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We consider the Aharonov-Bohm effect on entanglement entropy for one interval in (1 + 1) dimensional
conformal field theory on a one dimensional ring. The magnetic field is confined inside the ring, i.e., there
is a Wilson loop on the ring. The Aharonov-Bohm phase factor which is proportional to the Wilson loop is
represented as insertion of twist operators. We compute exactly the Rényi entropy from a four point
function of twist operators in a free charged scalar field.
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I. INTRODUCTION

The entanglement entropy in the quantum field theory
plays important roles in many fields of physics including
the string theory [1-12], condensed matter physics [13-15],
lattice gauge theories [16,17], and the physics of the black
hole [18-23]. The entanglement entropy is a useful quantity
which characterize quantum properties of given states.

For a given density matrix p of the total system, the
entanglement entropy of the subsystem Q is defined as

Sa = —TrpgInpg, (1)

where pg = Troep is the reduced density matrix of the
subsystem  and Q€ is the complement of Q. The Rényi

entropy Sg ) is defined as

o 1
Se =1

In Trpd,. 2
_nnrpg (2)

The limit » — 1 coincides with the entanglement entropy
lim,_; S& = Sq.

On the other hand, the Aharonov-Bohm (AB) effect is a
fundamental quantum phenomenon in which an electrically
charged particle is affected by an electromagnetic potential
Ay, despite being confined to a region in which both the
magnetic and electric field are zero.

In this paper, we consider the dependence of entangle-
ment entropy with the AB phase. In particular, we consider
(1 + 1) dimensional conformal field theory on a one
dimensional ring and study how the entanglement entropy
for one interval on the ring is affected by a magnetic field
enclosed by it (see Fig. 1). The Aharonov-Bohm phase
factor can be represented as a twisted boundary condition
by a gauge transformation. Thus, the twisted boundary
condition is represented as insertion of twist operators. We
compute exactly the Rényi entropy from a four point
function of twist operators in a free charged scalar field.

The Aharonov-Bohm effect on entanglement entropy
was studied in [24]. In [24], entanglement entropy for free
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charged scalar and Dirac fields in an annular strip on two
dimensional cylinder was studied. Entanglement entropy in
quantum field theories with twisted boundary conditions
was studied in [25-28].

II. THE AHARONOV-BOHM EFFECT ON
ENTANGLEMENT ENTROPY IN 2D CFT

We consider (1 + 1) dimensional conformal field theory
on a one dimensional ring whose circumference is L. The
space coordinate x has the periodicity x ~ x + L. We analyze
a complex scalar field, ¢, charged with respect to an external
gauge field, A, which is pure gauge on the ring. We assume
that ¢b(x) has the periodicity ¢(x) = ¢(x + L). We choose a
constant gauge field, A, in the x direction. We can eliminate
it by a gauge transformation

#x) = e ] WA (), (3)

where ¢ is a charge of ¢. The scalar field has now the
following boundary condition

PlrtL) = ehlg(x) = ePog(x),  (4)

B

N———

X

FIG. 1. One dimensional ring studied in this paper. The
circumference of the ring is L and the subsystem A is one
interval whose length is /. The space coordinate x has the
periodicity x ~x + L. The magnetic field is confined inside
the ring and induces the Aharonov-Bohm phase on the ring.
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where we defined v=;-®=3LLA, and ®=§dx'A,=LA,.
The integral @ is the magnetic flux inside the ring and v is the
Aharonov-Bohm (AB) phase. Now we consider the Rényi
entropy, SX’) = 7= In Trp’, for one interval whose length is /.
We compute the Rényi entropy by using the replica method
and the Euclidean path integral [15]. The Euclidean coor-
dinate is w = x + i, where x is the space coordinate and has
periodicity x~x -+ L, and 7 is the Euclidean time
(—o0 < 7 < 00). We define the subsystem A to be the interval
X1 £x<xy, 71 =75 =0, x, —x; = [, where w; = x; and
w, = x, are endpoints of the interval. The Rényi entropy is
expressed as the expectation value of twist operators,

Tr[ps] = (T, (w1, 1) T (W, 2)),., (5)

where (...), is the expectation value under the boundary

condition (4), and 7, and ’j'n are the twist operators whose
action is

T,: =, (modn). T,:d.,—¢ (modn), (6)

here ¢, denotes the ith replica field. To compute (5), we use

the conformal map z = e~ From (4), the scalar field in the
z plane has the following boundary condition,

¢’(ei2”z, e_i2”2) — Eizﬂy(ﬁ/(Z,Z). (7)

The boundary condition (7) can be expressed by inserting
twist operators ¢, and o;_, at z = 0 and z = oo (See Fig. 2).
The action of o, is

oy 1 — €7 (8)

Thus, we rewrite Tr[p/;] in (5) as

w1 | dwy |72 | dwy |72
Trlp}] = . @
% <Tn(zl)it1(12)611(0)61—1/(00»
0 Oo )
w
P> 1z
;
woow, A
— ) e
N

FIG. 2. The Euclidean path integral for Tr[p’j] in w and z
coordinates. In z-plane, the boundary condition (7) can be
expressed by inserting twist operators ¢, and o;_, at z =20
and z = o
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wherez;, = e ~iwi2 and h,, = 57 (n = 1/n) is the conformal

weight of 7, and T,,, here c is the central charge.

III. CHARGED FREE SCALAR FIELD

We apply (9) to a free charged scalar field. For the free
scalar field, it is useful to use the following Fourier

transformation,
-1

Go= Y ey (10

=0

.

For free fields, the Fourier transformation diagonalizes the
action of 7 ,, 7, and o, simultaneously,

Tn: ¢E’k - eiznﬁqgk’
Ijin: d;k - e_ﬂﬂé&k’
oot i = . (1)

Thus, the four point function of the twist operators in (9)
become

(T(21)T 1 (22)0,(0)1, (0))
(6,(0)51-,(c0))

_ ﬁ ok/n(21) 01 k/n(22)0,(0)51-,(0))

k=1 0,(0)o1_,(c0))
-1 <Gk/n<0>01—k/n<x>ay<1>al_y<oo>>
- k=1 (6,(1)01_,(0)) (12)

where we used the conformal map f(z) = 1 —z/z; and x =
f(zy) =1 —e Tl is the cross ratio of the four points
(x| = 2| sin”fl [). From (9) and (12), we obtain the Rényi
entropy,

n 1 0
S.<A) = mlnTr[pA]

1 n_ln<0-k/n(0)o-l—k/n(x)o-v(l)al—u(oo»
NE 0 (Do1s(00)) (13)

and omitted the irrelevant constant.

where we used \ 12| —

dz;

The four point functlon of twist operators also appear
in the calculation of Rényi entropy of two disjoint
intervals in free scalar field theory [29]. In the case
of two disjoint intervals, the necessary four point function
is  (64/a(0)014/n(X)01/n(1)01-4/n(e0)). In our case,
we need the more general four point function
(04, /n(0)01-k, jn(X)0k,n(1)61_k yn(00)). In the following
we will use the results of the four point function of the
twist operators by Knizhnik [30]. We give derivation
and different expression of (6y, /,(0)61_, /n(X)0k, /s (1)X
01_ky/n(00)) by another method in the Appendix B. Note
that there are a series of papers from late eighties about
conformal field theories on orbifold (e.g., [31-33]) that are
probably useful for more complicated cases.
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The four point function of the twist operators is given by
(see Egs. (7.22) and (7.28) in [30]),

(04, /n(0)0 1, (X) ks 0 (1) ok, 41y43) /n (9))

=x*(22,)7', (14)
Zu({ki} ) = [/ |1 =

x I(=ki/n,—ky/n,—ks/n,x), (15)

Z({ki}x) = Z.({n = k;}|x), (16)

Ia.b.c.x) = / el — xPPle— 1P, (17)
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where « is a constant and [d?z = [%_dRez [® dImz.
Note that oy, in [30] (and in (14)) is normalized as
(01/n(0)01_t/n(x)) = 1-1). On the other hand, Ok /n iN
(13) is normalized as (6 ,(0)6)_x/, (%)) = (|x|/€) 21—,
here ¢ =a/L and a is the UV cutoff length. The latter
normalization is usually used in calculation of Rényi
entropy and gives the correct UV cutoff dependence of
Rényi entropy. The integral I(a, b, ¢, x) is calculated in the
Appendix A. Note that the expression of I(a, b, ¢, x) in the
Appendix in [30] is not useful when a + b = —1 and we
give a different expression which is useful when a+b=-1
in (Al). Thus, from (13)-(17), we obtain the Rényi
entropy,

2

2\ -1/2
)

n 1 Ui I 1 2'(1__)
SW— 1 NI (- K(ZZ,(ky=k.ky=n—k.ky=nv))~"/?
l-n&="[\e€
| n! 1\ —2k(1-5) k
~ S <_) (Il 50D 1 =250 <——1,——
l-ni=L\e "

- k(1 _k
) m =2;(1-9)
(%)

F(l—u,k/n,I,X)F(l—u,k/n,l—l—k/n—v,l—x)]—|—

where F(a, 3,7, z) is the Gaussian hypergeometric function,

_ Iy
Heabr ) = v, —p)

y /1 B = PN (1 = ) edi, (19)
0

and we used (A5) in the second equality and (A4) in the third
equality in (18).

We study properties of the Rényi entropy (18). From
(18), when v — 0, S/(;’) diverges as

=1In(1/v).

This divergence does not depend on the length of the
subsystem, so it is the contribution of the homogeneous
mode. This divergence is similar to the infrared divergence
of the entanglement entropy in the massless limit in a free
massive scalar field [34] and has the similar heuristic
explanation. The correlation function is given by,

0% (20)

© m2nx/L

<¢/(x)¢/*(0>> :ZL_ﬂe—iyznx/L Z

L1

1)

where we used w = x4+ it coordinates and 7 = 0.
From (21), the typical size of the fluctuations on the

—2k(1-v) (F(l —v)I'(k/n)
C(1+k/n-v)

sin(zk/n)sinzv

{F(l—y,k/n,l,x)F(l -v,k/n,1+k/n—v,1-X)

SinZ(K/1=0) gy kjnt ) F(1—vk/n, Lfc)) _1} - (18)

|
homogeneous mode grows as (1/v)!/2. Correspondingly,
the Rényi entropy grows as the logarithm of this volume in
field space [35], and becomes S{’ =2 x In(1/1)!/? =
In(1/v). Note that we doubled the entropy because ¢’ is
a complex field and has the real part and the imaginary part.

We plot the S %) as a function of v and the length of the
subsystem / (|x| =2|sin?|) in Figs. 3 and 4. In these
figures, we have set k=1 and e =1. The Rényi

s¢

4.0f
3.5F
3.0f
25}

2.0

n 1 n n n 1 I 1 n n n n n n 1
0.2 0.4 0.6 v

FIG. 3. The Rényi entropy SX’:Z) as a function of v. From top to

bottom: I/L =1/3,1/4,1/6. S{'

v— 1. Sg”zz) becomes a minimum value for v = 1/2.

diverges when v — 0 and
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entropy Sg”zz)

Fig. 3. S/(qnzz) becomes a minimum value when v = 1/2.

It is difficult to perform the analytical continuation
of the Rényi entropy and to obtain the entanglement
|

! A(1=5)
| (5)
-4

diverges when v — 0 and v — 1 as shown in

n—1

:% <1 +%> 1nu+LZm Iné(k/n) +Iné(v) —21n|x|),

where

Iné(y) =2w(1) —y(y) —y(l -y), (23)

here y(y) is the digamma function, y(y) = 4 sInI'(y), and
we omitted the irrelevant constant — In 2. From (22), when
|x| = 0 and v — 0, we obtain

() _1 1 |x] 1 1
SO~ (14 ) mM fm(rm—s). (4
A 3( +n> ne U+n|x|2 (24)

The first term is the same as the Rényi entropy for a free
massless complex scalar field and the second term is the
correction from the AB phase. Thus, when |x| — 0 and
v — 0, we obtain the entanglement entropy,

(25)

ety 2 || 11
SA —gln?—l—ln( +IHW

2.5F

0.2 0.4 0.6 0.8 1.0

FIG.4. The Rényi entropy S{'"
to bottom: v = 1/10,1/5,1/2.

as a function of // L. From top

(Iné(k/n) +1né(v)
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entropy because of the complexity of the expression
(18). However, we can perform the analytical continuation
in the limit |x| — 0 and v — 0. From (18), when |x| — 0,
we obtain

—21In|x|)~!

(22)

IV. CONCLUSION

We studied the dependence of entanglement entropy
with the AB phase in (1 + 1) dimensional conformal field
theory on a one dimensional ring. We performed the gauge
transformation (3) and the effect of AB phase is represented
by the twisted boundary condition of the scalar field (4).
We used the conformal map and the boundary condition
was expressed by inserting twist operators o, and o;_, at
z=20and z = oo in (9). We calculated exactly the Rényi
entropy in charged free scalar field theory in (9). The Rényi
entropy diverges when v — 0. This divergence comes from
the homogeneous mode and is similar to the infrared
divergence of the entanglement entropy in a free massive
scalar field. We gave the heuristic explanation of this
divergence. We performed the analytical continuation in
the limit |x| - 0 and v — 0 and obtained the entanglement
entropy in (25).

We considered the ground state in the presence of the AB
phase (i.e., the Wilson loop). This state is a kind of excited
states in CFT without the AB phase. Entanglement entropy
has been studied to quantify excited states in [36-39]. It is
an interesting future problem to apply our method that the
effect of AB phase is expressed by inserting twist operators
to time dependent problems and excited states in the
presence of the AB phase.
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APPENDIX A: THE CALCULATION OF THE INTEGRAL I(a.b.cx)

We calculate the integral I(a, b, ¢, x) in (17). The integral over the complex plane can be evaluated by splitting it into the
sum of products of holomorphic and antiholomorphic contour integrals around cuts using a method used in Kawai et al. [40],

I(a,b,c,x) = /d22|Z|2“|Z —x[*lz =1

sin zrc sin wa sinz(b + ¢) sinza
dEA dnB déA danB dEA dnB
s1n7za+b+ [/ g / 1 +/ g / } sinz(a+b+c / & / 1

+s1nncs1n7z /dZ;A/dB— sin ¢ sin wa
sinz(a+b+c) sinz(a+ b+ ¢)

Pla+ (b +1)
I'a+b+2)

I'(1+c)l(1+0b)
Ir2+b+c)
sinz(b + c¢) sin wa (xx) b1 (F(a + 1D)I'(b + 1)>2
sinz(a+b+c) Ia+b+2)
sinzesinz(a + b)
sinz(a+ b+ c)

F(=c,a+1,a+b+2,x)(1—x)+bre

X |:xa+b+l

xF(—a,1+c,2+b—|—c,1—X)—H:.c] +

X F(—c,a+l,a+b+2,x)F(—c,a+l,a+b+2,%)+

T(c+ Db+ 1)\2
x( (;(J;JF)C(JF;F) )> Fl=a,c+ 1,b+c+2,1—x)F(=a,c+ 1,b+c+2,1-%), (A1)

((1=2)(1 = 3))1+h+

|
where Appendix in [30] by using the following identity which is
obtained by a contour integral around cuts;

AE|§|a|§_x|h|§_1|cv BE|’7|u|77_)_C|h|’7_1|C' (AZ) sinﬂa/xde—i—sinzz(a—i—b)
0

1 oo
Note that the expression of I(a, b, ¢, x) in the Appendix in X / dEA +sinz(a+ b+ ¢) / déA =0. (A3)
[30] is not useful when a + b = —1 and we gave the x 1
different expression which is useful when ¢ +b = —1 in From (Al), we obtain the necessary integral for the

(A1). We can see that (A1) is the same as the result in the Rényi entropy (13),
|

I'(l—c)l’
Ila—1,-a,c—1,x) = %[F(l —c,a,1,x)F(1 =c,a,1+a—c,1-X)
+F(1-c,a,1,x)F(1 —c,a,1+a—-c,1—1x)]
2@ (= e ), (Ad)
sin za sin zzc
I(~a,a—1,—c,x) = |1 =xP@9(a-1,-a,c—1,x). (AS)

APPENDIX B: DERIVATION OF THE FOUR POINT FUNCTION OF TWIST OPERATORS
BY ANOTHER METHOD

We calculate the four point function of twist operators by the method in [31,32]. We consider a complex field X(z, z) and
the action for X(z,z) is given by
_ 1 - —
SXX] = - / (0.X0.X + 0.X0.X)d%z. (B1)
We consider the following four point function

Z(zi,2i) = (04, /n(21)01-k, 10 (22) 0y 1 (23) 012k (24)) - (B2)
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From [31,32], we consider the Green function in the presence of four twist operators,

- % <azX(Z)8WX(W)6k|/n (Zl )Gl—kl/n (ZZ)akg/n (Z3)Ul—k3/n(z4)> .

g(Z, w, Zi) = (B?))
(01, /n(21)01-k, /n(22) Ok 1 (23) 01—y /n (24))
The Green function obeys the following asymptotic conditions;
g(z,w,z;) ~(z—w) 72 +finite asz—w~constx (z—z;3)7 13/" asz—z;3~constx (z—z54) 713/ asz— 2,4
~constx (w—z3)"U7k3/M agw — 7 s ~const x (W—z,4) 713/ asw— 75 4. (B4)
Thus, we can write g(z,w, z;) as
1
9(z.w.2;) = op(2) @, (W) 7—— e [Ao(w) + A1 (W)(z = w) + Ay (w)(z = w)?], (B5)
where
o (z) = (2= 20) 7" (2 = 22) TR (2 = 23) 75/ (2 = 24) UK/
@, 1(2) = (2= 21) TR (2 = 2) R (2 = 23) IR (2 = )R/ (B6)
and
4 ko1
Aw)=[Jw=z).  Aw) =4, - ; (B7)
J=1 WL

here we defined k, 4 = n — k; 3 and A, (w) will be determined by the global monodromy condition. The global monodromy
condition is

AcX = f d20.X + f 470X = 0 (BS)
C C

for all closed loops.
Before determining A,, we will extract the differential equation of Z(z;, Z;). Let us consider the limit w — 2

<T(Z)6k1/n(zl )Gl—kl/n(Z2)0k3/n(23)01—k3/n(24)>

lim[g(z,w,z;) — (z=w)2] =

W=z <6k1/n(zl)61—k1/n(ZZ)6k3/n<Z3)61—k3/n(z4)>
1 Lo 5 1 kik, 1
=45(2)) [ =207 +> hz—2)2=> Yy HL—— (Y
72T R =1 T LT PG T

where T'(z) is the stress tensor and i; = 3 (k;/n)(1 — k;/n) is the conformal weight of the twist operator ok, /n- We apply the
operator product

hy61,(22)  0.,04,(22)
(z-2)? 12

T(z)ok,(22) ~ (B10)

to (B9) and obtain the differential equation

_ AZ(ZZ) k2 (kl 1 k3 1 k4 1 >
0, InZ(z;,z;) = T\ o o ’ B
o In2(z 2) (2—z)(a—n)(2—2u) n\nzn-z nun-3 nn-zu .

It is useful to use the following conformal map
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C C, Y= 212434 ’ x(1-x) = 212224254223 ‘ (B13)
213224 213324
0 X
Thus (B11) becomes
1 * * A ky (ki1 ks 1
dnZ(x,3) =——"t——2 (L2 . (Bl4
xInZ(x. %) x(1=x) n(nx nl-—x (B14)

(a) (b)
FIG. 5. The two closed loops C; and C, we consider as a basis where

of the loops in the complex plane. B . -
Z(x,x) :7llgloo<6k1/n(0)al—kl/n (x)6k3/n(1)61—k3/n(zoo)>A2

71—2)(z3— 2 = lim —z3lA,(2;,=0,20=x,23 =1, 24 =2, ;W=1x).

Lo (21— 2)(z3 4), (B12) Jim —z5 »(z1 2 23 =7 )
(21— 23)(z— )

(B15)

which sends z;, z5, 23, and z4 into 0, x, 1 and oo respec- In order to determine A, by the global monodromy

tively, where x is the cross ratio (z;; = z; — z;) condition, we introduce the auxiliary correlation function

—%@ X(2)0, X( )O'kl/n(Zl)Gl—kl/n(22)0k3/n(23)01—k3/n(14)>
<6k1/n(Z1)Gl—kl/n(Z2)6k3/n(Z3)01—k3/n(24)>

h(z,w,z;) = = B(2;, )@y (D)@, (w),  (B16)

where we determined / in the same way as g was determined. From the global monodromy condition (B8), we obtain

f dzg(z.w.z) + ]f dzh(zow.z;) = 0.1 = 1,2 (B17)
C; Ci

where we chose the two loops C; and C, shown in Fig. 5 as a basis of the loops.
We divide (B17) by @,_,(w) and set w = 2,, z; =0, z, = x, z3 = | and 74 — oo and obtain

(—x(l —x)%nhzﬂfz) ]é,- dzo (z) +1~9]£i dza,—'(z) =0, i=1,2 (B18)

where B =lim,__,zB(z1 = 0,20 = x,23 = 1,24 = 2,) and

W), (2) = 774/ (z = x)~1-ki/n) (7 — )~ks/n
(Z)il_k(Z) = Z—(l—kl/n) (Z - ) 1/n< 1)_(1_](3/")‘ (Blg)

We calculate all integrals in (B18) and obtain

l k k k k
f dzw;(z)_(—1+a-k1)a-z<k2+ka>r<1——1>r(—1> <* 1-= 1x> (B20)
¢ n n n n
k ki ky k
%dzwnk() (=1 +a*)a~ <’<z+k3)r(1——1>r( ) (1——3,—1,1,x>, (B21)
¢ n n n n
_ kypch
% Az, (z) = (=1 + a~*e — o~ (tks) 4 gk ) gt (1 )Y F ky - ks l_ﬁ ky —x w
Cy n n n n I"(l_’;_3_|_];_l)
(B22)
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ki k ky k r(1-4rk
% dzé,_ () = —(=1 + af — g~ kths) 4 (l_k3)a_%k3(l _x)(k‘—nk) x F<1 L A N (B N —)_C) w’
G n o n n on r(1+l_13_71)
(B23)

where a = ¢?*/", Solving Eq. (B18) for A,, we obtain

" (1A~ = 3= Dy In { fﬁ | dzw)(z) é dzi,_/(z) — fﬁ dzw)(z) % | dz&)n_k’(z)] . (B24)

We substitute (B24) for (B14) and obtain

Z(x,X) = C(x)x~ k/m* (1 — x)keks/m* (W(k, /n, ks /n, x, %)), (B25)

where C(X) is an arbitrary function of X and

(1 =7k iy
Wk, /n.ks/n. x, %) :W(l —x)““*,—f)F(l —ﬁ,ﬁ,wﬁ—ﬁ,l—x)}?(ﬁ,l—ﬁ,l,x>

n
ks _ Ky n'n n n n n
Ol +2-°1

r(-5rk q [k k k, Kk ky k
LU= TG <")(1—x)%F<—1,1——3,1+—1——3,1—x>F<1——3,—1,1,x>. (B26)
n

F(1+k—n‘—k—’f) n n n o n n

In order to fix the X-dependence of Z(x,x), we consider dzInZ(x,X) in the same way as 0,InZ(x,x). The
differential equation for J;InZ(x,Xx) is obtained by replacing x — X, ¥ — x and k; —» n —k; in that for 0, In Z(x, X)
and we obtain

Z(x,x) = D(x)x~kk/n (1 = x)~(r=k)n=k)/m* (W (1 — ky /. 1 = ky/n, %, x)) 7", (B27)
where D(x) is an arbitrary function of x. Finally, from (B25) and (B27), we obtain
Z(x,X) = [ - |x| kit — g hika/r =k (W (ky [/, ks /n, x, %)) 7 (B23)

where f is an integration constant and

(1 -4k - ki k ky k k k
ra =6 Z) (k")|1—x|“"‘—/)F<1——1,—3,1+—3——1,1—x>F(—3,1——1,1,x>
F(l—l—ﬁ—;‘) n'n n n n

(1 =5k o ky k
( )(kn)1_x|—“1,f3)F<1——,—,1+———,1—x)F(l—i,—l,l,x). (B29)
3 n n n n

4 —ns nZ
r(1+4 -5 n

n

W(kl/l’l, k3/n,x,)—c) =

We can show that the integration constant f is independent of k; and k5 by taking the limit |x| — O and considering the
operator product expansion (OPE) of 6y, /,(0)o1_y, /»(x). After some calculation, we obtain the following identity;

~ 1
(W(a,c,x,%))* =—=I(a—1,-a,c = 1,x)[(—a,a—1,-c,x). (B30)
s

Thus (B28) is equal to (14) for k, = n — k; when we set f = k*/x.
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