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We consider actions for particles and strings, including twistorial descriptions on 4D Minkowski and
AdSs spacetimes from the point of view of coadjoint orbits for the isometry group. We also consider the
collective coordinate dynamics of singular solutions in Chern-Simons (CS) theories and CS theories of
gravity. This is a generalization of the work of Einstein, Infeld, and Hoffmann and also has potential points

of contact with fluid-gravity correspondence.
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I. INTRODUCTION

The first part of this article is about exploring inter-
connections between somewhat different formulations of
the actions for point particles and strings. Point particles
can be identified as unitary representations of the Poincaré
group, or, more generally, of the appropriate isometry
group. It has been rather well known for a long time that
one can use a coadjoint orbit action for describing such
representations, and, in fact, it is the basic paradigm for the
whole idea of geometric quantization [1]. Actions in terms
of the spacetime coordinates, in terms of twistor variables,
etc. have also been used. More recently, there has been
some work on particle dynamics on AdS spacetimes,
including a twistor description for massive particles [2].
We analyze many of these actions from a single point of
view, namely, in terms of the coadjoint orbit action for the
isometry group.

In the second part of this article, we consider singular
vortex or instanton solutions in Chern-Simons (CS) theo-
ries, including the special important case of CS theories of
gravity [3]. Removing the locations of the singularities
from the manifold under consideration, one can obtain a
nonsingular description. The CS action for such solutions is
shown to reduce to an appropriate coadjoint orbit action,
thus recovering the results of the earlier sections from a
different point of view. Conceptually, this is similar to the
work of Einstein, Infeld, and Hoffmann (EIH), who
considered point particles as singularities of the gravita-
tional field and then showed that the multiparticle dynamics
is determined by the field equations of general relativity [4].
Our approach is similar in spirit and, in fact, may be
considered as the EIH idea applied to CS gravity. Our
analysis also falls within the circle of ideas related to recent
work on fluid-gravity correspondence [5]. Here, one con-
siders a general diffeomorphism of special solutions, and
then, viewing the diffeomorphism as providing collective
degrees of freedom, one obtains the evolution equations for
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these collective modes, which are seen to be essentially the
equations of fluid dynamics. Since one can define fluid
dynamics in terms of Poincaré representations as well [6,7],
we expect that there will be further linkages of our work to
the fluid-gravity correspondence.

This paper is organized as follows. In Sec. II, we will
consider the actions for massive and massless particles, the
Nambu-Goto string and the null string in 4D Minkowski
space in terms of the Poincaré group. We will relate our
results to the actions which have been suggested for these
cases in different contexts in the literature. In Sec. III, we
will do a similar analysis for the AdSs spacetime recov-
ering, among other things, the twistor description of
massive particles obtained in [2]. We will also consider
the twistor version for massless particles and null strings in
AdSs. In Sec. IV, we will consider the Chern-Simons theory
for an arbitrary gauge group G to show how singular
solutions can lead to the coadjoint orbit action. A similar
analysis for Chern-Simons gravity in 3 and 5 dimensions
will also be discussed.

II. POINCARE ORBITS

Free particles and free strings can be described in terms
of representations of the Poincaré group. For particles, the
action is given by the integral of the symplectic potential on
a coadjoint orbit of the spacetime isometry group. So we
start with a statement of this method. Let g be a matrix
representing a general element of a Lie group G (in some
particular matrix representation). The symplectic potential
on an orbit is given by

A= i w,Tr(1,g7dg), (1)

where 7, give a basis of the diagonal generators of the Lie
algebra (the Cartan subalgebra) and w, are a set of numbers
characterizing the chosen orbit. We take 7, to be normalized
as Tr(t,1,) = 84p- The action for free particle dynamics can
then be taken to be
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_ Ry . d
S = sza/dTTr(tag '9), gzd—i}, (2)

where the integral is along some path g(z) in the group
parametrized by 7. Upon quantization, the theory defined
by (2) leads to a Hilbert space which carries a unitary
irreducible representation (UIR) of G, this UIR being
specified by the highest weight (w;,w,,...,w,). Here, r
is the rank of the group, which is also the range of
summation for the subscript a. The canonical one-form
associated to (2) is evidently A. Under transformations
g = gexp(—it,p*), we find A - A+df, f=> w,p"
Thus the symplectic two-form Q = d.A is invariant under
the transformation g — gexp(—it,¢®), and, hence, Q is
defined on G/H¢, Hc being the Cartan subgroup. Further,
the transformation A — A + df shows that in the quantum
theory, where wave functions transform as 'S, there can be
quantization conditions on w,. These will turn out to be the
required conditions for (wy,w,,...,w,) to qualify as the
highest weight of a UIR. The existence of such conditions
will, of course, depend on whether the corresponding
directions in H¢ are compact or not.

We will now apply this, taking G to be the Poincaré
group in 4-dimensional Minkowski space and in AdSs, to
obtain point particle and string actions. We will also relate
this to the twistor actions for particles and strings.

For particle dynamics in 4-dimensional Minkowski
space, it is simplest to consider the Poincaré group as a
contraction of the de Sitter group. We can use the standard
spinorial representation with the generators

i
J/w = Z[Y}u 71/]’ (3)

where y,, are the 4 x 4 Dirac matrices and / is a parameter
with the dimension of length. The limit / — oo is the
contraction giving the Poincaré algebra with commuting
translation generators P,. For a massive point particle, we
need an orbit that corresponds to a timelike momentum
vector, so we can take this as f; ~y,. There are three
generators J,, J»3, J3; which commute with y,. We can
take 7, as one of these, say, y;7,. The symplectic potential
for a massive particle in 4D Minkowski spacetime is thus

.ml _ s _
A= =i~ Tr(rog™'dg) + 5 Tr(r1r29 'dg)} - (4

>

A general element of the de Sitter group can be para-
metrized as

u
g =exp (l%) A, (5)

where A denotes an element of the Lorentz group, of the
form A = exp(iJ, 0"). Using this parametrization, the
symplectic potential (4) reduces to
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A= pyde' 45 Tel(pi A~ dA), (6)

where p, = mA%yn,, and A% is the vector representation
of the Lorentz group defined by Ayﬁ/\‘] = 7\’ Notice
that by construction p?> = m?. A given in (6) is the standard
and rather well-known form used for describing point
particles with mass and spin. The second term in A
describes the spin degrees of freedom. A variant of this
formalism is to consider p, as four independent variables to
begin with, i.e., not given in terms of A%y, and then impose
the condition p> = m? as a constraint. Further points about
the dynamics, including coupling to external fields, the
emergence of the wave equation in the quantum theory,
magnetic moment and spin-orbit interactions, extensions to
fluids, etc. can be found in [7] as well as in earlier
references cited there.

For a massless point particle, we need a null orbit. This
can be obtained by the choice #; ~yy + y3 and t, ~ y175.
Thus

pl - s -
A= —lZTf[(J’0+J’3)g ld9]+§Tr(71729 ldg)

-0

N
= (A + NS+ S Te(rpAT AN, (7)

where p is a scale parameter with the dimensions of energy.
Notice that the momentum p,, = p1,,(A% + A%3) satisfies
p?* = 0. Infinitesimal Lorentz transformations acting on the
left of A are given by

A= (1430l A ®)

while the vectors transform as p, — p, + w,, p*. The
canonical generator of this transformation given by the
symplectic form in (7) is

s
My = —(XqPp = XpPa) + gTr(}’lhA_l Vo 7pIN).  (9)

The Pauli-Lyubanski spin vector can now be calculated as
(Z 1 uvap 7
w =-5e M, ps = sph. (10)

This identifies s as the helicity of the massless particle.

It is also useful to obtain the twistor action for a massless
particle from this description. For simplicity, we will
consider the spinless case first; in this case, the symplectic
form is just the first term of A in (7). We can reduce this
further. Since y5 is invariant under Lorentz transformations,
it is possible to consider the projections %(1 + iys) sepa-
rately. We then take P, =1 (1 —iys)y,/l. This will give
P? = 0; for a massless particle this is acceptable. We
choose a representation of y-matrices as
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0 1 0 —o
y°:<1 0)’ yi:(a,- 0 )
/10
y5:—l<0 _1). (11)

(Our choice of an antihermitian y5 is convenient for later
discussions.) The parametrization of the group element
may be taken as

_ A x=Xtrox 12
g <iX 1) ] (12)

The symplectic form is then obtained as

A= =2 ulT(yo + 73)g™' dg. (13)

We have changed the normalization, absorbing a factor of 2
into the parameter u. The limit / — oo is also not needed in
this expression. For the group element g, we also have
970 = 70g~". Using this relation and the representation
(11), (12), we find

A= ﬂl(AL>A2dXAA (AL)AZ’ (14)

where A, A = 1, 2. We can now define 7y = Vul(AL) i
w* = —iX*r;. Further, let

Z:(“’A>, 7 =27 =@, (15)

i

The action, which is the integral of .4, can now be written as
S = /A = i/(y‘rAde +@tdry) = i/ diZ7Z. (16)

From their definition, Z, Z are seen to obey the condition
ZZ = 0. The strategy now is to regard all four components
of Z,, s = 1,2, 3, 4, to be independent a priori and impose
the condition ZZ = 0 as a constraint on the phase space
variables for the action (16). This will eliminate the
arbitrary parameter u/ and one of the phases in Z.
Classically, the solution of the constraint will lead us back
to the expression in terms of the group elements. Quantum
theoretically, Z is the canonically conjugate variable and
the constraint generates the transformation Z — 1Z,
A € C — {0}, so that we get a reduction of the phase space
to the projective twistor space. Particles with nonzero spin
can also be described in the same formalism by relaxing the
constraint to some nonzero constant value for ZZ.

We now turn to actions for strings which can be viewed
as tracing out a two-dimensional surface in spacetime.
Since we can regard Minkowski spacetime as the Poincaré
group modulo the Lorentz group, we can view strings as
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maps of a two-dimensional world sheet into the Poincaré
group subject to certain conditions. The surface area may
be regarded as the (wedge) product of two one-forms, one
of them being timelike and the other spacelike. With no
additional spin variables, the timelike one-form can be
taken as the first term of A in (4),

l
A= {—imTTr(yog_ldg)} = mn, Nodx®.  (17)

-

The spacelike one can be chosen to be along any one of the
other directions; we make the choice

. )
B= {—iijr(hg‘ldQ)} = i, N'3dx®. (18)
[—0c0

The action, which is the integral of the area element or the
product of these two one-forms is then

S = / Vopdx® A dxP

V{l/)’ = Mz”ﬂ(zﬂy/}(AléAg - ASAI;)’ (19)
with M? = mim /2. V,; obeys the constraints

VaﬂV"’/’ = —2M*, etvab ViV =0. (20)
As in the case of point particles, it is possible to treat V 4 as
a priori independent variables, enforcing the constraints via
Lagrange multipliers. We can pull back the two-form in
(19) to the world sheet to write the action as an integral over
the world sheet coordinates &', &. With a Lagrange
multiplier for the first of the constraints in (20), this leads
to the action

S = / Vg0, X0, xPdes A dgb
1
-3 / dEJ=G[V oV + 2M*], (1)

where g, is the world sheet metric. The equation of motion
for /=g gives the constraint on V ;. Eliminating them by
their equations of motion leads to the Nambu-Goto action

S =-2M / d*é\/—detp, (22)

where p,, = n(,ﬁaax"a,,xﬁ is the induced metric on the
world sheet.

For a null string, we need one lightlike direction and a
spacelike direction. So we make the choice
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i

A= —EulTr[(yo + J’3)9_1d9] = ﬂlr]ﬂa(A”O + Aﬂ3)dxa
i. ~

C= —5m VulTe(yig7 dg) = i \/ul N dx®. (23)

The action is proportional to [ A A C and has the form

S = M2/ Vopdx® A dx?
Vap = Mualupl (Mo + A3)AY — (Ao + A3)A ], (24)

where M? includes factors of 7z and ul. V.5 now obeys the
constraints

VsV?P =0, PV Vs = 0. (25)

This is the form of the action obtained in [8].

The null string can also be described using twistors, just
like the massless particle. We have already written A as
iZdZ. For C, using the parametrization (12),

1 5 .
C= —om \//ﬁ[(AZ)AZdXAA(AL>A1 + (A}) a1 dX*(AL) 1)

- —% (ZdW + WdZ). (26)

where we have defined another set of twistor variables

- (=iXM (AL
W=m R
( (AL) iy > .
W= ﬁl((AL)Zl i(AL)leAA)- (27)

The action for the null string may then be taken as
S—i / (ZdZ) A (ZdW + WdZ), (28)

From the definitions, we have the constraints

WW =0
WZ =0. (29)

77 =0,
ZW =0,

As before the strategy is to take variables Z, W to be
independent a priori, and then impose the constraints (29)
on the phase space corresponding to the action (28). This
twistor version of the null string is then identical to what
was obtained in [9].

To recapitulate the results of this section briefly: the
action for massive and massless particles, the Nambu-Goto
string, the Schild null string are all described in terms of the
Poincaré group. The different cases have been separately
discussed in the literature before, but they are brought
together here to a single point of view. The purpose is
primarily to set the stage for the rest of this article.
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III. PARTICLE DYNAMICS IN AdS; SPACETIME

We now turn to particle dynamics in AdSs spacetime,
which may be considered as SO(4,2)/SO(4,1). The
SO(4,1) generators are given by

s i

w=7 uv=0,12.35 (30

(7/;47/11 - ylzyu) ’

The remaining generators in the orthogonal complement
are y, themselves. Defining z = %/, ¢s” is diagonal with
eigenvalues /z, 1/4/z. A convenient parametrization of a
group element g € SO(4,2) is

where A € SO(4,1) is generated by X, in (30) and
X =x"—&-% The Cartan-Killing metric on the coset

space is given by

R2
ds? = =" Te(y,g™ dg)Tr(r,97" dg)
2 M

Z2

(32)

This is one of the usual forms of the metric on AdSs. (Here
R is a scale parameter.)

For describing massive particles on this spacetime, we
can, as usual, use

v

R d
A= =i Trlyog™ dg) = mRy, N -, (33)

where in the second equality we used (31). This identifies
the momentum as p, = ,,A¥/z, which is seen to obey the
mass-shell condition

mR)?
W pup, = (2—2) (34)

This agrees with the constraint discussed in [2]. With the
inclusion of spin, the symplectic potential is to be taken as

mR B N _
A = —i—=Tr(rog™'dg) + ElTr(Mzg 'dg)

S
+ 32Tr(r3ysg‘1d9)- (35)

Since the isotropy group for the orbit is SO(4), which is of
rank 2, we need two spin labels s; and s,.

We now consider another representation of the Dirac
matrices, given by
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1 0 0 O;
0 -1 —5;, 0
r——'(o 1) (36)
5 = —1 1 0 .

These are related to the y-matrices in (11) by a similarity
transformation, I' = SyS~!, with

so (0 1) o

Correspondingly, define SgS~! = N. The group element N
obeys N'TyN = I'y. With I’ as given in (36), we see that N
can be taken as an element of SU(2,2). The symplectic
potential for the spinless case becomes

R
A= —imTTr(FON‘ldN)

R
= —imTTr[(l +T,)N-'dN|

= —imRN},([y),,dN,

= —imR[N},dN,, — N'-dN;], (38)

where we have used the fact that N~'dN is traceless. The
indices a, b take values 1,2, while r, s take values 1 to 4,

with b =1, 2 corresponding to r, s = 3, 4. Defining the
2 x 2 matrices

éha =V ZmRNhuv

we can write

{pa = V2mRN; (39)

A= - LTe(gtae - glag). (40)

The constraint on & ¢ is given by N'T,N =T, and
translates to

£ =10 = 2mR)1. (41)

This is a 2 x 2 matrix equation. We can regard £ and ¢ as
a priori independent variables with the symplectic potential
given by A in (40) and impose (41) as constraints on the
phase space. We now introduce two linear combinations of
£ and ¢ as

U-iw W — iU

V2 V2 o
The action (which is the integral of A) and the constraint
become

= = “2)

1 : .
S=5 / deTr(WHU — UTW),

U'W - WU = i(2mR)1. (43)
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We see that we have recovered the twistor description of the
massive particle in AdSs obtained in [2]. (Our W corre-

sponds to the W used in that paper.)

It is also useful to consider the massless particle in AdSs.
For this, it is easier to go back to the first representation of
the Dirac matrices and use the group element g. Then, up to
an overall scale factor which will be irrelevant, we can take

A= =STrl(yo +73)g7dg

i _
=- ETr[(l + 7370)9dy]

= _i[g2rdgr2 + §3rdgr3]
= —i(ZdZ + WdW), (44)

where § = g'y, and we have defined

Z, = gp, W, =9s

Z, = G3rs W, = s (45)
These obey the constraints
7Z =0, WW =0
ZW =0, WZ =0, (46)

which are identical to (29), but, now, for massless particles
in AdSs.

Turning to strings in AdS5, we can use a spacelike one-
form of the form Tr(y3g~'dg) ~ n,sA%3dx” /z along with
the timelike one-form in (33). The action is then of the same
form as in (21), with V4 as in (19), except for the fact that
A{ is now an element of SO(4, 1) rather than just SO(3, 1).
For null strings, one can again use the action (24),
with A € SO(4,1).

One can also write down a twistor description for null
strings. Taking the spatial direction to be along y;, and the
null vector as given in (44), the action is seen to be of the
form

S= / (ZdZ +WdW) A (WdW' +W'dW — ZdZ' — Z'dZ).
(47)

We have introduced two more twistors, corresponding to
7'~ g,, W' ~ g.,. The constraints follow from gg = y;
explicitly, we have

Z'W =1, W' =1, (48)
with all other products of the form (twistor twistor)
vanishing. (The constraints in (48) are complex, the
conjugates are obtained as well.) Given the large number

of variables and constraints, this is not an economical way
to describe null strings.
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In this section, in terms of the relevant isometry group
SO(4.2) ~SU(2,2), we have obtained the actions for
massive and massless particles and for strings (including
the null string) in AdSs. In particular, the standard coadjoint
orbit action is shown to give, in a simple straightforward
way, the twistor description of massive particles obtained in
[2]. We also give the twistor version for massless particles
and null strings in AdSs.

IV. A CHERN-SIMONS APPROACH

A. Chern-Simons action and coadjoint orbits

We now come to the theme of the second part of this
article, namely, relating the coadjoint orbit actions to the
Chern-Simons theory and to the CS gravity. The basic idea
is that, generally for any field theory, the motion of a
classical configuration within the gauge group can be
described using a group element as the collective coor-
dinates. The quantization of the action for these will
generate the dynamics. If we use a Chern-Simons form
as the starting action, then, because of its topological
nature, one basically gets trivial dynamics except for a
full group representation. Thus the coadjoint orbit action
should be obtainable from the CS theory.

To see how this works out in detail, consider 2 + 1
dimensional spacetime of the form M x R, where the
spatial manifold M has the topology of a disc. We then
consider the action

k 2,
S—E/Tr<AdA+§A ) +Sp(Aw).  (49)

Here, A belongs to the Lie algebra of some Lie group G,
is a field which may be taken as representing degrees of
freedom on the boundary of the manifold. S, (A, ) is the
action for y on OM x R. The variation of the CS term in
(49) under a gauge transformation A — A9 = g~ 'Ag +
g~ 'dg is given by

k 2
— I JA9 + = A9
4ﬂ/Tr(AdA +34 )
k 2 k
= — [ Tr( AdA +43 ) —Tg) + — ¢ Tr(Adgg™
4ﬂ/ r<d +3 > [g]+4ﬂ]£ r(Adgg™"),
(50)
where
Il =15 [ Trldag™) (s1)
127

We take S, (A, y) to have a compensating gauge anomaly;
i.e., we choose S,(A,y) so that

Sy(A%.9) = Sy(Aw) = 1 § TrlAdgg™) +Tlgl. (52
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Thus the action (49) is invariant under all gauge trans-
formations of the fields, including the transformations g
which are not necessarily the identity on the boundary OM.
The nature of the field y and the action S, are not important
for what follows; we may even replace S, by an effective
action obtained by integrating out vy,

eiSe['['<A) — /[Dw}eisb(AJ//). (53)

The variation of the action (49) is

58 = % / Tr(SAF) + % ja{ Tr(8AA) + 5S,(A.w), (54)

where F = dA + A%. We see that the equation of motion
gives F =0 in the bulk; we may extend this to the
boundary by continuity, with the total current
(k/4m)e"A; + (8S),/5A;) = 0 as a constraint on the boun-
dary. Since F =0, A is a pure gauge in the bulk.

Our aim now is to consider singular classical solutions
on the disc M of the form

N
A =a;, da+a*= ané(z)(x —Xx,), Ag=ay=0.

7 (55)

This corresponds to N magnetic vortices at the points X,
with charges ¢,. For simplicity, we will take g, to be in the
Cartan subalgebra of G, so that we may write
da + a* = da. Thus we are considering Abelian magnetic
vortices. To discuss this case using the Chern-Simons
action, we consider the theory on M which is the disc
M with a number of points X, removed; i.e.,
M =M - {x,}. The boundary of M is thus the outer
boundary (or 9M) at |X| — oo and a set of circles C,, one
around each point x,,. On M, since we have excised small
neighborhoods around X, we have da = 0. The points X,
do not lie on the boundary, and, hence, F = 0 on the new
boundaries {C,} as well. Thus A is a pure gauge, say,
U~'dU, and the solution (55) is nonsingular on all of M.
Notice that even though a; = U~'0,U on M, Uis singular
at X, since the field strength is nonvanishing at those
points; so they have to be excluded from the manifold for a
nonsingular description.

The general solution of the equations of motion is a pure
gauge on M. It may be viewed as the gauge transform of
(55) by an element g € G and can be written as

A =g lag+g'0,9= (Ug)™'0,(Ug)
Ag = g'0yg = (Ug)™'0y(Uyg). (56)

g is to be nonsingular everywhere on M. The value of g on
the outer boundary OM is compensated for by the boundary
action S, (A, y). But the values of g on the new boundaries,
ie., at C,, are edge degrees of freedom which will act as
moduli or collective coordinates for the solution (55). The
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dynamics of these moduli can be analyzed by evaluating
the action on the general solutions (56). The result is thus

s=Sla)= -3 § (Mrladgg ). (57)

Since a has only spatial components, dgg~" in (57) must be
dpgg~'dt. Now consider shrinking the circles C, to zero
radius. Since ¢ is nonsingular at X,, dygg~'dt has a
limit which we denote as h;lhadt: —h;lhadt, where
g(X,.1t) = hy' € G; h, can be taken as a time-dependent
group element, one element for each vortex. Further
fca a = ¢q, and the action for the moduli becomes

S = %Z; / diTr(q h; hy). (58)

Writing ¢ = > ,w,t, where 7, are the diagonal generators
of the group, and w, are suitable weights of a representation,
we see that we have obtained the coadjoint orbit action.

A couple of remarks are in order at this point. We used
the boundary action Sj,(A, ) so that we could start with a
gauge invariant theory on M x R. This can be avoided if we
take M to be compact without boundary to begin with. For
example, we could consider vortices on M = S? rather than
the disc. The special solution (55) corresponds to a certain
total flux >_,q, which is split into the vortices at the
locations x,. (If one considers the sphere as embedded in
R3, this is equivalent to having a monopole of charge "¢,
at the center.) After excising the singular points, the
boundary is given by the union of C,; there is no other
boundary to consider. However, since the total flux in
nonzero, we will need to consider different gauge potentials
on different coordinate patches with suitable transition
gauge transformations on the overlaps to get a nonsingular
description. There will also be Dirac quantization con-
ditions on the fluxes.

Also, so far we have only considered introducing
collective coordinates for the dynamics of the vortices
within the group. Generally, one could also consider
dynamics or motion of the particles where the locations
X, evolve in time. For the Chern-Simons action, the
Hamiltonian is zero and the worldlines of the vortices
can be chosen freely. (To phrase this another way, one can
define a functional integral for the Chern-Simons action
with the insertion of Wilson lines corresponding to the
vortices; the corresponding Hamiltonian is then precisely
what is needed to evolve them along predetermined world-
lines. This was how it was done in [10].) The only
nontrivial dynamics are then the braiding of the worldlines.

B. Particles and dynamics in Chern-Simons gravity

We will now consider using this method for the Poincaré or
AdS group. Since the action is a topological one, there is no

PHYSICAL REVIEW D 96, 065019 (2017)

difficulty in using it for noncompact groups such as these. We
will consider two different directions in what follows. First,
we simply consider the action as in (49) and take the gauge
group to be the Poincaré or AdS group of the appropriate
dimension. This will immediately give the coadjoint orbit
action for particles. Thus various actions for particle dynam-
ics considered in the previous sections are obtained for
suitable choices of the charges in the Cartan subalgebra.

The second, more natural, choice would be to consider
gravity in terms of the Chern-Simons actions. In any odd
spacetime dimension, one can write a parity-conserving
gravitational action which is the difference of two CS
actions. Generally, this does not lead to Einstein gravity,
except in 2 + 1 dimensions where it does indeed describe
Einstein gravity. The choice of the group is natural in this
approach. Our use of vortex solutions also ties in with the
well-known observation due to Einstein, Infeld, and
Hoffmann (EIH), where the field equations for gravity
determine the dynamics of particles, the latter being iden-
tified as singularities of the gravitational field [4]. In their
analysis, EIH used surface conditions around the singular-
ities of the field to obtain the dynamics, with the surface at
infinity giving the description of the center of mass motion
for the particles. More recently, there have been a number of
investigations of the dynamics of a fluid on the boundary of
AdSs as determined by the bulk field equations [5].
Effectively, one considers diffemorphisms of special sol-
utions, in very much the same way as we consider gauge
transformations of the vortex solutions (55). There have also
been some recent studies of vortex-particle duality in 2 + 1
dimensions. In some sense, our use of the CS action is the
most elementary prototype of such considerations. In
particular, we may think of what follows as the CS gravity
analogue of the EIH work. Being a CS version of gravity,
there are no real dynamics, so we just end up getting
noninteracting particles, each described as a unitary irre-
ducible representation of the corresponding group.

We will first consider gravity in 2 + 1 dimensions, for
which the relevant group is SO(2,1) x SO(2,1). We will
refer to these as SO(2,1), and SO(2,1); to distinguish
them. The generators of the Lie algebras are denoted by M,,
for SO(2,1); and N, for SO(2,1); with the standard
commutation rules. A useful spinorial matrix representation
is given by

15 0 it, 0 —it; 0
MO = s Ml = s M2 =
0 O 0 0 0 O
0 O 0 0 0 0
NO = ’ Nl = . ’ N2 = . ’
0 —t3 0 —ltz 0 ltl
(59)
where 1, =30, and Tr(M,M,)=Tr(N,N}) = 3.,

Nay = diag(1,—1,—1). Further, Tr(M,N,) = 0. We also
introduce the connections
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ea
Ay = (—iM)AS = (—iM,) (a) + 7),

A= (=N = (v (- ). (60)
where we will identify e¢“ as the frame fields and @“ is
related to the spin connection @’ by

. 1
¢ = — En“kekbca)bc. (61)

In (60) [ is a constant with the dimension of length; it is
related to the cosmological constant. In terms of the
SO(2,1)’s, the generators of Lorentz transformations are
L,=M,+ N, and translations are generated by
P,= (M, - N,)/l. The action for gravity is then given by

S:—i /Tr AdA—i-gA3 —/Tr AdA—f—%A3
4 3 L 3 R

k 2
= _—/ d*xdete|R ——| + total derivative,  (62)
4rl /

where R is the Ricci scalar for the curvature corresponding
to w. This is the Einstein-Hilbert action, with Newton’s
constant of gravity G being related to the level number of
the CS action by k = (I/4G). The standard parity trans-
formation along with A; <> Ay leaves the action invariant.

Starting with the first line of (62) with the Chern-Simons
actions, we can add a boundary action as in (49) and
consider vortices. The resulting particle action will be as in
(58), and reads

k 7 ;
S= ‘E; / dt[Tr(qohz ha)y = Tr(gehy' ha)gl

k .
- _g/ d[za:[(‘ha + qra) Tr(My — No)ga' 9a)

+ (910 = qra) Tt(Mg + No) gz 3] (63)

where
hy O
= . 64
o~ (% hR) (64)

S=CS(a)+ Sy(a?w9) —

ik

+ 4872

ik -1 3 I -1
1852 Zx: ]i Tr (dgg (ada + daa + a’) + a(dgg™) 2dgg adgg~'a ).
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This describes multiparticle dynamics in 2 4+ 1 dimensions
with the mass and spin of the particle related to the weights

qL» qr by

_49rtaqL
327G

_i( + )
= 87l qdrL T 4dr

k
s :Z(QL —qg)- (65)
Here we are considering equal number of vortices for the
two groups. For unequal numbers of vortices, we will get
states which are parity-asymmetric.

A similar analysis can be done in higher dimensions.
Here we will consider the 5-dimensional case, starting with
the general situation before specializing to CS gravity. The
5D analogue of the action (49) is given by

S=CS(A)+S,, (66)
where CS(A) is the 5D Chern-Simons term,
ik 1 1
CS(A)=——— [ Tr(AF? = A’F + —A>
A / r( 20 )
ik 3 3
=—— Tr( AdAdA + = A3dA + = A3 |,
24;;2AMR r( TS )
(67)

and S, is the boundary action (on OM x R) needed to
cancel the anomaly from the CS term. The bulk equation of
motion is given by FF = 0. This is satisfied by choosing A
as a pure gauge (although this may not be the most general
solution). Since the spatial manifold is four-dimensional,
the natural choice for a singular solution is to take the
pointlike limit of instantons. The general solution (with
F =0) is thus given by A = g 'ag+ g 'dg where the
potential a is a singular solution (pointlike configuration)
with nonzero instanton number. The instanton density is
concentrated at a set of points {x,}, so that A is a pure
gauge in all of M =M — {X,}. We excise small balls
around each singularity to define M. The boundary of the
excised ball around X, is C, which is topologically a three-
sphere. Upon using the general solution for A, the action
becomes

ik
T d —1\5
2407:2/ r(dgg™")

1
jq{ Tr <dgg‘1(ada +daa + a®) + a(dgg™")? - Edgg”adgg”a)
oM

(68)
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The boundary action will cancel the integral around OM as
well as the term proportional to Tr(dgg™")>. Now consider
evaluating CS(a). Since a is a pure gauge in M, we
have da = —a?, so that CS(a) = —(ik/240x?) [ Tr(a’
The special solution a is at a fixed time ¢, with ay = 0, so
@’ =0 and we get CS(a) = 0. The action for the moduli
thus reduces to

= 4871227{ Tr( dgg~'a® + a(dgg™")?
-3 dgg_ladgg_1a> . (69)

To simplify further, we note that the instanton number is

given by
1 1 2
v= —Q/TY(FF) = —77{Tr<ada +§a3>
1
T 70

— s § @) (70)
where we have used the fact that a is a pure gauge on M
including on C,. We will consider pointlike instantons in an
SU(2) subgroup of the gauge group G. Further we consider

the standard embedding of SU(2) in G and take
a = U"'dU, with
U=¢°+ioig'.  (¢°2+(d'¢) =1 (71)

In this case, we can work out a> as

e

The winding number for the $* — S map, corresponding
in our case to the map U:C, — SU(2), is given by

a = tleyyaﬁwd(ﬁydqﬁad(bﬂ’

1
0 = 15z [ st d dgag?. (73

We can now start simplifying the terms in (69). Using
(72), (73), the first term of (69) can now be written as

48;:2274 Tr(dgg~'a?) = as 22/61;}{ Tr(0ygg™~'a®
:ZZ/dtTr(tlaogg_l)Qa.

(74)

[A similar result is obtained for other SU(2) subgroups of
G as well.] Now consider the next term in (69), namely,
$ Trla a(dgg™")?]. Separating out the time-derivative part, we
are con51der1ng terms of the form
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j{ Trla(dgg™")?* — dgg~'adgg™ + (dgg™")*aldogy™"dt

where the d’s denote differentiation with respect to the
angular coordinates of the three-sphere surrounding X,.
These derivatives must go to zero as we shrink the spheres
to zero radius to ensure that g is nonsingular. Thus the
contribution of this term is zero. A similar argument can be
made for the last term in (69). The action for the moduli is
thus

- %Zfé [QaTr(tlaOgag;l)]' (75)

We now apply this line of reasoning to the case of
SO(4,2) ~SU(2,2) which is appropriate for CS gravity
with a cosmological constant in 5 dimensions. The relation
between the gauge fields and the frame fields and spin
connection is given by

1 1
AL = —i |:2 a)abzab + zeur‘a:| N
: 1 ab 1 a
Ap = —i 7% Zab—ie r,|. (76)

where X, generate the SO(4, 1) group and I, correspond
to the coset directions. The explicit form of these matrices
are as given in (11), (30), (36). The action is given by
§=CS(AL) + Sy — {CS(Ag) + Sir}- (77)
Consider first CS(A;). There are two SU(2) subgroups
generated by i(3e;;I;T; F T'sT') /4, corresponding to the
upper and lower 2 x 2 block diagonal matrices in the
chosen representation. We consider pointlike instantons in

these two SU(2) subgroups. We can then adapt (74) to the
present case; the action for the moduli is then

_ik 1+T 1A
Z;/dﬁr< > 9099~ Qu

:_% (0 - 0@ / drTr(Tohy ' hy). (78)

T
5 00gg™" Qé”)

We have made the replacement g — h~! to agree with the
notation of (58) and (61). We can parametrize the group
element as in (31), namely,

h,=8§g=5" (*f lf//\[\[) (79)

where S is the matrix relating I"’s to y’s. The action now
reduces to
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k dx?
5= [0 - 0P (s0)

A similar result holds for the CS(Ag) part. In this case, we
have

hR:S'lg’:S'1< 1,/‘/2 0 >A,
—iX/\VzZ Vz

X=x"+o-% (81)

The action for this part is then

k dx?
SR = _Z/Z(Q((xl) - Qt(x2>)7]m/AMO z . (82)

The total action, given by S; — Sk is thus of the form (33),
as is appropriate for particles in AdSs, with the identi-
fication

mR == (0% - o). (83)

This result does not include spin. For spin, we will need to
consider multi-instantons taking account of the placement
of the SU(2)’s within the larger group. A simple way to see
this is to consider merging two of the points x,, say x; and
X, into a single one. This is equivalent to setting 7, = h,.
However, there are different placements of the SU(2)
subgroups in SU(2,2), related by Weyl group transforma-
tions. In particular, we have

T1_1F0T1 - irlrz, TEIF()TZ - iF3F5, (84)

where
1 0 0 O 1 0 0 0
0O 0 1 0 0 0 0 1
Tl = R T2 =
0 -1 0 O 0O -1 0 O
0O 0 0 1 0O 0 -1 0
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Thus if we consider merging the two points with the
identification /; = h, and ay = Ty'a()T;, we get the
action

ik :
S=-% di](0\" = Q) Tr(Tohy' iy

+ (08 — QYT (il ok iy )] 4 -+ (86)

By considering a number of such mergers, with different
values of Q() and Q%), we can get a general combination of
Tr(Cohy'hy), Tr(iT Dok i), and Tr(il30shy'hy), thus
giving a general action for particle dynamics. While this
does show the role of the choice of the SU(2) subgroups,
there should be a more satisfactory way of obtaining the
general coadjoint orbit action, following directly from the
multi-instanton solutions. This is currently being explored
and will be deferred to a future publication.

To summarize the results of this section, we considered
the dynamics which follows from the use of singular
solutions of the CS theory, where a gauge transformation
furnishes the moduli for the singularities. This is very similar
to the strategy of Einstein, Infeld, and Hoffmann, who
derived multiparticle dynamics from the general theory of
relativity, treating particles as singularities of the gravita-
tional field. We considered the 3D CS theory. We also
applied the same strategy to CS gravity in 3 and 5
dimensions. Clearly there are still many points to be clarified
and elaborated on such as the use of more general solutions
including various types of gravitational instantons as well as
solutions which can lead to interacting particles in five
dimensions, issues related to the orientations of various
subgroups, as well as the inclusion of nontopological terms,
i.e., going beyond the CS action. The connection to fluid
dynamics, alluded to earlier, is another interesting avenue to
explore. These issues will be taken up in future.
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