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In quantum secret sharing protocols, the usual presumption is that the distribution of quantum shares and
players’ collaboration are both performed inertially. Here we develop a quantum secret sharing protocol
that relaxes these assumptions wherein we consider the effects due to the accelerating motion of the shares.
Specifically, we solve the (2,3)-threshold continuous-variable quantum secret sharing in noninertial frames.
To this aim, we formulate the effect of relativistic motion on the quantum field inside a cavity as a bosonic
quantum Gaussian channel. We investigate how the fidelity of quantum secret sharing is affected by
nonuniform motion of the quantum shares. Furthermore, we fully characterize the canonical form of the
Gaussian channel, which can be utilized in quantum-information-processing protocols to include
relativistic effects.
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I. INTRODUCTION

Continuous-variable quantum secret sharing is experi-
mentally feasible [1]; however, a comprehensive theory of
continuous-variable quantum error correction is still miss-
ing; Gaussian states cannot be protected against Gaussian
errors using Gaussian operations [2]. In previous studies
[1,3,4], the effect of noninertial motion during the trans-
mission of quantum shares has been ignored. Here we solve
continuous-variable quantum secret sharing wherein the
quantum shares move nonuniformly in Minkowski space-
time and our results show how acceleration affects the
fidelity of quantum secret sharing.
In ðk; nÞ-threshold quantum secret sharing, the dealer

encodes a quantum secret in n quantum systems (or
quantum shares), which he then distributes to n players.
Each player receives exactly one share, where any subsets
of k or more players form the access structure to retrieve the
secure key while any subsets of fewer than k players, i.e.,
the adversarial structure, cannot learn any information
whatsoever about the key. Continuous-variable threshold
quantum secret sharing still faces the challenge that
information about the quantum secret can be leaked into
the adversarial structure [5,6]. Various models of secret
sharing exist with quantum or classical channels that can be
public or private and a graph-state formalism was proposed
to unify these models [7]. Here we consider the scenario

wherein the dealer shares quantum channels with each
player, and also the players share quantum channels
between each other, which is known as the QQ case [7].
We focus on a relativistic variant of a (2,3)-threshold

quantum secret sharing protocol which is the smallest-sized
nontrivial protocol. We take into account the relativistic
motion of the quantum shares in Minkowski spacetime
during the distribution and collaboration and how it
influences the success of the protocol. In our relativistic
protocol, similar to the nonrelativistic case [8], a dealer
encodes the quantum secret into several quantum shares
and distributes them to all the players. The players are
located at different regions in the Minkowski spacetime and
the dealer and the players are all stationary. Under such
circumstances, during the dealer’s distribution, the quan-
tum shares experience nonuniform motion, as they are
transmitted to spacetime points in the future light cone of
the dealer (Fig. 7). Then, a subset of players within the
access structure collaborate to retrieve the quantum secret
by sharing their individual shares. However, to reach the
same spacetime point, the shares go through phases of
accelerating and decelerating motion while being trans-
mitted. We analyze the possible collaboration scenarios
between the players; i.e., players 1 and 2 collaborate
(Fig. 8) or players 2 and 3 collaborate (Fig. 12). In each
scenario, we investigate how the noninertial motion of the
shares affects the fidelity of the quantum secret sharing
protocol.
In (2,3)-threshold quantum secret sharing, the dealer

encodes the quantum secret in three quantum shares in a
localized manner; hence, we need to be able to analyze the
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effect of relativity on such systems. The relativistic effects
on the state of localized quantum systems has been studied
using different setups [9–15]. We find the framework of
accelerating cavities a suitable choice for this purpose, as it
can be adapted to study the effect of nonuniform motion on
localized quantum fields [9,10]. Accelerating cavities
have been employed in the past to study the relativistic
effects on quantum clocks [16], quantum teleportation [17],
and to estimate proper acceleration [18,19] to name a few.
However, we develop a different approach from the
previous studies for accelerating cavities; we formulate
the evolution of the quantum field inside an accelerating
cavity as a bosonic quantum Gaussian channel (BQGC)
which we then use to include the effects of nonuniform
motion of the quantum shares. Furthermore, this approach
enables us to compute physical quantities, such as the
average number of produced thermal particles and trans-
missivity of the relativistic channel.
This paper is organized as follows. In Sec. II, we provide

a brief review of how a quantum field inside a cavity is
affected due to relativistic motion. In Sec. III, we formulate
the change in the state of the quantum field as a BQGC and
utilize the canonical form of the BQGC to study particle
creation inside the cavity and transmissivity of the channel.
In Sec. IV, we employ the channel to study the effect of
relativity on the (2,3)-threshold continuous-variable quan-
tum secret sharing for different collaboration scenarios and
also for different quantum Gaussian secret states. Finally, in
Sec. V, we discuss our results and provide future lines of
research. Throughout this paper, we use units in which
c ¼ ℏ ¼ 1.

II. BACKGROUND

In this section, we briefly review the effect of accel-
eration on the evolution of a quantum field inside a cavity,
which is a well-studied topic (we refer the interested reader
for more details to [10]). We focus on a simple trajectory
which is known in the literature as the basic building block
(BBB), since it enables studying any arbitrary nonuniform
trajectory [10]. As depicted in Fig. 1, the BBB employs
three steps. Initially, in region I, the cavity is at rest. Then, it
accelerates for some time in region II and finally, in region
III, it goes back to being inertial again. We note that, for the
cavity to remain rigid,1 different parts of it need to
accelerate at different rates [10] (as shown in Fig. 1).
The inertial to uniformly accelerated transition can be

modeled as a unitary linear transformation of the mode
operators [10]. As there is a unique correspondence
between any such unitary and a symplectic transformation
on the phase space [20], we represent the transformation of
the quantum field inside the cavity from region I to region II

by the symplectic transformation, SI;II. A symplectic trans-
formation is a transformation that preserves the symplectic
form; i.e.,

SΓST ¼ Γ; Γ ≔ ⨁
i
Γi; Γi ≔

�
0 1

−1 0

�
: ð1Þ

Such a transformation preserves the bosonic canonical
commutation relations of canonical variables [21]; i.e.,

½Xi;Xj� ¼ iΓij; ð2Þ

where X ≔ ðq̂1; p̂1; q̂2; p̂2;…; q̂n; p̂nÞ and the quadrature
operators are q̂i ≔ ðâi þ â†i Þ=

ffiffiffi
2

p
and p̂i ≔ ðâi − â†i Þ=i

ffiffiffi
2

p
.

Consider a massless scalar field in a cavity with Dirichlet
boundary conditions; i.e., the field vanishes at the two
cavity walls.2 Two complete orthonormal sets of mode
functions fϕng and fψng can be used to expand the
quantum field in regions I and II, respectively. These
two sets of mode functions and their corresponding ladder
operators are related via a Bogoliubov transformation as

ψ j ¼
X
i

~αijϕi þ ~βijϕ
�
i ;

b̂j ¼
X
i

~α�ijâi − ~β�ijâ
†
i ; ð3Þ

where ~αij ≔ ðψ i;ϕjÞ and ~βij ≔ −ðψ i;ϕ�
jÞ are the

(Minkowski-to-Rindler) Bogoliubov coefficients and ð·; ·Þ

FIG. 1. Basic Building block for an arbitrary trajectory. The
world lines of the left and right walls of the cavity are depicted. In
region I, the cavity is inertial. In region II, the two walls of the
cavity are accelerating with two different proper accelerations
until the Rindler coordinate time η ¼ τ

a, where τ and a are proper
time and acceleration respectively. In region III, the cavities have
stopped accelerating and are back in the inertial frame again. The
hyperbolas (red curves) represent the trajectories of the cavity
walls moving with constant proper acceleration, and the (black)
straight lines correspond to the trajectories of the walls while they
move inertially.

1The cavity motion is constructed so that the cavity remains
rigid. This is in the sense that a comoving observer sees the cavity
walls at a constant proper distance at all times.

2Our analyses can also be performed with Dirac spinor and
Maxwell fields and with other boundary conditions such as
Neumann boundary conditions [22].

AHMADI, WU, and SANDERS PHYSICAL REVIEW D 96, 065018 (2017)

065018-2



represents the Klein-Gordon inner product [23]. The trans-
formation SI;II in the quadrature basis is

SI;II ¼

2
666664

~M11
~M12

~M13 � � �
~M21

~M22
~M23 � � �

~M31
~M32

~M33 � � �
..
. ..

. ..
. . .

.

3
777775
; ð4Þ

where

~Mij ¼
�

Reð ~αij − ~βijÞ Imð ~αij þ ~βijÞ
−Imð ~αij − ~βijÞ Reð ~αij þ ~βijÞ

�
: ð5Þ

We denote the free evolution of the field in region II by
SII which reads as SII ¼ ⨁jGj, where Gj is a rotation in
phase space. The transformation from the accelerating
frame back to the inertial frame is the inverse of SI;II;
SII;III ¼ S−1I;II. Hence, the full symplectic transformation
representing the evolution of the field from region I to
region III is

S ¼ S−1I;IISIISI;II ¼

2
666664

M11 M12 M13 � � �
M21 M22 M23 � � �
M31 M32 M33 � � �
..
. ..

. ..
. . .

.

3
777775
; ð6Þ

where

Mij ¼
�

Reðαij − βijÞ Imðαij þ βijÞ
−Imðαij − βijÞ Reðαij þ βijÞ

�
: ð7Þ

The Bogoliubov coefficients are calculated perturba-
tively in h ¼ aL, where a is the proper acceleration at
the center of the cavity and L is the cavity length, such that

αij ¼ αð0Þij þ αð1Þij hþ αð2Þij h
2 þOðh3Þ;

βij ¼ βð0Þij þ βð1Þij hþ βð2Þij h2 þOðh3Þ: ð8Þ

Also, from (1), one observes that the Bogoliubov identity
holds; i.e.,

X
i

jαijj2 − jβijj2 ¼ 1: ð9Þ

These perturbative Bogoliubov coefficients were computed

[9] and, in particular, if (iþ j) is even then αð1Þij ¼ βð1Þij ¼ 0.
Using the perturbative expansions of the Bogoliubov
coefficients (8), for the zero- and second-order terms of
(9) we get

jαð0Þij j2 ¼ 1; ð10aÞ

Reðαð0Þjj
�
αð2Þjj Þ þ fα;k − fβ;k ¼ 0; ð10bÞ

where

fα;k ≔
1

2

X
n≠k

jαð1Þnk j2; fβ;k ≔
1

2

X
n≠k

jβð1Þnk j2; ð11Þ

and first-order terms are zero.3 From (10a) we conclude that

αð0Þij ¼ δijeiϕj , where

ϕj ≔ 2πju; u ≔
hτ

4Larc tan hðh=2Þ : ð12Þ

Here, ϕj is a phase that mode j picks up during the
accelerating motion of the cavity for the proper time τ with
respect to the center of the cavity [10], i.e., region II.
In this section, we reviewed the BBB for a cavity of size

L which accelerates for some time with a fixed proper
acceleration a with respect to the center of the cavity. We
employed the symplectic nature of the transformation from
the inertial frame to the accelerating frame to write the
Bogoliubov identities up to second order. We derived
relations (10) for the perturbative Bogoliubov coefficients
which helps us simplify the expressions for the fidelity of
quantum secret sharing in different scenarios.

III. METHODS

In this section, we employ the framework of Gaussian
quantum information [20,24] to write the evolution of the
quantum field inside the cavity in a BBB, as depicted in
Fig. 1, as a Gaussian quantum channel. We use this
channel, in Sec. IV, to study the effect of noninertial
motion of the shares on the fidelity of the quantum secret
sharing. Moreover, we characterize the canonical form of
the channel and show that it is a thermal lossy channel.
To this aim, we summarize the framework of Gaussian
quantum channels.
Gaussian states are completely characterized by their

first and second moments and, for an n-mode Gaussian
state, these are

d ¼ ðhX1i; hX2i;…; hXniÞ; ð13aÞ

σij ¼ hXiXj þ XjXii − 2hXiihXji: ð13bÞ

By definition, Gaussian channels are the subset of quantum
channels that transform Gaussian states to Gaussian states.
The most general form of a Gaussian channel E is

3The Bogoliubov identities in the perturbative regime are also
obtained using the fact that the change of basis from region I to
region III is a unitary operation on cavity modes [10].
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expressed in terms of its action on the first and second
moments of the input states as

d↦
E
Md þ α; ð14aÞ

σ↦
E
MσMT þ N; ð14bÞ

where, for n-mode Gaussian channels, M and N are real
2n × 2n matrices, α ∈ R2n is a displacement vector, and N
is a symmetric matrix; i.e., N ¼ NT .
In Fig. 2, we have depicted the scenario wherein all the

modes of the cavity are prepared in the vacuum state except
mode k, which is prepared in a Gaussian state with first and
second moments dI and σI, respectively. First, the initial
state of the cavity evolves through the symplectic trans-
formation S and subsequently all the modes except mode k
are traced out. As both the symplectic operation and the
tracing operation preserve the Gaussianity of a quantum
state, the BBB can be written as a Gaussian channel, which
transforms the initial Gaussian state to another one as given
in Eq. (13). Hence, using (4), the matrices M and N for
mode k read as

Mkk ¼
�

Reðαkk − βkkÞ Imðαkk þ βkkÞ
−Imðαkk − βkkÞ Reðαkk þ βkkÞ

�
; ð15aÞ

Nk ¼
X
n≠k

MnkMT
nk: ð15bÞ

We are interested in the final quantum state up to third
order in h ¼ aL, which means that we only need the

matrices in Eq. (15) up to (but not including) third order in
h; i.e.,

Mkk ¼ Mð0Þ
ϕa

þMð2Þ
kk h

2 þOðh3Þ;
Nk ¼ Nð2Þ

k h2 þOðh3Þ;
Nð2Þ

k ¼
X
n≠k

Mð1Þ
nk M

ð1Þ
nk

T;

Mð0Þ
ϕa

¼
�

cosϕa sinϕa

− sinϕa cosϕa

�
;

Mð0Þ
nk ¼ Mð1Þ

kk ¼ 0ðn ≠ kÞ;

MðiÞ
nk ¼

�
ReðαðiÞnk − βðiÞnkÞ ImðαðiÞnk þ βðiÞnkÞ
−ImðαðiÞnk − βðiÞnkÞ ReðαðiÞnk þ βðiÞnkÞ

�
; ð16Þ

where in the last matrix i ¼ 1, 2. We emphasize that as we
are estimating the effect of the Gaussian channel up to third
order in h, the term Mð2ÞσIMð2ÞT is to be ignored.
As was pointed out by Holevo [25], any Gaussian

quantum channel can be decomposed into its canonical
form and two Gaussian unitary operators; one on the input
and one on the output. This means that we can decompose
the Gaussian channel for the BBB as shown in Fig. 3. Here,
SI and SIII are two symplectic transformations in the regions
I and III, which correspond to the two Gaussian unitary
operators. We use Mc and Nc for the canonical form of the
channel, Ec, as opposed to the channel E for which we have
used M and N.
In transforming a Gaussian quantum channel E to its

canonical form Ec, some properties of the channel remain
invariant (up to symplectic transformations SI and SIII). The
first invariant is r ≔ min ½rankðMÞ; rankðNÞ� which, for a
single-mode channel, can take the possible values r ¼ 0,
1,–2 and in our case we have r ¼ 2. The second invariant is
the transmissivity of the channel,

T ¼ detM ¼ 1 − Tð2Þh2 þOðh3Þ; ð17Þ

where

Tð2Þ ≔ 2ðfα;k − fβ;kÞ:

Note that, as Tð2Þ increases, the transmissivity decreases. In
Fig. 4, we plot Tð2Þ as a function of u, where we observe

FIG. 3. The canonical form of the BBB Gaussian channel, E,
which is decomposed into its canonical form, Ec, up to two
symplectic transformations in regions I and III, i.e., SI and SIII.

(a)

(b)

FIG. 2. (a) The BBB is depicted for the case wherein the first
mode of the cavity is used to encode and decode quantum
information. We assume all the other modes are initially prepared
in vacuum and after the BBB (which is represented by the
symplectic transformation S) the rest of the modes are ignored.
(b) The operations performed in part (a) are all Gaussian
operations which enables us to express the BBB as a Gaussian
channel E acting on the first and second moments as given
in Eq. (13).
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that by increasing the mode number k the transmissivity of
the channel decreases. Here we choose to plot all the
quantities in terms of u, as the Bogoliubov coefficients for a
BBB are periodic in u with the period of 1.
The final invariant is thermal number n̄ associated to the

canonical form of the quantum channel E. We calculate the
leading order term of n̄, which is

n̄≔
ffiffiffiffiffiffiffiffiffiffi
detN

p

2j1−Tj−
1

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfα;kþfβ;kÞ2−4jgαβ;kj2

q
2ðfα;k−fβ;kÞ

−
1

2
; ð18Þ

where gαβ;k ≔
P

n≠kα
ð1Þ
nk β

ð1Þ
nk . In Fig. 5, we plot this quantity

as a function of u.
The main advantage in working with the canonical form

of the BBB channel is that we can completely characterize
it. For the symplectic invariants we find T ∈ ð0; 1Þ and
r ¼ 2, from which we can conclude that the canonical form
of the BBB channel is a thermal lossy Gaussian channel.
The channel is lossy due to the fact that its transmissivity is

smaller than one; i.e., T < 1. Furthermore, from this
analysis, we conclude that the quantum channel Ec can
be simulated by interacting mode k of the cavity and a
thermal state with mean photon number n̄ via a beam
splitter of transmittance T.
In this section, we employed the framework of Gaussian

channels to find matricesM and N in (14) for a BBB. From
this point on, we use them to include the effect of relativity
on the quantum field inside a cavity while the cavity moves
noninertially. Moreover, we computed the channel invar-
iants, transmissivity, and the average number of thermal
particles, which enabled us to identify the BBB as a thermal
lossy channel.

IV. THE RELATIVISTIC PROTOCOL

In this section, we present the relativistic variant of
(2,3)-threshold continuous-variable quantum secret shar-
ing. We first include the effect of acceleration on the
distribution of quantum shares and then we consider
different possible collaboration scenarios between the
players. In each case, we show that the fidelity of quantum
secret sharing is reduced, except for a thermal state, when
compared to the nonrelativistic scenarios.

A. Distribution of quantum shares

In our case, modes 1, 2, and 3 are three quantum
Gaussian shares and each mode corresponds to a mode
in a cavity. The Gaussian state of each quantum share
occupies one mode inside each cavity, and the other modes
inside each cavity are all in vacuum states. Figure 6 shows
the encoding protocol of a (2,3)-threshold quantum secret
sharing scheme as proposed by Tyc and Sanders [3]. The
dealer encodes the quantum secret into a three-mode
Gaussian state, i.e., modes 1, 2, and 3. He prepares modes
2 and 3 in a two-mode squeezed-vacuum state, with the
squeezing parameter, s. Then, he combines modes 1 (the
quantum secret) and 2 on a balanced beam splitter. The two
output beams of the beam splitter, together with the third
beam encoding the other half of the two-mode squeezed

FIG. 4. The second-order coefficient of the transmissivity of the
BBB channel, Tð2Þ, as a function of u for modes k ¼ 1, 2, 3.

FIG. 5. The average number of thermal particles as a function
of u for modes k ¼ 1, 2, 3.

FIG. 6. The encoding circuit for continuous-variable
(2,3)-threshold quantum secret sharing. The “8” shaped symbol
represents a two-mode squeezed-vacuum state. The upper two
modes are combined on a balanced beam splitter. The three
outputs are three quantum shares, denoted by mode 1, mode 2,
and mode 3.
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state, are the three quantum shares, which are distributed to
the three players.
After encoding, the dealer distributes the three cavities to

the three players. Figure 7 shows the distribution of the
quantum shares. The three players are located at different
spacetime points. One player (player 3) is at the same
spatial position as the dealer and the other two players
(players 1 and 2) have the same distance to the dealer.4 The
dealer and three players are all static, so they share an
inertial frame. As depicted in Fig. 7, cavities 1 and 3
inevitably need to be accelerated and then decelerated to
reach the spacetime regions of players 1 and 3, respectively.
Using the quantum channel derived in Sec. III, we consider
the effect of such a nonuniform motion of the cavities on
the quantum share, which is encoded in a single mode of
each cavity. In this scenario, cavity 3 remains static during
the whole distribution.

B. Players’ collaboration

After the quantum shares are distributed between the
three players, two of them need to collaborate to decode the
quantum secret. Three different scenarios are possible;
players 1 and 3, 2 and 3, or 1 and 2 can constitute the subset
of collaborating players. The effect of acceleration on the
fidelity of quantum secret sharing in the latter two cases is
the same (due to the present symmetry), and we only
consider the scenario wherein players 2 and 3 collaborate.

1. Collaboration between players 1 and 2

First, we consider the case wherein players 1 and 2 are
collaborating. To decode the quantum secret, their cavities
are transported to the same spacetime point as shown in
Fig. 8. After the two cavities are at the same region, the
quantum secret is decoded by beam splitting the two modes
that were employed to encode the quantum secret. From
t ¼ 2ta þ ti to t ¼ 4ta þ 2ti, each mode of the two-mode
Gaussian state goes through the same single-mode
Gaussian channel E1 as shown in Fig. 9.
The Gaussian quantum channel E1 is composed of five

Gaussian channels in series [See Fig. 9(b)]. The channel
EðτaÞ corresponds to uniformly accelerated motion of the
cavity to the left (or to the right) during the proper time τa,
while the channel Eð2τaÞ represents the cavity moving with
constant proper acceleration to the right (or to the left)
during the proper time 2τa. Also, the quantum channel
GðτiÞ corresponds to the inertial movement of the cavity
with constant velocity for the proper time τi. Using (16), the
first and second moments of the kth mode of the cavity, up
to third order in h, are transformed as

d ↦
EðτaÞ ðMð0Þ

ϕa
þMð2Þ

kk h
2Þd; ð19aÞ

σ ↦
EðτaÞ

Mð0Þ
ϕa
σMð0ÞT

ϕa
þ ðMð0Þ

ϕa
σMð2ÞT

kk þMð2Þ
kk σM

ð0ÞT
ϕa

Þh2

þ Nð2Þ
k h2; ð19bÞ

where Mð0Þ
ϕa
, Mð2Þ

kk , and Nð2Þ
k are given in (16).

FIG. 7. The worldlines of the quantum shares during distribu-
tion. From t ¼ 0 to t ¼ ta, the two cavities, represented by the
furthest left and the furthest right worldlines, accelerate with the
proper acceleration a in two opposite directions. From t ¼ ta to
t ¼ ta þ ti, they move with constant velocities. From t ¼ ta þ ti
to t ¼ 2ta þ ti, the two cavities decelerate with the proper
acceleration a and become stationary. The cavity represented
by the middle world line remains static.

FIG. 8. The two curves represent two worldlines in spacetime.
Each worldline is the trajectory of one cavity carrying a quantum
share. From t ¼ 2ta þ ti to t ¼ 3ta þ ti, the two cavities accel-
erate with proper acceleration a towards each other. From t ¼
3ta þ ti to t ¼ 3ta þ 2ti, the two cavities are moving with
constant velocity. From t ¼ 3ta þ 2ti to t ¼ 4ta þ 2ti, the two
cavities decelerate with proper acceleration a to arrive at the same
spacetime point.

4To simplify the calculations, we have chosen the symmetric
configuration of the players and the dealer, Fig. 7, which suffices
to study the relativistic effects in the distribution stage.
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The Gaussian channelGðτiÞ represents the free evolution
of the Gaussian state during the inertial movement of the
cavity in proper time τi,

d ↦
GðτiÞ

Mð0Þ
ϕi
d; ð20aÞ

σ ↦
GðτiÞ

Mð0Þ
ϕi
σMð0ÞT

ϕi
; ð20bÞ

where

Mð0Þ
ϕi

¼
�
cosϕi − sinϕi

sinϕi cosϕi

�
;

and ϕi ¼ kπτi
L is the phase accumulated during the free

evolution from t ¼ ta to t ¼ ta þ ti, and from t ¼ 3ta þ ti
to t ¼ 3ta þ 2ti. To simplify the later calculations, we
suppose the phase shift during the inertial movement
is ϕi ¼ π − 2ϕa.
Therefore, we can express the collaboration between

players 1 and 3, shown in Fig. 8, as the Gaussian channel E1,

E1 ≔ EðτaÞ ∘GðτiÞ ∘ Eð2τaÞ ∘GðτiÞ ∘ EðτaÞ: ð21Þ
If the secret Gaussian state is a coherent state and the free
evolution is ignored; i.e., Mð0Þ ¼ I, the Gaussian trans-
formation of the channel E1 for the mode k is

d↦
E1

d þ ð2Mð2Þ
kk;τa

þMð2Þ
kk;2τa

Þh2d; ð22aÞ

I↦
E1

Iþ ð2Mð2Þ
kk;τa

þ 2Mð2ÞT
kk;τa

þMð2Þ
kk;2τa

þMð2ÞT
kk;2τa

þ 2Nð2Þ
k;τa

þ Nð2Þ
k;2τa

Þh2; ð22bÞ

where Mð2Þ
kk;τa

and Nð2Þ
k;τa

are in terms of proper time τa.

After the two cavities arrive at the same spacetime
region, the two Gaussian quantum shares are combined
using a balanced beam splitter, as shown in Fig. 9. The
decoded Gaussian quantum secret is not a pure state
anymore due to the effect of acceleration during distribu-
tion and collaboration. For a coherent state as the encoded
secret Gaussian state, we calculate the fidelity of the
quantum secret sharing [1,4]

F ¼ 1 − 2ð2fβ;k;2u þ fβ;k;uÞh2 þOðh3Þ: ð23Þ
In Fig. 10, we plot the second-order coefficient of the
fidelity for a coherent state as the quantum secret and we
compare the decrease in the fidelity of quantum secret
sharing for k ¼ 1, 2, and 3. Interestingly, from (23), we
conclude that the fidelity for a coherent state is independent
of the initial mean photon number of the quantum secret. In
other words, the fidelity of a coherent state is the same as
the fidelity of the vacuum state.
In Fig. 11, we have plotted the second-order coefficient

of the fidelity, Fð2Þ, for a squeezed-vacuum quantum secret;
i.e., F ¼ 1 − Fð2Þh2. The figure shows that the fidelity

FIG. 10. Fð2Þ as a function of u for modes k ¼ 1 (solid),
2 (dashed), and 3 (dotted) when the secret Gaussian state is a
coherent state.

FIG. 11. Fð2Þ as a function of u for the ground mode (k ¼ 1),
when the secret Gaussian state is a squeezed-vacuum state for
squeezing parameters r ¼ 1

16
(solid), 1

8
(dashed), and 1

4
(dotted).

(a)

(b)

FIG. 9. (a) The thermal lossy channel E1 is the Gaussian
channel that represents the total evolution of the first and the
second quantum shares during the distribution and the collabo-
ration stage. Then the quantum secret is decoded using a balanced
beam splitter. (b) E1 is a single-mode Gaussian channel composed
of five Gaussian channels in series. EðτaÞ is the Gaussian channel
for a BBB during the proper time τa and GðτiÞ represents the
Gaussian channel of the free evolution in an inertial frame with
proper time τi.
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decreases as the squeezing parameter r increases, i.e., as the
mean photon number in the secret increases. This is in
contrast to the case where the secret state is a coherent state.

2. Collaboration between players 2 and 3

The second collaboration scenario we consider is the
case wherein players 2 and 3 collaborate to reconstruct
the secret quantum state.5 Similar to the previous case, the
quantum shares of players 2 and 3 are first transported to
the same spacetime region. Figure 12 shows the trajectories
of the two corresponding cavities in this scenario. Note that
the trajectory of the second cavity during the collaboration
stage is the same as the trajectory of the third cavity during
the distribution stage of the protocol. As Fig. 13 shows, the
second quantum share goes through the channel E2 during
distribution, while it goes through the channel Gð2ta þ tiÞ
during collaboration. The third quantum share first goes
through the channel Gð2ta þ tiÞ when the shares are being
distributed and then is affected by the channel E2, which
represents the effect of acceleration on this quantum share
during collaboration.
As shown in Fig. 13, the quantum Gaussian channel E2 is

a combination of three quantum Gaussian channels, one of
which is merely a phase rotation, i.e., GðτiÞ. Assuming the
input state of the Gaussian channel E2 is a coherent state
and the free evolution is ignored, then the transformation of

the first and second moments due to the channel E2 can be
written as

d↦
E2 ðIþ 2Mð2Þ

kk h
2Þd; ð24aÞ

I↦
E2

Iþ 2ðMð2Þ
kk þMð2ÞT

kk þ Nð2Þ
k Þh2: ð24bÞ

After the second and the third quantum shares reach the
same spacetime region, the decoding of the quantum secret
begins. For decoding, we employ the procedure introduced
in [1,4]. The optical decoding circuit is shown in Fig. 13,
which is applied to reconstruct the secret quantumGaussian
state. We calculate the fidelity of quantum secret sharing in
this case up to third order; i.e.,

F ¼ Fð0Þ − Fð2Þh2 þOðh3Þ; ð25Þ

where Fð0Þ and Fð2Þ are

Fð0Þ ¼ 1

1þ e−s
;

Fð2Þ ¼ 4es

ð1þ esÞ2 ½fβ;k − fα;k þ esðfα;k þ 2fβ;kÞ�: ð26Þ

In Fig. 14, we plotted the second-order coefficient of the
fidelity Fð2Þ as a function of u for k ¼ 1, 2, 3. We observe
from this figure that as the mode number k increases, the
fidelity decreases, which suggests that the optimal mode for
encoding the quantum secret is k ¼ 1.
In the limit s → ∞, the fidelity up to third order is

F ¼ 1 − 4ðfα;k þ 2fβ;kÞh2 þOðh3Þ: ð27Þ

FIG. 12. The two curves represent two worldlines in spacetime.
The left worldline is the trajectory of the cavity carrying the third
quantum share and the right worldline is the trajectory of the
cavity carrying the second quantum share. From t ¼ 2ta þ ti to
t ¼ 4ta þ 2ti, the third cavity remains static. From t ¼ 2ta þ ti to
t ¼ 3ta þ ti, the second cavity accelerates with proper acceler-
ation a. From t ¼ 3ta þ ti to t ¼ 3ta þ 2ti, it moves with
constant velocity and from t ¼ 3ta þ 2ti to t ¼ 4ta þ 2ti, decel-
erates with proper acceleration a.

(a)

(b)

FIG. 13. (a) The decoding circuit for the case wherein players 2
and 3 collaborate. E2 is a Gaussian thermal lossy channel.
Gð2ta þ tiÞ is the free evolution in the inertial frame. First, the
two modes are combined on a beam splitter with reflectivity 2=3.
Then the quadrature q̂ of the second output mode is measured and
a displacement operation controlled by the measurement outcome
and a squeezing operation are applied on the first output mode.
(b) E2 is a single-mode Gaussian channel composed of three
Gaussian channels in series.

5We emphasize that the collaboration between players 1 and 2
results in the same results for the fidelity of the quantum secret
sharing, which is simply due to the symmetry in the configuration
of the players.
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Hence, in the limit of infinite squeezing and in the absence
of acceleration (h ¼ 0), fidelity is one. However, for
nonzero acceleration, fidelity is always smaller than one,
even if a maximally entangled state is employed to encode
the quantum secret.

V. CONCLUSIONS AND DISCUSSIONS

Here we study the effect of relativistic motion on (2,3)-
threshold quantum Gaussian secret sharing. In our scheme,
the dealer employs a single mode of a cavity to encode each
quantum share. We begin by fully characterizing the BBB
as a quantum Gaussian channel. We find that the canonical
form of this channel is a thermal lossy channel. This form
of the channel is useful for studying relativistic effects in
quantum-information-processing tasks.
We consider different possible collaboration scenarios

between different subsets of players and analyze how each
scenario can be written as a composition of quantum

Gaussian channels. We find that the decoherence, due to
the relativistic motion of the quantum shares during
distribution and also collaboration, reduces the fidelity
of quantum secret sharing.
Interestingly, we observe in the scenario wherein players

1 and 2 are collaborating, depicted in Fig. 8, the fidelity is
independent of the initial mean photon number in the
encoded secret. Hence, in this case, the fidelity for a
coherent state is the same as that of a vacuum state.
Moreover, in the second scenario, Fig. 12, we find that
when the quantum secret is a coherent state (or a vacuum
state), the best encoding strategy is to encode the quantum
secret in the ground mode of the cavity. We observe that the
fidelity of the protocol is smaller than one, even in the limit
of infinite squeezing, i.e., when maximal entanglement is
used as a resource [see Eq. (27)].
As a future line of research, we are interested in

extending our results to the more general case of ðk; nÞ-
threshold quantum secret sharing. Furthermore, our hope is
that the methods developed here can be employed to relax
the conditions on the spacetime replication of quantum
states [26,27], i.e., to consider the effect of nonuniform
motion on this task.
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