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We consider actions for particles and strings, including twistorial descriptions on 4D Minkowski and
AdS5 spacetimes from the point of view of coadjoint orbits for the isometry group. We also consider the
collective coordinate dynamics of singular solutions in Chern-Simons (CS) theories and CS theories of
gravity. This is a generalization of the work of Einstein, Infeld, and Hoffmann and also has potential points
of contact with fluid-gravity correspondence.
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I. INTRODUCTION

The first part of this article is about exploring inter-
connections between somewhat different formulations of
the actions for point particles and strings. Point particles
can be identified as unitary representations of the Poincaré
group, or, more generally, of the appropriate isometry
group. It has been rather well known for a long time that
one can use a coadjoint orbit action for describing such
representations, and, in fact, it is the basic paradigm for the
whole idea of geometric quantization [1]. Actions in terms
of the spacetime coordinates, in terms of twistor variables,
etc. have also been used. More recently, there has been
some work on particle dynamics on AdS spacetimes,
including a twistor description for massive particles [2].
We analyze many of these actions from a single point of
view, namely, in terms of the coadjoint orbit action for the
isometry group.
In the second part of this article, we consider singular

vortex or instanton solutions in Chern-Simons (CS) theo-
ries, including the special important case of CS theories of
gravity [3]. Removing the locations of the singularities
from the manifold under consideration, one can obtain a
nonsingular description. The CS action for such solutions is
shown to reduce to an appropriate coadjoint orbit action,
thus recovering the results of the earlier sections from a
different point of view. Conceptually, this is similar to the
work of Einstein, Infeld, and Hoffmann (EIH), who
considered point particles as singularities of the gravita-
tional field and then showed that the multiparticle dynamics
is determined by the field equations of general relativity [4].
Our approach is similar in spirit and, in fact, may be
considered as the EIH idea applied to CS gravity. Our
analysis also falls within the circle of ideas related to recent
work on fluid-gravity correspondence [5]. Here, one con-
siders a general diffeomorphism of special solutions, and
then, viewing the diffeomorphism as providing collective
degrees of freedom, one obtains the evolution equations for

these collective modes, which are seen to be essentially the
equations of fluid dynamics. Since one can define fluid
dynamics in terms of Poincaré representations as well [6,7],
we expect that there will be further linkages of our work to
the fluid-gravity correspondence.
This paper is organized as follows. In Sec. II, we will

consider the actions for massive and massless particles, the
Nambu-Goto string and the null string in 4D Minkowski
space in terms of the Poincaré group. We will relate our
results to the actions which have been suggested for these
cases in different contexts in the literature. In Sec. III, we
will do a similar analysis for the AdS5 spacetime recov-
ering, among other things, the twistor description of
massive particles obtained in [2]. We will also consider
the twistor version for massless particles and null strings in
AdS5. In Sec. IV, wewill consider the Chern-Simons theory
for an arbitrary gauge group G to show how singular
solutions can lead to the coadjoint orbit action. A similar
analysis for Chern-Simons gravity in 3 and 5 dimensions
will also be discussed.

II. POINCARÉ ORBITS

Free particles and free strings can be described in terms
of representations of the Poincaré group. For particles, the
action is given by the integral of the symplectic potential on
a coadjoint orbit of the spacetime isometry group. So we
start with a statement of this method. Let g be a matrix
representing a general element of a Lie group G (in some
particular matrix representation). The symplectic potential
on an orbit is given by

A ¼ i
X
a

waTrðtag−1dgÞ; ð1Þ

where ta give a basis of the diagonal generators of the Lie
algebra (the Cartan subalgebra) and wa are a set of numbers
characterizing the chosen orbit. We take ta to be normalized
as TrðtatbÞ ¼ δab. The action for free particle dynamics can
then be taken to be
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S ¼ i
X
a

wa

Z
dτTrðtag−1 _gÞ; _g ¼ dg

dτ
; ð2Þ

where the integral is along some path gðτÞ in the group
parametrized by τ. Upon quantization, the theory defined
by (2) leads to a Hilbert space which carries a unitary
irreducible representation (UIR) of G, this UIR being
specified by the highest weight ðw1; w2;…; wrÞ. Here, r
is the rank of the group, which is also the range of
summation for the subscript a. The canonical one-form
associated to (2) is evidently A. Under transformations
g → g expð−itaφaÞ, we find A → Aþ df, f ¼ P

waφ
a.

Thus the symplectic two-form Ω ¼ dA is invariant under
the transformation g → g expð−itaφaÞ, and, hence, Ω is
defined on G=HC, HC being the Cartan subgroup. Further,
the transformationA → Aþ df shows that in the quantum
theory, where wave functions transform as eiS, there can be
quantization conditions on wα. These will turn out to be the
required conditions for ðw1; w2;…; wrÞ to qualify as the
highest weight of a UIR. The existence of such conditions
will, of course, depend on whether the corresponding
directions in HC are compact or not.
We will now apply this, taking G to be the Poincaré

group in 4-dimensional Minkowski space and in AdS5, to
obtain point particle and string actions. We will also relate
this to the twistor actions for particles and strings.
For particle dynamics in 4-dimensional Minkowski

space, it is simplest to consider the Poincaré group as a
contraction of the de Sitter group. We can use the standard
spinorial representation with the generators

Pμ ¼
γμ
l
; Jμν ¼

i
4
½γμ; γν�; ð3Þ

where γμ are the 4 × 4 Dirac matrices and l is a parameter
with the dimension of length. The limit l → ∞ is the
contraction giving the Poincaré algebra with commuting
translation generators Pμ. For a massive point particle, we
need an orbit that corresponds to a timelike momentum
vector, so we can take this as t1 ∼ γ0. There are three
generators J12, J23, J31 which commute with γ0. We can
take t2 as one of these, say, γ1γ2. The symplectic potential
for a massive particle in 4D Minkowski spacetime is thus

A ¼
�
−i

ml
4
Trðγ0g−1dgÞ þ

s
2
Trðγ1γ2g−1dgÞ

�
l→∞

: ð4Þ

A general element of the de Sitter group can be para-
metrized as

g ¼ exp

�
i
γμxμ

l

�
Λ; ð5Þ

where Λ denotes an element of the Lorentz group, of the
form Λ ¼ expðiJμνθμνÞ. Using this parametrization, the
symplectic potential (4) reduces to

A ¼ pμdxμ þ
s
2
Trðγ1γ2Λ−1dΛÞ; ð6Þ

where pμ ¼ mΛα
0ημα and Λα

β is the vector representation
of the Lorentz group defined by ΛγβΛ−1 ¼ γαΛα

β. Notice
that by construction p2 ¼ m2.A given in (6) is the standard
and rather well-known form used for describing point
particles with mass and spin. The second term in A
describes the spin degrees of freedom. A variant of this
formalism is to consider pμ as four independent variables to
begin with, i.e., not given in terms of Λα

0, and then impose
the condition p2 ¼ m2 as a constraint. Further points about
the dynamics, including coupling to external fields, the
emergence of the wave equation in the quantum theory,
magnetic moment and spin-orbit interactions, extensions to
fluids, etc. can be found in [7] as well as in earlier
references cited there.
For a massless point particle, we need a null orbit. This

can be obtained by the choice t1 ∼ γ0 þ γ3 and t2 ∼ γ1γ2.
Thus

A ¼
�
−i

μl
4
Tr½ðγ0 þ γ3Þg−1dg� þ

s
2
Trðγ1γ2g−1dgÞ

�
l→∞

¼ μημαðΛα
0 þ Λα

3Þdxμ þ
s
2
Trðγ1γ2Λ−1dΛÞ; ð7Þ

where μ is a scale parameter with the dimensions of energy.
Notice that the momentum pμ ¼ μημαðΛα

0 þ Λα
3Þ satisfies

p2 ¼ 0. Infinitesimal Lorentz transformations acting on the
left of Λ are given by

Λ →

�
1þ 1

4
ωαβ½γα; γβ�

�
Λ; ð8Þ

while the vectors transform as pμ → pμ þ ωμνpν. The
canonical generator of this transformation given by the
symplectic form in (7) is

Mαβ ¼ −ðxαpβ − xβpαÞ þ
s
8
Trðγ1γ2Λ−1½γα; γβ�ΛÞ: ð9Þ

The Pauli-Lyubanski spin vector can now be calculated as

Wμ ≡ −
1

2
ϵμναβMναpβ ¼ spμ: ð10Þ

This identifies s as the helicity of the massless particle.
It is also useful to obtain the twistor action for a massless

particle from this description. For simplicity, we will
consider the spinless case first; in this case, the symplectic
form is just the first term of A in (7). We can reduce this
further. Since γ5 is invariant under Lorentz transformations,
it is possible to consider the projections 1

2
ð1� iγ5Þ sepa-

rately. We then take Pμ ¼ 1
2
ð1 − iγ5Þγμ=l. This will give

P2 ¼ 0; for a massless particle this is acceptable. We
choose a representation of γ-matrices as
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γ0 ¼
�
0 1

1 0

�
; γi ¼

�
0 −σi
σi 0

�
;

γ5 ¼ −i
�
1 0

0 −1

�
: ð11Þ

(Our choice of an antihermitian γ5 is convenient for later
discussions.) The parametrization of the group element
may be taken as

g ¼
�

1 0

iX 1

�
Λ; X ¼ x0 þ σ · x⃗

l
: ð12Þ

The symplectic form is then obtained as

A ¼ −
i
2
μlTr½ðγ0 þ γ3Þg−1dg�: ð13Þ

We have changed the normalization, absorbing a factor of 2
into the parameter μ. The limit l → ∞ is also not needed in
this expression. For the group element g, we also have
g†γ0 ¼ γ0g−1. Using this relation and the representation
(11), (12), we find

A ¼ μlðΛLÞA2dXA _AðΛLÞ _A2; ð14Þ

where A, _A ¼ 1, 2. We can now define π _A ¼ ffiffiffiffiffi
μl

p ðΛLÞ _A2,
ωA ¼ −iXA _Aπ _A. Further, let

Z ¼
�
ωA

π _A

�
; Z̄ ¼ Z†γ0 ¼ ðπ̄Aω̄ _AÞ: ð15Þ

The action, which is the integral ofA, can now bewritten as

S ¼
Z

A ¼ i
Z

ðπ̄AdωA þ ω̄ _Adπ _AÞ ¼ i
Z

dτZ̄ _Z : ð16Þ

From their definition, Z, Z̄ are seen to obey the condition
Z̄Z ¼ 0. The strategy now is to regard all four components
of Zs, s ¼ 1, 2, 3, 4, to be independent a priori and impose
the condition Z̄Z ¼ 0 as a constraint on the phase space
variables for the action (16). This will eliminate the
arbitrary parameter μl and one of the phases in Z.
Classically, the solution of the constraint will lead us back
to the expression in terms of the group elements. Quantum
theoretically, Z̄ is the canonically conjugate variable and
the constraint generates the transformation Z → λZ,
λ ∈ C − f0g, so that we get a reduction of the phase space
to the projective twistor space. Particles with nonzero spin
can also be described in the same formalism by relaxing the
constraint to some nonzero constant value for Z̄Z.
We now turn to actions for strings which can be viewed

as tracing out a two-dimensional surface in spacetime.
Since we can regard Minkowski spacetime as the Poincaré
group modulo the Lorentz group, we can view strings as

maps of a two-dimensional world sheet into the Poincaré
group subject to certain conditions. The surface area may
be regarded as the (wedge) product of two one-forms, one
of them being timelike and the other spacelike. With no
additional spin variables, the timelike one-form can be
taken as the first term of A in (4),

A ¼
�
−i

ml
4
Trðγ0g−1dgÞ

�
l→∞

¼ mημαΛμ
0dxα: ð17Þ

The spacelike one can be chosen to be along any one of the
other directions; we make the choice

B ¼
�
−i

~ml
4
Trðγ3g−1dgÞ

�
l→∞

¼ ~mημαΛμ
3dxα: ð18Þ

The action, which is the integral of the area element or the
product of these two one-forms is then

S ¼
Z

Vαβdxα ∧ dxβ

Vαβ ¼ M2ημαηνβðΛμ
0Λν

3 − Λν
0Λ

μ
3Þ; ð19Þ

with M2 ¼ m ~m=2. Vαβ obeys the constraints

VαβVαβ ¼ −2M4; ϵμναβVμνVαβ ¼ 0: ð20Þ

As in the case of point particles, it is possible to treat Vαβ as
a priori independent variables, enforcing the constraints via
Lagrange multipliers. We can pull back the two-form in
(19) to the world sheet to write the action as an integral over
the world sheet coordinates ξ1, ξ2. With a Lagrange
multiplier for the first of the constraints in (20), this leads
to the action

S ¼
Z

Vαβ∂axα∂bxβdξa ∧ dξb

−
1

2

Z
d2ξ

ffiffiffiffiffiffi
−g

p ½VαβVαβ þ 2M4�; ð21Þ

where gab is the world sheet metric. The equation of motion
for

ffiffiffiffiffiffi−gp
gives the constraint on Vαβ. Eliminating them by

their equations of motion leads to the Nambu-Goto action

S ¼ −2M2

Z
d2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ρ

p
; ð22Þ

where ρab ¼ ηαβ∂axα∂bxβ is the induced metric on the
world sheet.
For a null string, we need one lightlike direction and a

spacelike direction. So we make the choice

ACTIONS FOR PARTICLES AND STRINGS AND CHERN- … PHYSICAL REVIEW D 96, 065019 (2017)

065019-3



A ¼ −
i
2
μlTr½ðγ0 þ γ3Þg−1dg� ¼ μlημαðΛμ

0 þ Λμ
3Þdxα

C ¼ −
i
2
~m

ffiffiffiffiffi
μl

p
Trðγ1g−1dgÞ ¼ ~m

ffiffiffiffiffi
μl

p
ημαΛμ

1dxα: ð23Þ

The action is proportional to
R
A ∧ C and has the form

S ¼ M2

Z
Vαβdxα ∧ dxβ

Vαβ ¼ ημαηνβ½ðΛμ
0 þ Λμ

3ÞΛν
1 − ðΛν

0 þ Λν
3ÞΛμ

1�; ð24Þ

where M2 includes factors of ~m and μl. Vαβ now obeys the
constraints

VαβVαβ ¼ 0; ϵμναβVμνVαβ ¼ 0: ð25Þ

This is the form of the action obtained in [8].
The null string can also be described using twistors, just

like the massless particle. We have already written A as
iZ̄dZ. For C, using the parametrization (12),

C ¼ −
1

2
~m

ffiffiffiffiffi
μl

p
½ðΛ�

LÞA2dXA _AðΛLÞ _A1 þ ðΛ�
LÞA1dXA _AðΛLÞ _A2�

¼ −
i
2
ðZ̄dW þ W̄dZÞ; ð26Þ

where we have defined another set of twistor variables

W ¼ ~m

�
−iXA _AðΛLÞ _A1

ðΛLÞ _A1

�
;

W̄ ¼ ~mððΛLÞ�A1 iðΛLÞ�A1XA _AÞ: ð27Þ

The action for the null string may then be taken as

S ¼ i
Z

ðZ̄dZÞ ∧ ðZ̄dW þ W̄dZÞ: ð28Þ

From the definitions, we have the constraints

Z̄Z ¼ 0; W̄W ¼ 0

Z̄W ¼ 0; W̄Z ¼ 0: ð29Þ

As before the strategy is to take variables Z, W to be
independent a priori, and then impose the constraints (29)
on the phase space corresponding to the action (28). This
twistor version of the null string is then identical to what
was obtained in [9].
To recapitulate the results of this section briefly: the

action for massive and massless particles, the Nambu-Goto
string, the Schild null string are all described in terms of the
Poincaré group. The different cases have been separately
discussed in the literature before, but they are brought
together here to a single point of view. The purpose is
primarily to set the stage for the rest of this article.

III. PARTICLE DYNAMICS IN AdS5 SPACETIME

We now turn to particle dynamics in AdS5 spacetime,
which may be considered as SOð4; 2Þ=SOð4; 1Þ. The
SOð4; 1Þ generators are given by

Σμν ¼
i
4
ðγμγν − γνγμÞ; μ; ν ¼ 0; 1; 2; 3; 5: ð30Þ

The remaining generators in the orthogonal complement
are γμ themselves. Defining z ¼ e2θ, eiγ5θ is diagonal with
eigenvalues

ffiffiffi
z

p
, 1=

ffiffiffi
z

p
. A convenient parametrization of a

group element g ∈ SOð4; 2Þ is

g ¼
� ffiffiffi

z
p

i ~X=
ffiffiffi
z

p

0 1=
ffiffiffi
z

p
�
Λ; ð31Þ

where Λ ∈ SOð4; 1Þ is generated by Σμν in (30) and
~X ¼ x0 − σ⃗ · x⃗. The Cartan-Killing metric on the coset
space is given by

ds2 ¼ −
R2

4
ημνTrðγμg−1dgÞTrðγνg−1dgÞ

¼ R2
dx2 − dz2

z2
: ð32Þ

This is one of the usual forms of the metric on AdS5. (Here
R is a scale parameter.)
For describing massive particles on this spacetime, we

can, as usual, use

A ¼ −i
mR
2

Trðγ0g−1dgÞ ¼ mRημνΛμ
0

dxν

z
; ð33Þ

where in the second equality we used (31). This identifies
the momentum as pν ¼ ημνΛμ

0=z, which is seen to obey the
mass-shell condition

ημνpμpν ¼
ðmRÞ2
z2

: ð34Þ

This agrees with the constraint discussed in [2]. With the
inclusion of spin, the symplectic potential is to be taken as

A ¼ −i
mR
2

Trðγ0g−1dgÞ þ
s1
2
Trðγ1γ2g−1dgÞ

þ s2
2
Trðγ3γ5g−1dgÞ: ð35Þ

Since the isotropy group for the orbit is SOð4Þ, which is of
rank 2, we need two spin labels s1 and s2.
We now consider another representation of the Dirac

matrices, given by
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Γ0 ¼
�
1 0

0 −1

�
; Γi ¼

�
0 σi

−σi 0

�
;

Γ5 ¼ −i
�
0 1

1 0

�
: ð36Þ

These are related to the γ-matrices in (11) by a similarity
transformation, Γ ¼ SγS−1, with

S ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
: ð37Þ

Correspondingly, define SgS−1 ¼ N. The group element N
obeysN†Γ0N ¼ Γ0. With Γ0 as given in (36), we see that N
can be taken as an element of SUð2; 2Þ. The symplectic
potential for the spinless case becomes

A ¼ −i
mR
2

TrðΓ0N−1dNÞ

¼ −i
mR
2

Tr½ð1þ Γ0ÞN−1dN�
¼ −imRN†

arðΓ0ÞrsdNsa

¼ −imR½N†
abdNba − N†

a ~b
dN ~ba�; ð38Þ

where we have used the fact that N−1dN is traceless. The
indices a, b take values 1,2, while r, s take values 1 to 4,
with ~b ¼ 1, 2 corresponding to r, s ¼ 3, 4. Defining the
2 × 2 matrices

ξba ¼
ffiffiffiffiffiffiffiffiffiffi
2mR

p
Nba; ζba ¼

ffiffiffiffiffiffiffiffiffiffi
2mR

p
N ~ba; ð39Þ

we can write

A ¼ −
i
2
Trðξ†dξ − ζ†dζÞ: ð40Þ

The constraint on ξ, ζ is given by N†Γ0N ¼ Γ0 and
translates to

ξ†ξ − ζ†ζ ¼ ð2mRÞ1: ð41Þ
This is a 2 × 2 matrix equation. We can regard ξ and ζ as
a priori independent variables with the symplectic potential
given by A in (40) and impose (41) as constraints on the
phase space. We now introduce two linear combinations of
ξ and ζ as

ξ ¼ U − iWffiffiffi
2

p ; ζ ¼ W − iUffiffiffi
2

p : ð42Þ

The action (which is the integral of A) and the constraint
become

S ¼ 1

2

Z
dτTrðW† _U − U† _WÞ;

U†W −W†U ¼ ið2mRÞ1: ð43Þ

We see that we have recovered the twistor description of the
massive particle in AdS5 obtained in [2]. (Our W corre-
sponds to the ~W used in that paper.)
It is also useful to consider the massless particle in AdS5.

For this, it is easier to go back to the first representation of
the Dirac matrices and use the group element g. Then, up to
an overall scale factor which will be irrelevant, we can take

A ¼ −
i
2
Tr½ðγ0 þ γ3Þg−1dg�

¼ −
i
2
Tr½ð1þ γ3γ0Þḡdg�

¼ −i½ḡ2rdgr2 þ ḡ3rdgr3�
¼ −iðZ̄dZ þ W̄dWÞ; ð44Þ

where ḡ ¼ g†γ0 and we have defined

Zr ¼ gr2; Wr ¼ gr3

Z̄r ¼ ḡ3r; W̄r ¼ ḡ3r: ð45Þ
These obey the constraints

Z̄Z ¼ 0; W̄W ¼ 0

Z̄W ¼ 0; W̄Z ¼ 0; ð46Þ
which are identical to (29), but, now, for massless particles
in AdS5.
Turning to strings in AdS5, we can use a spacelike one-

form of the form Trðγ3g−1dgÞ ∼ ηαβΛα
3dxβ=z along with

the timelike one-form in (33). The action is then of the same
form as in (21), with Vαβ as in (19), except for the fact that
Λα
μ is now an element of SOð4; 1Þ rather than just SOð3; 1Þ.

For null strings, one can again use the action (24),
with Λ ∈ SOð4; 1Þ.
One can also write down a twistor description for null

strings. Taking the spatial direction to be along γ1, and the
null vector as given in (44), the action is seen to be of the
form

S¼
Z

ðZ̄dZþ W̄dWÞ∧ ðW̄dW0 þ W̄0dW − Z̄dZ0 − Z̄0dZÞ:

ð47Þ

We have introduced two more twistors, corresponding to
Z0 ∼ gr1, W0 ∼ gr4. The constraints follow from ḡg ¼ γ0;
explicitly, we have

Z̄0W ¼ 1; Z̄W0 ¼ 1; ð48Þ

with all other products of the form (twistor twistor)
vanishing. (The constraints in (48) are complex, the
conjugates are obtained as well.) Given the large number
of variables and constraints, this is not an economical way
to describe null strings.
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In this section, in terms of the relevant isometry group
SOð4; 2Þ ∼ SUð2; 2Þ, we have obtained the actions for
massive and massless particles and for strings (including
the null string) in AdS5. In particular, the standard coadjoint
orbit action is shown to give, in a simple straightforward
way, the twistor description of massive particles obtained in
[2]. We also give the twistor version for massless particles
and null strings in AdS5.

IV. A CHERN-SIMONS APPROACH

A. Chern-Simons action and coadjoint orbits

We now come to the theme of the second part of this
article, namely, relating the coadjoint orbit actions to the
Chern-Simons theory and to the CS gravity. The basic idea
is that, generally for any field theory, the motion of a
classical configuration within the gauge group can be
described using a group element as the collective coor-
dinates. The quantization of the action for these will
generate the dynamics. If we use a Chern-Simons form
as the starting action, then, because of its topological
nature, one basically gets trivial dynamics except for a
full group representation. Thus the coadjoint orbit action
should be obtainable from the CS theory.
To see how this works out in detail, consider 2þ 1

dimensional spacetime of the form M × R, where the
spatial manifold M has the topology of a disc. We then
consider the action

S ¼ k
4π

Z
Tr

�
AdAþ 2

3
A3

�
þ SbðA;ψÞ: ð49Þ

Here, A belongs to the Lie algebra of some Lie group G, ψ
is a field which may be taken as representing degrees of
freedom on the boundary of the manifold. SbðA;ψÞ is the
action for ψ on ∂M ×R. The variation of the CS term in
(49) under a gauge transformation A → Ag ¼ g−1Agþ
g−1dg is given by

k
4π

Z
Tr

�
AgdAg þ 2

3
Ag3

�

¼ k
4π

Z
Tr

�
AdAþ 2

3
A3

�
− Γ½g� þ k

4π

I
b
TrðAdgg−1Þ;

ð50Þ
where

Γ½g� ¼ k
12π

Z
Trðdgg−1Þ3: ð51Þ

We take SbðA;ψÞ to have a compensating gauge anomaly;
i.e., we choose SbðA;ψÞ so that

SbðAg;ψgÞ ¼ SbðA;ψÞ −
k
4π

I
b
TrðAdgg−1Þ þ Γ½g�: ð52Þ

Thus the action (49) is invariant under all gauge trans-
formations of the fields, including the transformations g
which are not necessarily the identity on the boundary ∂M.
The nature of the field ψ and the action Sb are not important
for what follows; we may even replace Sb by an effective
action obtained by integrating out ψ ,

eiSeffðAÞ ¼
Z

½Dψ �eiSbðA;ψÞ: ð53Þ
The variation of the action (49) is

δS ¼ k
2π

Z
TrðδAFÞ þ k

4π

I
TrðδAAÞ þ δSbðA;ψÞ; ð54Þ

where F ¼ dAþ A2. We see that the equation of motion
gives F ¼ 0 in the bulk; we may extend this to the
boundary by continuity, with the total current
ðk=4πÞϵijAj þ ðδSb=δAiÞ ¼ 0 as a constraint on the boun-
dary. Since F ¼ 0, A is a pure gauge in the bulk.
Our aim now is to consider singular classical solutions

on the disc M of the form

Ai ¼ ai; daþ a2 ¼
XN
α¼1

qαδð2Þðx − xαÞ; A0 ¼ a0 ¼ 0:

ð55Þ
This corresponds to N magnetic vortices at the points x⃗α,
with charges qα. For simplicity, we will take qα to be in the
Cartan subalgebra of G, so that we may write
daþ a2 ¼ da. Thus we are considering Abelian magnetic
vortices. To discuss this case using the Chern-Simons
action, we consider the theory on ~M which is the disc
M with a number of points x⃗α removed; i.e.,
~M ¼ M − fx⃗αg. The boundary of ~M is thus the outer
boundary (or ∂M) at jx⃗j → ∞ and a set of circles Cα, one
around each point x⃗α. On ~M, since we have excised small
neighborhoods around x⃗α, we have da ¼ 0. The points x⃗α
do not lie on the boundary, and, hence, F ¼ 0 on the new
boundaries fCαg as well. Thus A is a pure gauge, say,
U−1dU, and the solution (55) is nonsingular on all of ~M.
Notice that even though ai ¼ U−1∂iU on ~M, U is singular
at x⃗α, since the field strength is nonvanishing at those
points; so they have to be excluded from the manifold for a
nonsingular description.
The general solution of the equations of motion is a pure

gauge on ~M. It may be viewed as the gauge transform of
(55) by an element g ∈ G and can be written as

Ai ¼ g−1aigþ g−1∂ig ¼ ðUgÞ−1∂iðUgÞ
A0 ¼ g−1∂0g ¼ ðUgÞ−1∂0ðUgÞ: ð56Þ

g is to be nonsingular everywhere on M. The value of g on
the outer boundary ∂M is compensated for by the boundary
action SbðA;ψÞ. But the values of g on the new boundaries,
i.e., at Cα, are edge degrees of freedom which will act as
moduli or collective coordinates for the solution (55). The
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dynamics of these moduli can be analyzed by evaluating
the action on the general solutions (56). The result is thus

S ¼ S½a� − k
4π

X
α

I
Cα

½Trðadgg−1Þ�x⃗α : ð57Þ

Since a has only spatial components, dgg−1 in (57) must be
∂0gg−1dt. Now consider shrinking the circles Cα to zero
radius. Since g is nonsingular at x⃗α, ∂0gg−1dt has a
limit which we denote as _h−1α hαdt ¼ −h−1α _hαdt, where
gðx⃗α; tÞ ¼ h−1α ∈ G; hα can be taken as a time-dependent
group element, one element for each vortex. FurtherH
Cα

a ¼ qα and the action for the moduli becomes

S ¼ k
4π

X
α

Z
dtTrðqαh−1α _hαÞ: ð58Þ

Writing q ¼ P
awata where ta are the diagonal generators

of the group, andwa are suitableweights of a representation,
we see that we have obtained the coadjoint orbit action.
A couple of remarks are in order at this point. We used

the boundary action SbðA;ψÞ so that we could start with a
gauge invariant theory onM ×R. This can be avoided if we
take M to be compact without boundary to begin with. For
example, we could consider vortices onM ¼ S2 rather than
the disc. The special solution (55) corresponds to a certain
total flux

P
αqα which is split into the vortices at the

locations x⃗α. (If one considers the sphere as embedded in
R3, this is equivalent to having a monopole of charge

P
αqα

at the center.) After excising the singular points, the
boundary is given by the union of Cα; there is no other
boundary to consider. However, since the total flux in
nonzero, we will need to consider different gauge potentials
on different coordinate patches with suitable transition
gauge transformations on the overlaps to get a nonsingular
description. There will also be Dirac quantization con-
ditions on the fluxes.
Also, so far we have only considered introducing

collective coordinates for the dynamics of the vortices
within the group. Generally, one could also consider
dynamics or motion of the particles where the locations
x⃗α evolve in time. For the Chern-Simons action, the
Hamiltonian is zero and the worldlines of the vortices
can be chosen freely. (To phrase this another way, one can
define a functional integral for the Chern-Simons action
with the insertion of Wilson lines corresponding to the
vortices; the corresponding Hamiltonian is then precisely
what is needed to evolve them along predetermined world-
lines. This was how it was done in [10].) The only
nontrivial dynamics are then the braiding of the worldlines.

B. Particles and dynamics in Chern-Simons gravity

Wewill nowconsider using thismethod for thePoincaré or
AdS group. Since the action is a topological one, there is no

difficulty in using it for noncompact groups such as these.We
will consider two different directions in what follows. First,
we simply consider the action as in (49) and take the gauge
group to be the Poincaré or AdS group of the appropriate
dimension. This will immediately give the coadjoint orbit
action for particles. Thus various actions for particle dynam-
ics considered in the previous sections are obtained for
suitable choices of the charges in the Cartan subalgebra.
The second, more natural, choice would be to consider

gravity in terms of the Chern-Simons actions. In any odd
spacetime dimension, one can write a parity-conserving
gravitational action which is the difference of two CS
actions. Generally, this does not lead to Einstein gravity,
except in 2þ 1 dimensions where it does indeed describe
Einstein gravity. The choice of the group is natural in this
approach. Our use of vortex solutions also ties in with the
well-known observation due to Einstein, Infeld, and
Hoffmann (EIH), where the field equations for gravity
determine the dynamics of particles, the latter being iden-
tified as singularities of the gravitational field [4]. In their
analysis, EIH used surface conditions around the singular-
ities of the field to obtain the dynamics, with the surface at
infinity giving the description of the center of mass motion
for the particles. More recently, there have been a number of
investigations of the dynamics of a fluid on the boundary of
AdS5 as determined by the bulk field equations [5].
Effectively, one considers diffemorphisms of special sol-
utions, in very much the same way as we consider gauge
transformations of the vortex solutions (55). There have also
been some recent studies of vortex-particle duality in 2þ 1
dimensions. In some sense, our use of the CS action is the
most elementary prototype of such considerations. In
particular, we may think of what follows as the CS gravity
analogue of the EIH work. Being a CS version of gravity,
there are no real dynamics, so we just end up getting
noninteracting particles, each described as a unitary irre-
ducible representation of the corresponding group.
We will first consider gravity in 2þ 1 dimensions, for

which the relevant group is SOð2; 1Þ × SOð2; 1Þ. We will
refer to these as SOð2; 1ÞL and SOð2; 1ÞR to distinguish
them. The generators of the Lie algebras are denoted byMa
for SOð2; 1ÞL and Na for SOð2; 1ÞR with the standard
commutation rules. A useful spinorial matrix representation
is given by

M0 ¼
�−t3 0

0 0

�
; M1 ¼

�
it2 0

0 0

�
; M2 ¼

�−it1 0

0 0

�

N0 ¼
�
0 0

0 −t3

�
; N1 ¼

�
0 0

0 −it2

�
; N2 ¼

�
0 0

0 it1

�
;

ð59Þ

where ta ¼ 1
2
σa and TrðMaMbÞ ¼ TrðNaNbÞ ¼ 1

2
ηab,

ηab ¼ diagð1;−1;−1Þ. Further, TrðMaNbÞ ¼ 0. We also
introduce the connections
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AL ¼ ð−iMaÞAa
L ¼ ð−iMaÞ

�
~ωa þ ea

l

�
;

AR ¼ ð−iNaÞAa
R ¼ ð−iNaÞ

�
~ωa −

ea

l

�
; ð60Þ

where we will identify ea as the frame fields and ~ωa is
related to the spin connection ωbc by

~ωa ¼ −
1

2
ηakϵkbcω

bc: ð61Þ

In (60) l is a constant with the dimension of length; it is
related to the cosmological constant. In terms of the
SOð2; 1Þ’s, the generators of Lorentz transformations are
La ¼ Ma þ Na and translations are generated by
Pa ¼ ðMa − NaÞ=l. The action for gravity is then given by

S ¼ −
k
4π

�Z
Tr

�
AdAþ 2

3
A3

�
L
−
Z

Tr

�
AdAþ 2

3
A3

�
R

�

¼ −
k
4πl

Z
d3x det e

�
R −

2

l2

�
þ total derivative; ð62Þ

where R is the Ricci scalar for the curvature corresponding
to ω. This is the Einstein-Hilbert action, with Newton’s
constant of gravity G being related to the level number of
the CS action by k ¼ ðl=4GÞ. The standard parity trans-
formation along with AL ↔ AR leaves the action invariant.
Starting with the first line of (62) with the Chern-Simons

actions, we can add a boundary action as in (49) and
consider vortices. The resulting particle action will be as in
(58), and reads

S ¼ −
k
4π

X
α

Z
dt½Trðqαh−1α _hαÞL − Trðqαh−1α _hαÞR�

¼ −
k
8π

Z
dt
X
α

½ðqLα þ qRαÞTrðM0 − N0Þg−1α _gαÞ

þ ðqLα − qRαÞTrðM0 þ N0Þg−1α _gαÞ�; ð63Þ
where

g ¼
�
hL 0

0 hR

�
: ð64Þ

This describes multiparticle dynamics in 2þ 1 dimensions
with the mass and spin of the particle related to the weights
qL, qR by

m ¼ k
8πl

ðqL þ qRÞ ¼
qR þ qL
32πG

s ¼ k
4
ðqL − qRÞ: ð65Þ

Here we are considering equal number of vortices for the
two groups. For unequal numbers of vortices, we will get
states which are parity-asymmetric.
A similar analysis can be done in higher dimensions.

Here we will consider the 5-dimensional case, starting with
the general situation before specializing to CS gravity. The
5D analogue of the action (49) is given by

S ¼ CSðAÞ þ Sb; ð66Þ

where CSðAÞ is the 5D Chern-Simons term,

CSðAÞ ¼ −
ik

24π2

Z
Tr

�
AF2 −

1

2
A3F þ 1

10
A5

�

¼ −
ik

24π2

Z
M×R

Tr
�
AdAdAþ 3

2
A3dAþ 3

5
A5

�
;

ð67Þ

and Sb is the boundary action (on ∂M ×R) needed to
cancel the anomaly from the CS term. The bulk equation of
motion is given by FF ¼ 0. This is satisfied by choosing A
as a pure gauge (although this may not be the most general
solution). Since the spatial manifold is four-dimensional,
the natural choice for a singular solution is to take the
pointlike limit of instantons. The general solution (with
F ¼ 0) is thus given by A ¼ g−1agþ g−1dg where the
potential a is a singular solution (pointlike configuration)
with nonzero instanton number. The instanton density is
concentrated at a set of points fx⃗αg, so that A is a pure
gauge in all of ~M ≡M − fx⃗αg. We excise small balls
around each singularity to define ~M. The boundary of the
excised ball around x⃗α is Cα which is topologically a three-
sphere. Upon using the general solution for A, the action
becomes

S ¼ CSðaÞ þ Sbðag;ψgÞ − ik
240π2

Z
Trðdgg−1Þ5

þ ik
48π2

I
∂M

Tr

�
dgg−1ðadaþ daaþ a3Þ þ aðdgg−1Þ3 − 1

2
dgg−1adgg−1a

�

−
ik

48π2
X
α

I
Cα

Tr

�
dgg−1ðadaþ daaþ a3Þ þ aðdgg−1Þ3 − 1

2
dgg−1adgg−1a

�
: ð68Þ
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The boundary action will cancel the integral around ∂M as
well as the term proportional to Trðdgg−1Þ5. Now consider
evaluating CSðaÞ. Since a is a pure gauge in ~M, we
have da ¼ −a2, so that CSðaÞ ¼ −ðik=240π2Þ R Trða5Þ.
The special solution a is at a fixed time t, with a0 ¼ 0, so
a5 ¼ 0 and we get CSðaÞ ¼ 0. The action for the moduli
thus reduces to

S ¼ −
ik

48π2
X
α

I
Cα

Tr

�
−dgg−1a3 þ aðdgg−1Þ3

−
1

2
dgg−1adgg−1a

�
: ð69Þ

To simplify further, we note that the instanton number is
given by

ν ¼ −
1

8π2

Z
TrðFFÞ ¼ −

1

8π2

I
Tr
�
adaþ 2

3
a3
�

¼ 1

24π2

I
Trða3Þ; ð70Þ

where we have used the fact that a is a pure gauge on ~M
including onCα. Wewill consider pointlike instantons in an
SUð2Þ subgroup of the gauge groupG. Further we consider
the standard embedding of SUð2Þ in G and take
a ¼ U−1dU, with

U ¼ ϕ0 þ iσiϕi; ðϕ0Þ2 þ ðϕiϕiÞ ¼ 1: ð71Þ

In this case, we can work out a3 as

a3 ¼ t1ϵμναβϕμdϕνdϕαdϕβ; t1 ¼
�
1 0

0 0

�
: ð72Þ

The winding number for the S3 → S3 map, corresponding
in our case to the map U∶Cα → SUð2Þ, is given by

Q½u� ¼ 1

12π2

Z
ϵμναβϕ

μdϕνdϕαdϕβ: ð73Þ

We can now start simplifying the terms in (69). Using
(72), (73), the first term of (69) can now be written as

ik
48π2

X
α

I
Cα

Trðdgg−1a3Þ¼ ik
48π2

X
α

Z
dt
I
Cα

Trð∂0gg−1a3Þ

¼ ik
4

X
α

Z
dtTrðt1∂0gg−1ÞQα:

ð74Þ

[A similar result is obtained for other SUð2Þ subgroups of
G as well.] Now consider the next term in (69), namely,H
Tr½aðdgg−1Þ3�. Separating out the time-derivative part, we

are considering terms of the form

I
Tr½aðdgg−1Þ2 − dgg−1adgg−1 þ ðdgg−1Þ2a�∂0gg−1dt;

where the d’s denote differentiation with respect to the
angular coordinates of the three-sphere surrounding x⃗α.
These derivatives must go to zero as we shrink the spheres
to zero radius to ensure that g is nonsingular. Thus the
contribution of this term is zero. A similar argument can be
made for the last term in (69). The action for the moduli is
thus

S ¼ ik
2

X
α

I
Cα

½QαTrðt1∂0gαg−1α Þ�: ð75Þ

We now apply this line of reasoning to the case of
SOð4; 2Þ ∼ SUð2; 2Þ which is appropriate for CS gravity
with a cosmological constant in 5 dimensions. The relation
between the gauge fields and the frame fields and spin
connection is given by

AL ¼ −i
�
1

2
ωabΣab þ

1

2
eaΓa

�
;

AR ¼ −i
�
1

2
ωabΣab −

1

2
eaΓa

�
; ð76Þ

where Σab generate the SOð4; 1Þ group and Γa correspond
to the coset directions. The explicit form of these matrices
are as given in (11), (30), (36). The action is given by

S ¼ CSðALÞ þ SbL − fCSðARÞ þ SbRg: ð77Þ

Consider first CSðALÞ. There are two SUð2Þ subgroups
generated by ið1

2
ϵijkΓiΓj ∓ Γ5ΓkÞ=4, corresponding to the

upper and lower 2 × 2 block diagonal matrices in the
chosen representation. We consider pointlike instantons in
these two SUð2Þ subgroups. We can then adapt (74) to the
present case; the action for the moduli is then

SL¼
ik
4

X
α

Z
dtTr

�
1þΓ0

2
∂0gg−1Q

ð1Þ
α þ1−Γ0

2
∂0gg−1Q

ð2Þ
α

�

¼−
ik
8

X
α

ðQð1Þ
α −Qð2Þ

α Þ
Z

dtTrðΓ0h−1α _hαÞ: ð78Þ

We have made the replacement g → h−1 to agree with the
notation of (58) and (61). We can parametrize the group
element as in (31), namely,

hL ¼ S−1g ¼ S−1
� ffiffiffi

z
p

i ~X=
ffiffiffi
z

p

0 1=
ffiffiffi
z

p
�
Λ; ð79Þ

where S is the matrix relating Γ’s to γ’s. The action now
reduces to
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SL ¼
X
α

Z
k
4
ðQð1Þ

α −Qð2Þ
α ÞημνΛμ

0

dxν

z
: ð80Þ

A similar result holds for the CSðARÞ part. In this case, we
have

hR ¼ S−1g0 ¼ S−1
�

1=
ffiffiffi
z

p
0

−iX=
ffiffiffi
z

p ffiffiffi
z

p
�
Λ;

X ¼ x0 þ σ · x⃗: ð81Þ

The action for this part is then

SR ¼ −
X
α

Z
k
4
ðQð1Þ

α −Qð2Þ
α ÞημνΛμ

0

dxν

z
: ð82Þ

The total action, given by SL − SR is thus of the form (33),
as is appropriate for particles in AdS5, with the identi-
fication

mR ¼ k
2
ðQð1Þ

α −Qð2Þ
α Þ: ð83Þ

This result does not include spin. For spin, we will need to
consider multi-instantons taking account of the placement
of the SUð2Þ’s within the larger group. A simple way to see
this is to consider merging two of the points x⃗α, say x⃗1 and
x⃗2, into a single one. This is equivalent to setting h1 ¼ h2.
However, there are different placements of the SUð2Þ
subgroups in SUð2; 2Þ, related by Weyl group transforma-
tions. In particular, we have

T−1
1 Γ0T1 ¼ iΓ1Γ2; T−1

2 Γ0T2 ¼ iΓ3Γ5; ð84Þ

where

T1 ¼

2
66664

1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 1

3
77775; T2 ¼

2
66664

1 0 0 0

0 0 0 1

0 −1 0 0

0 0 −1 0

3
77775:

ð85Þ

Thus if we consider merging the two points with the
identification h1 ¼ h2 and að2Þ ¼ T−1

1 að1ÞT1, we get the
action

S ¼ −
ik
8

Z
dt½ðQð1Þ

1 −Qð2Þ
1 ÞTrðΓ0h−11 _h1Þ

þ ðQð1Þ
2 −Qð2Þ

2 ÞTrðiΓ1Γ2h−11 _h1Þ� þ � � � : ð86Þ
By considering a number of such mergers, with different
values ofQð1Þ andQð2Þ, we can get a general combination of
TrðΓ0h−11 _h1Þ, TrðiΓ1Γ2h−11 _h1Þ, and TrðiΓ3Γ5h−11 _h1Þ, thus
giving a general action for particle dynamics. While this
does show the role of the choice of the SUð2Þ subgroups,
there should be a more satisfactory way of obtaining the
general coadjoint orbit action, following directly from the
multi-instanton solutions. This is currently being explored
and will be deferred to a future publication.
To summarize the results of this section, we considered

the dynamics which follows from the use of singular
solutions of the CS theory, where a gauge transformation
furnishes themoduli for the singularities. This is very similar
to the strategy of Einstein, Infeld, and Hoffmann, who
derived multiparticle dynamics from the general theory of
relativity, treating particles as singularities of the gravita-
tional field. We considered the 3D CS theory. We also
applied the same strategy to CS gravity in 3 and 5
dimensions. Clearly there are still many points to be clarified
and elaborated on such as the use of more general solutions
including various types of gravitational instantons as well as
solutions which can lead to interacting particles in five
dimensions, issues related to the orientations of various
subgroups, as well as the inclusion of nontopological terms,
i.e., going beyond the CS action. The connection to fluid
dynamics, alluded to earlier, is another interesting avenue to
explore. These issues will be taken up in future.
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