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We explore several consequences of the recently discovered intrinsic noncommutativity of the zero-
mode sector of closed string theory. In particular, we illuminate the relation between T-duality and this
intrinsic noncommutativity and also note that there is a simple closed string product, equivalent to the
splitting-joining interaction of the pants diagram, that respects this noncommutativity and is covariant with
respect to T-duality. We emphasize the central role played by the symplectic form ω on the space of zero
modes. Furthermore, we begin an exploration of new noncommutative string backgrounds. In particular,
we show that a constant nongeometric background field leads to a noncommutative space-time. We also
comment on the nonassociativity that consequently arises in the presence of nontrivial flux. In this
formulation, theH flux as well as the “nongeometric”Q, R, and F fluxes are simply the various components
of the flux of an almost symplectic form.
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I. INTRODUCTION

One of the hallmarks of string theory, as currently
understood, is its compatibility with an effective field
theory description at low energy, which can be found in
any standard textbook exposition [1]. In addition, there
are many backgrounds for string theory giving rise to
effective field theories in a variety of space-time dimen-
sions, with a wide variety of gauge interactions. Implicit
in all of these constructions is the assumption that string
theory behaves itself, reducing to ordinary local field
theories. On the other hand, we know that this is at best a
truncation, because of the many remarkable properties of
string theory, such as its dualities. There is nothing
sacrosanct about one particular construction, including
the nature of space-time itself.
Recently [2] we have uncovered an intrinsic noncom-

mutativity in closed string theory. In this paper, we explore
some of the implications of this result. The noncommuta-
tivity appears in the simplest compactification of all:
toroidal compactifications with no background fields. We
related the noncommutativity to four different phenomena:
we showed it was due to the presence of certain cocycle
factors in the operator algebra; we identified it as the
requirement of causality of the commutator algebra of the
string coordinates; we related it to the presence of edge
modes that appear on the seams of the compactified string
when it is unwrapped in its universal cover; and we related
it to the presence of a coupling of the string to topological
modes encoded in a symplectic flux.

Here we explore additional consequences of the non-
commutativity. First, we trace the presence of noncommu-
tativity to familiar but nontrivial properties of T-duality.
From this point of view, these properties follow directly
within a simple (noncommutative) operator representation,
whereas previously they were understood only as a result
of tracking certain operatorial “fudge factors.”
To be precise, there are two notions of cocycle used in

this context that we should be careful to disambiguate.
The first is algebraic and physical, required by causality
and locality of the world sheet field theory. This is the
cocycle that we called ϵðK;K0Þ in [2], and it represents the
phase appearing in the definition of a Heisenberg group.
The second notion of a cocycle is associated with a
representation of the algebra; this notion of cocycle has
been eliminated by the recognition of the noncommuta-
tivity of the zero modes. Indeed, as we showed in [2], one
of the main benefits of the noncommutative interpretation
is in the elimination of these fudge factors, resulting in a
simple (noncommutative) geometric interpretation.
In toroidal backgrounds for closed string theory, it is

known that T-duality is not only a property of the spectrum
of string excitations, but of interactions as well. In this
paper, we also construct a closed string product, represent-
ing the basic string (pants) interaction cut along its seams.
We show explicitly that its form is uniquely determined by
the noncommutative phase and that it is manifestly con-
sistent with T-duality. In a sense, this can be understood as a
closed string analog of the construction found in the open
string sector [3]. What we find is that this closed string
product carries a “π-flux” of the symplectic form ω; the
pants interaction diagram with arbitrary states on each leg
simply forms a representation of the associated Heisenberg
group, fully consistent with the vertex operator algebra.
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Finally, we discuss how the introduction of nontrivial
background fields is organically included into a deforma-
tion of the intrinsic noncommutative structure of the closed
string. In particular, constant background fields can be
turned on by simply performing Oðd; dÞ transformations,
which act linearly on the symplectic form ω, and thus
modify the commutation relations of the zero-mode fields.
As an example, we consider a constant nongeometric (β)
background field and show that it leads to a noncommu-
tative space-time, and we also comment on the nonasso-
ciativity that arises in the presence of nontrivial fluxes.

II. NONCOMMUTATIVITY

To begin, we briefly review the result of [2], which
applies to perturbative closed string theory compactified on
a torus. Classically, the most general solutions are para-
metrized as

Xðτ; σÞ ¼ XLðτ − σÞ þ XRðτ þ σÞ; ð1Þ

with

XLðτ − σÞ ¼ xL þ α0

2
pLðτ − σÞ þ iλ

X∞
m¼−∞

1

m
αme−imðτ−σÞ;

ð2Þ

XRðτ þ σÞ ¼ xR þ α0

2
pRðτ þ σÞ þ iλ

X∞
m¼−∞

1

m
~αme−imðτþσÞ;

ð3Þ

where the string length scale is denoted λ≡
ffiffiffiffiffi
ℏα0
2

q
. In the

compactified theory, it is natural to introduce also the dual
field

~Xðτ; σÞ ¼ XRðτ þ σÞ − XLðτ − σÞ: ð4Þ

A careful analysis of the symplectic structure reveals that
the oscillators satisfy the usual commutation relation
½α̂an; α̂bm� ¼ nhabδnþm where α̂†n ¼ α̂−n, and similarly for
~α, with h denoting the space-time Lorentz metric, while
surprises appear in the zero-mode sector. First, the modes
xL, pL, xR, pR become independently dynamical due to an
edge effect: the algebra between the space and momentum
variables is found to be

½xa; pb� ¼ iℏδab; ½~xa; ~pb� ¼ iℏδab: ð5Þ

In addition, there is an unexpected contribution to the
symplectic form, equivalent to the commutator

½xa; ~xb� ¼ 2πiλ2δab; ð6Þ

and all the other commutators vanish. Here we have defined,
following the standard notation, xa ¼ xaR þ xaL, ~xa ¼
habðxbR − xbLÞ and pa ¼ 1

2
habðpb

R þ pb
LÞ, ~pa ¼ 1

2
ðpa

R − pa
LÞ.

Given this notation we have shown in [2] that these
commutators can be rewritten as canonical world sheet field
commutation relations

½X̂ðτ; σ1Þ; ~̂Xðτ; σ2Þ� ¼ 2iλ2½π − θðσ12Þ�; ð7Þ

where σ ∈ ½0; 2π�, and θðσÞ is the staircase distribution with
θðσÞ ¼ π for all σ in the open interval σ ∈ ð0; 2πÞ. This
noncommutativity can be interpreted as an integration
constant1 obtained by integrating the canonical equal-time
commutator

½X̂ðτ; σ1Þ; ∂τX̂ðτ; σ2Þ� ¼ ½X̂ðτ; σ1Þ; ∂σ
~̂Xðτ; σ2Þ�

¼ 2πiℏα0δðσ12Þ; ð8Þ

with respect to σ2. It turns out that the only value of this
integration constant consistent with world sheet causality is
πα0ℏ, which leads to (6). In addition, given the commutator
(6), the vertex operator algebra satisfies mutual locality
without the need for operatorial cocycle factors. Indeed, a
representation is given simply by Weyl operators formed
from x̂a and ~̂xa. Although this may seem like a technicality,
we will show elsewhere that it allows for a deep under-
standing of “nongeometric backgrounds,” such as asym-
metric orbifolds [5] and T-folds [6].
A compact way [7,8] to package these commutators

together is to introduce double field notation XAðτ; σÞ ¼
ðXaðτ; σÞ; ~Xaðτ; σÞÞ, for which the above canonical com-
mutators appear as

½X̂Aðτ; σ1Þ; X̂Bðτ; σ2Þ� ¼ 2iλ2½πωAB − ηABθðσ12Þ�; ð9Þ

whereω is an invertible two form and η is a symmetric form
with signature ðd; dÞ. In [2], we showed that ωAB should
be thought of as an intrinsic part of the formulation of the
Polyakov path integral. In particular, including it allows for
covariance with respect to Oðd; dÞ, in which ηAB is
invariant but ωAB is not. Importantly, as stated above, in
the zero-mode sector, vertex operators can be thought of
as involving Weyl operators that are exponentials of X̂A ¼
ðx̂a; ~̂xaÞ alone (that is, independent of the conjugate
operators P̂A), and ωAB can be thought of as a symplectic
form on the reduced space coordinatized by XA, a subspace
of the full phase space. Thus the noncommutativity of the
zero modes takes a simple form, being simply a Heisenberg
algebra satisfied by ðxa; ~xbÞ, with the string length setting
the scale for the commutator. The presence of ωAB in

1See also [4] where this possibility was first discussed but not
fully acted upon.
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general can be summarized as the inclusion of a factor ei
R

ω

in the Polyakov path integral. As we have emphasized
elsewhere [8], the Polyakov path integral can be written in
double space notation (which we refer to as metastring
theory), and in this formulation, ηAB and ωAB play
fundamental geometric roles, along with a third symmetric
form HAB. In fact, these three structures describe a (flat)
Born geometry [9].2

We note in passing here that although we are using the
same notation often used in double field theory [12–17],
we are making significant departures in accounting for the
intrinsic noncommutativity by including ωAB. Its inclusion
in double field theory results in significant simplifications.
Indeed, we will comment on some interesting aspects of
this structure in the final section of this paper. We expect
that a similar structure will be present in supersymmetric
versions as well.
One of the points we would like to elaborate in the

following section is the role that this noncommutativity
plays in T-duality. So let us begin by reviewing that notion.
For a toroidal background, there are world sheet constraints
on the spectrum of the theory, which take the form

m2

ℏ2
¼

�
n
R

�
2

þ
�
w
~R

�
2

þ NL þ NR − 2

λ2
;

n
R
w
~R
¼ NL − NR

2λ2
; ð10Þ

where m is the invariant mass in noncompact Minkowski
space-time and we have for simplicity of notation taken a
single compact dimension (this can be generalized to higher
dimensional tori without difficulty). Here n=R (with n ∈ Z)
is an eigenvalue of k̂, while w= ~R (with w ∈ Z) is an

eigenvalue of ~̂k. We have introduced what we will refer to
as the dual radius, ~R, which satisfies

R ~R ¼ 2λ2:

Thus the radius and dual radius are inversely proportional.3

T-duality is the statement that this spectrum of states
(as well as all other aspects of the theory) is invariant
under the exchange of ðn; RÞ with ðw; ~RÞ. In terms of the
string zero modes, T-duality can be regarded as the map
ðxL; xRÞ ↦ ð−xL; xRÞ, or equivalently, x ↔ ~x. It is well
known that R → ∞ corresponds to decompactification
where the ~x mode decouples and the effective description
can be achieved in terms of space-time fieldsΦðxÞ. Then as

it is often said, the limit R → 0 also results effectively in
decompactification, in which x decouples and an effective
description can be achieved in terms of dual-space-time
fields ~Φð~xÞ. Consequently, which compact coordinate, x or
~x, plays the role of a spatial coordinate depends on context.
It is crucial to note that in each limit, a notion of locality for
the effective field interactions is recovered and what will be
of interest to us is to explore the mechanism behind the
appearance of the dual locality. In fact, what we will show
at the level of quantum states is that T-duality can be
regarded precisely as a certain transform between distinct
bases. It is the noncommutativity of x and ~x that offers this
interpretation. We will also show that even in the absence
of the decompactification limit there is a principle that
generalizes locality in its organization of string interactions.

III. T-DUALITY AND THE ROLE OF
NONCOMMUTATIVITY

To begin, we focus on the zero-mode sector and consider
fields that we write as ΦwðxÞ, where w denotes winding as
above. It can be interpreted as a wave functional in the
world sheet theory, as described in Fig. 1. We will find it
convenient to interpret x as a coordinate in the covering
space. ΦwðxÞ is periodic, satisfying

Φwðxþ 2πRÞ ¼ ΦwðxÞ: ð11Þ

It is, of course, tempting to interpret ΦwðxÞ as a field in an
effective space-time description. Clearly though, this is not
really a local field in space-time in the usual sense, being at
best an infinite set of fields labeled by w. At the finite radius
of compactification, we must keep the entire tower of such
fields at hand.
Interpreting it as a wave functional, it is convenient to

use the notation

ΦwðxÞ≡ hx; wjΦi: ð12Þ

What we will show here is that this notation is particularly
effective, in that hx; wj should be thought of as a choice of
basis (the one given to us by the usual interpretation of the
string zero modes as we have been describing here), and
furthermore that by accounting for the noncommutativity of

FIG. 1. We interpret ΦwðxÞ as a worldsheet wavefunctional,
which can be visualized as a disk diagram with insertion
corresponding to Φ, and a fixed boundary embedding labeled
by xðσÞ. In the current notation, this embedding is described by
the zero mode x and winding number w.

2The role of the symplectic structure in the context of T-duality
has also been emphasized in [10,11].

3We notice that (1)–(4) imply that taking Xðτ; σÞ to Xðτ; σ þ
2πÞ corresponds to ðx; ~xÞ ↦ ðxþ 2πwR; ~xþ 2πn ~RÞ. Thus a state
labeled by ðn; wÞ corresponds to a string wound w times around x
and n times around ~x.
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the zero-mode sector, T-duality can be understood simply
as a change of basis. The basis jx; wi corresponds to
diagonalizing x̂ and ~̂p, which is a consistent choice, given
that they commute (5). Another basis that is commonly
used to describe such states is the momentum basis, which
simultaneously diagonalizes p̂ and ~̂p. We introduce a
ground state j0; 0i annihilated by both, and we define

hn; wj ≔ h0; 0je−inx̂=Re−iw ~̂x= ~R: ð13Þ

There is an important subtlety inherent in this notation
given the commutation relation (6), and as a result, operator
ordering must be carefully managed. In particular, we see
that for the momentum basis we have to choose, as we have
done in (13), an order between the position and dual
position. Because of this operator ordering issue, we insist
on a strict order for the labels on the basis states and always
position the operators associated with x and its momenta
before those associated with ~x and its momenta. As we will
see, T-duality reverses this order, and this subtlety will lead
directly to a well-known phase [18,19] in the effect of
T-duality on states.
Returning to (12), we have

ΦwðxÞ≡ hx; 0je−iw ~̂x= ~RjΦi: ð14Þ

The states fjwig form a complete orthonormal basis, as do
fjnig. Assuming the normalization hxjni ¼ einx=R, we
insert the identity

ΦwðxÞ ¼
X
n

hx; 0jeinx̂=Rj0; 0ih0; 0je−inx̂=Re−iw ~̂x= ~RjΦi ð15Þ

¼
X
n

einx=Rhn; wjΦi ð16Þ

≡X
n

einx=RΦðn; wÞ: ð17Þ

In the last line, we have defined Φðn; wÞ≡ hn; wjΦi.
Clearly Φðn; wÞ can be regarded as a state of fixed
momentum and winding and (17) can be regarded as a
Fourier series.
What is perhaps not obvious is that we can also describe

the same states in a dual basis, using basis states jn; ~xi,
diagonalizing p̂ and ~̂x. We interpret Φnð~xÞ ¼ hn; ~xjΦi as a
collection of fields living in the dual space, and their
periodicity,

Φnð~xþ 2π ~RÞ ¼ Φnð~xÞ; ð18Þ
implies that n can be interpreted as winding in the dual
space. In fact, Φnð~xÞ should be thought of as the image of
ΦwðxÞ under T-duality. Indeed, going from ΦwðxÞ to Φnð~xÞ
corresponds to taking the data ðw;R; n; ~RÞ to ðn; ~R;w; RÞ.
We have

Φnð~xÞ ¼ h0; ~xje−inx̂=RjΦi
¼

X
w

h0; ~xjeiw ~̂x= ~Rj0; 0ih0; 0je−iw ~̂x= ~Re−inx̂=RjΦi

¼
X
w

eiw~x= ~Reiπnwh0; 0je−inx̂=Re−iw ~̂x= ~RjΦi

¼
X
w

eiw~x= ~ReiπnwΦðn; wÞ: ð19Þ

ThusΦnð~xÞ is obtained fromΦðn; wÞ by a modified Fourier
series containing an extra phase eiπnw. The phase arises
from the reorganization of the order of the phase operators
in order to reexpress the functional in the momentum basis.
Indeed, the nontrivial commutator (6) implies that

e−iw ~̂x= ~Re−inx̂=R ¼ eiπnw
2λ2

R ~Re−inx̂=Re−iw ~̂x= ~R

¼ eiπnwe−inx̂=Re−iw ~̂x= ~R: ð20Þ

Previously, such a phase has been uncovered at the level
of states through a careful analysis of operatorial cocycles
[18,19]. Here, we see that it can be obtained in a
straightforward way by instead taking into account the
noncommutativity of x and ~x. The important point is that
the tower of fields ΦwðxÞ contains the same information as
the dual tower Φnð~xÞ. We can express this equivalence
directly by composing the relations (19) and (17).
Concretely, Φnð~xÞ is related to ΦwðxÞ as follows:

Φnð~xÞ ¼
X
w∈Z

eiw~x= ~R
Z

2πR

0

dx
2πR

e−inðx−πwRÞ=RΦwðxÞ; ð21Þ

which we refer to as a double Fourier transform (or more
properly, a Zak transform [20]).
This formula should be regarded as the general statement

of T-duality. Indeed, at large R, it is most natural to describe
states in terms of the coordinate x and winding w. On the
other hand, at small R (large ~R), it is most convenient to
describe the states in terms of ~x and n, interpreted now as
dual winding. One can check that the transform does
correctly localize onto w ¼ 0 for large R and n ¼ 0 for
large ~R. We also see that the towerΦnð~xÞ contains precisely
the same information as the tower ΦwðxÞ, and thus the
coordinate ~x plays a complementary role to that of x: one
should simply choose one or the other, depending on the
physics that one wishes to describe, the difference being
simply a change of basis.
We have seen that the nontrivial commutation relation

results in a twist in the double Fourier transform—there is
an apparent half translation in x (or equivalently in ~x). In
fact, the double Fourier transform (21) is equivalent to the
idea [9,21] that T-duality itself can be regarded as a Fourier
transform in the Polyakov path integral. Equation (21) then
is simply that relation obeyed by the Polyakov path
integral, reduced to the zero-mode sector. The extra phase
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comes about in that reduction from the aforementioned

ei
R

ω factor in the Polyakov path integral. We will thus
express this by saying that T-duality is accompanied by a π
flux of ω.
Finally, let us define, by Fourier series, the generalized

field that depends on two commuting labels ðx; ~xÞ,

Φðx; ~xÞ≡X
w

ΦwðxÞeiw~x= ~R: ð22Þ

Naively, it appears that this could be interpreted as a
function on the double space. However, care must be taken
in interpreting this object because of the underlying non-
commutativity. Indeed, one finds that the above formulas
imply that we can also write

Φðx; ~xÞ ¼
X
n

einx=RΦnð~x − πn ~RÞ; ð23Þ

the half-shift coming from the extra phase in (21). Here we
see that if we insist on keeping an interpretation where x
and ~x are just commuting labels, then T-duality appears as a
nonlocal map. It is not just an exchange of ðn; RÞ ↔ ðw; ~RÞ
and x ↔ ~x, but also involves arbitrarily large shifts in the
dual variable. This basic fact shows that the double field
theory interpretation of T-duality in terms of generalized
fields as simply an exchange of x with ~x is not tenable. We
will come back to the proper interpretation of this wave
functional later in the paper and resolve this puzzle.

IV. THE CLOSED STRING NONCOMMUTATIVE
PRODUCT

The pants diagram of perturbative closed string theory
can be interpreted as defining a product of closed strings
corresponding to the splitting-joining interaction, as drawn
in Fig. 2.
We wish to investigate what the noncommutativity

implies for this product. We will claim that the non-
commutativity offers a precise (and unique) way to inter-
pret a closed string as decomposable into a pair of “open
strings,” fully consistent with T-duality.
Indeed, to describe the splitting-joining interaction, it is

convenient to first split the closed strings into two half-
strings, which are glued in the middle. We will find that
where this is done in the embedded space is dictated by the
strength of the commutator (6): it must be done precisely at
the midpoint in the target space. The splitting is shown
graphically in Fig. 3, and we will denote it as an ordered
product,4

ΦwðxÞ ¼ ΦðþÞðx; xþ πwRÞΦð−Þðxþ πwR; xþ 2πwRÞ:
ð24Þ

In other words, the closed string field is regarded as the
product of two half-string fields Φð�Þ of target length πwR,
with Φð−Þ translated by a distance πwR. An important
property that we demand for the half-string fields is that
they respect the lattice periodicity condition. If one trans-
lates the initial and final points of the string by a lattice
distance, nothing changes,

Φð�Þðxþ 2πR; yþ 2πRÞ ¼ Φð�Þðx; yÞ: ð25Þ
The splitting-joining interaction is obtained by performing
this splitting on each closed string, by multiplying each
half-string and then rejoining at the midpoint, as we show
in Fig. 4.5

This procedure can be formalized as follows. First one
introduces the half-string product, which is just the open
string concatenation

ðΦ∘ΨÞð�Þ
w0 ðx; xþ πwRÞ≡Φð�Þðx; xþ πw0RÞΨð�Þ

× ðxþ πw0R; xþ πwRÞ: ð26Þ
This simply corresponds to rejoining the string segments at
the ends that are at the same point in the target, similar to
the product introduced by Douglas and Hull [3]. Then we
can construct the closed string product by splitting and
rejoining as in Fig. 4. This procedure, shown in Fig. 4(b) for
fixed w0 and w, corresponds then to the product

ðΦ∘ΨÞðþÞ
w0 ðx; xþ πwRÞðΨ∘ΦÞð−Þw0 ðxþ πwR; xþ 2πwRÞ;

ð27Þ

which is given by

ΦðþÞðx; xþ πw0RÞΦð−Þðxþ πw0R; xþ 2πw0RÞ
×ΨðþÞðxþ πw0R; xþ πwRÞΨð−Þ

× ðxþ πwR; xþ πw0Rþ 2πðw − w0ÞRÞ ð28Þ

¼ Φw0 ðxÞΨw−w0 ðxþ πw0RÞ: ð29Þ

4Note that here we are using notation that might imply, in given
world sheet coordinates, x ¼ xðσ ¼ 0Þ, xðσ ¼ 2πÞ ¼ xþ 2πwR.
This is for convenience only (it is precise only if we neglect the
oscillators). What we are describing as the midpoint is, in fact, the
center of mass position, 1

2π

R
2π
0 dσXðτ; σÞ ¼ xðτÞ þ πwR.

5The Nakamura cutting [22] is the most natural to construct the
splitting-joining interaction. We note in passing that in the
Lorentzian signature, one can choose a metric that is everywhere
Lorentzian except at isolated points where world sheet curvature
singularities arise—intuitively, the curvature singularity is where
the dilaton couples. In the case of the pants diagram, one can
choose this to occur at a single point, denoted by an × in Fig. 2(c).
As we are about to show, the pants vertex is also associated with a
certain π flux. Recently in another context, the cutting of the
pants into a pair of “hexagons” has been considered [23]. It is not
clear to us how to establish that the gluing of hexagons should be
accompanied by this π flux, or what relevance it might have in the
context of the cited reference.
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We then define the closed string product, with total
winding w, as the sum over all the intermediate windings

ðΦ∘ΨÞwðxÞ ¼
X
w0

ðΦ∘ΨÞðþÞ
w0 ðx; xþ πwRÞðΦ∘ΨÞð−Þw0

× ðxþ πwR; xþ 2πwRÞ ð30Þ

¼
X
w0∈Z

Φw0 ðxÞΨw−w0 ðxþ πw0RÞ: ð31Þ

It is not at all obvious that the splitting-joining interaction
should take place at precisely the midpoint in the target
space. What we find is that this choice corresponds
precisely to the presence of the noncommutative phase.
Furthermore, it is only for this specific noncommutative
phase that the string interaction is consistent with T-duality.
To understand these claims, it is instructive to consider

the transform to the doubled space

ðΦ∘ΨÞðx; ~xÞ ¼ X
w

eiw~x= ~RðΦ∘ΨÞwðxÞ

¼
X
w;w0

eiw~x= ~RΦw0 ðxÞΨw−w0 ðxþ πw0RÞ

¼
X
w0

eiw
0 ~x= ~RΦw0 ðxÞΨðxþ πw0R; ~xÞ: ð32Þ

We caution the reader again (see the discussion at the end of
Sec. III) that although the notation implies a function on the
space coordinatized by x; ~x, there is a sublety here. Indeed,
to understand the nature of this string product, let us
specialize to the case in which Φðx; ~xÞ ¼ φðxÞ and
Ψðx; ~xÞ ¼ ψð~xÞ, and we will compare ðΦ∘ΨÞ to ðΨ∘ΦÞ.
Further, take plane waves φðxÞ ¼ enðxÞ ¼ einx=R (a pure
momentum mode) and ψð~xÞ ¼ ~ewð~xÞ ¼ eiw~x= ~R (a pure
winding mode). Corresponding to these plane waves are
fieldsΦ ~wðxÞ ¼ δ ~w;0einx=R andΨ ~wðxÞ ¼ δw; ~w. Then we have

ðen∘~ewÞðx; ~xÞ ¼
X
~w;w0

ei ~w ~x = ~Rδw0;0einx=Rδ ~w;w−w0

¼ eiw~x= ~Reinx=R ¼ enðxÞ~ewð~xÞ ð33Þ

and

ð~ew∘enÞðx; ~xÞ ¼
X
~w;w0

ei ~w ~x = ~Rδw;w0δ ~w;w0einðxþπw0RÞ=R

¼ eiπnweiw~x= ~Reinx=R ¼ eiπnwenðxÞ~ewð~xÞ:
ð34Þ

(a)

(c)

FIG. 3. Closed string splitting: (a) The world sheet is sliced
open at, say, σ ¼ 0; π. (b) The corresponding embedding is
described by ΦwðxÞ, now separated into two pieces. (c) The
pieces of the closed string unfolded onto the covering space.

(a)

(b)

FIG. 4. The splitting-joining interaction is effected by splitting
each string at its midpoint and reattaching. In the covering space,
this process involves translating half of one of the strings (Φð−Þ)
by a lattice vector 2πRðw − w0Þ.

(a) (b) (c)

FIG. 2. The world sheet pants diagram for states written in w, x basis. We map to the covering space of the target space, in which
ΦwðxÞ represents a string extended from x to xþ 2πwR. To arrange this interaction, we split this string at its midpoint into pieces that we
denote ΦðþÞ and Φð−Þ, and affect the rejoining at the midpoint.
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This suggests that the string product can be interpreted as a
realization of the noncommutative product between oper-
ators x̂ and ~̂x. The noncommutativity

ð~ew∘enÞ ¼ eiπnwðen∘~ewÞ; ð35Þ

captured by the string product is an instance of the
Heisenberg group; the strings can be thought of in terms
of the corresponding operatorial representation (x → x̂,
~x → ~̂x), and the string interaction is given by the
Heisenberg product implied by the commutation relation

½x̂; ~̂x� ¼ iπR ~R ¼ 2πiλ2: ð36Þ

In fact, the actual numerical value of the commutator (36) is
correlated with the point of attachment of the half-strings in
the splitting-joining interaction. We believe that this result
gives a precise sense in which closed strings can be thought
to decompose into a pair of open strings. Associated closely
with this result though is the noncommutativity of the
zero modes.
We can also express the string product in momentum-

winding space. A short calculation yields

ðΦ∘ΨÞðn; wÞ ¼ X
w0;n0

Φðn0; w0Þeiπw0ðn−n0ÞΨðn − n0; w − w0Þ:

ð37Þ

Of course, we find that this product expresses the con-
servation of both momentum and winding under multipli-
cation since the total momenta n of ðΦ∘ΨÞ is given by the
sum of individual momenta associated with Φ and Ψ and
similarly for the winding. In addition, we find that the
vertex comes with a π-flux phase, which is the Fourier
transform of the noncommutativity of the product. It also
expresses, as we will see, the presence of a symplectic fluxR
ω in the string interaction.
In the construction of the string product we have chosen

the reattachment point to be the midpoint in the target of the
winding string. This might look like a very symmetric but
somewhat arbitrary choice. It turns out that this choice is
the only choice of string product consistent with T-duality.
Of course, it is well known that T-duality is not only a
property of the spectrum of the theory but also extends to
interactions. In our context, we take this to mean that the
string interaction transforms consistently under T-duality
via the double Fourier transform. Indeed, one can show that
the double Fourier transform of the product is

X
w

eiw~x= ~R

Z
dx
2πR

e−inðx−πwRÞ=RðΦ∘ΨÞwðxÞ

¼
X
n0
Φn0 ð~xÞΨn−n0 ð~xþ πn0 ~RÞ ¼ ðΦ∘ΨÞnð~xÞ: ð38Þ

That is, the transform of the product equals the product of
the transforms.6

V. NONCOMMUTATIVITY AND FLUXES

As promised earlier, we now return to discuss the proper
interpretation of the generalized field

Φðx; ~xÞ≡X
w

ΦwðxÞeiw~x= ~R: ð39Þ

As we have seen in the previous section, the string product
is essentially a representation of the Heisenberg group. This
suggests that one should consider the “quantization” map

Φðx; ~xÞ → Φ̂ ¼
X
w

Φwðx̂Þeiw ~̂x= ~R ð40Þ

from generalized fields to noncommutative fields.7 This
map possesses two key properties: first, under this map the
T-duality transformation (41) becomes “localized” and is
expressed as the exchange of x̂ with ~̂x. Indeed, using the
periodicity (18), the T-dual expression is given by

Φ̂ ¼
X
n

einx̂=RΦnð ~̂x − πn ~RÞ ¼
X
n

Φnð ~̂xÞeinx̂=R; ð41Þ

which has a similar form to (40). We see that the non-
commutativity of x̂ with ~̂x allows one to reabsorb all the
shifts in terms of a simple reordering that exchanges x̂ with
~̂x and is the expression of T-duality. The “quantized” field is
simply expanded in terms of modes as

Φ̂≡X
w;n

einx̂=RΦðn; wÞeiw ~̂x= ~R: ð42Þ

The second property is that the quantization map also
“localizes” the string product,

dΦ∘Ψ ¼ Φ̂ Ψ̂ : ð43Þ

It is useful at this point to generalize the construction to
higher dimensional tori. This can be done in a straightfor-
ward manner by introducing the modes KA ¼ ð~ka; kaÞ,
generalizing ðw= ~R; n=RÞ. We also introduce a “para-
Hermitian” structure ðη;ωÞ where

ηðK;K0Þ ¼ k · ~k0 þ ~k · k0; ωðK;K0Þ ¼ k · ~k0 − ~k · k0:

ð44Þ

6As we have stated above, one can prove that this is if and only
if we attach at the midpoint.

7Here, we have chosen a specific operator ordering. Given this
ordering, the mapping is well defined and consistent with the
string product.
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The integrality condition for the lattice Λ of admissible
modes K, K0 ∈ Λ reads in this notation as8

ðη� ωÞðλK; λK0Þ ∈ Z: ð45Þ

Recall that when we introduced Φðn; wÞ above, we were
led to insist on an ordering for the labels. In the present
case, we now write ΦðKÞ ¼ hKjΦi with the ordering
chosen as

hKj ¼ h0jÛ−K; ÛK ≡ eik·x̂ei~k· ~̂x: ð46Þ

This ordering can be seen to be related to the choice of an
Oðd; dÞ frame, where we place the operator associated with
x on the left and the operator associated with the dual space
~x on the right. The key point is that this choice of frame is
entirely encoded into the choice of symplectic potential ω
and the previous wave operator can be covariantly written
in terms of K ¼ ð~k; kÞ and X ¼ ðx; ~xÞ as

ÛK ¼ e
i
2
ðηþωÞðK;X̂Þei

2
ðη−ωÞðK;X̂Þ: ð47Þ

Given this notation we can write the string product
covariantly as

ðΦ∘ΨÞðKÞ ¼ X
K0þK00¼K

ΦðK0Þeiπðη−ωÞðλK0;λK00ÞΨðK00Þ: ð48Þ

The noncommutativity of the string product is encoded in
terms of a π flux due to ω. As it turns out, the phase factor
is exactly the same as the cocycle factor ϵðK;K0Þ ¼
eiπðη−ωÞðλK;λK0Þ that appears in the definition of the vertex
operator product [1,2].9 We can also introduce the
generalized fields ΦðXÞ and the corresponding quantized
operator Φ̂ as follows:

ΦðXÞ ¼
X
K∈Λ

eiηðK;XÞΦðKÞ;

Φ̂ ¼
X
K∈Λ

e
i
2
ðηþωÞðK;X̂ÞΦðKÞei

2
ðη−ωÞðK;X̂Þ: ð49Þ

We see that ω enters the quantum field definition in the
choice of operator ordering. The product of quantum
operators defines a star product on the generalized fields

defined by dΦ∘Ψ≡ Φ̂ Ψ̂ and is given explicitly by

ðΦ∘ωΨÞðXÞ ¼ mðe2πiλ2ð ~∂a⊗∂aÞΦðXÞ ⊗ ΨðXÞÞ; ð50Þ

where m denotes the pointwise multiplication mðΦðXÞ ⊗
ΨðXÞÞ ¼ ΦðXÞΨðXÞ. It is interesting to note that the
section condition ∂AΦ∂AΨ ¼ 0 imposed in double field
theory implies that the string product reduces to the
commutative pointwise product ðΦ∘ΨÞðXÞ ¼ ΦðXÞΨðXÞ.
In summary, the fields that enter the effective description

of the string compactified on a d-dimensional torus are
functions on the 2d-dimensional torus TΛ ¼ C2d=Λ.
In other words, the generalized fields are periodic, with
period Λ. This space of fields is equipped with a non-
commutative product ∘ω that depends on the symplectic
structure and defines a noncommutative algebra,

AΛ;ω ¼ ðC∞ðTΛÞ; ∘ωÞ; ð51Þ

which is a multidimensional noncommutative torus [24].
A very important point about this algebra is that although it
is noncommutative, it possesses a very large center; that is,
it is almost commutative. This is due to the fact that the
noncommutativity is due to π flux. The center of AΛ;ω is
simply associated with the double lattice 2Λ. It is indeed
clear from (48) and condition (45) that fields whose mode
function ΦðKÞ vanishes, unless K ∈ 2Λ, form a subset
of fields that commute with any other periodic field. The
center fields are in C∞ðTΛ=2Þ and satisfy the stronger
periodicity condition

ΦðXþ K=2Þ ¼ ΦðXÞ; K ∈ Λ: ð52Þ

The center algebra is an example of a modular algebra, i.e.
a commutative algebra embedded in a noncommutative
algebra that has no classical analog [20,25].

A. Oðd;dÞ and nontrivial constant backgrounds

So far we have assumed that the background is trivial,
with the fields ðη;ωÞ constant and given by (44). As shown
in [2], we can turn on nontrivial backgrounds encoded into
ω by changing theOðd; dÞ frame X → OX. This change of
frame preserves η but transforms ω. Any constant ω can be
obtained this way. Since ω has an interpretation as the
symplectic form on the space of X’s, modifying ω affects
the commutation relations10

½X̂A; X̂B� ¼ 2πiλ2ΠAB; ΠABωBC ¼ δAC; ð53Þ

where we have introduced the Poisson tensor Π ¼ ω−1.
For instance, under a constant B-field transformation

X ¼ ðxa; ~xaÞ ↦ ðxa; ~xa þ BabxbÞ, the trivial symplectic
8In the one-dimensional case where K ¼ ðw= ~R; n=RÞ this

follows directly from ðηþ ωÞðλK; λK0Þ ¼ nw0 and similarly
ðη − ωÞðλK; λK0Þ ¼ wn0, given that n; n0; w; w0 ∈ Z.

9This is, of course, a straightforward consequence of the
relationship between the sphere amplitude with three insertions
and the pants diagram with fixed states on each leg. The result is a
strong and pleasing indication of consistency.

10The algebraic structure that we are working with here has an
analogy in electromagnetism in the presence of monopoles. In
that analogy, the string length becomes the magnetic length, and
the form ω becomes the magnetic field. Another analogy occurs
in quantum Hall liquids, the algebra being the magnetic algebra
of the lowest Landau level.
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form (44) is mapped onto ωðK;K0Þ ¼ ka ~k
0a − k0a ~k

a−
2Bab

~ka ~k0b, and the commutators read

½x̂a; x̂b� ¼ 0; ½x̂a; ~̂xb� ¼ 2πiλ2δab;

½ ~̂xa; ~̂xb� ¼ −4πiλ2Bab: ð54Þ

We see that the effect of the B field is to render the dual
coordinates noncommutative. More generally, we can
parametrize an arbitrary Oðd; dÞ transformation as
g ¼ eB̂Âeβ̂, where Â ∈ GLðdÞ and eB̂ ¼ ð1B 0

1Þ and eβ̂ ¼
ð10 β1Þ are nilpotent. eB̂ is the B-field transformation dis-
cussed above and is associated with the usual B-field
deformation in string theory. We note that the transforma-
tion of ðxa; ~xaÞ given above does not modify xa, and thus
fields that depend only on xa are unmodified. The β
transformation, on the other hand, corresponds to the
map ðxa; ~xaÞ ↦ ðxa þ βab ~xb; ~xaÞ. Equivalently, it has the
effect of mapping the symplectic structure to ωðK;K0Þ ¼
ka ~k

0a − k0a ~k
a þ 2βabkak0b and yields commutation relations

½x̂a; x̂b� ¼ 4πiλ2βab; ½x̂a; ~̂xb� ¼ 2πiλ2δab;

½ ~̂xa; ~̂xb� ¼ 0: ð55Þ

Dramatically, the coordinates that are usually thought of as
the space-time coordinates have become themselves non-
commutative. Since this is the result of an Oðd; dÞ trans-
formation, we know that it can be thought of in similar
terms as the B field; these are related by T-duality. We are
familiar with the B-field background because we have, in
the noncompact case, a fixed notion of locality in the target
space theory. However, in the nongeometric β-field back-
ground, we do not have such a notion of locality but access
it through T-duality.

B. Associativity and flux

We believe that the π flux that we have displayed above
is fundamental and will persist to nonconstant back-
grounds. In that context then, the nonclosure of ω, that
is, H ¼ dω ≠ 0, will lead to a nonassociative zero-mode
algebra [26–28]. Indeed, one assumes that even in the
presence of a nontrivial B field that depends only on x, the
commutation relations given above are preserved and we
can easily check that the Jacobi identity is anomalous and
given by

½ ~̂xa; ½ ~̂xb; ~̂xc�� þ cycl ¼ HabcðxÞ; ð56Þ

where Habc ¼ ∂aBbc þ cycl.. is the H flux. The relation-
ship between the presence of flux in string theory and
nonassociative geometry has been discussed previously in
[29–36]. Here we are seeing nonassociativity directly from
the deformation of the symplectic structure of the zero

modes. As it has recently been argued in [37] the
generalization of the geometry allows for an extension
of the para-Kähler structure ðP; η;ωÞ into a more general
para-Hermitian structure. In this extension we keep the
condition that K ≡ η−1ω is a split structure satisfying
K2 ¼ 1, but we can relax the condition of closure and
allow for a nontrivial flux F ¼ dω. The existence of the
split structure K admits a decomposition of the tangent
space of P in terms of its eigenspaces that are Lagrangians.
These Lagrangians play the role of the commutative subsets
labeled by x and ~x. The noncommutative product can then
in principle be constructed from the knowledge of ω and a
choice of para-Hermitian connection [38,39].
Here, F can be interpreted as a three-form on P,

playing the role of a three-cocycle and containing “non-
geometric” fluxes, as it generally will have components
of types (3,0),(2,1),(1,2),(0,3) with respect to the coordi-
natization ðx; ~xÞ. These fluxes are, respectively, related
to the H flux, F flux, and R flux appearing in double field
theory [40–42]. The relationship can be explicitly unrav-
eled by introducing generalized frame fields and dual
forms

ÊI ¼ ÊI
A∂A; EI ¼ dXAEA

I; ÊI
AEA

J ¼ δJI ;

ð57Þ

where ∂A ¼ ð ~∂a; ∂aÞ are derivatives on P. The fully
dressed two-form ω can be expanded as

ω ¼ ωIJEI ∧ EJ; η ¼ ηIJEI ⊗ EI; ð58Þ

where ðωIJ; ηIJÞ are the constant two-form and metric
defined in (44). All the X dependence is in the generalized
frame ÊðXÞ. The frame is usually taken to be an element
of Oðd; dÞ, so that the metric η is unchanged.11 The Cartan
structure equation defines a structure constant CIJK

given by

½ÊI; ÊJ� ¼ CIJKÊK; dEK þ CIJKEI ∧ EJ ¼ 0; ð59Þ

and the symplectic structure can be expanded in terms of
the flux,

dω ¼ 2Fω
IJKE

I ∧ EJ ∧ EK: ð60Þ

Here we have defined Fω
IJK ¼ 3C½IJDωK�D. This should be

compared with the usual flux defined in double field theory
and given by F η

IJK ¼ 3C½IJLηK�L. They only differ by signs
on the corresponding Lagrangian subspaces. This flux can
then be expanded in components ðHabc; Fab

c; Qab
c; RabcÞ

and contains the key information about the nongeometric

11The possibility to relax this condition has been investigated
in [37].
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backgrounds. Here they appear as a parametrization of the
nontrivial commutation relations and their lack of associa-
tivity. The recent proposal of [37] is that the section
condition ηAB∂AΦ∂BΨ ¼ 0 does not determine which
sections one chooses and it should be supplemented by
the Lagrangian condition ωAB∂AΦ∂BΨ ¼ 0. It is tantaliz-
ing to consider that imposing the section condition with the
help of ω implies a relationship between F η and Fω. A
nontrivial question in this setting is to understand the nature
of the generalization of the lattice Λ, presumably expressed
in terms of parallel transport with respect to a para-
Hermitian connection preserving η and ω.
We conclude this section with a historical remark:

the fact that the string product is a representation of the
Heisenberg algebra [43] is analogous to how the
Heisenberg algebra was discovered in the original work
of Born and Jordan [44] that immediately followed that of
Heisenberg [43]. Heisenberg showed that the Ritz law of
composition of spectral frequencies νik ¼ νij þ νjk forces
the composition of physical operators, such as the position
of the electron, to satisfy a composition law similar to the
string product. Born and Jordan [44] (and also [45,46])
realized that this implied an underlying noncommutative
structure encoded into the so-called Heisenberg algebra.
This nicely ties to our previous observations that the
geometry of generic representations of quantum theory
[20] is realized in the metastring formulation of string
theory [8]. See also [47] for a direct relationship between
the string field product and the Heisenberg algebra. It is
interesting to note that the connection, discovered by Born
and Jordan, between the groupoid represented by the

string product and noncommutative algebra is also at the
heart of the field of the noncommutative geometry of
Connes [48].

VI. CONCLUSIONS

In this paper we have presented several consequences of
the noncommutativity of the zero-mode sector in toroidal
compactifications of closed string theory. It seems natural
to suppose that there are further deep consequences,
for both effective field theories and more formal aspects
of string theory. We have in particular noted that there
is a simple closed string product, equivalent to the
splitting-joining interaction of the pants, that respects
this noncommutativity as well as T-duality. Its structure is
suggestive that the noncommutativity of the zero-mode
sector will play an important role in the nonperturbative
structure of the theory.
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