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Black hole squeezers
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We show that the gravitational quasinormal modes (QNMs) of a Schwarzschild black hole play the role
of a multimode squeezer that can generate particles. For a minimally coupled scalar field, the QNMs
“squeeze” the initial state of the scalar field (even for the vacuum) and produce scalar particles. The
maximal squeezing amplitude is inversely proportional to the cube of the imaginary part of the QNM
frequency, implying that the particle generation efficiency is higher for lower decaying QNMs. Our results
show that the gravitational perturbations can amplify Hawking radiation.
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I. INTRODUCTION

Particle creation is a fundamental phenomenon charac-
teristic of quantum field theory in curved spacetime [1-3].
It typically occurs in highly dynamical spacetimes: in the
very early Universe, initial quantum fluctuations of curva-
ture can be amplified by the exponentially expanding
Universe to form tiny perturbations on the background
spacetime [4,5]. These play a crucial role in explaining the
anisotropies of the cosmic microwave background (CMB)
and the formation of the large scale structure of the
observed Universe. Primordial gravitational waves are also
expected to be generated in the early Universe and their
detection is one of the main targets of modern astrophysics.
In addition to dynamical spacetimes, stationary or static
spacetimes can also create quantum particles. Well-known
examples include the superradiance from a rotating black
hole [6-8], the Unruh-Davies [9,10] radiation observed by
a uniformly accelerated observer, and the Hawking radi-
ation from a Schwarzschild black hole [11]. Although
Hawking particles were observed in an analogue system
recently [12], detection of Hawking radiation from a real
black hole remains elusive because the temperature of a
solar mass black hole (1078 °K) is much lower than the
temperature of the CMB (~2.7 °K).

One question of particular interest is whether gravita-
tional waves (ripples of spacetime) can create quantum
particles. Although a dynamical spacetime characteristi-
cally generates particles, it has been shown that particle
creation by plane gravitational waves is forbidden [13-16].
A similar statement applies to electromagnetic waves:
electron-positron pairs cannot be produced by plane
electromagnetic waves, no matter how strong we make
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the electromagnetic field [17]; otherwise momentum con-
servation would be violated. However, pair production of
electrons and positrons is possible if a nucleus is introduced
to balance the momentum [18].

In the gravitational wave case, one might expect that an
analog to the nucleus, e.g., a black hole, has to be
introduced to allow particle creation. From a theoretical
perspective, a detailed study of this issue is important and
necessary to determine whether and to what degree gravi-
tational perturbations in a black hole spacetime can create
particles. There are now three gravitational wave events that
have originated from the coalescence of two black holes
that have been directly detected by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [19-21]. The
observed gravitational wave signals reveal that the space-
time changes dramatically when two black holes merge into
one, with a large amount of energy of order a few solar rest
masses carried away by the emitted gravitational waves. If
particles, e.g., photons, can be produced by gravitational
perturbations, they will travel along with the gravitational
waves and could be detected if the particle creation
efficiency is high enough. From an observational perspec-
tive, it is therefore also very important to have a thorough
study of this problem.

In this paper we address this question. Instead of
studying the whole process of the coalescence of two
black holes, a very complicated situation requiring numeri-
cal relativity [22], we study the final stage of merging: the
ring-down stage. At the ring-down stage, the quasinormal
oscillations of the black hole are dominant, which are
known as the gravitational quasinormal modes (QNMs).
We are interested in the effects of the gravitational
quasinormal modes (QNMs) of a black hole, which have
been extensively studied for decades [23—28] and to which
analytic techniques can be applied. We consider a massless
Hermitian scalar field that propagates in the Schwarzschild
background spacetime with quasinormal perturbations. The
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scalar field is assumed to be minimally coupled with the
spacetime. The coupling can be divided into two parts: with
the Schwarzschild background spacetime and with the
QNMs. Though the former is well studied, the latter is
somewhat less understood and is the main content of
this paper.

We derive the interaction Hamiltonian for the scalar
field, which implies that the QNMs play the role of a
multimode squeezer. We show that the QNMs “squeeze”
the initial state (vacuum or thermal state) of the scalar field
and produce particles. In this sense black holes themselves
can be quantum squeezers.

Our paper is organized as follows. In Sec. II, we briefly
review the quantization of a massless scalar field in the
Schwarzschild background spacetime. In Sec. III, we
review the gravitational QNMs for Schwarzschild black
holes and list some important results for our calculations. In
Sec. IV, we study the coupling between the scalar field and
the gravitational QNMSs, and derive the interaction
Hamiltonian for the scalar field, based on which we show
that the gravitational perturbations around a Schwarzschild
black hole create particles. In Sec. V, we provide a crude
estimate of the total particle number. We summarize with
some concluding remarks in Sec. VI. Throughout this paper
we work with units A =G =c = 1.

II. SCALAR FIELD IN CURVED SPACETIME

We consider a Hermitian massless scalar field @ that
minimally couples to the curved spacetime with metric g,,.
The Lagrangian density for the scalar field is [1]

£ =5 V730"(0,9)(0,9), (1)

where g is the determinant of g,,. We assume that the metric
g can be decomposed into a background part gg,, and a
perturbation h,,, namely, g,, = gg,, + h,,. The back-
ground metric usually possesses some symmetries (time-
translation invariance, rotational invariance, etc.), and the
dynamics of the scalar field in the background spacetime is
well established. The perturbation £, is assumed to be
small so that perturbation theory is applicable. Expanding
the Lagrangian density Eq. (1) with respect to 4, and
keeping terms to first order, we find

L=Ly+ L (2)

where the background part £, and perturbed part £, are

1 v
EO = 5 vV —9BYIB (auq))(auq))’
1

‘Cl = Z \/_—gB(haag/;}D - Zh}w) (a/tq)) (avq))’

with gp the determinant of the background metric and
h*, = gBaﬁh”/’ the trace of the metric perturbation. Note
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that we use the convention h* = ”g’l’f heg. In  this
paper, we are concerned with the Schwarzschild back-
ground spacetime, for which the line element in the
Schwarzschild coordinates (¢, r, 6, ¢) is

1
f(r)
where f(r) =1-2M/r and M is the mass of the
Schwarzschild black hole.

The canonically conjugate field of @ is also decomposed
into a background and perturbed part,

ds? = —f(r)df* + dr? + r?(d6? + sin?0d¢?), (3)

H — HO + Hl’ (4)
where
_ aEO _ = 1t
HO - a(atq)) Y/ ngB(alq))’
_ oL, _ _1 — tw _pa

The Hamiltonian density is
H =Hy+H,, (5)
where
Hy =T1p(0,®) — Lo
= VOO - 00 ()
is the unperturbed Hamiltonian density and
Hy =11;(9,®) - £,
= SV (D,0)? — WD) (D,®)] + 1 My
(7)

is the perturbed Hamiltonian density. For the
Schwarzschild background spacetime, /—gp = r2sin @,
so the perturbed Hamiltonian is

H, = /d3xH1
- %/2; drA erz{_h”(atd))Q + 1(0,®)(0,®)
1 i
+ 51| g3(0,:@) = gy (a"q))(ajq))]} o

where dQ = sin 6d0d¢.
The dynamics of the scalar field on the background
spacetime is determined by the unperturbed Lagrangian
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density L, from which one can derive the Klein-Gordon
equation [1],

1
——0,(/=95¢5 0,®) = 0. 9
N (V=9895 0,P) 9)
The normal-mode solutions to Eq. (9) can be decomposed
as

1

drw

¢mlm(t7 r, 97 ¢) = e—iwl Ylm (97 ¢)le(r)/r (10)

where @ > 0 is the frequency of the mode and Y, (0, ¢) is
the spherical harmonic. The radial function R, (r) satisfies

dszl
d 2

+ VI ()R, = @R, (11)

where VES)(r) is the effective potential,

I(1+1) 2M>. (12)

v§”<r>=f<r>( t) 2

r r

Here r, is the tortoise coordinate

dr, =dr/f(r), r,=r—+2MIn(r/2M —1). (13)
Note that r, — —oo corresponds to the event horizon of the
Schwarzschild black hole. An implicit relation r = r(r,)
can be derived and substituted into the effective potential

V;S), Eq. (12), so that the effective potential can be
considered as a function of r,.

We only consider the field outside the event horizon,
where there exist two sets of orthonormal modes that can
completely represent the field. They are the upcoming and
ingoing modes, denoted as ¢w1m and ¢w1m, respectively.
The asymptotlc behavior for the radial part of the upcoming
mode R} is

RO re = +00;

up iwr,
{ B e,

ol iwr, up _—iwr,
e +A,e ,

(14)

ry —> —00,

and for the radial part of the ingoing mode R, is

L‘}Ze_"”’* r, = —oo.

: —ior, —|—Awle"”’*, r, = +oo;
R3~ 9 4 (15)

Here AP (AY) and B)) (B™) are the reflection and
transmission amplitudes of the upcoming (ingoing) modes,
respectively. They satisfy the following Wronskian rela-

tions [29],
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|A |2 =1-= |BUP 2
AP =1-[By?

in
[Anil =1

’

’

B Bln

wl*

(16)

and ingoing modes ¢", ~are

The upcoming modes ¢, P

chosen to satisfy the orthonormality relations,

(a) - w,>5ll’5mm’a
_5((‘) @ )511’5mm B

wlm’ a)lm>

up* up* >
wlm’ a)lm

(a) —w )all’émm”
—5(60 @ )511’5mm B

ins ins >
wlm> Vo' l'm’

in
wlm’ @'l'm

/

(.
(@
< wlm> a)lm'>
(
(@,
(@

)
up* inx >

wlm’ Vo' l'm’' (17)
Here (,) represents the Klein-Gordon inner product [1],
which is defined on a spacelike hypersurface ¢+ = const as

2
<fp,x>—il erT)L Q@ 0y —x0*)  (18)

for any two solutions ¢ and y of the Klein-Gordon
equation (9).

In the canonical quantization procedure, the scalar field
@ is regarded as an operator, satisfying certain canonical
commutation relations, and is expanded as

o0 i
D= Z Z / da) a)lm¢wlm + bwlm mn[m + H'C')7

=0 m
(19)

where H.c. represents the Hermitian conjugate. The oper-
ators d,;, and 13,,,,,,1 represent upcoming and ingoing
modes, respectively. They satisfy the boson commutation
relations

[&u)lm’ aj,-/l’m’] = 6(0) - a)/)éll’amm"
[éwlmv EZ}’I’m’] = 5(&) - 0)/)5”/5,",”/,
[dwlm’ Ew’l’m’] - [&a)lm’ B;’l’m/] =0. (20)

III. GRAVITATIONAL QUASINORMAL MODES

A Schwarzschild black hole is a static and spherically
symmetric spacetime that is described by the
Schwarzschild metric Eq. (3). Taking this metric to be
the background metric gg,,, gravitational perturbations
h,, = 9, — 9w can arise through various physical proc-
esses, such as a star falling into the black hole. The
equations governing the evolution of the perturbations

065017-3



SU, HO, MANN, and RALPH

were first derived by Regge and Wheeler [30], and Zerilli
[31], in what is known as the Regge-Wheeler-Zerilli (RWZ)
gauge. Due to the time-translation and rotational invariance
of the Schwarzschild metric, the perturbations can be
decomposed into eigenmodes with definite frequency
and angular momentum. Furthermore, they can be classi-
fied as two distinct types: odd-parity (or magnetic-parity)
and even-parity (or electric-parity) perturbations.

In the RWZ gauge, the odd-parity perturbations are
characterized by two functions hg(r) and h(r). The
nonzero components of 4, are

)

h ho(r)e~ X (6, ¢),

i (r)e= ™ X(0, ), (21)

S >

(
2
L@

3

where A = {0, ¢}. Here w is the frequency of the pertur-
bations, and X" is the odd-parity vector spherical har-
monic on the unit two-sphere [32],

Xy =—cscOy'™,  XJ'=sin0Y",,  (22)

where Y (6, ¢) is the scalar spherical harmonic. The two

functions /(r) and h,(r) are not independent and can be
expressed in terms of a single scalar function Q(r) as [30]

fd -

ilo = —%E(’”Q)’ hy 7 (23)
The scalar function Q(r) satisfies the equation
O 0y 2
—gz tViie=a0. (24)
where
v =ro(“EP-S) e

is the odd-parity effective potential.

In the RWZ gauge, the even-parity perturbations are
characterized by three functions: Hy(r), H,(r), and K(r).
The nonzero components of 4, are

. . . . H A
hg[) — f(r)Ho(r)e_”‘”Yl’”, h£r> _ (}’) e—l(utylm

f(r) ’
hgf) — I:Il (r)e—imtylm’ hz(:[; — FZQABK(V)E_iu)IYlm,
(26)

where Q5 = diag{1, sin? @} is the metric on the unit two-

sphere. Hy(r), H,(r), and K(r) can be expressed in terms
of the Zerilli function Z(r) as [33]
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- [AA+1)r? +3AMr + 6M?
K= Z V4
{ r?(Ar +3M) +VIZs,

~ 2 — 3\Mr — 3M?
iy = —iq| 2 3Mr =M 7
(r=2M)(Ar +3M) '
~ Ar(r=2M) — &?*r* + M(r —3M)] -
HO - K
(r—=2M)(Ar +3M)
A+ 1M - o?r] -
UM wrl g, @)
ior(Ar +3M)
where
1
/1:5(1—1)(1—1-2). (28)
The Zerilli function satisfies the equation
d’z .
~at V97 = w2z (29)

with the even-parity effective potential

vi(r)
2222+ 1)r + 642Mr? + 18AM?r + 18M3

=1 P+ 3M)?

(30)

The boundary conditions for the QNMs are that on the
event horizon, there is only an ingoing wave

Q(Z) ~ e7ior-, r, = —oo(r —» 2M) (31)

and at spatial infinity there is only an outgoing wave

Q(Z) ~ e'r, r, = +oo(r - +o0).  (32)
The above boundary conditions imply that the perturba-
tions are dissipative: waves can escape either to infinity or
into the black hole. The frequencies of the QNMs are
complex,

= wg — iwy, (33)

where @; is positive and characterizes the decay of the
QNMs. For a Schwarzschild black hole, there is a discrete
infinity of QNMs. The QNM frequencies depend on / and
an integer n called the overtone number [34,35].

Based on the Newman-Penrose (NP) null-tetrad
formalism [36], another approach has been developed to
study the gravitational perturbations in a Schwarzschild
background [23,37]. This more general method has been
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generalized to study the neutrino, electromagnetic, and
gravitational perturbations in a Kerr background spacetime
[38—41]. In this framework, gravitational perturbations are
represented by two field quantities y, with s = 42, which
are related to the Weyl scalars [36] and satisfy the
Teukolsky master equation [38]. For the Schwarzschild
case, one can take the limit ¢ — 0 (a is the angular
momentum per unit mass of the Kerr black hole) in the
master equation to obtain the corresponding field equation
for y,. This quantity can be decomposed as

Vs = e_i[mSYlm (0’ ¢)3Rwl(r)’ (34)

where Y, is the spin-weighted spherical harmonic [42],
and (R, (r) is the radial function satisfying the equation

d d r*w? = 2isr*(r — M)
AT — As+l —\.R
r di‘( r dr)s wl(r)+ |: Ar

+disor—(1—s)(I+ s+ 1)} sRoyi(r) =0, (35)

where A, = r(r —2M). At a large distance from the black
hole, the asymptotic solutions of (R, are

—iwr. ior
¥ elors

sRot ~ and (R, ~ m ’ (36)
whereas very close to the event horizon,
Ry~ A7fe™™@ and (R, ~ e, (37)

The QNM boundary conditions (only outgoing waves at
spatial infinity, only ingoing waves at the future horizon)

imply

Iy = —00;

CwlAr—se—iwr* ,
sRot ~ ; (38)
D e [r3 T r, - 40,
|
(o) (o) \/5 { |: d < Zf
WO =@ = V2 gl R~ (iw+
= I 20210+ 1) ldr. 7 r
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where C,,; and D, are the amplitudes of the QNM at the
event horizon and spatial infinity, respectively.

The explicit expressions for the components of the
metric perturbation /4, are very important when consider-
ing the coupling between the gravitational perturbations
and the quantum fields. Chrzanowski, Cohen, and Kegeles
(CCK) developed a procedure for reconstructing the metric
perturbation £, in the ingoing and outgoing radiation
gauges from the field quantity w, [43—45]. Roughly
speaking, the CCK procedure consists of two steps: the
first step is to relate the field quantity y, to the so-called
Hertz potential ¥, which also satisfies the master equation
with spin weight s = —2; the second step is to find the
relation between h,, and the Hertz potential ¥ [43]. The
first explicit calculation of the relation between the Hertz
potential ¥ and v, for the Schwarzschild black hole was
done by Lousto and Whiting [46]. Generalization to the
Kerr black hole was performed by Ori [47], Yunes, and
Gonzalez [48].

In the ingoing and outgoing radiation gauges, the
trace of the metric perturbation A%, vanishes in the
whole spacetime [43]. The perturbation 4, is transverse
at past null infinity and at the future horizon in the
ingoing radiation gauge. Therefore it is a suitable gauge
to study the gravitational effects near the event horizon,
while in the outgoing radiation gauge, h,, is transverse
at future null infinity and at the past horizon. It is
therefore a suitable gauge for studying gravitational
effects at spatial infinity, e.g., gravitational waves
emitted by a black hole. Since it is reasonable to expect
that the interaction between the metric perturbation and
the quantum fields is strong near the event horizon, we
therefore work in the ingoing radiation gauge through-
out this paper.

Following the CCK procedure, Nichols et al [33]
derived explicit expressions for the metric perturbation
h,, in the Schwarzschild background spacetime in the
ingoing radiation gauge. For the odd (magnetic)-parity
perturbations, the nonzero components are

)—2Rm1] (L1 Ypma + 1Y1mmfx)"_iwt}’

o _ 1ol d L, |
/’lﬁl; = Fm{ |:(la)r2 — M)——2Rwl - <§,bt2f - la)(—3}" + 7M) - 0)27‘2> —2Rw1:| (—zylmmAmB _ 2y1mmzmz)e—zwt}’

dr

(39)

where D = (1 +2)!/(1=2)!, u> = (1= 1)(1 +2), N represents the real part of a function, and m, = %(1 isin@) is a
vector on the unit sphere with its index raised by the metric Q48. For the even (electric)-parity perturbations, the nonzero

components are
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2+/D
r2

VD 0 { { d
21201+ 1)

d

e = =il = 2h) = ~ 2L R,V e,

W = —fhiy =

*
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) 2f o
W—szl - (zw + 7) —2Rwl:| (LY puma = Yy,my)e lw[}’

e 1 . . 1 . * ok ,—iw
hﬁug = ]sz{ [(za)rz - M)d—r—szz - <§ﬂ2f —iw(=3r+7M) - 0)2”2> —2sz] (LY ymamp + Y ,,mymy)e [}-

Note that the metric perturbation in the ingoing radiation
gauge is related to that in the RWZ gauge, Eqgs. (21) and
(26), by a gauge transformation.

IV. COUPLING BETWEEN QNMS
AND SCALAR FIELD

In the absence of gravitational perturbations, the scalar
field @ evolves freely on the Schwarzschild back-
ground spacetime. Its dynamics is dominated by the
unperturbed Lagrangian density L. If the Schwarzschild
background spacetime is perturbed, the scalar field will
couple to the gravitational perturbations. Its dynamics is
governed by the interaction Hamiltonian H;, Eq. (8). Our
particular interest is in whether or not gravitational
perturbations in a Schwarzschild background can produce
particles. We have noted earlier that plane gravitational
waves do not produce particles [13—-16]; were it other-
wise, momentum conservation would be violated. As we
shall demonstrate, the situation is different for spherical
perturbations. We will show that gravitational perturba-
tions in a Schwarzschild background do generate scalar
particles and that angular momentum is conserved in
this process.

In order to know the evolution of the state of the scalar
field, one needs to find the explicit expression for the
interaction Hamiltonian H; which contains only first-order
terms of the components of the metric perturbation /4,,.
An appropriate gauge can be chosen so that the interaction
Hamiltonian H takes a relatively simple form. Throughout
this paper we will work in the ingoing radiation gauge.

|

(40)

|

There are several advantages of choosing this gauge. First,
it is straightforward to generalize the calculations to the
Kerr background case. Second, it is expected that the
coupling between the gravitational perturbations and
the scalar field is strong around the event horizon so it
is more convenient to use the ingoing radiation gauge.
Third, the trace of the metric perturbation vanishes in this
gauge, h*, = 0. Consequently, Eq. (8) is simplified:

1 <3
H =1 / Pdr / dQ[-h"(0,®) + h' (0,®)?
2 2M A

+2h"(0,D) (0, @) + h*B(9,®)(0D)]. (41)

In what follows we will consider the effects of both the odd-
parity and even-parity QNMs with frequency wy = wp —
iw; and angular momentum [, m,.

A. Effects of odd-parity QNMs

1. Odd-parity interaction Hamiltonian

For simplicity, we only consider the coupling between
upcoming and upcoming modes, and omit the superscript
“up” without introducing any confusion. Couplings
between upcoming and ingoing modes, and ingoing and
ingoing modes are also possible, which we leave for future
work. Since for odd-parity perturbations, 4" = 4\?) =0,
the relevant terms in Eq. (41) are (0,®)(0,®) and

(04@)(0pP).

© 1 !
1 ~ ~ —i(0+a@' R, R,
(0,9)(0,®) = ZZ Z Z /da)/dw’m [awlmaw’l'm’e (@t >t8r <T>( . )Ylm(aAYl’m’)

=0 ['=0 m==Im'==1'

r

N N ENToNEp Rm R*/r «
+ awlmaz),l,m,e i(w a))tar (—1) ( a;l >Y1m(8AYl,m,) + HC:| . (42)

S
2
S
2

Il
[]s
[M]s
MN

’ L[ e (Rl (Rur
§ /dw/dw/m |:aw1ma(u’l’m’e i+ >t< ;Ul)< a;l >(8AYlm)(aBYl’m’)
1=0 I'=0 m=—lm'==1'

: / R R*/ ’
+ a(;)lmaz)/l/m/e_l<w_w )f <_wl> <%> (aA Ylm)(aB Y}k,m/) + HC:| . (43)

r
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From Eq. (39) we see that 4\ and h{’) contain terms that are proportional to e~/ = ¢=@11¢=i@x! and (¢=i@o!)* = ¢=01t i
When multiplying with (0,®)(9,®) and (0,P)(0p®P) we get terms containing factors

e:ti(wR—w—a)’)f e:i:i(wR+a)+w’)t +i(wg+w—w')t

, e , e:ti(wR—aH-w’)t_

’

In the rotating-wave approximation, terms with the lowest frequency oscillations e*(®x=®=®) dominate over more highly
oscillatory terms. This approximation ensures that the energy is approximately conserved, wp ~ @ + @'. Substituting

Egs. (39), (42), and (43) into Eq. (41) we have in this approximation

where Z,; and Z,, are the radial integrals,

rl — =

,/210 10 1 /

T,— /°° dr
2M

and Z,, and Z,, are the angular integrals,

1 . d
Fr {(1(00}’2 - M) y

do | do'—
=0 1'=0 m——l m'==1' / v

[ _l(wk—w—a)')f&T &T, / /(Irlzal +Ir21a2) + H'C']’ (44)

olm™a'l'm

_of R\ (R,
|:dr *2Rwolo (la)0+7>2RwUlo:| 8r< rl>( rl >’ (45)

1 : R;J R:)' !
7*—2Rw010 - (zﬂ(z)f— iwy(=3r +TM) — 2r2> —2Rw010:| ( rl) <rl> (46)

Ial(ZOva;l’m;l/’m/):A dQ( lmm +1 lomom ) (aA Im) (47)
T (Lo, mos L, ms I', m') = / AT, = 3, ) (0,Y5) (95T ) (48)
4

Since the Hamiltonian (44) is quadratic in creation (and
annihilation) operators, it is clear that it describes multi-
mode squeezing. The quantity 7 ,,Z,; + Z,,Z,, plays the
role of a phase matching function, the nonzero value of
which would imply that gravitational perturbations gen-
erate quantum particles.

2. Radial and angular integrals

Since there are no analytic solutions for the radial
functions R,,; and _,R, . it is therefore impossible to
find analytic results for the radial integrals Z,; and Z ,,. One
might expect the radial integrals can be calculated numeri-
cally. It turns out that the calculation of the radial integrals
is not trivial because of the peculiar property of the radial
function of the QNMs. From the boundary conditions for
the QNMs, Eq. (38), the radial function of the QNMs is
proportional to e”!"* when r, — 400, and it is proportional
to e~ when r, — —oo. In both limits the radial function
of the QNMs is divergent and the radial integrals are not
well defined. Leaver [49] proposed a method to overcome
this difficulty by exploiting the analyticity of the integrand
in 7,. A new contour (see Appendix A for details) is chosen
such that the integral along this contour is finite. Sun and

|

Price [50] discussed in detail how to construct Leaver’s
contour by analytic continuation and restored a factor that
is missing in [49]. Similar techniques were also used by
Yang et al. [51] to define the inner product of the radial
function of the QNMs. In this paper, we follow the method
of Leaver (taking into account the missing factor) to
regularize the radial integral to obtain a finite result.

By using Leaver’s method, the radial integral can, in
principle, be calculated numerically. In order to obtain an
approximately analytic result, we assume that the main
contribution to the integration is from the region near the
event horizon, that is, r ~ 2M. This is because the coupling
between the QNMs and scalar field near the horizon is
expected to be stronger. This assumption can also be justified
by looking at the asymptotic behavior of the integrand along
the contour at infinity, which is exponentially suppressed
(see Appendix A for details). To further simplify the result,
we assume that the imaginary parts of the QNM frequencies
are small. This is a rather crude approximation because the
imaginary parts of the QNM frequencies of a Schwarzschild
black hole are not so small. However, this approximation is
adequate for the purpose of this paper.

Taking into account all the above approximations, we
find
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s o Dy 162iMQQy AyyAsy Co )
N Aot 1) (A 1
and
167iMQ2 AL A, Co
p e (50)

where Q =2Mw, Q) =2Mw,, Q =2Mwo’, and A =
Q,—Q— Q. Equations (49) and (50) are valid when
A~0.

Fortunately, the angular integrals Z,; and Z,, can be
calculated analytically. In Appendix B, we derive the
explicit expressions for the spin-weighted spherical har-
monics with spin weights +1 and £2 in terms of the
Legendre functions, as shown by Egs. (B8) and (B9). In
Appendix C, we substitute Eqs. (BS) and (B9) into
Egs. (47) and (48) to obtain the angular integrals 7,
and 7 .

For simplicity we consider a special case where the
angular momentum of the QNMs along the z direction is
zero, that is, my = 0. This simplifies the calculation a lot
and is sufficient to demonstrate quantum particle gen-
eration by the QNMs. The resulting angular integrals Z ,;
and 7, are given by Egs. (C7) and (C8). Note that the
integration over ¢ gives rise to a 6 function 6, _,,, which
implies that the produced pair of particles have opposite
angular momentum along the z direction. This is not
surprising given that my =0 and is an indication of
angular momentum conservation in the particle produc-
tion process.

As an example, we calculate the angular integrals Z
and Z,, for a QNM with angular momentum ([, my) =
(2,0) and a pair of scalar particles, the first of which has
angular momentum (/,m) = (1, 1) and the other (/,-1).
We find that the particle (1,1) only couples with those
particles with ' = 2; namely, the only nonzero Z,; and
T, are

I /3
Ia1(2,0;1,1;2,—1):_§ -
T

T,n(2,051,1;2,-1) = \/21. (51)
1

3. ONM as multimode squeezer

In Sec. IVA2, we have analytically calculated the
angular integrals and derived approximately analytic
expressions for the radial integrals for odd-parity QNMs.

‘We thus can obtain the interaction Hamiltonian H (10), which
dominates the evolution of the scalar field. In the following
we will estimate the strength of the coupling between the
QNMs and the scalar field.

PHYSICAL REVIEW D 96, 065017 (2017)

The time evolution operator is

0o — f‘exp{—i / " dtH(l())(t)}, (52)
0

where T is the time ordering operator. In the low squeezing
regime [52], the time ordering is not important, so we can
approximate the time evolution operator as

O zexp{—i / " dtH§°>(t)}, (53)
0

and the integration can be directly carried out. Using

/oo dte—w,te—i(a)k—a)—m’)t _ 1 ,
0 i[(wg — 0 — &) — i)

we have

0 =0,

im [’

[Afgfn)l, zexp{—i/dw/dw’[FEZl)l,(a),a)’)&zﬂm&z},l,’_m

+ fg;);; (a)? w/)&wlmaw’l’,—m} } (54)
where
4iM3A* A*,,C 1
(0) / ol 1" wyly
F, i (0,0) = -
Iml ( ) /QQ/(I _ 627190) (IA)3
\/D
X [ngaz —70990@1]. (55)
2lp(lg + 1)

It is evident that Eq. (54) represents a multimode squeezing

operator and F ;;)Z,(a), ') is known as the joint frequency
distribution. Equation (55) shows that the joint frequency

distribution F 5:7’1)1,(60, @') is not zero, indicating that there
will be scalar particle creation. If the initial state of the
scalar field is a vacuum state (the Boulware vacuum), the
QNMs squeeze the vacuum and produce a squeezed
vacuum state; if the initial state is a thermal state, e.g.,
Hawking thermal radiation, it is amplified due to the QNM
squeezing. In general, the QNMs squeeze any state of the
scalar field and amplify it, producing scalar particles. The
particle production energy comes from the QNMs. This is
our main result.

In Eq. (55), A, is the reflection amplitude [see Eq. (14)]
of the upcoming scalar field mode determined by the
effective potential (12). For a given [, the effective potential
peaks around r, = 2M with its maximum depending on /
(higher for larger ).

Unfortunately, there is no analytic expression for the
reflection amplitude. However, we can infer the qualitative
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|Awl|2

2Mw

FIG. 1. Reflection coefficient for the scalar field modes.

behavior of A,;. When the frequency of the field mode is
lower than the maximum of the effective potential, most of
the field mode is reflected, whereas the field mode almost
penetrates through the potential if the frequency is higher
than the potential maximum. Figure 1 shows the numerical
results of the reflection coefficients |A,,|>.

After knowing the behavior of the reflection amplitude,
we can study the behavior of the joint frequency distribu-
tion. The factor A is defined as

A=Q)-Q-Q = (Qr—Q-Q) —iQ,
where Qp = 2Mwy, Q; = 2M®,. Therefore, we have

1 1
—_— = . 56
AP [(Qr—Q-Q)*+QFP/2 (56)

This is a distribution with respect to Q and Q' that peaks
along the line Q + Q' = Qp, the maximum of which is
1/Q}. Here Qz —Q — Q' can be considered as the fre-
quency detuning, and ; can be considered as the decay
rate which also characterizes the width of the distribution
Eq. (56). If Q; is small, the distribution Eq. (56) is nonzero
only for Q+ Q' ~ Q. This is an indication of energy
conservation: the sum of the frequencies of the pair of
scalar particles is equal to the real part of the QNM
frequency. Figure 2 shows an example of the absolute

value of the joint frequency distribution |F Efn),, (w,0)|. We

can see that basically |F 5:1)1,((0,(1)’ )| follows the energy-

conservation line Q + Q' = Q. The high-frequency part is
suppressed by the reflection amplitude A,,;, while in the
low-frequency regime, |A,,| is almost one and the factor
1/v/QQ" dominates. The latter is annoying because that
means the joint frequency distribution is divergent at
Q=0 or Q =0. Here we assume that there exists a

PHYSICAL REVIEW D 96, 065017 (2017)
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FIG. 2. Modulus of the joint frequency distribution. QNM:

Qp = 0.7474, Q; = 0.178, (Iy, my) = (2,0). Scalar particle one:

(I, m) = (1, 1); scalar particle two: (I',m’") = (2,-1).

low-frequency cutoff so that the joint frequency distribution
is finite.

We can compute a crude estimate of the maximum of the
joint frequency distribution. Assume that in Eq. (55),
Q~ Q' ~Qr/2, |A,l ~|Ayr| ~1/v2, and the contribu-
tion from the angular integral part is at the order of unity;
we then find

O a1 [Cal
|‘7:lml’|max am (Q]) <Q%> |1 _ eZn(QR—iQ,)| ’ (57)

This is an approximate relation between the squeezing
amplitude (or the coupling strength) and various parameters
of the black hole and the QNM. Here Qj is the resonance
frequency of the QNM and ; characterizes the decay rate.
If we make an analogy with an optical cavity [53], Qz/Q;
can be considered as the quality factor of the QNM. We see
that the squeezing amplitude is proportional to the cube of
the black hole mass, the amplitude of the QNM at the event
horizon, and the quality factor of the QNM, and is inversely
proportional to the square of the decay rate. This means the
coupling strength is stronger for longer-lasting QNMs,
larger-amplitude QNMs, and bigger black holes. However,
for Schwarzschild black holes the QNMs decay very fast
and the least-damped QNM is the fundamental QNM for
which the overtone number is n = 0 [27]. For example, for
the fundamental QNM of (ly, mgy) = (2,0), Qz = 0.7474
and Q; = 0.178 [27]. Substituting these into Eq. (57), we
find

FN s ~ SMP|Co - (58)

B. Effects of even-parity QNMs

The procedure to evaluate the coupling between the
scalar field and the even-parity QNMs is similar. For the

even-parity perturbations, hgf ) # 0, hgi) # 0, so we also
need (0,®)(0,®) and (9,D)(0,®) in Eq. (41), which are
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0 1 !
1 —i(o+o Rwl Ra)’l’
(8 (I))(@ (I)) = ZZ Z Zl,/dw/dw/47;\/m |:—a)a) Aoimor 1'm € i(@+ )’(T> ( p >Ylel/mr

/ R R* ’
+ ow aw,maT,,/ e l(“"“’)’< ) < @l )Yle}*,m, + Hc} (59)
r r
2 2 b [0} R() '’
(arq))(arq)) = /da)/da) /— |:amlmaml’m’e i{etof ta < l)a ( - )Ylel' /
ZZ:(; NZ;) m=—Im'=-|' 4n r
. ; Rw R*r /
+ Qi e @19, (—1) 0, <Ll> Y Y5, + H.c} ) (60)
r r
Substituting Eqs. (40) and (19) into (41), and taking into account the rotating wave approximation, we have
H ~ _w,,z / dw / de/ {e" or=o=igt Q@ (T +Ta) a3 +TnZas + LT s
=0 ['=| m=—l m' == v
+H.c.} (61)
where the radial integrals Z,; and Z,, are defined in Sec. IVA 1, and Z,; and Z,, are defined as
Ry, Z) 0
r3 = —COCO \/ dr 2 ) (1)[)1(] - ’ s (62)
Ror\ 5 (Rur
T, =-/D / r 3R, 0, ("2 ), (7). (63)
The angular integrals 7 5, Z 4, Z,5 are
Zas(lg,my; L,m; 1, m") = / dQY o Y7 Y i (64)
4
Zaa(lo,mo; L,ms1l',m') = A dQ(—lYlomom - 1YlomomA )Y 1, (04Y7 I'm ) (65)
Tas5(lo,mosl,myl',m') = A dQ(_ZYIOmOmAmB + 2YIOmOmA*mB*)(8AY}‘m)(83Y}‘,m,). (66)

The radial integrals Z,; and Z 4 can be calculated similarly
to that for Z,;; details are in Appendix A. In the limit
iA ~0, we find

87i\/DMQCY A% A%,,.C,,
(iA)? 1-

Tam—T,,~— ob — (67)

2Jr§20
This implies Z 53 +Z,4 = 0.

It turns out that 7 ;5 can be easily obtained and expressed
in terms of the 3-j symbols,
1) ( I lo>
0 0 O

Ip= (—1)’"0\/(210 + 1)(214-; 1)(21" +
(6%)

( N A )
X b
-m —m' my

|

which are zero when mg # m + m’. Taking into account the
properties of the 3-j symbols, we find that Z 3 vanishes
when [y + 1+ I’ is an odd integer.

If we consider the special case where the angular
momentum of the QNMs along the z direction is zero,
that is, my = 0, the calculation can be significantly sim-
plified. The resulting angular integrals Z,, and 7, are

TABLE 1. Nonzero Z,4 and Z 5 for a QNM (ly, mg) = (2,0)
and a pair of scalar particles: (/,m) = (1,1) and (/,-1).
I'=1 I'=3
Z,4(2,0;1, 150, 1) 1 /3 —4
2\ 5z 357[
T,s5(2.0;1,1;1,-1) 5 5
107 357t
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given by Egs. (C9) and (C10). As an example, we calculate

the angular integrals Z 4 and 7 ,5 for a QNM with angular

momentum ([y, mg) = (2,0) and a pair of scalar particles,

the first of which has angular momentum (/,m) = (1, 1)

and the other (7, —1). We find that the only nonzero Z 4

and 7,5 are for I’ =1 and I’ = 3, as shown in Table L.
The time evolution operator is

0e — F exp{ —i / ” dtH\ (1) } (69)
0

where 7T is the time ordering operator; as before, in the low
downconversion regime [52] time ordering is not important
and we find

09 =@l

Im 1
U;fn)l, zexp{—i/da)/da}’[}'gl,(a), w’)&z,lmdz),l,._m

+ F (0, 0)Apimar s ] } (70)
where the joint frequency distribution is

_AiMPAL AL Cy L

(e) / o'l’
f[ml/(CU,CU ) - /—QQ,(I —62”90) (lA)3
VDo

X | Q2T 5 — 990204] . (7D

20y(ly+1)

It is evident that the joint frequency distribution

F 521,(0) ') for the coupling between the scalar field
and the even-parity QNM is nonzero, showing that there
is scalar particle creation. Figure 3 shows an example of the

joint frequency distribution.

0.8

0.6
0.4

0 0.2 ‘ZN{U)

FIG. 3. Modulus of the joint frequency distribution for even-
parity QNMs. QNM: Qy =0.7474, Q; = 0.178, (ly, my) = (2,0).
Scalar particle one: (1, m) = (1, 1); scalar particle two: (', m’) =
(3,-1).
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V. PARTICLE NUMBER ESTIMATION

It is interesting to know how many particles can be
produced by the gravitational perturbations around a black
hole, e.g., how many particles are produced by the
coalescence of two black holes in events of the type
observed by LIGO. In this section, we provide a crude
estimate of the total scalar particle number.

Without loss of generality, we only consider the effect of
odd-parity QNMs. Using the decomposition theorem [54],
the joint frequency distribution Eq. (55) can be decom-
posed as

Fih(w.a) = re®yi(o)wy(a).  (72)
k

where {y; (@)} and {wo; (@)} both form an orthonormal
set of localized wave packet mode bases. The correspond-
ing localized mode operators are

Aklm :/deIk(a})&wlmv

Ekl’,—m :/dw/WZk(a}/)&w’l’,—m’ (73)

The time evolution operator for given [, m, I’ becomes

70 oAl B
Ulmlf ~ exp{zrkelwAklmBkl’,—m - HC}
k

~ @ exp{rkei‘/’kAALmBL,’_m —Hc.}. (74)

We can see that r;, is the two-mode squeezing factor and ¢,
is the squeezing angle,

rpe'? = /dw/dw’fﬁ,ffp(w, " )y (@) yo (). (75)

If the initial state of the scalar field is the Boulware vacuum,
the particle number for Ak,m and Beklry_m modes are both
sinh?(r;). Therefore, the total particle number is

N =2 "sinh?(ry). (76)

Iml’"  k

The maximum squeezing factor r,,,, can be obtained by
choosing y (@) and yy(@') such that they maximally
overlap with the joint frequency distribution F E:;)l, (0, ).
According to the behavior of F g:;)l,(a),w’ ), as shown by
Fig. 2, we can choose y(@)yo, (@) as a two-dimensional
top-hat function with width w; and length wg, respectively.
The maximum squeezing factor is approximately

065017-11



SU, HO, MANN, and RALPH

Tmax ~ / a)Ra)I|:F§fn)]/ |max7 (77)
where |F E;:l)l/ max 1S given by Eq. (57).

The amplitude of the ingoing gravitational waves on the
horizon, C,, ; , remains unknown. It is related to the energy
flux of the gravitational waves falling into the black hole by

dEpote  32(2M)*Q%(4Q% + 1)(Q% + 1)

= 2. (78
dr  36Q% + B(lo+ 1)?(I3+ 1y —2)? 578

C

0lo

This relation is obtained by making a — 0 and integrating
over all angles from a similar relation [Eq. (4.44) in [41]] in
the Kerr background spacetime. We assume that during
time At, the amount of gravitational wave energy falling
into the black hole is AEy. = nM (here M, is the solar
mass, which is about 1.99 x 10%° kg); then

o 36Q% + 3(lp + 1) (3 +1p — 2)* [nM
oobo 3202M)*QA(4Q% + 1)(Q% + 1) V Ar

(79)
As an example, we consider the fundamental QNM of a
Schwarzschild black hole, for which [y =2,Qp =

0.7474,Q; = 0.178. By using Eqgs. (57), (77), and (79)
we find

M 10—5 1/2
P ~ 0.57 X ’/”A—;@ ~ 0.4,/ X ( < s) . (80)

For the first gravitational wave event, GW 150914, detected
by LIGO [19], the ring-down time is about 0.01 second, so

Fax ~ /1 X 1072, (81)
We note that even if 7 is at the order of one (one solar mass
of gravitational wave energy falls into the black hole), the
particle number created by the ring-down is very small.
This is due to the fact that at the ring-down stage, the black
hole oscillation dies away very quickly.

One important thing to note, from Egs. (57), (77), and
(79), is that rp,, Q,_S/ * where 1 /Q, characterizes the
time scale of the black hole oscillation. If this is qualita-
tively valid at the inspiral and merger stages, one might
expect that the particle generation is quite significant
because the oscillation of the black hole lasts much longer
than that of the ring-down stage. For example, if the time
scale is 30 times longer, 7.« ~50 and the total particle
number ~10%2. However, our calculation is only valid at the
ring-down stage, and further studies need to be done for the
inspiral and merger stages.

VI. CONCLUSION

We studied the coupling between the gravitational
QNMs of a Schwarzschild black hole and a massless scalar

PHYSICAL REVIEW D 96, 065017 (2017)

field, and showed that scalar particles can be produced by
the gravitational perturbations. This is contrary to the plane
gravitational wave case where particle creation is forbidden
due to the violation of momentum conservation. In the
Schwarzschild black hole case, the total angular momen-
tum of the QNMs and the pair of particles produced is
conserved. In arriving at the above conclusions, we
explicitly derived the interaction Hamiltonian for the scalar
field which shows that the QNMs play the role as a
multimode squeezer. The QNMs squeeze the initial state
of the scalar field and produce particles. If the initial state of
the scalar field is a vacuum state (Boulware vacuum), then
the final state is a squeezed vacuum state, indicating that the
QNMs amplify the vacuum fluctuations and create par-
ticles. If initially there exists Hawking radiation (a thermal
state with its temperature proportional to the surface gravity
of the black hole), the QNMs squeeze the Hawking
radiation and amplify it. Interestingly, the presence of
gravitational perturbations results in coupling between
different Hawking particles and, therefore, may build
correlations between them, modifying the thermal charac-
teristic. Modification of the Hawking radiation and Unruh
radiation by fluctuating horizons was recently studied
[55,56]. In realistic astrophysical situations, the CMB
temperature is higher than the Hawking temperature of
astrophysical black holes, so the amplification of the CMB
around a black hole by the QNMs will be more significant
than the amplification of Hawking radiation.

How significant the amplification is depends on the
squeezing amplitude. We showed that the squeezing
amplitude (57) is proportional to the amplitude of the
QNMs, which is reasonable because larger gravitational
perturbations would create more particles. In addition, the
maximal squeezing amplitude is proportional to the cube of
the black hole mass and the real part of the QNM frequency,
and is inversely proportional to the cube of the imaginary
part of the QNM frequency. This implies that for a given
amplitude of the QNMs a larger black hole would create
more particles. Furthermore, the particle creation efficiency
is higher for lower decaying QNMs. For Schwarzschild
black holes, the damping of the QNMs is fast. The least-
damped mode has 2M®; = 0.178. For extreme Kerr black
holes, there exist QNMs with very small damping rate,
called zero-damping modes [57]. We expect that our result
is qualitatively correct for the Kerr black holes, which
implies the particle creation by gravitational perturbations
around an extreme Kerr black hole is much more efficient
than that around a Schwarzschild black hole.
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APPENDIX A: RADIAL INTEGRALS

It is difficult to find exactly analytic results for the radial
integrals because we do not have analytic solutions for
R, and R,,;. However, it is possible to find approx-
imately analytic results by using the asymptotic behavior of
R, and R,;. When r, — +oo (spatial infinity), the
integrands of the radial integrals are both proportional to
ell@=o=o')r according to Egs. (38) and (14); when r, —
—oo (event horizon), they are proportional to e~i(@o—@=@")r.
The QNM frequency is a complex number wy = wg — iwy
so the integrands are proportional to ¢®”+ when r, — o0,
and e~ when r, —» —o0. Since w; > 0, the integrands
are divergent at spatial infinity and on the event
horizon, which implies the radial integrals are not well
defined. This formal divergence can be resolved by utiliz-
ing the analyticity of the integrands [49]: they are analytic
in the complex r plane except at two points » = 2M and
r = oo0. A contour which encloses these two branch points
r =2M and r = oo is chosen by Leaver [49] such that the
integral along it is well defined and finite. Sun and Price
[50] discussed in detail how to construct Leaver’s contour
by analytic continuation and restored a factor 1/(1 — ¢>*%)
that is missing in [49].

Noting that » = 2M and r = oo are two branch points,
the branch cut can be chosen as a line perpendicular to the
real r axis, starting at = 2M and ending at » = co. The cut
lies in the upper complex r plane if wz — @ — @' > 0, as
shown in Fig. 4, and in the lower complex r plane if
wp —w— ' <0. When wp — @ — @' > 0, the contour C
begins at r = oo, just to the right of the branch cut, moves
downward to » = 2M, where it wraps and, just to the left of

Im(r)
out region
—C
i region
() Re(r
o & "

r=2M

FIG. 4. The contour C and branch cut when wp —w — @’ > 0.
The two shaded regions are referred to as in (close to the horizon)
and out (around r = o) regions, respectively.
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the branch cut, moves upward to » = oo, as shown in Fig. 4.
We refer to the region near r = 2M as the in region and the
region around r = oo as the out region, as schematically
represented by the shaded region in Fig. 4. By analytically
extending the integrands to the complex r plane we see that
along the contour C the integrands exponentially decay in
the out region, which thus removes the formal divergence.
In addition, the exponential decay of the integrands in the
out region implies that the main contributions to the
integrals are from the in region.

We describe in detail how to find the approximately
analytic result for the radial integral Z,;; the result for Z,,
and 7 5 can be obtained in a similar way. At spatial infinity
(r — 00), by using Egs. (38) and (14), the integrand of 7
can be approximated as

1 d . 2f R d (R, (R,
Bl (e 2 Bt Zol”
f\dr. 07 )20l | qp \ f r

R iw 1 i(wy—w—a)r
~ _Ba)[Bw’[’D’UOlO 7+; e )
BZIBZ)'I/D”OIO [ i i
o — LWl 00 (GO NIA 4 IHIAY piAx Al
g R Y

where we have defined a dimensionless radial coordinate
x = r/2M. Near the event horizon (r — 2M), according to
Egs. (38) and (14), the integrand of Z,; can be approxi-
mated as

L[ 20 o ] (R (R
f\dr, 1o r )2 b qr \ r

[x‘l(l —iQux) (iQx — 1)(x — 1)1774

~ * *
~ 2AHIIA(1)/1/ Cw()IU

+iQ(1 — iQux)(x — 1)‘“] e iAx (A2)

where we have only kept the term proportional to
e~i@-o=¢')r. owing to the rotating wave approximation.
As discussed before, the integration along the real r axis is
formally divergent. The integrands Eqs. (A1) and (A2) are
analytically extended to the whole complex r plane. Along
the contour C in the out region, e!2* ~ e¢=2M@ilxl which
means the integrand of Z,; exponentially decays. We
therefore expect that the integral Z,; is finite along the
contour C. Unfortunately, we cannot find an analytic
expression for the integrand on the whole contour C.
Numerical techniques need to be introduced to perform
the contour integration. However, it may be possible that an
approximate result can be obtained by using only the
asymptotic behavior of the integrand. Note that in the out
region the integrand (A1) exponentially decays and con-
tributes very little to the total integral. Introducing another
exponential decaying function in the out region will not
introduce large deviations to the integral. We therefore
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replace Eq. (A1) by Eq. (A2) with the factor e~'2* replaced
by 2%, In the in region, the asymptotic expression for the
integrand is Eq. (A2) which dominates the contribution to
the integral. In the limit of iA ~ 0, which is the case that we
are mostly interested in, e A% & ¢/2¥. We thus replace e~/2*
by ¢’2* in Eq. (A2) and get an approximately asymptotic
expression. In summary, we approximate the original
integrand by

l d 2f R d R:}l R,
[ \dr, o = r )2 @b | 4y r

~2A% A%, C x—l(l—iszox)(iszx—l)(x—

o'l (Holo[

+iQ(1 —iQyx)(x — 1)~

l)l—iA

i A] ei Ax ( A3)
along the whole contour C. Obviously, this is a very crude
approximation since we have ignored the behavior of the
integrand in the intermediate region. The validity of this
approximation has to be verified by numerical calculation.
However, we expect that this approximation provides a
lower bound for the exact integral since near the horizon we
replace an exponentially growing function by an exponen-
tially decaying function. The advantage of this approxi-
mation is that we can obtain an analytic result for the radial
integral 7 ,q.
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From Eq. (A3) we see that basically we need to calculate

j{ dxeiAx(x _ 1)"1—iAxﬂz
c

where n;, n, are two integers, and C is the contour we
introduced, as shown in Fig. 4. Defining a new variable
u=IiA(x—1), we find [58]

%dxeiAx(x_ 1)"1—iAx”2
c
n
— (jA)id-ni-1 iA]{d wym=i u
(iA) e d ue'u +iA

B 2”i<_1)n1+l—iAeiA
T(=n, +iA)
X U(I’ll +1—iA,n1 —l—n2—|—2—

(A4)

A, —iA), (AS)
where F is the contour illustrated by Morse and Feshbach’s
Fig. 5.1.2 [58] (page 612), I'(z) is the Gamma function, and
U(a,c,z) is the confluent hypergeometric function [59].
[Note that the function U,(a,c, Z) defined by Morse and
Feshbach is related to U(a,c,z) by U,(a,c,z) =
e™U(a,c,z).] Therefore, the radial integral Z,, can be
approximated as

8zMi/D, A A’ I'Cwolo { (—1)2"'A . . . . . . .
R ol o —[QQ U2 — iA, 4 —iA, —iA) +i(Q+ Qo) U2 —iA,3 —iA, —iA
1 2lo(l0—|-1) 1_827[90 F<_1+IA)[ 0 ( ) ( 0) ( )
. . (=1)t=ia . e . . .
—U2-iA2—iA,—iA)| + Ta) [QQU(1 —iA, 3 —iA, —iA) +iQU(1 —iA,2 — iA, —iA)]
l
8zMi\/D, A:,A%,.C, i e™ jA)iA-2 2Q0
~— Do @l 2,[;2’“6 ia) : { 0+2QQO+1(Q+QO)}
20y(ly+ 1) 1- 0 I'(—1+iA)
(_1)2— A ] ) ) (l'A)lA—] QQO
——————U(2-1iA,2 - iA,—iA - 2Q0 Q A6
ST A I8, =1A) + A ia T (A6)
where we have used the fact that [60]
_Z —~(n —k
Ula.atnt1,2) =5 ;(k)l“(a—i-k)z (A7)
with n =0,1,2,---. In the limit of /A ~ 0, from Eq. (A6), we obtain the dominant term
N /Dy 167iMQQ AL A, 1 Coly (A8)
N o+ 1) (AP 1—e

The calculation of Z,, is very similar to that of Z,;. At spatial infinity (r — o0), according to Egs. (38) and (14), the

integrand of Z,, can be approximated as
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1 i d 1 . R* R
o 07 =M R, = (g ot 7)) | () (%)
* D% 31(1)0 1 6lMa)0 ﬂ(z) IM| . ol
BBy Do | M (1 ) 5 = e
~ _4M BZ)ZB;/I'DWOZO [lu(z)(x - 1)_1+lA + 3x‘1 (x —_ 1)_1+1A]61Ax, (Ag)

The dominant term is e’4*/x when x is large. Near the event horizon (r — 2M). According to Eqgs. (37) and (14), the

integrand of Z,, can be approximated as

1’2 f2

ol @'l

~ A% A%,,C

@'l wply

d 1 R* R 17!
o (bt ] ()2

[(ZQﬁxz +iQox + 2iQ — 2x7 1+ 172 (x = 1) - E,u%x_l (x— 1)1_’A} e Ay,

r r

aM  4M?

1 : ,
~ALAL L Cols [2w3r2 +iwor + 4iMay =3 w3 f - — ] e~ i(@—o-v)r.

(A10)

By analytically extending Eqs. (A9) and (A10) to the complex r plane and using the same approximation that leads to
Eq. (A3), we obtain an approximate expression for the integrand of Z,, along the whole contour C,

1
r2 f2

RAL AL Co [(mgﬁ Qx4 2iQ — 2x

We can see that in the out region on the contour C, the
dominant term in Eq. (A11) is x?¢’2* which is greater than
that in Eq. (A9), e’2*/x. However, these two terms are both
exponentially suppressed so that their contribution to the
total integration is small.

We therefore expect that this approximation only
introduces a small error. The main contribution to the
integration comes from the in region where x is not
|

ALALLCop e [(=1)10
Lo RAnMi—2" 5w, r(id)

d 1 R\ (R,
. 2 2 . 2.2 wl o'l
{(lwor - M) ar R, <5u0f —iwy(=3r+TM) — w§r >2Rw0,0] (—r ) (—r )

. 1 . .
1 +x—2)(x _ 1)—1A _zﬂgx—l(x _ 1)1—1A:| €’Ax.

(A11)

|
large. In the limit of iA ~0, which is the case that we
are mostly interested in, e A%~ ¥, We therefore
expect that Eq. (All) is a good approximation to
Eq. (A10) in the in region. Note that we replace an
exponential growing function by an exponentially
decaying function in the in region; the final result
provides a lower bound for the exact radial integral
T,,. Using Eq. (AS5) we have

RQ2U(1—iA, 4 —iA, —iA) +iQU(1 —iA, 3 —iA, —iA)

+2iQU(1 —iA,2—iA,—iA) =2U(1 —iA, 1 —iA,—iA) + U(1 — iA, —iA, —iA)]

(_l)z—m ) ' . '
_myOUQ—lA,Z—lA,—lA)
AL AL Cpe® [(IA)A1T4Q3 Q) + 1092 o
~4nMi 12 2 ria) |(a)? - A +8Q5 +4i€
D (1 = iA1= ih—in) — U1 —in =i —ia) -~ a0 a2~ ia—in) (A12)
T(iA) 1A, 1A,—1 A, —iA, —i 2F(—1+iA)MO iA, 1A, —i .

The dominant term in the limit of iA ~ 0 is

_ 1672iM QG

* *
A Am/l/cwolo

wl

2~ <1A>2

s (A13)

065017-15



SU, HO, MANN, and RALPH

At spatial infinity (r — o0), the integrand of Z 5 can be
approximated as

1 R:)\ (R,
Foshon (72 (%22

~2MB:,B*,,D,, ; x*(x — 1)72FikeiAx,

o' 1" P oyl X

(A14)
The dominant term is xe’2* when x is large. Near the event
horizon (r — 2M), the integrand of Z,; can be approxi-
mated as

1 R,
b (5)(5)

~AM?A? A%, C, o X (x — 1)71AeiAY,

wl“ o'l

(A15)

olo™

By analytically extending Eqs. (Al4) and (Al5) to the
complex r plane and using the same approximation as
before, we obtain an approximate expression for the
integrand of Z,5 along the whole contour C,

1 R, Rz) 0
F —2Rwolo r r

PHYSICAL REVIEW D 96, 065017 (2017)

The dominant term in the limit of iA ~ 0 is

Sriy/DoMOR Ay Coty (515
(iA)? 1 — 2 -

Ir?’%

At spatial infinity (r — o), the integrand of 7,4 can be
approximated as

R d Rz)l d R:J '’
2" wolo gy dr\ r

1
BB Dy [~QQX (x — 1)

2M o'l’
+i(Q+ Q)x(x = 1)7(x — 1)2eA,

+x7!
(A19)

Near the event horizon (r — 2M), the integrand of 7,4 can
be approximated as

o 4 (R d (R

“2roldr\ ) dr\ r
~—ALALClu QX+ i(Q+ Q) (x — 1)
—x2(x = 1)?)(x

—1)ribemiby, (A20)

~AMPAL AL C X2 (x = 1) 7188 (A16) . .
o By analytically extending Eqgs. (A19) and (A20) to the
Using Eq. (A5) we have complex r plane and using the same approximation as
before, we obtain an approximate expression for the
A* A*, C i (—q)t-ia integrand of Z 5 along the whole contour C,
z' ~—4 MQQ/ ol o'l wolo
/D 1—e  T(iA)
. . . R i RZ)I d RZ} /1’
X U(l - lA,4 - ZA, —ZA) -2 wyly dr r dr r
* RINENS
~ —dmir/DIMOCY AuiAui Caype” (i) R —AL AT Co [QQN 4 i(Q+ Q) (x = 1)
1 — 2™ I'(iA) 5 ) A A
s 5 —x A (x = 1) (x = 1)7"Re'a, (A21)
A (id) Using Eq. (AS) we have
|
. AwlAw I'C(U 1, (_l)l_iA . . .
Z,4~4xMiy/D, - 27[50“ { T(id) QQ'U(1 —iA, 4 —iA, —iA)
L EDTR o —in 2 —in—in) - - G ia2—ia—in)
— — A2 — A —iA) - —F—— — A2 — A, —i
['(—=1+iA) (-2 +iA)
A C (ia)ia-t 5 2
~ 4zMir/D, AoAu @yl QO 4 -
v 1 — &2 { T(id) iA " (ia)
+ (=1 (Q+ QU2 —iA,2—iA,—iA) (=) U(3—iA,2—iA,—iA) (A22)
— — A2 — A —iA) - ———— — A2 —iA, —iA).
I'(-1+iA) (-2 +iA)

The dominant term in the limit of iA ~ 0 is

o'l’

87i/DoMQQ A} A% Copl,
(iA)? 1 — e -

T~

(A23)

APPENDIX B: EXPLICIT EXPRESSIONS FOR
SPIN-WEIGHTED SPHERICAL HARMONICS

In order to calculate the angular integrals, one needs
to know the explicit expressions for the spin-weighted
spherical harmonics ,,Y;, and ,Y,, . The spin-weighted
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spherical harmonics Y/, for integers s, [, m is defined from
the spherical harmonics Y, [42],

+
K Ylm =
+

where & and O are the spin-raising and spin-lowering
operators, respectively. Assume that # is a quantity of spin
weight s; then 97 is a quantity of spin weight s + 1,

i

on = ~(sn0) (5 + <L ) (sn0) . (B2

and 37 is a quantity of spin weight s — 1,

o= ~(sn0) (- <L (s (83

According to the definition (B1), we shall derive the
explicit expressions for ,,Y,, and .,Y, in this appendix.
If we define two differential operators S, as

R o, i 0
Si=_<%isin9%>’

then the action of d (spin-raising operator) and d (spin-
lowering operator) on #, which is a quantity of spin weight
s, can be written as

(B4)

on = $‘+;1 + s cotOn,

3 = 8.5 — scoty. (B3)

1, L= 1) (L= m)!
i =3 (=1 \/ dr (I+ D) (1 +m)!

B 20+ 1(1=2)! (I=m)!
iZYlm_Z(_l) \/ 4z (142)! (1 + m)!
+2<cot9:ts.

2m
in 9) Clum ! + <_Clm

where ¢;, = \/(l+m)(I—m+1).

PHYSICAL REVIEW D 96, 065017 (2017)

According to the definition of the spin-weighted spherical
harmonics (B1), we find for s = +1

=1y
+1 lm:i (l—|— ), +*Im (B6)
and for s = +2
(I1-2)! 4 o
j:ZYlm:\/(l+2)|( L +cotfS.)Yy,

2i
cot0@0y £ ——(0y — cot0)d
0 sinH( b~ cot0) ¢

(-2,
= <z+2>'[a

1
2
gy (’)4 Yin (B7)
since Y, is of spin weight 0.
Taking into account the definition of the spherical
harmonics,

Vin(0.4) = <—1>’"\/ s

and the recurrence relation for the associated Legendre
function

1
dpPy = =[P —

P = @ m) (I =m+ )PP,

we obtain the explicit expressions for the s = 41, -2 spin-
weighted spherical harmonics in terms of the Legendre
function,

2 )
<:F Pt 4¢3 pp! +$P,ln>e,m¢’ (BS)
n - 2m .
{Pl +2 + c%mc%m_lPr 2 _ 2<cot9 iw> P! +1
4m 8mcot 4
2 m im¢
Clm+]+81n29:|: sind )Pl:|€ (B9)
|
1
Tntmistoomsilsoms) = [ PP, (1)

APPENDIX C: ANGULAR INTEGRALS

Equations (B8) and (B9) can be further transformed to
eliminate the trigonometric functions by using the recur-
rence properties of the associated Legendre functions [59].
Finally, the calculation of the angular integrals is reduced to
the evaluation of the integrals of the products of three
associated Legendre functions,

where y = cos 6. The integral 7 p; has an analytic result and
is shown in Appendix D. Therefore, the angular integrals
can always be calculated analytically, although the calcu-
lation is tedious in the general case.

For simplicity we consider a special case where the
angular momentum of the QNMs along the z direction is
zero, that is, my = 0. This simplifies the calculation a lot

065017-17



SU, HO, MANN, and RALPH

and is sufficient to demonstrate quantum particle generation
by the QNMs. It is easy to show that, if we let m =0 in
Egs. (B8) and (B9),

2+ 1(1-1)!
Y, = P!
w0 =T\ Ty
204 1(1-2)!
Y, = 2. 2
+25 10 47 (l+2)' 1 (C )

From the definitions of the angular integrals, we immedi-
ately find

In= \/E/ dQ_, Y0¥, (sin@a(ﬁyl/m/), )
Tin= /dQ_QYlUO |:(89Ylm) (ﬁ afﬁyl’m’)
+ (E 8¢Ylm> (aayl’m’)] : <C4)

[ 1 m' m —
T, = —fzn&m/,_ml{gﬂll " /1 duP) PP PN+ (I +m) (1" +m' = 1)P1,

2

1ol l ! !
Tos = V3rB0 K™ / PP = (1 )0 =+ P

where the factor K/ is defined as

PHYSICAL REVIEW D 96, 065017 (2017)

Z,,=V2 / dQ_, Y, oY}, (0¥ }10), (C5)

'm'
Zs= [ a0, {(aﬂ;‘m)(aﬂ;amo

The integration over ¢ gives rise to a é function 8, _,,
which implies that the produced pair of particles have
opposite angular momentum along the z direction. This is
not surprising given that my = 0, and is an indication of
angular momentum conservation in the particle production
process.

Using another recurrence relation

m 1 m m—
wpyn = _E[PI—TI + (I +m)(l+m—=1)Py"],

of the associated Legendre function, these angular integrals
become

(C7)
! ! l / !
Tp= —fém/,_meg”z’ " /_1 duPE{[P} = (14 m)(I=m + V)PP 4+ (1 +m ) (I +m' = 1) P}
+ [P+ (L m) (L +m = DPPPE = (1 +m!) (I —m' + )P, (C8)
(C9)
P2 s 1 m . i o
Las =5 Ont-nKP3 ™" /_1 duP} {[P} = (L4 m) (L =m + 1)PP1[PYH = (U + m)(I' = m + 1) P
+ [P+ (L m) (L +m = D)PPPEE + (U +m) (U 4 m = 1) PR, (C10)
(C11)

i \/(ZL + )20+ 1)(20 + 1) (L = M)! (1= m)! (I' — m')!
Kiy™ =

(47)°

APPENDIX D: INTEGRALS OF THE PRODUCTS
OF THREE LEGENDRE FUNCTIONS

We need the overlap integrals of three associated
Legendre functions, Eq. (C1), in order to calculate the
angular integrals. The integral Zp; was calculated by

(L+MN(I+m) (I +m)

|

Mavromatis and Alassar [61], albeit with a phase error
in their result. Dong and Lemus [62] restudied the
problem and found an expression for Zp; with positive
my, m,, and ms. Here we correct the phase error in [61] and
give an expression that is valid for all values of my, m,,
and mj;.
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(|Am|)!(_1)m1+m2+min{m1+m2,m3}

Tps(ly,my; by, mys Iy, my) =

(ll L L) ( L L
X
0 0 0 ny nmy

PHYSICAL REVIEW D 96, 065017 (2017)

. 2L+ 1)(2L" +1)
2\Am|+21"(|Am|)Kllm1K12n12K13m3 ; Z

L

L )(L I3 L’)( L I3 L’)
—my — my 0O 0 O —m;—my, my —Am

[1+ (=D A /2)0((L' — [Am] +1)/2)

Ky jam (L' + |Am| +2)/2)T((L" +3)/2)

(D1)

where we have defined Am = my —m; —my, K;,, = /(I -

m)!/(l + m)!. Note that min {a, b} represents the minimal

value of a and b, |l = L,| <L <Ilj+ L and |[L- ;| <L <L+ L.

[1] N.D. Birrell and P.C.W. Davies, Quantum Fields in
Curved Space (Cambridge University Press, Cambridge,
England, 1984).

[2] R.M. Wald, Quantum Field Theory in Curved Spacetime
and Black Hole Thermodynamics (University of Chicago
Press, Chicago, 1994).

[3] L. Parker and D. Toms, Quantum Field Theory in Curved
Spacetime: Quantized Fields and Gravity (Cambridge
University Press, Cambridge, England, 2009).

[4] A. Sakharov, JETP Lett. 49, 245 (1965).

[5] V.F. Mukhanov, H. A. Feldman, and R. H. Brandenberger,
Phys. Rep. 215, 203 (1992).

[6] Ya.B. Zel’dovich, Sov. Phys. JETP 35, 1085 (1972).

[7]1 C. W. Misner, Phys. Rev. Lett. 28, 994 (1972).

[8] W.G. Unruh, Phys. Rev. D 10, 3194 (1974).

[9] W. G. Unruh, Phys. Rev. D 14, 870 (1976).

[10] P.C. W. Davies, J. Phys. A 8, 609 (1975).

[11] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

[12] J. Steinhauer, Nat. Phys. 12, 959 (2016).

[13] G. W. Gibbons, Commun. Math. Phys. 45, 191 (1975).

[14] S. Deser, J. Phys. A 8, 1972 (1975).

[15] J. Garriga and E. Verdaguer, Phys. Rev. D 43, 391 (1991).

[16] F. Sorge, Classical Quantum Gravity 17, 4655 (2000).

[17] J. Schwinger, Phys. Rev. 82, 664 (1951).

[18] J. H. Hubbell, Radiat. Phys. Chem. 75, 614 (2006).

[19] B.P. Abbott et al. (LIGO Scientific and VIRGO Collabo-
rations), Phys. Rev. Lett. 116, 061102 (2016).

[20] B.P. Abbott et al. (LIGO Scientific and VIRGO Collabo-
rations), Phys. Rev. Lett. 116, 241103 (2016).

[21] B. P. Abbott et al. (LIGO Scientific and VIRGO Collabo-
rations), Phys. Rev. Lett. 118, 221101 (2017).

[22] L. Lehner, Classical Quantum Gravity 18, R25 (2001).

[23] R. H. Price, Phys. Rev. D 5, 2439 (1972).

[24] J. S. F. Chan and R. B. Mann, Phys. Rev. D 55, 7546 (1997).

[25] H.P. Nollert, Classical Quantum Gravity 16, R159 (1999).

[26] K. D. Kokkotas and B. G. Schmidt, Living Rev. Relativ. 2, 2
(1999).

[27] E. Berti, V. Cardoso, and A. O. Starinets, Classical Quantum
Gravity 26, 163001 (2009).

[28] R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793
(2011).

[29] L. Hodgkinson, J. Louko, and A. C. Ottewill, Phys. Rev. D
89, 104002 (2014).

[30] T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).

[31] E.J. Zerilli, Phys. Rev. D 2, 2141 (1970).

[32] K. Martel and E. Poisson, Phys. Rev. D 71, 104003
(2005).

[33] D. A. Nichols, A. Zimmerman, Y. Chen, G. Lovelace,
K.D. Matthews, R. Owen, F. Zhang, and K.S. Thorne,
Phys. Rev. D 86, 104028 (2012).

[34] B.F. Schutz and C. M. Will, Astrophys. J. Lett. 291, L33
(1985).

[35] E. W. Leaver, Proc. R. Soc. A 402, 285 (1985).

[36] E. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566
(1962).

[37] J. M. Bardeen and W. H. Press, J. Math. Phys. (N.Y.) 14, 7
(1973).

[38] S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972).

[39] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).

[40] W.H. Press and S. A. Teukolsky, Astrophys. J. 185, 649
(1973).

[41] S. A. Teukolsky and W. H. Press, Astrophys. J. 193, 443
(1974).

[42] J.N. Goldberg, A.J. Macfarlane, E.T. Newman, F.
Rohrlich, and E.C. G. Sudarshan, J. Math. Phys. (N.Y.)
8, 2155 (1967).

[43] P.L. Chrzanowski, Phys. Rev. D 11, 2042 (1975).

[44] J.M. Cohen and L.S. Kegeles, Phys. Rev. D 10, 1070
(1974).

[45] L.S. Kegeles and J. M. Cohen, Phys. Rev. D 19, 1641
(1979).

[46] C.O. Lousto and B. F. Whiting, Phys. Rev. D 66, 024026
(2002).

[47] A. Ori, Phys. Rev. D 67, 124010 (2003).

[48] N. Yunes and J. A. Gonzalez, Phys. Rev. D 73, 024010
(20006).

[49] E. W. Leaver, Phys. Rev. D 34, 384 (1986).

[50] Y. Sun and R. H. Price, Phys. Rev. D 38, 1040 (1988).

[51] H. Yang, A. Zimmerman, and L. Lehner, Phys. Rev. Lett.
114, 081101 (2015).

[52] W. Wasilewski, A.I. Lvovsky, K. Banaszek, and C.
Radzewicz, Phys. Rev. A 73, 063819 (2006).

065017-19


https://doi.org/10.1016/0370-1573(92)90044-Z
https://doi.org/10.1103/PhysRevLett.28.994
https://doi.org/10.1103/PhysRevD.10.3194
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1007/BF02345020
https://doi.org/10.1038/nphys3863
https://doi.org/10.1007/BF01629249
https://doi.org/10.1088/0305-4470/8/12/012
https://doi.org/10.1103/PhysRevD.43.391
https://doi.org/10.1088/0264-9381/17/22/306
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1016/j.radphyschem.2005.10.008
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1088/0264-9381/18/17/202
https://doi.org/10.1103/PhysRevD.5.2439
https://doi.org/10.1103/PhysRevD.55.7546
https://doi.org/10.1088/0264-9381/16/12/201
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/PhysRevD.89.104002
https://doi.org/10.1103/PhysRevD.89.104002
https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRevD.2.2141
https://doi.org/10.1103/PhysRevD.71.104003
https://doi.org/10.1103/PhysRevD.71.104003
https://doi.org/10.1103/PhysRevD.86.104028
https://doi.org/10.1086/184453
https://doi.org/10.1086/184453
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1666175
https://doi.org/10.1063/1.1666175
https://doi.org/10.1103/PhysRevLett.29.1114
https://doi.org/10.1086/152444
https://doi.org/10.1086/152445
https://doi.org/10.1086/152445
https://doi.org/10.1086/153180
https://doi.org/10.1086/153180
https://doi.org/10.1063/1.1705135
https://doi.org/10.1063/1.1705135
https://doi.org/10.1103/PhysRevD.11.2042
https://doi.org/10.1103/PhysRevD.10.1070
https://doi.org/10.1103/PhysRevD.10.1070
https://doi.org/10.1103/PhysRevD.19.1641
https://doi.org/10.1103/PhysRevD.19.1641
https://doi.org/10.1103/PhysRevD.66.024026
https://doi.org/10.1103/PhysRevD.66.024026
https://doi.org/10.1103/PhysRevD.67.124010
https://doi.org/10.1103/PhysRevD.73.024010
https://doi.org/10.1103/PhysRevD.73.024010
https://doi.org/10.1103/PhysRevD.34.384
https://doi.org/10.1103/PhysRevD.38.1040
https://doi.org/10.1103/PhysRevLett.114.081101
https://doi.org/10.1103/PhysRevLett.114.081101
https://doi.org/10.1103/PhysRevA.73.063819

SU, HO, MANN, and RALPH

[53] H.-A. Bachor and T.C. Ralph, A Guide to Experiments
in Quantum Optics, 2nd ed. (Wiley-VCH, Weinheim,
2004).

[54] C.K. Law, I. A. Walmsley, and J. H. Eberly, Phys. Rev. Lett.
84, 5304 (2000).

[55] T. Takahashi and J. Soda, Classical Quantum Gravity 27,
175008 (2010).

[56] A. Ahmadzadegan and A. Kempf, arXiv:1702.00472.

[57] H. Yang, A. Zimmerman, A. Zenginoglu, F. Zhang, E. Berti,
and Y. Chen, Phys. Rev. D 88, 044047 (2013).

PHYSICAL REVIEW D 96, 065017 (2017)

[58] P.M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill, New York, 1953).

[59] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions with Formulas, Graphs and Mathematical
Tables (Dover, New York, 1972).

[60] National Institute of Standards and Technology, Digital
Library of Mathematical Functions, http://dlmf.nist.gov/.

[61] H. A. Mavromatis and R. S. Alassar, Appl. Math. Lett. 12,
101 (1999).

[62] S. Dong and R. Lemus, Appl. Math. Lett. 15, 541 (2002).

065017-20


https://doi.org/10.1103/PhysRevLett.84.5304
https://doi.org/10.1103/PhysRevLett.84.5304
https://doi.org/10.1088/0264-9381/27/17/175008
https://doi.org/10.1088/0264-9381/27/17/175008
http://arXiv.org/abs/1702.00472
https://doi.org/10.1103/PhysRevD.88.044047
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
https://doi.org/10.1016/S0893-9659(98)00180-3
https://doi.org/10.1016/S0893-9659(98)00180-3
https://doi.org/10.1016/S0893-9659(02)80004-0

