We will
focus on noninteger η < 0, although some of the analysis
below goes through in either case. The integer η < 0 case
may be useful for separating issues using the absence of k2D
poles in that case.

4. Superstring

In order to avoid dealing with tachyon kinematics, let us
briefly mention the analog of our amplitude for massless
vector open superstrings. There, from extra structure in the
vertex operators for the massless external states, one
obtains a sum of terms with two or three of the kinematic
invariants IJ (4.5) shifted by −1, which among other things
removes the tachyon pole in k2D. The amplitude also
contains a kinematic factor [20] which is a function of
the external momenta and polarization vectors, and is
independent of α0. It will not substantially affect the shape
of the amplitude in position space.

5. The size of the amplitude

For the application to black hole physics, the ABÂ
system is auxiliary, as explained in the Introduction.
This means that we should strip off the four-point ampli-
tude corresponding to the ABÂD subprocess in order to
estimate the size of the effect in the black hole. In the form
of the amplitude we have analyzed here, this means we strip
off the KAÂ pole, which leaves us with a Regge-suppressed
interaction from the first factor in (4.19) and (4.20). (It is
less suppressed than in hard scattering, but still soft.)
To potentially obtain a more dramatic effect, we can

instead work in a kinematic regime where the auxiliary
process is Regge suppressed. This can be obtained in two
ways. One way would be to work withKCĈ rather than KAÂ

near a pole, so that the AB → DÂ subprocess is Regge
suppressed.
However, we can obtain the equivalent situation simply

by time-reversing the above setup, considering Â; B̂, and Ĉ
as incoming strings. Then the auxiliary process is
B̂ Ĉ → DC and the predicted spreading-induced interaction
is ÂD → BC. In both our orderings AÂCĈ B̂ B and
AÂBB̂CĈ, gauge invariance again prevents an early inter-
action between strings B̂ and Â in this time-reversed

version. In this version, the Regge suppressed factor
BðCĈ; B̂ ĈÞ ∼ ð−CĈ=B̂ ĈÞCĈ is auxiliary.
It is important to note that although KAÂ ≪ 1, the

amplitude is not strictly on the AÂ pole. In the
Appendix B we elaborate on the relevant aspects of our
kinematic regime. Specifically, Eq. (B5) shows that η ≠ 0

requires KAÂ ∼ δq2α0 ≠ 0.
Finally, we note that there may be effects in curved

spacetime which affect the range of spreading. A linear
dilaton gradient has an interesting calculable effect dis-
cussed in [11], and something similar may arise in curved
spacetime. As in [3], one may most directly relate flat
spacetime results to those in a black hole in the near-
horizon Rindler region, putting the strings in their light-
cone ground state there. Having made this choice of
intermediate state, the geometry may have a nontrivial
effect as we evolve the state back through the outside
geometry of the black hole. The effect of the curved
geometry and the form of our scattering states evolved
back toward the boundary is also important to understand
in the context of AdS/CFT.

E. QFT comparison amplitudes

It will be useful to compare and contrast this with the
tree-level quantum field theories defined above, with the
following amplitudes. First, the six-point contact interac-
tion alone gives

AQFT0 ∼ λ6δ
ð3Þ
�X

~kI

�
: ð4:26Þ

Four-point couplings with a massless D particle have the
amplitude

AQFT1 ∼ λð1Þ4 λð2Þ4

1

k2D − iϵ
δð3Þ
�X

~kI

�
: ð4:27Þ

We could consider more general QFT models with a finite
number of poles at various mass scales.
In string theory, the amplitude has richer structure as a

function of k2D. As noted above, it is not always expressible
as a convergent sum over QFT propagators. This will lead
to the key difference in their behavior. (Even when there is a
convergent sum over propagators, it involves an infinite
sum over higher spin intermediate states, leading to softer
behavior than any QFT truncation.)

F. Note on pole structure and open
string gauge symmetry

It is worth emphasizing an interesting subtlety in our
analysis. As explained at the beginning of this section, we
work with open string orderings precluding the possibility
of an early BC collision producing an intermediate
Bþ Cþ Ĉ string plus Ĉ. If we had allowed that, then
the analog of our simplified form of the amplitude
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Að1Þ
4 Að2Þ

4 Bðα0k2D; ηÞ ð4:28Þ

would be (e.g. for ordering AÂBCĈ B̂)

Að1Þ
4 Að2Þ

4 Bðα0k2D; α0ðkB þ kC þ kĈÞ2Þ: ð4:29Þ

This has poles in Bþ Cþ Ĉ as well as in k2D.
Implementing the standard iϵ prescription, these sets of
poles are on opposite sides of the axis in the complex
pC plane.
In going from that ordering to our orderings of interest,

we lose the Bþ Cþ Ĉ poles. The remaining poles in k2D
are on one side of the axis within the kinematic regime of
momenta in our setup, the same side as the pole in our
QFT1 comparison model. In the QFT model, this pole
structure is tied to the purely delayed interactions.
As discussed above in Sec. II B, this alone does not

imply locality. What we will find below is that for η > 0,
the amplitude can be written as a convergent sum over
particle propagators (a finite sum if η is integer) and it leads
to results consistent with local scattering, with early support
as a function of the peak separation X ¼ XC − XA of the
position space wavefunction indistinguishable from scat-
tering on the tail of the wavefunction. In contrast, for η < 0,
the amplitude (4.29) has a rich structure in momentum
space. It grows like jk2Dj−η at large jk2Dj within a broad
window of pC in our regime. For a window of small k2D, it
decomposes into two terms with strongly varying phases
that generate strong support for early (and late) interactions
at a scale jXC − XAj ∼ Eα0.

G. Combining the orderings

A complete calculation includes all the orderings of open
strings. These contain different sets of poles, and generi-
cally do not cancel out. For example, the two orderings
we evaluated above have a common factor Bðk2D; ηÞ, but a
different pole structure in B̂ Ĉ in one of the auxiliary
factors.

V. RESULTS IN QFT AND STRING THEORY

In this section, we integrate the wavepackets in Sec. III
against the string (4.11) and tree level field theory (4.26)–
(4.27) amplitudes in Sec. IV. We work in transverse
momentum eigenstates, evaluating the amplitude on ~qA ¼
− ~qC ¼ q; ~qB ¼ 0.
We will start by focusing on the case with q ¼ 0, and

then generalize to q ≠ 0. To begin with we will analyze
wavepackets with support over a particular range of ~pC for
which the momentum-space amplitude contains the struc-
ture relevant for spreading. In Sec. VI we will generalize to
a larger family of wavepackets.

A. The q= 0 case

The geometry and kinematics is particularly simple if we
set qA ¼ qC ¼ 0. In that case, the central trajectories never
meet in position space. In momentum space the structure is
also simplified, as discussed above in (2.8)–(2.9). Energy
conservation sets pB to a specific value at which ~pC (and
~pA ¼ P − pB − ~pC) can vary widely while still satisfying
energy-momentum conservation. In this section, we will
analyze Gaussian wavepackets forA andC that constrain the
momentum ~pC within an interesting regime for which the
momentum-space amplitude (4.1) exhibits a rich structure
that will play a key role in our test of string spreading.
For this case, we simply use Gaussian wavepackets for

A and C, with width σ. After convolving the amplitude
with the wavepackets and imposing energy-momentum
conservation, the amplitude takes the form

AðXÞpC;σ0 ∼
Z

d ~pC

σ0
e−ð ~pC−pCÞ2=2σ20e−i ~pCXÂð ~pCÞ ð5:1Þ

where

1

σ20
¼ 2

σ2
ð5:2Þ

and Â is the momentum-space amplitude with the energy-
momentum conserving delta function stripped off.
Let us work with the ordering of Sec. IV D 2, for which

the form of the amplitude takes the very simple form (4.23)
to good approximation for general q, including q ¼ 0.12

The second term in this amplitude varies strongly with k2D.
We will also specify

η < 0; ð5:3Þ

which leads to a simple structure relevant for our test of
longitudinal spreading. In the range

0 < α0k2D < −η ð5:4Þ

it is useful to express this as

BðCĈ;B̂ĈÞ
AÂ

sinπðα0k2DþηÞΓðα0k2DÞΓð−α0k2D−ηÞ
Γð−ηÞsinπη

¼Að1Þ
4 Að2Þ

4 ×
sinπðα0k2DþηÞΓðα0k2DÞΓð−α0k2D−ηÞ

Γð−ηÞsinπη : ð5:5Þ

This has several important features. The sinusoidal factor
expands into two phases e�iπðηþk2DÞ ∼ e�iπηe�ið4EB̂δpCþ���Þ.

12This is not the case for our derivation above of the
simplification of the AÂCĈ B̂ B ordering, whose reduction to
the form (4.21) involved taking BB̂ Ĉ ¼ 2; from (B6) this
requires q ≠ 0.
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These vary strongly with pC: in each term this phase
combines with the e−ipCX factor to shift the support in
X by a large scale �4πEB̂α

0. To assess the effect of the
other factors, we start by noting that the function
Γðα0k2DÞΓð−η − α0k2DÞ has a minimum at α0k2D ¼ −η=2.
The width of this minimum is of order

ΔAk2Dα
0 ∼

ffiffiffiffiffiffi
−η

p
⇒ ΔApC ∼

ffiffiffiffiffiffi−ηp
4EB̂α

0 ð5:6Þ

where the subscript A indicates that this is the width of the
extremum in the amplitude (as opposed to the wavepacket).
We will use a Gaussian wavepacket which introduces a
maximum in the integrand at this point.
In particular, we specify the center and width of

Gaussian wavepackets for A and C as follows. We will
use the same prescription in string theory and QFT so that
we can directly compare the shape and size of the resulting
amplitude AðXÞ in the QFT1 model and string theory.
For simplicity, let us center our Gaussian wavepackets at
α0k2D ¼ −η=2. Let us further specify a sufficiently small
width for the wavepackets in momentum space that the
Gaussian maximum dominates over the amplitude mini-
mum at α0k2D ¼ −η=2, producing a net maximum.
Including all numerical factors, if we define

σ0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cσð−ηÞ

p
4EB̂α

0 ; cσ <
1

4
ð5:7Þ

in terms of a numerical factor cσ, then the integrand has a
net maximum at α0k2D ¼ −η=2.
We obtain a stronger condition if we require that this be a

global maximum (where for k2D < 0 we replace the poles
by half their residues). At k2D ¼ 0 or −η, the wavepacket
suppression is ∼eη=8cσ and the amplitude is unsuppressed;
this is smaller than the amplitude 2η at the maximum of the
wavepacket as long as

cσ <
1

8 logð2Þ : ð5:8Þ

Imposing the above conditions, we can still satisfy

1

σ0
≪ X� ¼ 4πEB̂α

0: ð5:9Þ

These choices simplify our analysis, while being sufficient
to distinguish string theory from QFT. The narrow width in
momentum space was anticipated in our discussion at the
beginning of Sec. III: it ensures that support for k2D is
limited to a window for which longitudinal spreading is
expected according to (2.22).
We can now put this together with all amplitude factors

and integrate the amplitude against the wavepacket,
expanding the sin πðα0k2D þ ηÞ into its two phase terms.

This gives one term with the central trajectory of C
advanced13 (centered at X ¼ −X� ¼ −4πEB̂α

0)

e−
ðXþX�Þ2σ20
2ð1−4cσ Þ

BðCĈ; B̂ ĈÞ
AÂ

2η; ð5:10Þ

as well as a similar delayed term centered at þ4πEB̂α
0.

Let us finally compare this to the QFT1 model with
propagator 1

k2D−iϵ
, which gives approximately

e−X
2σ2

0
=2 1

AÂ

λCDĈ B̂

ð−η=2Þ : ð5:11Þ

Here there are no phase terms and the Gaussian is centered
at X ¼ 0, consistently with QFT scattering on the tail of
the Gaussian wavepacket. This shape is very different from
the string theory case, which as just noted is peaked
at X ¼ �4πEB̂α

0.
Let us also compare the magnitude of the amplitude of

the two theories at X ∼�X� ¼ �4πEα0. As discussed
above in Sec. IV D 5, the appropriate comparison involves
stripping off the auxiliary process amplitude, which we
may take to be λCDĈ B̂ ≡ BðCĈ; B̂ ĈÞ. The remaining QFT
amplitude is

1

AÂ

1

ð−η=2Þ expð−X
2�σ20=2Þ

∼
1

AÂ

1

ð−η=2Þ expð−16π
2E2α02σ20=2Þ: ð5:12Þ

This is > 1
−ðη=2Þ e

π2η (the price we paid for forcing the

Gaussian width small enough to focus on the simple
extremum of the amplitude), but is still exponentially
suppressed.
In terms of (5.7), the ratio of the magnitudes of the string

and QFT amplitudes at X ∼ −4πEB̂α
0 is

AQFT

AST
≃ 1

ð−η=2Þ
�

2

eπ
2cσ=2

�
−η
: ð5:13Þ

Altogether, this exhibits a window 2 logð2Þ
π2

< cσ < 1
8 logð2Þ in

which the QFT result is parametrically suppressed (as we
increase −η) compared to string theory. Thus the size as
well as the shape of the string theory amplitude indicates
physics beyond this tree-level QFT model, even within the
simplified regime of parameters defined above. Again, we
should emphasize that this comparison involves stripping
off a Regge-soft four-point amplitude in string theory
(identifying it with the corresponding four-point coupling
in the QFT1 model).

13Again we emphasize that the interaction itself is consistent
with causality: the interaction between the endpoints of string C
and the detector D may be purely delayed.
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The shape and amplitude of the string theory result
suggests that it is not scattering on the tail, but this
could be subtle. One could ask whether it is scattering
on the tail of the wavefunction with only delayed
interactions with respect to the central positions of C
and A, at a momentum with enhanced amplitude compen-
sating for the suppression on the tail of the wavefunction.
The momentum-space amplitude, including the residues
of the poles for noninteger η, grows like jα0k2Dj−η for
jα0k2Dj ≫ −η. But the Gaussian wavepacket ∝ e−δ ~p

2
C=2σ

2
0

strongly suppresses the contributions from this region, so
they cannot compete with the amplitude given in (5.10)
at X ¼ −X�.
One way to assess this is to introduce a varying dilaton

background as a tracer of the interactions [11]. We can
introduce a linear dilaton background ϕ ∼ V · X ¼ −V−Xþ
in the Xþ direction (for a wide range of Xþ) to distinguish
purely delayed scattering from advanced scattering (in
terms of the central positions of A and C). The string
coupling in this region behaves as

gsðXþÞ ¼ g0eV·X ¼ g0e−V
−Xþ ¼ g2O ð5:14Þ

where gO is the open string coupling. The advanced scenario
depicted in Fig. 1 involves Cþ Ĉ splitting off early, which
implies a relative factor of gOðΔXþ� Þ compared to scattering
at the origin, with ΔXþ� ¼ X�=

ffiffiffi
2

p ¼ 2
ffiffiffi
2

p
πEB̂α

0. We ana-
lyze this in [11], finding agreement with this prediction.
Moreover, the linear dilaton affects the spreading prediction
in a calculable way, degrading it for sufficiently large
V−pþ

D ∼
ffiffiffi
2

p
V−EB̂. The scattering amplitude in the linear

dilaton background confirms this prediction as well.

1. Contour integral, light-cone evolution,
and interaction scales

In this subsection, we will note an interesting feature of
the vertex operator integral generating the factor Bðα0k2D; ηÞ
in our amplitude. This can be writtenZ

1

0

dyy−1þα0k2Dð1 − yÞ−1þη: ð5:15Þ

The upper end of this integral is modified in the full
amplitude; there are no poles in η.
For simplicity, let us work with our amplitude between

the poles of the function (5.15), at negative half-integer
values of η ¼ ð2kþ 1Þ=2 (for integer k). We will also take
α0k2D;−η and −α0k2D − η to be large and positive, as is the
case near the center of the wavepacket above. In this
regime, the Beta function reduces to

Bðα0k2D; ηÞ≃ cosðπα0k2DÞBðα0k2D;−α0k2D − ηÞ: ð5:16Þ

The integrand of (5.15) has a maximum at

ys ¼ e�iπ

���� α0k2D
α0k2D þ η

����: ð5:17Þ

The integrand has a cut which we can take to run from −∞
to 0, and a square root branch cut from y ¼ 1 to y ¼ ∞.
(The latter is a square root branch cut because we took η
half-integral.) Now integrate from 0 to 1 along the
following contour. We split it into two pieces: the first is
1=2 times the integral from y ¼ 0 to −∞ above the first cut,
around the upper half plane to þ∞, and back to y ¼ 1
above the second cut. The second piece is 1=2 times the
reflection of the first across the real line (i.e. going below
the cuts). Since α0k2D þ η ≪ −1, the integrand is highly
suppressed at infinity. The two contours between y ¼ 1 and
y ¼ ∞ cancel each other, since we obtain a factor of −1
crossing the square root branch cut. The contours between
y ¼ 0 and y ¼ −∞ get contributions from the saddles
(5.17). Altogether we get

1

2
ðeiπα0k2D þ e−iπα

0k2DÞjysjα0k2Dð1þ jysjÞη ð5:18Þ

times the width of the saddle. In the regime defined above,
this is a good approximation to the amplitude.
It is interesting to express this as follows. Let us write

y ¼ e−iτ and Xþ ¼ α0pþ
B τ, as in light-cone gauge quanti-

zation (now taking the light-cone “time” variable in the Xþ
rather than the X− direction). We can write (5.15) asZ

γ
dXþð1 − e−iX

þ=ðα0pþ
B ÞÞηe−iXþk2D=p

þ
B ; ð5:19Þ

with the contour γ for Xþ corresponding to the one
explained above for y ¼ e−iX

þ=ðα0pþ
B Þ. The saddles are

generically at the complex values

Xþ
s ¼ �α0πpþ

B þ iα0pþ
B log jysj: ð5:20Þ

However, if we specialize to k2D ∼ −η=2, where we centered
the wavepackets above, then jysj ∼ 1, so this is a purely
real saddle, corresponding to Lorentzian time evolution.
The last factor in the integrand in (5.19) is then

e−2iX
þ
s ðp−

CþĈ
þ���Þ ¼ e∓2πiα0pþ

B ðp−
CþĈ

þ���Þ ð5:21Þ

where the … denote terms that vary weakly with EC. This
could be viewed as evolving string Cþ Ĉ for a time
ΔXþ ¼ �2πα0pþ

B , or

ΔX ¼
ffiffiffi
2

p
ΔXþ ¼ �4πα0EB ¼ �X�:

This interpretation fits quantitatively with the possibility
that the effect derived above is not on the tail of the

LONG-RANGE NONLOCALITY IN SIX-POINT STRING … PHYSICAL REVIEW D 96, 066009 (2017)

066009-15



wavepackets, but occurs at the peak value �X�. Although it
is not possible to read off real-time physics from S matrix
amplitudes, it may be possible to extract gauge-invariant
information from time differences such as the one just noted,
perhaps in combination with a background field such as the
linear dilaton described above. In the latter analysis [11],
there arises a single power of the open string coupling gO
evaluated at the peak (early) trajectory ofC. This is consistent
with an early three-point interaction in which C → Cþ Ĉ.
That lines up with the evolution along Xþ just described.

2. More specific comparison to light-cone prediction

To finish this analysis, let us briefly comment on the
comparison of this result to the refined light-cone predic-
tions reviewed above in Sec. II A. The result (5.10) fits with
(2.22) given a distribution of the form

exp

�
−const ×

ΔXþ

ΔXþ
spreading

�
∼ exp

�
−const ×

EB̂α
0

EB̂=k
þ
D0k

−
D0

�
∼ 2η ð5:22Þ

where we used that the leading contribution to (5.10)
came from k2D0 ¼ −η=2, and that as explained in our
Appendix B, the detector has negligible transverse motion:
kD⊥ ¼ qD is small, of order

ffiffiffiffiffiffiffiffiffi
KAÂ

p
∼ δq. Such a distribu-

tion linear in the exponent for the longitudinal direction is
suggested by the linear dependence of the worldsheet
action S ∼ 1

α0
R ∂Xþ∂X− on Xþ, in contrast to the

Gaussian distribution for transverse spreading arising from
S ∼ 1

α0
R ð∂X⊥Þ2. See [3,4] for more discussion of this point.

More generally, it would be interesting to better under-
stand the role of η vis a vis the light-cone gauge calculations.
From the point of view of the light-cone gauge calculations
reviewed in Sec. II A, the spreading estimate (2.22) is given
in terms of the momentum of the detector. This is based on a
simple estimate of the resolution required, refined by the
1=kþDk

−
D factor as discussed in [3]. But the state of the detector

D has more parameters (in principle an infinite number). As
we have seen, the structure of the amplitude is strongly
dependent on the sign of η: in particular, this determines
whether it can bewritten as a convergent sum of propagators
1=ðk2D þ n − iϵÞ. It is possible that additional detector
parameters (such as η) enter into the efficiency of the
detection of string spreading. This would be interesting to
explore further.

B. Generalization to q ≠ 0

Next, we will analyze the case with ~qA¼− ~qC¼q; ~qB¼0.
The geometry of the A and C trajectories is more involved
here, in that they meet at a finite (but very late) time. For this
analysis, we will localize string B using a wavepacket (3.7)
that sharply restricts the range of ~pB, leading via energy-
momentum conservation to a sharp restriction on the range

of ~pC. This entails a broad position-space tail for B, which
we study in detail below. For the A and C wavepackets, we
may use Gaussians of width σ, for example taking σ of order
string scale.

1. Momentum basis

Performing the integral over ~pA absorbs the longitudinal
momentum conserving delta function. For the square
wavepacket for string B (3.7), this gives

AðXÞpA;pB;min;pB;max;pC;q;σ

≡
Z

d ~pC

Z
pB;max

pB;min

d ~pBffiffiffiffiffiffiffiffiffi
ΔpB

p e−ðP− ~pB− ~pC−pAÞ2=2σ2

× e−ð ~pC−pCÞ2=2σ2e−i ~pCXδ

�X
~ωa − ωtot

�
Âð ~pCÞ ð5:23Þ

where again X is the peak value of the separation between A
and C, pA is the peak value of A’s momentum, and so on; Â
denotes the amplitude with the energy-momentum con-
serving delta function stripped off. Below, we will also
present results for the case of the triangular wavepacket
for string B (3.11). In all of our cases of interest, Â varies
significantly only in the ~pC direction in the range of
momenta supported by the wavepackets and energy-
momentum conservation.
Next we perform the integral over ~pB, absorbing the

energy-conserving delta function (2.6). Denoting these
solutions ~pB�ð ~pCÞ, and suppressing the parameters aside
from X, we are left with

AðXÞ ¼
Z

d ~pC

j∂ ~pB
f½ ~pB�ð ~pCÞ�j

ffiffiffiffiffiffiffiffiffi
ΔpB

p θð ~pB�ð ~pCÞ − pB;minÞ

× θðpB;max − ~pB�ð ~pCÞÞe−ð ~pC−pCÞ2=σ2e−i ~pCXÂð ~pCÞ
ð5:24Þ

where f was defined in (2.7). Given pB;min and pB;max, we
have two ranges of support for ~pC as depicted in Fig. 3; we
can use the former to tune the latter, keeping all contribu-
tions j ~pC − pCj ≪ jpCj.
The derivative f0 varies weakly with ~pC:

∂ ~pB
f½ ~pB�ð ~pCÞ� ¼ −

~pA

~ωA
þ ~pB

~ωB

����
pB�

≃ 2 ð5:25Þ

where in the last step we used that the integral is restricted
to the regime we have discussed where − ~pA∼ ~pB∼ ~ωI∼E.
We are left with a relatively simple integral over a pair of
tunable, finite ranges of ~pC. We will evaluate this numeri-
cally. For simplicity we consider a single range of ~pC, since
each behaves similarly, and we treat f0 as a constant (5.25).
Let us work in a range of ~pC which does not overlap

with the D poles, but starts close to the massless pole and
extends further into the regime of spacelike kD. This gives
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very distinct results in string theory as compared to all the
QFT comparison models, as we will see.
Before moving to that, we will further map out the

geometry of the process, setting up an equivalent calculation
of AðXÞ in a position basis. This will be very useful in
assessing the contribution from the tail of the Bwavepacket.

2. Position basis

As depicted in Fig. 4, for pC ≠ pA the trajectories of A
and C meet at a very late, but finite, time scale:

Tmeet ¼
2

q2
X

p2
Ap

2
C

p2
C − p2

A
: ð5:26Þ

In our integral, the values of pA and pC that are supported
are such that this quantity is of order E3X=ðq2ðpA − pCÞÞ,
given 1=

ffiffiffiffi
α0

p
∼ jΔpCj ≪ jpCj ∼ E. If q ¼ 0, the trajectories

never meet as we discussed above in Sec. VA.
This point of direct intersection of the trajectories, and

the subsequent region where C is delayed relative to A, is
accessible on the tail of the position spaceΨB wavefunction
(3.9) or (3.11), which is a power law. Since the wavepackets
localizing A and C are Gaussian with width 1=σ ∼

ffiffiffiffi
α0

p
, if

we assume local interactions then the tail of ΨB takes over
at a value of X satisfying

e−X
2σ2=2 ∼

1

ΔpBTmeet
¼ 1

X
q2jp2

A − p2
Cj

p2
Ap

2
C

ffiffiffiffiffiffi
2π

p
ΔpB

ð5:27Þ

for the square wavepacket; they meet further out in X for
the triangular wavepacket.
It will be useful to compute AðXÞ (5.23) also in a position

basis. Specifically, we can write it as

AðXÞ ¼
Z

d ~XB
~ΨBð ~XBÞgð ~XB;XÞ ð5:28Þ

where

gð ~XB;XÞ≃
Z

d ~pCψC;Xð ~pCÞe−i ~pB�ð ~pCÞ ~XBÂð ~pB�ð ~pCÞ; ~pCÞ

ð5:29Þ
where as above, ~pB�ð ~pCÞ denotes a solution to the energy-
conserving delta function, and Â is the momentum-space
amplitude with the energy-momentum conserving delta
functions stripped off. This is given explicitly by

~pB� ¼
1

2

q2 þ ðP − ~pCÞ2 − ð ~ωC − ωtotÞ2
~ωC − ωtot þ P − ~pC

ð5:30Þ

(as long as ~pB ≥ 0). In this form, we can determine the
range of ~XB that contributes.
The integral (5.28) is explicitly

AðXÞ ¼
Z

d ~XB
sinðΔpB

~XB=2Þffiffiffiffiffiffiffiffiffi
ΔpB

p
~XB

Z
d ~pCe−iX ~pC

× e−i ~XBð ~pB�ð ~pCÞ−pB0Þe−δ ~p2
C=ð2σ2ÞÂð ~pCÞ ð5:31Þ

say for our first version (3.9) of the Bwavepacket (a square
step in momentum space).

3. QFT model results

The QFT0 model is a simple contact interaction, and its
amplitude AðXÞ directly tracks the tail of the wavepacket,
as in Fig. 5 below.
Let us next calculate AðXÞ for the QFT1 model, which

will provide a very useful model to compare and contrast
with string theory in various regimes. Let us start by
analyzing this explicitly in the regime where the range ΔpC
is somewhat smaller than the Gaussian width σ, so the latter
can be neglected to good approximation.
Given this, the momentum basis expression for AðXÞ in

the QFT1 model is given to good approximation by the
integral (using integration variable yC ¼ −δ ~pC − ΔpC=2)

AðXÞ≃ e−ipC0Xffiffiffiffiffiffiffiffiffi
ΔpB

p
4EB̂α

0

Z
ΔpC

0

dyC
1

yC þ k2Dmin
4EB̂α

0

e−iXyC

¼ 1

4Eα0
ffiffiffiffiffiffiffiffiffi
ΔpB

p e
iXð−k2

Dmin
4EB̂

−pC0Þ
�
Γ
�
0; iX

k2Dmin

4EB̂

�
− Γ
�
0; iX

�
k2Dmin

4EB̂
þ ΔpC

���
ð5:32Þ

where k2Dmin is the minimal value of k2D in the supported
range of momenta.
In Fig. 5 we plot AðXÞ for the QFT models (including

there the dependence on σ computed numerically). The

FIG. 4. At the very late time Tmeet ∼ E3X=ðq2ðpC − pAÞ (5.26),
the central trajectories of strings A andCmeet. After this time, the
interaction is purely delayed (not requiring any nonlocality). This
region is accessible to the strings on a highly suppressed power-
law tail of the wavefunction ΨB, as discussed in the text. String B
propagates to the right in this picture, and the B wavefunction is
peaked such that B meets A at T ¼ 0.
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essential physics is contained in the analytic result (5.32). It
is peaked at the origin and falls off away from there. This
suggests that its support for X < 0 is accounted for by
scattering on the tail of the wavepacket, as expected from
causality.
ΨB tail contributions.— Indeed, we can explicitly

reproduce this formula from the tail part of the ΨB wave-
function, using the position basis representation of AðXÞ.
Starting from (5.31), we can perform the integral in various
orders. Let us first Fourier transform the amplitude Âð ~pCÞ,
giving a step function. Then inverting the Fourier transform,
this leads to the position space expression for AðXÞ in the
QFT1 model:

e−ipC0X

Z
d ~X

4EB̂α
0 θð ~XÞfð ~XÞ

Z
d ~XB

sin ΔpB
~XB

2ffiffiffiffiffiffiffiffiffi
ΔpB

p
~XB

×
Z

dδ ~pCe−δ ~p
2
C=2σ

2

eiδ ~pCð ~X−XÞe−ið ~pB�−pB0Þ ~XB ð5:33Þ

where

fð ~XÞ ¼ e
−i ~Xðk

2
Dmin
4EB̂

þΔpC
2
Þ ðQFT1Þ: ð5:34Þ

We will first analyze the tail, i.e. the contribution from
~XB < −2Tmeet. For this purpose, it is useful to perform the
δ ~pC integral starting from (5.33). First, we Taylor expand
~pB� to second order in δ ~pC, finding

p0
B ≡ d ~pB

d ~pC

����
pB�

¼ q2

4

�
1

p2
A
−

1

p2
C

�
≈
q2ðpC − pAÞ

2p3
C

¼ q2ðpA − pCÞ
2E3

¼ X
2Tmeet

;

p00
B ≡ d2 ~pB

d2 ~pC

����
pB�

¼ q2

p3
C
≃ −

q2

E3
; ð5:35Þ

with higher derivatives negligible in our kinematics. At this
order, the δ ~pC integral is now just a Gaussian. Evaluating
that leads toZ

d ~X
4EB̂α

0 θð ~XÞ ~̂Að ~XÞeipC0ð ~X−XÞ

×
Z
tail

d ~XB
sin ΔpB

~XB
2ffiffiffiffiffiffiffiffiffi

ΔpB
p

~XB

exp
�
−

1
2
ð ~X−X−p0

B
~XBÞ2

1

σ2
þip00

B
~XB

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
σ2
þ ip00

B
~XB

q : ð5:36Þ

The variance in the denominator of the exponent here is

1

σ2
þ ip00

B
~XB ≃ 1

σ2
þ i

X
ðpA − pCÞ

~XB

Tmeet
: ð5:37Þ

Since we are integrating ~XB out on the tail, the second term
here is larger in magnitude than X=ðpA − pCÞ. This is much
larger than 1=σ2 in our calculation of AðXÞ.
Next, expand the sinð ~XBΔpB=2Þ factor into its two phase

terms. From the Gaussian factor and one term in this
expansion of the sin factor, along with the ΔpC part of the
phase in (5.34), we obtain

e
i
2
ðβ ~XBþð ~X−XÞ2

p00
B
~XB

Þ
e
−i ~X

2
ðΔpCþ2

p0
B

p00
B
Þ ð5:38Þ

where

β ¼ �ΔpB þ p0
B
2

p00
B
: ð5:39Þ

From (5.38) we derive resonant contributions to the ~XB
integral

XB� ¼ � ð ~X − XÞffiffiffiffiffiffiffiffi
βp00

B

p ð5:40Þ

FIG. 5. The shape of the distribution AðXÞ for the two QFT comparison models. In the first two plots, B is in the square wavepacket for
B described in the text. First, we plot the six-point contact interaction (ourQFT0 comparison model), plotted for σ ¼ 1=

ffiffiffiffi
α0

p
in blue and

σ ¼ 1=ð2
ffiffiffiffi
α0

p
Þ in yellow. Its width is 1=σ, the width of the wavepacket, and does not extend out to ∼α0E. We plot the numerical integral

for the other example with a single masslessD pole (QFT1) for σ ¼ 1=
ffiffiffiffi
α0

p
. The parameters are within the regime described above, with

EB̂ of order 100. In the third plot, we replace the step wavepacket by the triangular stepΨB;tri described in the main text. This wavepacket
has a more suppressed power-law tail in position space. Comparing this to the second plot in Fig. 5, we see that AðXÞ changes
consistently with the system scattering on this reduced tail once it takes over from the Gaussian tail of the A and C wavefunctions.
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with width

Δ ~XB� ≃
ffiffiffiffiffiffi
p00
B

p
~X3=2
B�

~X − X
: ð5:41Þ

Since our tail contribution has an endpoint of integration,
we should check if the width is smaller than the distance
to this endpoint. We find that the resonance is well within
the contour of integration if we integrate over a somewhat
larger range of ~XB (still very large in magnitude), say
~XB < −Tmeet as opposed to −2Tmeet. This larger integral
includes the purely delayed tail.14

Note that the � in (5.39) and (5.40) are independent: we
have two resonances, and within each resonance there are
two terms from expanding the sin into phases. Plugging
back in, the phase becomes

ei
~Xð�

ffiffiffiffiffiffiffiffi
β=p00

B

p
−ΔpC=2−p0

B=p
00
BÞ: ð5:42Þ

Next let us work in the regime ΔpB=2 ≪ jp0
B
2=p00

Bj, which
corresponds to (5.48) below. Given that, we can expand the
square root in the ΔpB term. Then (5.42) becomes

ei ~Xð�p0
B=p

00
B�ΔpB=ð2p0

BÞ−ΔpC=2−p0
B=p

00
BÞ: ð5:43Þ

From this, we note that there is a term for which the signs are
such that this exponent will cancel. In the resulting integral
over ~X, the remaining phase is expð−i ~Xk2Dmin=4EB̂Þ.
Plugging in the resonance and width appropriately, and

including all parametric factors, the two resonant contri-
butions to the ~XB integral are

Res1 ¼
e
−iðpC0þΔpC

2
þk2

Dmin
4EB̂

ÞX

4EB̂α
0 ffiffiffiffiffiffiffiffiffiΔpB
p

Z
∞

0

d ~X
~X − X

× e
−ið ~X−XÞk

2
Dmin
4EB̂ ð1 − e−iΔpCð ~X−XÞÞ ð5:44Þ

and

Res2 ¼
e
−iðpC0þΔpC

2
þk2

Dmin
4EB̂

þ2
p0
B

p00
B
ÞX

4EB̂α
0 ffiffiffiffiffiffiffiffiffiΔpB
p

×
Z

∞

0

d ~X
~X − X

e
−ið ~X−XÞðk

2
Dmin
4EB̂

þ2
p0
B

p00
B
Þð1 − e−iΔpCð ~X−XÞÞ:

ð5:45Þ

The first resonance is on the tail ~XB < −2Tmeet.

Using the integralZ
∞

x

dw
w

eiβw ¼ Γð0;−iβxÞ ð5:46Þ

valid for x > 0, we find that the first resonance reproduces
the result for AðXÞ calculated in momentum space above
in (5.32), valid in the regime outside of the width of the
Gaussian wavepacket. The second resonance gives a phase
times

1

4Eα0
ffiffiffiffiffiffiffiffiffi
ΔpB

p
�
Γ
�
0; iX

�
k2Dmin

4EB̂
þ 2p0

B=p
00
B

��
− Γ
�
0; iX

�
k2Dmin

4EB̂
þ 2p0

B=p
00
B þ ΔpC

���
: ð5:47Þ

The hierarchy we took above, which amounts to

ΔpC ≪
p0
B

p00
B
∼ jpA − pCj ð5:48Þ

means that we can expand the second argument in ΔpC. As
a result, the second resonance gives a subdominant con-
tribution. Altogether, this reproduces our momentum basis
result for AðXÞ in the QFT1 model, from a contribution on
the B wavepacket tail at large negative ~XB.
QFT1 summary.— We have computed AðXÞ quantita-

tively in both a momentum and position basis, obtaining
results consistent with the expectation that the QFT models
are scattering on the tail for X < 0. In Fig. 5, we plot AðXÞ
for the QFT comparison models.

4. String theory with q ≠ 0

Next, we analyze AðXÞ in string theory in two interesting
kinematic regimes. In order to clarify the distinction
between string theory and QFT, we focus on the expression
for the amplitude as a sum over k2D propagators.
First, we treat the case with η ¼ BB̂ − CĈ > 0. In that

case, AðXÞ is spread out to the extent predicted by light-
cone calculations. However, the amplitude (4.20) has a
convergent expansion in terms of QFT propagators, for
each of which we may ascribe scattering at early values of
X to the tail of the wavefunction.
Next, we treat η < 0. In that case, we find stronger

spreading of AðXÞ, and there is no such convergent
expansion in terms of k2D propagators. However, we can
express it in terms of propagators dressed with additional
k2D dependence, explicitly showing how the analogous tail
contribution in position space fails to account for AðXÞ (as
it did for the QFT propagators).
η > 0 and a cautionary tail. QFT1 summary.—Let us

briefly compare this result with the amplitude in a different
regime, including a subspace with a convergent sum over

14Alternatively, we could work just on the tail ~XB < −2Tmeet
and obtain a portion of the width of the resonance for some
range of ~X.
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QFT propagators. For this, we work with (4.20), and in the
regime η > 0.
The shape ofAðXÞ is plotted in Figs. 6 and 7.As a function

of X, the peak wavepacket separation between A and C is
spread out at the level predicted for spreading-induced
interactions. This includes the predicted dependence on
k2D and relative insensitivity to wavepacket parameters.
However, at least in the subset of the kinematic param-

eter space we are in, this may be a red herring. The Beta
function factor Bðk2Dα0; ηÞ (in the superstring generaliza-
tion) has a convergent expansion in terms of k2D propa-
gators. As such, it may be possible to ascribe the scattering
at X < 0 entirely to the tail in this case. So our analysis in
this regime does not lead to a clear identification of the
spread shape for AðXÞ to longitudinal spreading induced
interaction, despite the appearance of the predicted scales.
This example is a cautionary tale against overinterpreting

AðXÞ by itself, although it still illustrates an interesting
difference operationally between QFT and string theory in
the same setup.
Since the effect proposed in [1] does not admit an

immediate effective field theory description, it makes sense
to search for S-matrix evidence for it from amplitudes not
obtained as a convergent sum over QFT propagators. We
turn to that next.
η < 0 and a stronger test of longitudinal string spread-

ing.— Let us start from the form (4.19) of the amplitude,
and expand the Bðk2D; BB̂Þ in terms of propagators, giving

BðCĈ; B̂ ĈÞ
AÂ

X
nD

ð1 − BB̂ÞnD
nD!

1

k2D þ nD=α0 − iϵ

× sin πðα0k2D þ ηÞΓð−α0k2D − ηÞΓðα0k2D þ BB̂Þ ΓðηÞ
ΓðBB̂Þ :

ð5:49Þ

Working in the regime BB̂ ≫ −η ≫ 1 reduces this to

BðCĈ; B̂ ĈÞ
AÂ

X
nD

ð1 − BB̂ÞnD
nD!

1

k2D þ nD=α0 − iϵ

× sin πðα0k2D þ ηÞ
�
BB̂
−η

�α0k2D
: ð5:50Þ

This exhibits nontrivial k2D dependence multiplying each
propagator 1

k2DþnD=α0−iϵ
, so we can make a direct comparison

with QFT term by term. Let us expand the sin πðα0k2D þ ηÞ
into its two phase terms, restricting our momentum interval
ΔpC to the regime 0≲ α0k2D ≪ −η.
Since k2D is approximately linear in pC, we get the result

for a QFT model with a propagator [e.g. for nD ¼ 0 the
QFT1 model in (5.32)] but with the replacement

X → X � 4πEB̂α
0 þ 4iEB̂α

0 log
�
BB̂
−η

�
ð5:51Þ

FIG. 6. The shape of the distribution jAðXÞj for tree-level string theory in the regime of Sec. IV D 1 and Sec. V B 4, plotted for
σ ¼ 1=

ffiffiffiffi
α0

p
and two values of the minimal k2D (1=ð10α0Þ and 10=α0). Its width does not increase as we decrease σ, in contrast to QFT, but

it does depend on E=k2D as expected from (2.22). Nonetheless, as described in the text, there is a subset of kinematic parameter space in
which this shape arises from a convergent sum of QFT propagators.

FIG. 7. The shape of jAðXÞj for string theory in the regime of
Sec. IV D 1 and Sec. V B 4, replacing the step wavepacket by the
triangular step ΨB;tri described in the main text. This wavepacket
has a more suppressed power-law tail in position space. Compar-
ing this to the plots in Fig. 6, we see that within the spreading
range X ∼ α0E depicted, the shape of AðXÞ is relatively insensi-
tive to the modified B wavefunction tail. (The size of the
amplitude is suppressed, reflecting the fact that the support in
momentum space is weighted toward larger values of k2D in the
triangular step wavefunction.). Nonetheless, as described in the
text, there is a subset of kinematic parameter space in which this
shape arises from a convergent sum of QFT propagators.
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where the � depends on which term of the expanded sin
function we consider.
As a result, the extra exponential dependence on k2D

yields two terms. In each, the support of the amplitude is
spread out and shifted (either early or late) by a scale ∼Eα0.
As a result, the calculation of the tail contribution
~XB < −2Tmeet to AðXÞ in our position basis in this case
does not account for the amplitude: the dominant resonance
is shifted early relative to the tail [and the support in ~XB is
also spread out as a result of the imaginary part of the
shift (5.51)].
Figure 8 illustrates the contrast. The string theory result

is spread by the predicted amount ∼Eα0 compared to the
QFT1 model with amplitude 1

k2D−iϵ
(which scatters on the tail

of the wavepacket).
This analysis has focused on the terms in the deformed

propagator expansion. We should make sure that the effect
does not cancel out among the propagators. We have
numerically calculated AðXÞ, revealing that the advanced
and delayed contributions at the wide scale ∼4πEB̂α

0

survive in the amplitude summed over nD (See Fig. 9).
Altogether, we find that the prediction of long-range

interactions via longitudinal string spreading passes a
significant test. This occurs in a regime where the ampli-
tude decomposes into our auxiliary process, a factor that
fits with CD → B̂ Ĉ, and an additional factor with structure
in k2D. The effect arises most strongly (and most unambig-
uously) in a kinematic regime where the amplitude does not
arise as a convergent sum over propagators. It is notable
that this result is somewhat delicate, depending on kin-
ematic regime choices (such as η < 0 versus η > 0 in the
present examples). As we discussed above in the q ¼ 0
case, this can be viewed as a parameter of the state of the

off-shell detector D, one which evidently enters into the
process in a nontrivial way.

VI. A FAMILY OF MORE GENERAL
WAVEPACKETS

We have focused thus far on a small range of momentum
within which the string theory amplitude contains an
interesting structure generating advanced interactions,
using relatively narrow wavefunctions in momentum space.
Let us finally analyze the problem with more generic
wavepackets. To be specific, we will work at q ¼ 0, with
Gaussian wavepackets for A and C of width σ in momen-
tum space.
We can rewrite the Beta function containing the leading

k2D dependence in the amplitude as

Bðk2D; ηÞ ¼ Bðk2D; KÞ
ΓðηÞΓðk2D þ KÞ
Γðk2D þ ηÞΓðKÞ

¼
X
nD

ð1 − KÞnD
nD!

1

k2D þ nD − iϵ

×
sin πðk2D þ ηÞΓð−k2D − ηÞΓðk2D þ KÞ

sin πηΓð−ηÞΓðKÞ ð6:1Þ

in terms of a parameter K > 0 that we can choose. We will
convolve this with a wavepacket term by term in the sum
over nD, and then perform the sum.
Each term is similar to the analysis in Sec. VA above.

We center the wavepacket at

k2D0 ¼ −
K þ η

2
; ð6:2Þ

which is the minimum of the factors Γð−k2D − ηÞΓðk2D þ KÞ
in the amplitude. This relation enables us to trade the
arbitrary parameter K for the central momentum k2D0. Since
the width of this minimum is of order

ffiffiffiffiffiffiffiffiffiffiffiffi
K − η

p
, we further

specify σ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cσðK − ηÞp

=4EB̂ ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK − ηÞp

=4EB̂ so that
these factors are nearly constant within the range of support
of the wavepacket. With these specifications, the convo-
lution of the amplitude with the wavepacket is approx-
imately given by

BðCĈ;B̂ĈÞ
AÂ

ΓðηÞΓð−α0k2D0−ηÞΓðk2D0þKÞ
ΓðKÞ

×
X
nD

ð1−KÞnD
nD!

Z
dδ ~pC

σ0

e−δ ~p
2
C=2σ

2
effeiδ ~pCðXþX�Þeiπη

~k2DþnD=α0− iϵ
ð6:3Þ

plus a similar delay term. Here σ0 is as defined above (5.2)
and σeff includes the width of the minimum of the factors
Γð−k2D − ηÞΓðk2D þ KÞ in the amplitude; we will specify it
explicitly below. A saddle-point estimate for the integral
would give a result proportional to expð−ðX þ X�Þ2σ2eff=2Þ,

FIG. 8. The string theory amplitude near the nD ¼ 0 pole has a
contribution shifted and spread out by order ∼Eα0 compared to
the QFT1 model in the kinematic regime described in the text.
Given that the latter is on the tail, the former is not. Here we
depict one term of the expansion of the sin πðk2D þ ηÞ factor in the
amplitude in terms of phases; there is a similar term shifted to
larger X by ∼4πEB̂ and similarly spread out.
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with support at X ¼ −X� ¼ −4πEB̂. We would like to
determine if this early support survives the alternating sum
over nD.
Before getting to the sum, let us simplify the prefactor in

(6.3): using (6.2) we find

ΓðηÞΓð−α0k2D0 − ηÞΓðk2D0 þ KÞ
ΓðKÞ

≃ ΓðηÞ
ðK=2Þη 2

−K ≃ ΓðηÞð−k2D0Þ−η2−K: ð6:4Þ

We will find a compensating factor of 2K in the sum, along
with a residual suppression.
Let us work at X ¼ −X� for simplicity. If we write the

propagator as the Fourier transform of a step function,

−i
zþ n − iϵ

¼
Z

∞

0

dwe−iwðzþn=α0−iϵÞ ð6:5Þ

and use

X
n

e−iwn=α
0 ð1 − KÞn

n!
¼ ð1 − e−iw=α

0 ÞK−1 ð6:6Þ

then the sum in (6.3) can be written asZ
∞

0

dw
Z

dz
4EB̂α

0σ0
e−ðz−z0Þ2=2σ̂2effe−iwzð1 − e−iw=α

0 ÞK−1

¼ 1

4EB̂α
0σ0

Z
∞

0

dwe−w
2σ̂2eff=2eiw

Kþη
2 ð1 − e−iw=α

0 ÞK−1

¼ 2K−1

4EB̂α
0σ0

Z
∞

0

dwe−w
2σ̂2eff=2eiw

ηþ1
2

�
sin

w
2

�
K−1

ð6:7Þ

where we have defined

σ̂ ≡ 4EB̂σ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cσðK − ηÞ

p
; cσ <

1

4
ð6:8Þ

and

1

σ̂2eff
¼ 1

σ̂2
−

4

K − η
¼ 1

σ̂2
ð1 − 4cσÞ ð6:9Þ

with the second term arising from the width of the
minimum of the factors Γð−k2D − ηÞΓðk2D þ KÞ in the
amplitude. We have also used the fact that the range of
δ ~pC integration in (6.3) can be extended to �∞ to good
approximation since the Gaussian strongly suppresses
contributions from the endpoints at δ ~pC ∼�E.
Next, let us study the conditions for a saddle-point ws

in the w integral, starting from the second line of (6.7).
Neglecting the Gaussian factor, which generically varies
more weakly with w than the other two factors, we find

−iws ¼ log
−ðK þ ηÞ
K − η

: ð6:10Þ

If K þ η < 0, meaning k2D0 spacelike (6.2), then ws is
imaginary and we find no suppression from the Gaussian
wavepacket factor at the saddle, as in our previous analysis
with k2D0 ¼ −η=2. There is a crossver at k2D0 ¼ 0: for
K þ η > 0 then ws develops a real part, and for large K it is
well approximated by π.
This latter case is relevant for exploring much wider

momentum-space wavepackets, for which we can push to
the regime K ≫ jηj > 1. The integral over w has a saddle
point near w ∼ π, which can also be seen as the first
maximum of the strongly peaked sinK w

2
factor in the last

line of (6.7). This gives a contribution to the amplitude
(including all factors) of order

A ∼
BðCĈ; B̂ ĈÞ

AÂ

1

4EB̂α
0σ0

e−π
2 σ̂

2
eff
2

ð1−4σ̂2eff
K Þ
�
k2D0

η

�−η
: ð6:11Þ

The penultimate suppression factor here is approximately
given by (taking cσ ≪ 1)

FIG. 9. For η < 0, the full string theory amplitude (summed over nD) pole is spread out by order ∼4πEBα
0 compared to the QFT1

model in the kinematic regime described in the text. The term by term spreading described in the text and in Fig. 8 survives the sum over
the (deformed) propagators.
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exp

�
−
π2σ̂2

2

�
1 − 4σ̂2=K

1 − 4σ̂2=ðK − ηÞ
	�

¼ exp

�
−
X2�σ20
2

�
1 − 4σ̂2=K

1 − 4σ̂2=ðK − ηÞ
	�

ð6:12Þ

where in the second expression we used X� ¼ 4πEB̂.
To interpret this, recall that we have centered the

wavepacket at X ¼ −X� ¼ −4πEB̂. If the expression in
square brackets in (6.12) were 1, the factor (6.12) would
coincide with the suppression factor from the position
space tail of the Gaussian wavefunction which would apply
if the scattering occurs at the origin (i.e. with no advance
between the center of C and the center of A). For positive η,
the factor (6.12) suppresses the amplitude more than this,
suggesting delayed scattering. But for η < 0, this factor is
less suppressed than the tail factor for scattering at the
origin or later (and hence the result is enhanced compared
to tree-level QFT). This is the case which exhibited
spreading in the previous examples, and which has no
convergent expansion in terms of QFT propagators. Here
we see the effect persists in this family of wavepackets with
wider momentum-space width (6.8) centered at (6.2).

VII. CONCLUSIONS, IMPLICATIONS, AND
FUTURE DIRECTIONS

In this work we performed a new S-matrix test of the
prediction [1,3,4] that strings with large center-of-mass

energy
ffiffiffi
s

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ
detectorp

−
string

q
can interact at a large sepa-

ration ΔXþ
spreading ∼ 1=p−

detector. In our six-point scattering
process, such an interaction is predicted between strings
C and D. Tree-level quantum field theory has no such
interaction. With appropriate wavepackets peaked at a
separation X between A and C, we calculated the amplitude
AðXÞ defined in the main text. In a particular kinematic
regime, one in which the string amplitude is not a
convergent sum of QFT propagators, this exhibits the
predicted difference between string theory and the analo-
gous tree-level QFT models. String theory has peaked
support for interactions at the scale α0E, whereas the
relevant QFT models exhibit narrow support around
X ¼ 0 dictated by the wavepacket, consistently with
scattering on its tail. In the string theory case, the analysis
here combined with [11] provides a nontrivial test of the
possibility that the large longitudinal range in AðXÞ arises
from scattering at that scale as suggested by the longi-
tudinal spreading in the light-cone wavefunction.
We have emphasized that tree-level quantum field theory

at the same order would not exhibit the same effect, but
it is a very interesting question whether rich enough QFT
interactions could do so. This question seems particularly
sharp in QFTs with string-theoretic holographic duals, into
which we can embed the present calculation [13] in an
appropriate kinematic regime. The warp factor in the

geometry makes a significant difference compared to the
flat spacetime version of the calculation, reproducing
essential features of QFT correlators. But one must check
carefully whether any long-range interaction survives. It
will be very interesting to see how the tension between the
locality of the QFTand these new tests of the nonlocality of
fundamental strings plays out.
This sharpens other questions about the role of this effect

in the AdS/CFT correspondence, in systems with a per-
turbative string-theoretic gravity side. The dual field theory
OPE relations constrain the late-time behavior of correla-
tors. In curved spacetime examples such as AdS, the details
we encountered here will also likely prove important. For
example, we have seen that the strength of the amplitude
AðXÞ depends on the kinematic regime supported by the
wavepackets, and we also find that background gradients
can affect the spreading [11]. In AdS/CFT, the wavepackets
injected by insertions of local operators on the boundary
may or may not support spreading interactions. It will be
interesting to understand how this plays out in AdS, in real-
time processes describing thermalization as well as the out
of time order calculables characterizing chaos [21]. The
latter probe near the horizon of the gravity-side black hole,
where the most interesting EFT-violating effects can arise.
More generally, in the context of bulk reconstruction in
AdS/CFT, this effect limits the level of locality to be
recovered from the CFT; this may be particularly accessible
in approaches based on scattering such as [22].
It will be interesting to apply these results to black hole

infallers. There, the role of the auxiliary process is played
by the geometry itself. Our results provide a test of the
prediction [3] that early and late infallers interact para-
metrically more strongly at a separation ΔXþ ∼ Eα0 in the
near horizon region than is the case for tree-level effective
field theory. Determining the level of EFT breakdown is
important for resolving the thought experimental puzzle
articulated in [23].15 If the present results correspond to
longitudinal spreading induced interactions which translate
to the black hole problem as in Sec. IV D 5, it would
indicate a stronger interaction between early and late
infallers than in tree-level quantum field theory. Since this
effect sets in on a relatively short time scale, it will be
interesting to see if it could ever lead to observable
signatures. The regime exhibiting an EFT breakdown
developed in [3], however, requires a strong condition
on the local energy of the detector. Having further tested the
basic effect in the present work, exhibiting directly the
predicted long-range longitudinal spreading scale, it will be
interesting to return to horizon physics to analyze more
systematically the scope of the deviations from general
relativity that it could produce.

15See [24] for recent reviews, and [25] for other recent work on
potential string theoretic effects.

LONG-RANGE NONLOCALITY IN SIX-POINT STRING … PHYSICAL REVIEW D 96, 066009 (2017)

066009-23



ACKNOWLEDGMENTS

It is a pleasure to thank Byungwoo Kang for very helpful
discussions as well as progress on D-brane and holographic
gauge theory applications. We thank Don Marolf for
very useful comments, in particular for a discussion in
which we developed this type of setup as a mockup of the
configuration relevant in horizon physics [3]. We thank
Nima Arkani-Hamed, Steve Giddings, David Gross, Joe
Polchinski, Andrea Puhm, Francisco Rojas, Steve Shenker,
Milind Shyani, Douglas Stanford, Tomonori Ugajin, and
Ying Zhao for interesting discussions of related issues. We
are also very grateful to Simon Caron-Huot for useful
comments and criticisms at an earlier stage of this project.
We would also like to thank the KITP and the Aspen Center
for Physics for hospitality during parts of this project.
The work of E. S. was supported in part by the National
Science Foundation under Grant No. PHY-1066293 and
NSF No. PHY-1316699 and by the Department of Energy
under Contract No. DE-AC03-76SF00515. The work of
M. D. was supported in part by a Stanford Graduate
Fellowship. We thank Milind Shyani and Ying Zhao for
discussions

APPENDIX A: SUMS AND SUBTRACTIONS IN
LIGHT-CONE GUAGE STRING THEORY

In this section we clarify a somewhat subtle aspect of the
light-cone gauge spreading prediction [1]. This is some-
what out of the main thread of our analysis of the six-point
S-matrix amplitude, but is an interesting consistency check
of the physical prediction we are testing. In light-cone
gauge X− ¼ ðX0 − XÞ= ffiffiffi

2
p ≡ x− þ p−τ, the Virasoro con-

straint identifies the modes of Xþ ¼ ðX0 þ XÞ= ffiffiffi
2

p
with the

Virasoro generators of the D − 2 transverse dimensions. In
the superstring, these Virasoro generators include contri-
butions from worldsheet fermions, reviewed in [26]. This
leads to

hðXþðσ; 0Þ − xþÞ2i ∝ c⊥
ðp−Þ2

X
n

n ∼
n2max

ðp−Þ2 : ðA1Þ

This is divergent, but can be cut off at a mode number nmax
corresponding to the light-cone time resolution of a
putative detector of the spreading, as reviewed in [3]. It
leads to the prediction noted in (2.22) in the main text.
A similar sum ∝

P
n>0n arises in the mass shell

condition determining the string spectrum, which comes
from the zero-point energy in the worldsheet Hamiltonian.
This quadratic divergence is the contribution of the
transverse matter fields to the two-dimensional cosmologi-
cal constant. A contribution ∼n2max in this sum would
not reproduce the mass spectrum of the string, which
is obtained in the bosonic theory by subtracting this
divergence using a local counterterm. Given this, one
might wonder if (A1) should be cancelled by this

subtraction.16 If there were such a prescription, it would
leave intact the transverse spreading prediction (which is
logarithmic, and not removable by such a tuning).
However, it is straightforward to separate issues using

the superstring, which explicitly treats the two sums
differently. The calculation of the worldsheet mass spec-
trum, the leading divergence, cancels between worldsheet
bosons and fermions. At the same time, as just noted, no
such cancellation arises in (A1). This explains why the
two infinite sums are not on equal footing, clarifying the
prediction (2.22) from (A1) [1].

APPENDIX B: KINEMATIC DETAILS

As described in the main text, we work in a regime with
KAÂ ≪ 1, and focus mainly on transverse momentum
eigenstates with qA ¼ −qC ≡ q ≠ 0. We analyze various
kinematic regimes for η ¼ KBB̂ − KCĈ, BB̂ Ĉ ¼
KB̂ Ĉ þ KBĈ þ KBB̂ and the range of k2D. In this appendix,
we verify that these regimes are consistent by verifying that
these quantities are independently tunable to the extent
required.
Let us restrict ourselves to a regime for which

EB − EB̂; EC − EĈ, and EA − EÂ are all ≤ Oðq2Þ ≪ E2.
Then (2.19) simplifies further, and we find

KAÂ ¼ ðqB þ qC þ qB̂ þ qĈÞ2α0 ¼ ðqC þ qB̂ þ qĈÞ2α0;
ðB1Þ

KCĈ ¼ ðqC þ qĈÞ2α0; ðB2Þ

KBB̂ ¼ ðqB þ qB̂Þ2 ¼ q2
B̂
α0; ðB3Þ

k2D ¼ KCĈ=α
0 þ 4EB̂ðEC − EĈÞ þ 2qB̂ðqC þ qĈÞ

þ EB̂

EĈ
ðq2C − q2

Ĉ
Þ; ðB4Þ

where in the last step we specialized to qB ¼ 0 as in the
main text, where we also set Q ¼ qA þ qB þ qC ¼ 0.
To ensure KAÂ ≪ 1, let us write qC ¼ −ðqB̂ þ qĈÞ þ δq

with δq ≪ 1. Then

η ¼ KBB̂ − KCĈ ¼ 2qB̂δqα
0: ðB5Þ

Similarly, we find that

BB̂ Ĉ ¼ 2kC · ðkA þ kÂÞα0

≃ 2ðqA þ qÂÞ
�
qC −

EC

2EA
ðqA − qÂÞ

	
α0 ≃ 4qδqα0

ðB6Þ

16We thank Ying Zhao and Milind Shyani for reminding us of
this question.
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where again q ¼ qA ¼ −qC. Thus η and BB̂ Ĉ are inde-
pendently variable.
Meanwhile the dependence of k2D (B1) on EC − EĈ

enables its range to be separately chosen as in the examples
in the main text. A small variation in ~pC ∼ − ~EC generates a
large change in k2D via the EB̂ dependence.
Finally, as described in the main text, a regime of interest

will be−η ≫ 1, so we are not working right on the AÂ pole,
but can stay near it in order to work with a relatively simple
form for the momentum-space amplitude.

APPENDIX C: THE ROLE OF THE POLES

In this appendix, we use a toy integral to elaborate on
why the iϵ prescription in the S-matrix does not by itself
exclude time advances (measured with respect to the center
of a scattering object), despite the fact that the Fourier
transform of a pole is a step function. Consider the function

fAð ~pÞ ¼
�

A
~pþ aþ iϵ

þ B
~p − b − iϵ

�
ðC1Þ

with a; b > 0. This is somewhat analogous to a momen-
tum-space scattering amplitude, but with the energy-
conserving delta function stripped off; it does not have
the square root branch cuts arising in the full propagator
of an intermediate state from the on-shell frequencies ~ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þ q2
p

of external states. The Fourier transform of this
function is

~fAð~xÞ ∼ Ae−iðaþiϵÞ~xθð−~xÞ þ Bθð~xÞeiðbþiϵÞ~x: ðC2Þ

That is, we get a step function contribution for positive ~x
from a pole at positive momentum ~p ¼ b, and a step
function contribution for negative ~x from a pole at negative
momentum ~p ¼ −a.
Even before reinstating the missing delta function and

frequency dependence, it is worth noting that (C2) does
not imply that scattering at positive momentum only gets
support from positive ~x and vice versa, because of the
uncertainty principle. To spell that out, we introduce a toy
model wavefunction gΨð ~pÞ ¼ θð ~pÞ [with Fourier transform
~gΨð~xÞ ∼ 1=ð~xþ iϵÞ], supported only at ~p > 0. This is
supported for the sign of momentum in the pole at ~p ¼
b that generated the Bθð~xÞ term in (C2), while the Aθð−~xÞ
term came from the pole at ~p ¼ a < 0. Nonetheless, the
scattering will depend nontrivially on A. We convolve gΨ
against the toy amplitude (C1), computingZ

d ~pfAð ~pÞgΨð ~pÞ ¼
Z

d~x ~fAð~xÞ~gΨð−~xÞ ðC3Þ

where we have expressed this convolution in both
position and momentum space. Plugging in the above
functions, this is

Z
∞

0

d ~p
�

A
~pþ a − iϵ

þ B
~p − b − iϵ

�
¼
Z

0

−∞
d~x

BeiðbþiϵÞ~x

~xþ iϵ
þ
Z

∞

0

d~x
Ae−iðaþiϵÞ~x

~xþ iϵ
: ðC4Þ

The contribution proportional to A here, the ~x < 0 term in
(C2), does not vanish even though the toy wavefunction
only has support at ~p > 0.
Next let us consider a toy problem which incorporates

more of the elements of the scattering problem analyzed in
the bulk of this paper. In the extreme case of a ~pB eigenstate
there, the toy model amplitude would be of the form

FAð ~pÞ ¼
�

A
~pþ aþ iϵ

þ B
~p − b − iϵ

�
× δ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ q2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~p − 2p0Þ2 þ q2

q
− ω0

�
ðC5Þ

for constant p0, ω0. Denoting the two solutions to the δ
function p�, the Fourier transform of this amplitude is

~FAð~xÞ ∼
eipþ ~x

j∂f̂=d ~pjpþj

�
A

pþ þ a
þ B
pþ − b

�
þ ðþ ↔ −Þ

ðC6Þ

where f̂ is the argument of the delta function. In this
expression, the A and B terms are no longer step functions
even at the level of this Fourier transform. A similar
statement holds for the situation worked out in the main
text, where the wavefunction for B is given by (3.7); this is
not a momentum eigenstate but restricts its momentum
integral to lie between two close-by values. As discussed in
the main text, this gives us sufficient resolution to dis-
tinguish the behavior of our tree-level QFT and string
theory amplitudes. In this appendix, we have simply
reviewed in more detail why the iϵ prescription in the
S-matrix, which is common to string theory and QFT, does
not by itself sharply restrict the scattering to a step function
contribution.
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