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In this paper, we quantize superconformal σ models defined by worldline supermultiplets. Two types
of superconformal mechanics, with and without a De Alfaro Fubini Furlan (DFF) term, are considered.
Without a DFF term (Calogero potential only), the supersymmetry is unbroken. The models with a DFF
term correspond to deformed (if the Calogero potential is present) or undeformed oscillators. For these (un)
deformed oscillators, the classical invariant superconformal algebra acts as a spectrum-generating algebra
of the quantum theory. Besides the ospð1j2Þ examples, we explicitly quantize the superconformally
invariant worldline σ models defined by theN ¼ 4 (1, 4, 3) supermultiplet [with Dð2; 1; αÞ invariance, for
α ≠ 0;−1] and by theN ¼ 2 (2, 2, 0) supermultiplet [with two-dimensional target and slð2j1Þ invariance].
The parameter α is the scaling dimension of the (1, 4, 3) supermultiplet and, in the DFF case, has a direct
interpretation as a vacuum energy. In the DFF case, for the slð2j1Þ models, the scaling dimension λ is
quantized (either λ ¼ 1

2
þ Z or λ ¼ Z). The ordinary two-dimensional oscillator is recovered, after

imposing a superselection restriction, from the λ ¼ − 1
2
model. In particular, a single bosonic vacuum is

selected. The spectrum of the unrestricted two-dimensional theory is decomposed into an infinite set of
lowest-weight representations of slð2j1Þ. Extra fermionic raising operators, not belonging to the original
slð2j1Þ superalgebra, allow (for λ ¼ 1

2
þ Z) to construct the whole spectrum from the two degenerate (one

bosonic and one fermionic) vacua.

DOI: 10.1103/PhysRevD.96.065014

I. INTRODUCTION

In this paper, we quantize superconformal σ models
defined by worldline supermultiplets. We consider two
types of superconformal mechanics, parabolic or trigono-
metric [1], namely, in the absence or in the presence,
respectively, of an oscillatorial DFF term [2].
In the absence of a DFF term, the systems under

consideration possess only a Calogero potential [3]; they
are supersymmetric and have a continuous spectrum. In the
presence of a DFF term, they correspond to deformed (if
the Calogero potential is present) or undeformed oscillators
with a discrete spectrum, bounded from below. For these
(un)deformed oscillators, the classical invariant supercon-
formal algebra acts as a spectrum-generating algebra of the
quantum theory.
We illustrate at first our method with two ospð1j2Þ-

invariant examples, the ordinary one-dimensional harmonic
oscillator being recovered in the trigonometric case.
Later, we explicitly quantize the superconformally invariant
worldine σ models defined by:

(i) the N ¼ 4 (1, 4, 3) supermultiplet with scaling
dimension α ≠ 0;−1 [these models are classically
invariant under the exceptional Dð2; 1; αÞ Lie super-
algebra]

(ii) theN ¼ 2 (2, 2, 0) supermultiplet of scaling dimen-
sion λ [thesemodels present a two-dimensional target
and classical slð2j1Þ-invariance].

For the (1, 4, 3) supermultiplet, at the special α ¼ − 1
2

value, the Calogero potential terms are vanishing. For
this value, the invariant superalgebra is Dð2; 1;− 1

2
Þ ¼

Dð2; 1Þ ≈ ospð4j2Þ.
The results about the quantum parabolic Dð2; 1; αÞ

models coincide with those obtained, with different meth-
ods, in Ref. [4]. The new feature, in the present paper, is the
construction of the quantum trigonometric models that, so
far, have not been investigated. An interesting result, in the
(1, 4, 3) trigonometric case, consists in the direct and
simple interpretation of α as a vacuum energy (if α is
regarded as an external control parameter, it determines the
Casimir energy of the system).
For the slð2j1Þ models, the scaling dimension λ is

quantized (either λ ¼ 1
2
þ Z or λ ¼ Z). In the trigonometric

case, the ordinary two-dimensional oscillator (without
Calogero potential terms) is recovered from the special
λ ¼ − 1

2
value after a superselection of the spectrum,

defined by a projection operator, is imposed. The restriction
implies, in particular, that a single bosonic vacuum is
obtained. The spectrum of the unrestricted theory turns out
to be decomposed into an infinite set of lowest-weight
representations of slð2j1Þ. By construction, the role of
slð2j1Þ as a spectrum-generating algebra is expected. It is
unexpected the further result that extra fermionic raising
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operators, not belonging to the slð2j1Þ superalgebra, allow
to construct, for λ ¼ 1

2
þ Z, the whole spectrum from the

two degenerate (one bosonic and one fermionic) vacua (in
Appendix A, this action is visualized in diagrams).
Models of superconformal mechanics have been inves-

tigated in Refs. [5–13] (see, e.g., the review [14] and
references therein). For superconformal actions with oscil-
lator potentials, see Refs. [1,15,16]. (Super)conformal
mechanics is currently a very active area of research;
among the motivations for this interest, one can
mention the AdS2=CFT1 correspondence [17,18] or
the possibility to apply it to test particles moving
in the proximity of the horizon of certain black holes
(see Ref. [12]).
N ¼ 4 superconformal models based on the exceptional

(see Ref. [19]) Lie superalgebra Dð2; 1; αÞ were inves-
tigated in Refs. [20–26]. The models considered in those
works, mostly classical, are supersymmetric; for that
reason, they do not allow the presence of the oscillatorial
DFF terms (in Appendix C, we comment about the “soft”
supersymmetry property of the oscillatorial models). The
recognition in Ref. [27] that conformal mechanics could
allow new potentials permitted the introduction in Ref. [1]
of the trigonometric (read: oscillatorial) classical Dð2; 1; αÞ
models.
The scheme of the paper is the following. Sections II, III,

and IV are propaedeutic. In Sec. II, we discuss the change
of coordinates from linear to nonlinear realizations of the
superconformal algebras (the “constant kinetic basis”),
which allows us to present the worldline superconformal
σ models in the Hamiltonian framework. A detailed
description of the passage from classical Lagrangians to
Hamiltonians is given in Sec. III. In Sec. IV, the quantiza-
tion procedure and the construction of the Noether charges
is explained for two examples, the parabolic and trigono-
metric ospð1j2Þ-invariant σ models. Section V contains the
main results for the quantization of the parabolic (i.e., both
superconformal and supersymmetric) quantum models
with Dð2; 1; αÞ invariance, based on the N ¼ 4 worldline
supermultiplet (1, 4, 3), and slð2; 1Þ invariance, based on
the N ¼ 2 (2, 2, 0) worldline supermultiplet. In Sec. VI,
the main results of their quantum trigonometric versions
are derived. These systems contain DFF terms and are
“softly supersymmetric.” They correspond to (un)deformed
oscillators. The main results are the derivation of the
vacuum energy in terms of the α scaling dimension
for the (1, 4, 3) supermultiplet and the derivation of the
spectrum-generating superalgebra for the (un)deformed
two-dimensional oscillator with quantized scaling dimen-
sion λ. In Appendix A, diagrams are presented, illustrating
the decomposition of the two-dimensional oscillators in
terms of the slð2j1Þ lowest-weight representations, inter-
connected by the extra fermionic raising and lowering
operators introduced in Sec. VI. For completeness, in
Appendix B, the classical version of the trigonometric

N ¼ 2 (2, 2, 0) superconformal σ model is presented.
Finally, in Appendix C, we discuss the soft supersymmetry
of the (un)deformed oscillators and the role, for these
theories, of the spectrum-generating superalgebras. In the
Conclusions, we present the open questions raised by our
analysis.

II. WORLDLINE (SUPER)CONFORMAL σ
MODELS IN CONSTANT KINETIC BASIS

A convenient approach, in constructing one-dimensional
superconformal σ models, consists in starting from a linear
D-module representation of the superconformal algebra.
Once such a representation is known, the Lagrangian
defining the superconformally invariant action can be
systematically constructed by applying fermionic gener-
ators to a prepotential function that depends only on the
propagating bosons. The requirement of superconformal
invariance, imposed as a constraint, determines the specific
form of the prepotential. This method (and its applications)
has been discussed in Ref. [1].
The kinetic term Φðx⃗Þ 1

2
δijð_xi _xj þ…Þ of the derived

Lagrangian is an ordinary constant kinetic term multiplied
by a conformal factor Φðx⃗Þ, which is a function of the
propagating bosons. To apply the standard methods of
quantization, we need to reabsorb the conformal factor.
One way to do this consists in introducing a new set of
fields. In the new basis of fields, the kinetic term is
expressed as a constant coefficient (hence the name
“constant kinetic basis” given in Ref. [1]); the superalgebra,
on the other hand, is realized nonlinearly.
In Ref. [1], the procedure of changing the basis (from the

“linear” to the constant kinetic basis) was sketched for
certainD-module representations acting on supermultiplets
consisting of a single propagating boson. We discuss it here
in a more general framework.
Let us consider a D-module irreducible representation of

an N -extended superconformal algebra (for our purposes,
N ¼ 1, 2, 4, 8) acting on a ðk;N ;N − kÞ supermultiplet
[28–31] (namely, k propagating bosons, N fermions, and
N − k bosonic auxiliary fields). In the linear basis, the
propagating bosons are labeled as x1;…; xk; the fermions
are labeled as ψ1;…;ψN ; and the auxiliary bosons are
labeled as b1;…; bN−k. The kinetic term in the Lagrangian
is given by

1

2
r−

1þ2λ
λ ð_xm _xm þ iωψβ _ψβ − ω2bnbnÞ: ð1Þ

In the above equation, the summation over the repeated
indices is implied. The constant ω is dimensionless (and
can be set equal to unity) in the parabolic case, while it is
dimensional, see Ref. [1], in the hyperbolic/trigonometric
case. The function r is r ¼ ðxmxmÞ12, and the parameter λ is
the scaling dimension of the supermultiplet. At λ ¼ − 1

2
, the
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kinetic term is constant. For the remaining λ ≠ − 1
2
values, a

change to a constant kinetic basis is required in order to
present a kinetic term with constant coefficients. Let us
denote the propagating bosons in the constant kinetic basis
as y1;…; yk; the fermions as χ1;…; χN ; and the auxiliary
bosons as a1;…; aN−k. The transformations passing from
the linear to the constant kinetic basis are given by the
following:

(i) For the ð1;N ;N − 1Þ supermultiplets, we have

y ¼ −2λx− 1
2λ; χβ ¼ x−

1þ2λ
2λ ψβ; an ¼ x−

1þ2λ
2λ bn;

ð2Þ

in terms of the new fields, Eq. (1) is expressed as

1

2
ð_y_yþ iωχβ _χβ − ω2ananÞ ð3Þ

(ii) When N ≥ 2, for the ð2;N ;N − 2Þ supermultip-
lets, it is convenient to use a complex notation for the
propagating bosons and set

y ¼ −2λðx1 þ ix2Þ− 1
2λ; y� ¼ −2λðx1 − ix2Þ− 1

2λ;

χβ ¼ r−
1þ2λ
2λ ψβ; an ¼ r−

1þ2λ
2λ bn ð4Þ

so that the kinetic term can be expressed as

1

2
ð_y_y� þ iωχβ _χβ − ω2ananÞ: ð5Þ

(iii) WhenN ¼ 4, 8 it is possible to construct a constant
kinetic basis for any ðk;N ;N − kÞ supermultiplet at
the specific λ ¼ 1=2 value of the scaling dimension
via the transformations

ym ¼ xm
r2

; χβ ¼
ψβ

r2
; an ¼

bn
r2

; ð6Þ

leading to the kinetic term

1

2
ð_ym _ym þ iωχβ _χβ − ω2ananÞ: ð7Þ

ForN ¼ 4 and k ≠ 2, irreps of the exceptional superalgebras
Dð2; 1; αÞ are recovered, see Refs. [1,25,26], from the
ðk; 4; 4 − kÞ supermultiplets according to the relation

α ¼ ð2 − kÞλ: ð8Þ

At the special λ ¼ 1
2
value, the associated superalgebra is

Að1; 1Þ for the (4,4,0) supermultiplet and Dð2; 1Þ for the
(3,4,1) supermultiplet.

For N ¼ 8 and k ≠ 4, irreps of superconformal algebras
are recovered for each supermultiplet ðk; 8; 8 − kÞ at the
critical values of the scaling dimension given by

λk ¼
1

k − 4
: ð9Þ

The special value λ ¼ 1
2
yields an irrep of Að3; 1Þ acting

on the supermultiplet (6,8,2). The reader is referred to
Refs. [25,26] for a detailed discussion on the criticality of
the scaling dimension of the N ¼ 4, 8 superconformal
algebras.

III. FROM LAGRANGIANS TO CLASSICAL
HAMILTONIANS: AN APPLICATION TO THE

ospð1j2Þ-INVARIANT σ MODELS

The quantization of the one-dimensional superconformal
σ models follows the canonical procedure formalized by
Dirac and based on the classical Hamiltonian formalism.
Since these σ models have fermionic degrees of freedom,
the passage from the Lagrangian to the classical
Hamiltonian formalism requires the use of Dirac brackets
(see, e.g., Ref. [32]). The need for Dirac brackets becomes
clear after inspecting Eqs. (3), (5), and (7); it is due to the
fact that the linear dependence on the fermionic velocities
_χβ forces us to extend the phase space of the system and
treat the fermionic canonical momenta as constraints in this
extended phase space. In Dirac’s language, these con-
straints are both primary (they hold even without using the
equations of motion) and second class (namely, a constraint
that has nonvanishing Poisson brackets with at least one of
the constraints).
This procedure, used throughout the paper, will be

illustrated in detail for the simplest possibility given
by the ospð1j2Þ-invariant σ models (their two variants,
parabolic and hyperbolic/trigonometric; see Ref. [1]).
In the parabolic case, the Hamiltonian is identified
with a bosonic root of the superconformal algebra,
while in the hyperbolic/trigonometric case, it is asso-
ciated with a Cartan element. The parabolic D-module
reducible representations describe systems that are
supersymmetric, while the hyperbolic/trigonometric
reps furnish only a soft version of supersymmetry;
see the discussion in the Introduction. The hyperbolic
and trigonometric models are interrelated via a Wick
rotation of the dimensional parameter ω. The trigono-
metric case is emphasized here with respect to the
hyperbolic one because it yields a Hamiltonian bounded
from below.
In the rest of this section, we discuss in detail the

Hamiltonian formulation of both parabolic and trigono-
metric ospð1j2Þ-invariant σ models. The method, nota-
tions, and conventions presented here are later applied to
models with larger superconformal symmetry.
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A. ospð1j2Þ-invariant parabolic σ model

In the constant kinetic basis, the generators of the
ospð1j2Þ parabolic D-module rep read as

H ¼
� ∂t 0

0 ∂t

�
; D ¼

�
t∂t − 1

2
0

0 t∂t

�
;

K ¼
�
t2∂t − t 0

0 t2∂t

�
;

Q ¼
�

0 1

i∂t 0

�
; Q̄ ¼

�
0 t

it∂t − i 0

�
: ð10Þ

The above generators act on the column vector super-
multiplet ðy; χÞT possessing the scaling dimension λ ¼ − 1

2
.

The bosonic generators H, D, and K span the slð2Þ Lie
subalgebra, while the fermionic generators Q and Q̄ span
the odd sector of ospð1j2Þ.
The associated ospð1j2Þ-invariant action is simply

S ¼
Z

dtL ¼
Z

dt
1

2
ð_y2 þ iχ _χÞ: ð11Þ

Unlike theN ≥ 2 superconformal algebras discussed in the
following, for ospð1j2Þ, the same action is recovered by
starting from a generic D-module rep with scaling dimen-
sion λ ≠ − 1

2
and applying the (2) change of basis.

For a theory possessing bosons and fermions, a con-
served Noether charge is expressed, for a symmetry
generator O, as

CO ¼ ðδOϕIÞ
∂L
∂ _ϕI

− JO; ð12Þ

where JO stems from the variation δOL ¼ dJO
dt ; the sum over

the repeated index I labeling the fields is understood. The
given ordering of the right-hand side of Eq. (12) is essential
in dealing with Grassmann variables and derivatives.
For the case at hand, the classical Noether charges are

CH ¼ _y2

2
; CD ¼ t_y2

2
−
y_y
2
; CK ¼ t2 _y2

2
− ty_yþ y2

2
;

CQ ¼ _yχ; CQ̄ ¼ t_yχ þ yχ: ð13Þ

The Euler-Lagrange equations

∂L
∂ϕ ¼ d

dt

�∂L
∂ _ϕ
�

ð14Þ

lead to the equations of motion

ÿ ¼ 0; _χ ¼ 0: ð15Þ

The Grassmann variable in the classical ospð1j2Þ model is
a constant and plays essentially no physical role besides
ensuring the ospð1j2Þ invariance.
To introduce the Hamiltonian formalism, we have to

compute the conjugate momenta given by

p ¼ ∂L
∂ _y ¼ _y; π ¼ ∂L

∂ _χ ¼ −
iχ
2
: ð16Þ

In the Hamiltonian framework, the classical charges (13)
are rewritten as

CH ¼ p2

2
; CD ¼ tp2

2
−
yp
2
;

CK ¼ t2p2

2
− typþ y2

2
; CQ ¼ pχ;

CQ ¼ tpχ þ yχ: ð17Þ

The last step requires defining the Dirac brackets. The
second equation in (16) makes clear why Dirac brackets
need to be introduced. The conjugate momentum π to
the Grassmann variable χ is not an invertible function
of the velocity _χ. The second equation in (16) should
therefore be viewed as a second-class constraint on the
phase space,

u ¼ π þ iχ
2
: ð18Þ

The super-Poisson bracket involving even or odd f and
g functions is given by

ff; ggP ¼
X
I

ð−1ÞdegðfÞ·degðgÞ ∂f∂ϕI

∂g
∂πI −

∂f
∂πI

∂g
∂ϕI

; ð19Þ

where the degree function deg is 0 if evaluated on
bosons and 1 on fermions.
Denoting with ui the set of all second-class constraints,

the Dirac bracket reads as

ff; ggD ¼ ff; ggP −
X
k;l

ff; ukgPU−1
kl ful; ggP; ð20Þ

where Ukl ¼ fuk; ulgP is a matrix constructed from the
super-Poisson brackets of all second-class constraints.
u entering (18) is a second-class constraint since it

satisfies

fu; ugP ¼ −i:

A straightforward computation gives the nonvanishing
Dirac brackets

fy; pgD ¼ 1; fχ; χgD ¼ −i: ð21Þ
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We can derive, with the use of the Dirac brackets, the
equations of motion in the Hamiltonian formalism and
compute [recovering ospð1j2Þ] the superalgebra satisfied
by the (17) conserved charges.
In terms of Dirac brackets, Hamilton’s equations are

_ϕ ¼ ∂ϕ
∂t þ fϕ; CHgD: ð22Þ

For the case at hand, we get

_p ¼ 0; _χ ¼ 0; ð23Þ

which, together with the p ¼ _y position, allow us to
recover (15).

B. ospð1j2Þ-invariant trigonometric σ model

In the trigonometric case, the passage from the
Lagrangian to the Hamiltonian formalism follows the same
steps as before. We therefore skip unnecessary comments.
In the constant kinetic basis, the generators of the

ospð1j2Þ trigonometric D-module rep are

H ¼ eiωt
 

1
ω ∂t − i

2
0

0 1
ω ∂t

!
; D ¼

 
1
ω ∂t 0

0 1
ω ∂t

!
;

K ¼ e−iωt
 

1
ω ∂t þ i

2
0

0 1
ω ∂t

!
;

Q ¼ e
iωt
2

 
0 1

i
ω ∂t þ 1

2
0

!
; Q̄ ¼ e−

iωt
2

 
0 1

i
ω ∂t − 1

2
0

!
:

ð24Þ

The ospð1j2Þ-invariant action is

S ¼
Z

dtL ¼
Z

dt
1

2

�
_y2 þ iωχ _χ −

ω2

8
y2
�
: ð25Þ

The derived conserved Noether charges are

CH ¼ eiωt
�

1

2ω
_y2 −

i
2
y_y−

ω

8
y2
�
; CD ¼ 1

2ω
_y2 þω

8
y2;

CK ¼ e−iωt
�

1

2ω
_y2 þ i

2
y_y−

ω

8
y2
�
;

CQ ¼ e
iω
2
t

�
_yχ −

iω
2
yχ

�
; CQ̄ ¼ e−

iω
2
t

�
_yχ þ iω

2
yχ

�
:

ð26Þ

The Euler-Lagrange equations of motion are

ÿ ¼ −
ω2y
4

; _χ ¼ 0: ð27Þ

The conjugate momenta are given by

p ¼ ∂L
∂ _y ¼ _y; π ¼ ∂L

∂ _χ ¼ −
iωχ
2

: ð28Þ

In the Hamiltonian formulation, the (26) conserved
charges are

CH ¼ eiωt
�

1

2ω
p2 −

i
2
yp−

ω

8
y2
�
; CD ¼ 1

2ω
p2 þω

8
y2;

CK ¼ e−iωt
�

1

2ω
p2 þ i

2
yp−

ω

8
y2
�
;

CQ ¼ e
iω
2
t

�
pχ −

iω
2
yχ

�
; CQ̄ ¼ e−

iω
2
t

�
pχþ iω

2
yχ

�
:

ð29Þ

The second equation in (28) gives the constraint in phase
space,

u ¼ π þ iωχ
2

; ð30Þ

which allows us to compute the Dirac brackets as before.
The nonvanishing Dirac brackets are

fy; pgD ¼ 1; fχ; χgD ¼ −
i
ω
: ð31Þ

Hamilton’s equations of motion are now written as

_ϕ ¼ ωfϕ; CDgD þ ∂ϕ
∂t : ð32Þ

One should note that, while in the parabolic σ model the
charge CH is the physical Hamiltonian and the symmetry
operator H is the generator of the time translations, in the
trigonometric σ model, the physical Hamiltonian is given
by ωCD, the Cartan generator ωD being the generator of
the time translations. One can readily check that Eq. (32)
leads to

_p ¼ −
ω2y
4

; _χ ¼ 0; ð33Þ

which reproduces (27) by taking into account that p ¼ _y.

IV. QUANTIZATION: QUANTUM VS
CLASSICAL NOETHER CHARGES AND

THE ospð1j2Þ MODELS

The canonical quantization of the models presented in
Sec. III is realized by substituting the Dirac brackets by the
appropriate (based on the superalgebra structure) (anti)
commutators, which we will denote with the “½:; :g”
symbol:
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fA;BgD →
1

iℏ
½A; Bg: ð34Þ

By applying Eq. (34) to Eqs. (21) and (31) we get,
respectively, the parabolic and trigonometric ospð1j2Þ-
invariant quantum superconformal models.
We point out that, since the observables must be

Hermitian operators, the parabolic and trigonometric
quantum models correspond to different real forms (read:
conjugations) of the invariant superalgebra. We illustrate in
detail this feature, which is also valid for N ≥ 2-invariant
theories.

A. Parabolic ospð1j2Þ-invariant quantum σ model

The nonvanishing (anti)commutators recovered from
(21) are

½ŷ; p̂� ¼ iℏ; fχ̂; χ̂g ¼ ℏ: ð35Þ

In the position-space representation, the above operators
are given by

ŷ ¼ y; p̂ ¼ −iℏ∂y; χ̂ ¼
ffiffiffi
ℏ
2

r
: ð36Þ

The last equation is particularly important because it tells
us that the fermionic field χ, classically represented by a
Grassmann variable, becomes a Clifford variable χ̂ in the
quantum version. The choice in (36) of representing χ̂ as a
real number is not unique. An alternative choice, which
respects the Z2-graded structure of the supervector space
acted upon by the operators ŷ, p̂, χ̂, consists in picking χ̂ as

the 2 × 2 matrix
ffiffi
ℏ
2

q
ð 0 1

1 0
Þ. In this Z2-graded representa-

tion, the operators ŷ, p̂, χ̂ are

ŷ ¼
�
y 0

0 y

�
; p̂ ¼

�−iℏ∂y 0

0 −iℏ∂y

�
;

χ̂ ¼
ffiffiffi
ℏ
2

r �
0 1

1 0

�
; Nf ¼

�
1 0

0 −1

�
; ð37Þ

while Nf is the fermion parity operator.
The possibility, offered by the Z2-graded structure, of

doubling the vector space will be used in the following in
constructing N ¼ 2, 4 quantum models.
It is worth pointing out that superalgebras admit super-

representations acting on Z2-graded vector spaces. In some
cases, superalgebra (anti)commutation relations are also
realized on ordinary (not Z2-graded) vector spaces. This
feature can be seen when realizing the χ2 ¼ I equation
either through χ ¼ 1 or the χ ¼ ð 0 1

1 0
Þ Z2-graded solution

[they induce a Clð1; 0Þ Clifford algebra, which is respec-
tively identified either with Clð1; 0Þ ≈ R or with the
split-complex numbers Clð1; 0Þ ≈ ~C]. Upon a convenient

normalization, Eq. (36) corresponds to the first choice,
while Eq. (37) corresponds to the second choice.
It is worth pointing out that the different quantummodels

derived from Eqs. (36) and (37) (only the latter one being
supersimmetric) are both consistent. The Eq. (36) model
can be derived from the Eq. (37) model after imposing a
superselection rule induced by a projector (a similar
projector inducing a superselection rule is introduced in
Appendix A). For simplicity, we discuss in this section the
parabolic [and its trigonometric counterpart; see Eq. (42)]
model corresponding to the first choice. The Z2-graded
choice is used in Secs. V and VI to derive N ¼ 4 and
N ¼ 2 quantum models.
The Eq. (42) model coincides with the ordinary quantum

oscillator [its connection with the ospð1j2Þ superalgebra is
elucidated in Appendix C].
The parabolic quantum ospð1j2Þ superalgebra obtained

by the (34) quantization of the classical counterpart leads to

½Ĥ; D̂� ¼ iℏĤ; ½Ĥ; K̂� ¼ 2iℏD̂; ½K̂; D̂� ¼ −iℏK̂

½Ĥ; ˆ̄Q� ¼ iℏQ̂; ½K̂; Q̂� ¼ −iℏ ˆ̄Q;

½Q̂; D̂� ¼ iℏ
2
Q̂; ½ ˆ̄Q; D̂� ¼ −

iℏ
2

ˆ̄Q; fQ̂; Q̂g ¼ 2ℏĤ;

fQ̂; ˆ̄Qg ¼ 2ℏD; f ˆ̄Q; ˆ̄Qg ¼ 2ℏK: ð38Þ

The remaining (anti)commutators are vanishing.
The above superalgebra is realized by the quantum

charges

Ĥ ¼ 1

2
p̂2; D̂ ¼ t

2
p̂2 −

1

4
ðŷ p̂þp̂ ŷÞ;

K̂ ¼ t2

2
p̂2 −

t
2
ðŷ p̂þp̂ ŷÞ þ 1

2
ŷ2;

Q̂ ¼ χ̂ p̂; ˆ̄Q ¼ tχ̂ p̂−ŷ χ̂ : ð39Þ

They are, up to symmetrization, identical to the classical
charges. This is a unique feature of the N ¼ 1 ospð1j2Þ-
invariant models. From N ≥ 2, the models explicitly
depend on the scaling dimension λ. As a result, the
quantum versions of these theories require corrections
that are traced backed to the mapping of the classical
Grassmann variables into quantum Clifford generators.
The Hamiltonian Ĥ in (39) corresponds to the one-

dimensional free particle. The operators Ĥ, D̂, and K̂ close
the slð2Þ bosonic symmetry algebra of the system. Ĥ and Q̂
give the N ¼ 1 algebra of the supersymmetric quantum
mechanics. In terms of the Eq. (36) realization (χ̂ is a real
number), the parabolic ospð1j2Þ-invariant model admits no
fermionic degrees of freedom. This is no longer the case
(fermions are present) if the model is expressed via the
Eq. (37) realization.
In the parabolic model, all charges entering Eq. (39) are

observables. The superalgebra (38) can be reexpressed in
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terms of the canonical ospð1j2Þ Cartan-Weyl basis H, F�,
E� (such that all the structure constants are real), see
Ref. [19], through the identifications

Ĥ ¼ −E−; D̂ ¼ iH; K̂ ¼ −Eþ;

Q̂ ¼ 2F−; ˆ̄Q ¼ 2iFþ: ð40Þ

The computation of the ospð1j2Þ structure constants in the
new basis is immediate.
The superalgebra conjugation corresponding to (39)

reads, in the Cartan-Weyl basis, as

ðE�Þ† ¼ E�; H† ¼ −H; ðF�Þ† ¼∓ðF�Þ: ð41Þ

Concerning the dimensional analysis of the model, we
can set, without loss of generality, ½∂t� ¼ 1. If we set the
Planck constant ℏ and the action S to be dimensionless,
we therefore get ½ŷ� ¼ − 1

2
, ½p̂� ¼ 1

2
, and ½χ̂� ¼ ½S� ¼ 0.

B. Trigonometric ospð1j2Þ-invariant quantum σ model

The quantization of the trigonometric model follows the
same lines of the parabolic one. Without loss of generality,
we can set ω ¼ 1, reproducing the nonvanishing (anti)
commutators (35) and the Eqs. (36) and (37) position-space
representations for the operators ŷ, p̂, χ̂. The quantum
trigonometric generators, identical to the classical ones up
to symmetrization, are

Ĥ ¼ eit
�
1

2
p̂2 −

i
4
ðŷ p̂þp̂ ŷÞ − 1

8
ŷ2
�
;

K̂ ¼ e−it
�
1

2
p̂2 þ i

4
ðŷ p̂þp̂ ŷÞ − −

8
ŷ2
�
;

D̂ ¼ 1

2
p̂2 þ 1

8
ŷ2; Q̂ ¼ e

it
2

�
χ̂ p̂−

i
2
χ̂ ŷ

�
;

ˆ̄Q ¼ e−
it
2

�
χ̂ p̂þ i

2
χ̂ ŷ

�
: ð42Þ

In the Eq. (42) realization, the ospð1j2Þ nonvanishing
brackets read as

½Ĥ; D̂� ¼ ℏĤ; ½Ĥ; K̂� ¼ 2ℏD̂; ½K̂; D̂� ¼ −ℏK̂;

½Ĥ; ˆ̄Q� ¼ ℏQ̂; ½K̂; Q̂� ¼ −ℏ ˆ̄Q; ½Q̂; D̂� ¼ ℏ
2
Q̂;

½ ˆ̄Q; D̂� ¼ −
ℏ
2
ˆ̄Q; fQ̂; Q̂g ¼ 2ℏĤ;

fQ̂; ˆ̄Qg ¼ 2ℏD; f ˆ̄Q; ˆ̄Qg ¼ 2ℏK: ð43Þ

The ospð1j2Þ Cartan-Weyl basis is recovered, from the
Eq. (42) trigonometric charges, via the identifications

Ĥ ¼ E−; D̂ ¼ H; K̂ ¼ −Eþ;

Q̂ ¼ 2iF−; ˆ̄Q ¼ −2iFþ: ð44Þ

We obtain a different conjugation with respect to the
parabolic case, given by

ðE�Þ† ¼ −E∓; H† ¼ H; ðF�Þ† ¼ F∓: ð45Þ

In the trigonometric case, the Hamiltonian is given by the
ospð1j2Þ Cartan generator ωD̂.
By taking into account the presence of the dimensional

parameter ω that we set, for convenience, equal to 1 in the
formulas above, the dimensional analysis of the trigono-
metric model gives us the dimensions ½t� ¼ −1, ½ŷ� ¼ − 1

2
,

½p̂� ¼ 1
2
, ½χ̂� ¼ − 1

2
, ½ω� ¼ 1, and ½S� ¼ 0.

V. SUPERCONFORMAL QUANTUM MECHANICS
WITH CALOGERO POTENTIALS: 1D Dð2;1;αÞ

AND 2D slð2j1Þ MODELS

In this section, we quantize the worldline supercon
formal σ models recovered from the N ¼ 4 (1, 4, 3)
(i.e., one-dimensional target) andN ¼ 2 (2, 2, 0) (i.e., two-
dimensional target) parabolic supermultiplets. Unlike the
N ¼ 1 parabolic model analyzed in Sec. IV, nontrivial
potential terms and nontrivial quantum corrections to the
classical Hamiltonians appear.
The N ¼ 4 (1, 4, 3) parabolic model possesses a

Dð2; 1; αÞ invariance, in which α ≠ 0, −1 is identified
with the scaling dimension of the supermultiplet. The
Hamiltonian describes a particle moving on a line under
an inverse square potential and includes spinlike degrees of
freedom.
The N ¼ 2 (2, 2, 0) parabolic model possesses an

slð2j1Þ invariance. Its Hamiltonian describes a particle
moving on a plane under an inverse square potential and
with a spin-orbit coupling.

A. N = 4 (1, 4, 3) parabolic model
with Dð2;1;αÞ invariance

A discussion of the classical N ¼ 4 (1, 4, 3) super-
conformal worldline model can be found, e.g., in Ref. [1].
We present here the quantization of this model repeating the
same steps discussed in Sec. IV for the ospð1j2Þ-invariant
model. In this subsection, we recover, within a different
framework, the models discussed in Ref. [4].
The nonvanishing (anti)commutators obtained from

quantizing the Dirac brackets are

½ŷ; p̂� ¼ i; fχ̂α; χ̂βg ¼ δαβ; ð46Þ

with α, β ¼ 0;…; 3. The above equations define the super-
algebra h1 ⊕ C4, with the one-dimensional Heisenberg
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algebra h1 in its even sector and the four Clð4; 0Þ Clifford
algebra gamma matrices in its odd sector. These gamma
matrices can be expressed as 4 × 4 complex matrices. We
choose to respect theZ2-graded structure of the superalgebra,
block-antidiagonal gamma matrices, while representing the
Heisenberg generators as block-diagonal operators.
The position-space representation of (46) is

ŷ ¼ yI4; p̂ ¼ −i∂yI4; χ̂0 ¼
1ffiffiffi
2

p σ2 ⊗ I2;

χ̂1 ¼ −
1ffiffiffi
2

p σ1 ⊗ σ1; χ̂2 ¼ −
1ffiffiffi
2

p σ1 ⊗ σ2;

χ̂3 ¼ −
1ffiffiffi
2

p σ1 ⊗ σ3; ð47Þ

where In is the n×n identity matrix and the σi’s (i¼1, 2, 3)
are the Pauli matrices.
The quantum charges are given by

Ĥ ¼
�
p̂2

2
þ ð1þ 2αÞ2

8ŷ2

�
I4 þ

1þ 2α

4ŷ2
F 4;

D̂ ¼
�
tp̂2

2
−
1

4
ðŷ p̂þp̂ ŷÞ þ tð1þ 2αÞ2

8ŷ2

�
I4

þ tð1þ 2αÞ
4ŷ2

F 4;

K̂ ¼
�
t2p̂2

2
−
t
2
ðŷ p̂þp̂ ŷÞ þ ŷ2

2
þ t2ð1þ 2αÞ2

8ŷ2

�
I4

þ t2ð1þ 2αÞ
4ŷ2

F 4;

Q̂0 ¼ χ̂0p̂þ ið1þ 2αÞ
6

ϵijk
χ̂iχ̂jχ̂k

ŷ
;

Q̂i ¼ χ̂ip̂ −
ið1þ 2αÞ

2
ϵijk

χ̂0χ̂jχ̂k
ŷ

;

ˆ̄Q0 ¼ tχ̂0p̂ − χ0ŷþ
itð1þ 2αÞ

6
ϵijk

χ̂iχ̂jχ̂k
ŷ

;

ˆ̄Qi ¼ tχ̂ip̂ − χiŷ −
itð1þ 2αÞ

2
ϵijk

χ̂0χ̂jχ̂k
ŷ

;

Ĵi ¼ −i
�
1

2
ϵijkχ̂jχ̂k þ χ̂0χ̂i

�
;

L̂i ¼ −i
�
1

2
ϵijkχ̂jχ̂k − χ̂0χ̂i

�
: ð48Þ

In the above formulas, we used the Fermi parity operator
F 4, defined by F 2n ¼ ð In 0

0 −In
Þ. One should note that the

quantum operators Ĥ, D̂, and K̂ contain an Ehrenfest

quantum correction term, proportional to ℏ2ð1þ2αÞ2
ŷ2 I4, which

is not present in the classical charges. Its appearance can be
traced to the change from classical Grassmann to quantum
Clifford variables.

At a given value α ≠ 0;−1, the above operators close
the exceptional superalgebra Dð2; 1; αÞ. The R-symmetry
generators Ĵi and L̂i, i ¼ 1, 2, 3, close two independent
(½Ĵi; L̂j� ¼ 0) suð2Þ subalgebras.
In the Cartan-Weyl basis, the nonvanishing Dð2; 1; αÞ

brackets are given by

½H;E�� ¼ �E�; ½Eþ; E−� ¼ 2H;

½H;F�
β � ¼ � 1

2
F�
β ; ½E�; F∓

β � ¼ −F�
β ;

fF�
0 ; F

∓
j g ¼ −

i
4
ðλJj þ ð1þ λÞLjÞ;

fFþ
j ; F

−
k g ¼ ϵjkl

�
−
iλ
4
Jl þ

iðλþ 1Þ
4

Ll

�
þ δjk

H
2
;

fFþ
0 ; F

−
0 g ¼ H

2
; fF�

β ; F
�
γ g ¼ � 1

2
δβγE�;

½Jj; F�
0 � ¼ iF�

j ; ½Jj; F�
k � ¼ ið−δjkF�

0 þ ϵjklF�
l Þ;

½Lj; F�
0 � ¼ −iF�

j ; ½Lj; F�
k � ¼ iðδjkF�

0 þ ϵjklF�
l Þ;

½Jj; Jk� ¼ 2iϵjklJl; ½Lj; Lk� ¼ 2iϵjklLl: ð49Þ
The above superalgebra is realized by the (48) quantum
operators via the identifications

Ĥ ¼ −E−; D̂ ¼ iH; K̂ ¼ −Eþ; Q̂β ¼ 2F−
β ;

ˆ̄Qβ ¼ 2iFþ
β ; Ĵj ¼ Jj; L̂j ¼ Lj: ð50Þ

The Hamiltonian operator Ĥ, explicitly written in 4 × 4
supermatrix form, is given by

Ĥ ¼
 ðp̂2

2
þ 4α2þ8αþ3

8ŷ2 ÞI2 0

0 ðp̂2

2
þ 4α2−1

8ŷ2 ÞI2

!
: ð51Þ

It is the Hamiltonian of the N ¼ 4 super-Calogero model
with Dð2; 1; αÞ invariance.
It contains a (purely bosonic) Calogero Hamiltonian in

both its upper and lower diagonal blocks. We recall that the
Calogero Hamiltonian HC is given by

HC ¼ 1

2
p̂2 þ g2

ŷ2
: ð52Þ

The self-adjointness of the Calogero Hamiltonian HC
depends on the value of the coupling parameter g. We refer
to Refs. [33,34] for a thorough discussion of this subtle point.
For our purposes, it is important to note here the

relation between the coupling constant g and the scaling
dimension parameter α. From Ref. [33], we know that HC

is self-adjoint, provided that the inequality g2 > − 1
8
is

satisfied. Under this condition, the boundary value problem

HCϕk ¼ Ekϕk; ϕkð0Þ ¼ 0
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gives a continuous positive spectrum, 0 ≤ Ek < ∞, the
eigenfunctions and eigenvalues being

ϕkðyÞ ¼ 2μ−
1
2Γ
�
μþ 1

2

�
ðkyÞ−ðμ−1

2
ÞJμ−1

2
ðkyÞyμ;

Ek ¼
1

2
k2;

for

g2 ¼ 1

2
μðμ − 1Þ: ð53Þ

Let us set

g2b ¼
4α2 þ 8αþ 3

8
; g2f ¼ 4α2 − 1

8
ð54Þ

for the Calogero parameters entering, respectively, the
upper and lower diagonal blocks of the Eq. (51)
Hamiltonian. It is quite rewarding that imposing, simulta-
neously, the g2b, g

2
f > − 1

8
condition we end up with the

α ≠ 0;−1 inequality for the scaling dimension. The class of
exceptional Dð2; 1; αÞ superalgebras guarantees the exist-
ence of a well-defined Hamiltonian with a continuous
positive spectrum bounded from below.
At the special α ¼ − 1

2
value, the Calogero potential

terms (in both upper and lower blocks) vanish. Therefore,
this special point corresponds to a free theory. At this
given value, see Ref. [19], we have Dð2; 1;− 1

2
Þ ¼ Dð2; 1Þ,

so the invariant superalgebra coincides with the classical
Dð2; 1Þ ≈ ospð4j2Þ superalgebra.
We can express, from (53), gb and gf in terms of their

respective μb and μf parameters. From (54), μb and μf can
be given in terms of α. The result is the linear relations

μb ¼
1

2
� ðαþ 1Þ; μf ¼

1

2
� α: ð55Þ

In quantum mechanics, the continuity conditions are also
imposed on the probability currents. Since the zero-energy
wave function is (up to a normalizing factor) ϕ0ðyÞ ¼ yμ,
these conditions imply that both μb and μf must satisfy μb,
μf > 1

2
to ensure continuity at the origin. Equations (55)

show that any α ≠ 0;−1 is suitable to fulfill these
constraints.
For a final comment, we point out that the energy levels

of both bosonic (upper) and fermionic (lower) blocks are
doubly degenerated. This degeneracy is removed by taking
into account the Hermitian operators Ĵ3 and L̂3, which
commute with Ĥ. Indeed,

Ĵ3 ¼
�
σ3 0

0 0

�
; L̂3 ¼

�
0 0

0 σ3

�
ð56Þ

are both diagonal and specify spinlike quantum numbers in
the bosonic and fermionic sectors, respectively. We can say
that the bosonic states have 1

2
Ĵ spin and 0 L̂ spin, while the

fermionic states have 0 Ĵ spin and 1
2
L̂ spin.

B. N = 2 (2, 2, 0) parabolic model
with slð2j1Þ invariance

The classical slð2j1Þ-invariant action based on the para-
bolic D-module rep of the (2, 2, 0) supermultiplet is
presented in Appendix B. Its quantization is performed
with the techniques previously outlined (introduction of the
constant kinetic basis, Dirac brackets, etc.). For this model,
it is convenient to express the two propagating bosons in
terms of a complex field y.
We obtain the nonvanishing (anti)commutators

½y�; py� � ¼ ½y; py� ¼ iℏ; fχ; χ†g ¼ ℏ
C
; ð57Þ

where py ¼ −iℏ∂y, py� ¼ −iℏ∂y� and the fermions can be

expressed as χ ¼
ffiffiffi
ℏ
C

q
ð 0 1

0 0
Þ and χ† ¼

ffiffiffi
ℏ
C

q
ð 0 0

1 0
Þ.

Let us fix, for simplicity, ℏ ¼ 1 and C ¼ 1
2
. Then, the

quantum charges can be written as

Ĥ ¼
�
2pypy� þ

ð2λþ 1Þ2
8yy�

�
I2

þ i
2λþ 1

4
ðχχ† − χ†χÞ

�
py�

y
−
py

y�

�
;

D̂ ¼ tĤ −
1

2
ðy�py� þ ypy − iÞI2;

K̂ ¼ t2Ĥ − tðy�py� þ ypy − iÞI2 þ
1

2
yy�I2;

Q̂ð1Þ
− ¼ −

i
2

��
y
y�

�1þ2λ
2

py þ py

�
y
y�

�1þ2λ
2

�
χ

−
i
2

��
y�

y

�1þ2λ
2

py� þ py�

�
y�

y

�1þ2λ
2

�
χ†;

Q̂ð2Þ
− ¼ −

1

2

��
y
y�

�1þ2λ
2

py þ py

�
y
y�

�1þ2λ
2

�
χ

þ 1

2

��
y�

y

�1þ2λ
2

py� þ py�

�
y�

y

�1þ2λ
2

�
χ†;

Q̂ð1Þþ ¼ tQ̂ð1Þ
− −

1ffiffiffi
2

p ffiffiffiffiffiffiffi
yy�

p ��
y
y�

�
λ

χ þ
�
y�

y

�
λ

χ†
�
;

Q̂ð2Þþ ¼ tQ̂ð2Þ
− −

iffiffiffi
2

p ffiffiffiffiffiffiffi
yy�

p ��
y
y�

�
λ

χ −
�
y�

y

�
λ

χ†
�
;

Ĵ ¼ i
2

�
py�

y
−
py

y�

�
−
1 − 2λ

8
ðχχ† − χ†χÞ: ð58Þ

Here, Ĥ is the quantum Hamiltonian.

FROM WORLDLINE TO QUANTUM SUPERCONFORMAL … PHYSICAL REVIEW D 96, 065014 (2017)

065014-9



Using py ¼ −iℏ∂y, py� ¼ −iℏ∂y� , the quantum opera-

tors Q̂ð1Þ
− and Q̂ð2Þ

− turn out to be

Q̂ð1Þ
− ¼ i

�
0 −A
A† 0

�
; Q̂ð2Þ

− ¼
�

0 A

A† 0

�
; ð59Þ

where

A† ¼ −
iffiffiffi
2

p e−i2λθ
�
∂r þ

i
r
∂θ þ

2λþ 1

2r

�
;

A ¼ −
iffiffiffi
2

p ei2λθ
�
∂r −

i
r
∂θ þ

2λþ 1

2r

�
ð60Þ

are expressed in polar coordinates (y ¼ reiθ, y� ¼ re−iθ).
In the same way, the quantum Hamiltonian Ĥ can be

expressed as

Ĥ ¼
�
−
1

2

�
∂2
r þ

1

r
∂r þ

1

r2
∂2
θ

�
þ i

ð2λþ 1Þ
2r2

σ3∂θ

þ ð2λþ 1Þ2
8r2

�
I2; ð61Þ

with σ3 being the diagonal Pauli matrix. ð2λþ1Þ2
8r2 is the

Ehrenfest term resulting from quantization.
The nonvanishing (anti)commutators, closing the slð2j1Þ

superalgebra, are (m; n ¼ 0;�1)

½L̂n; L̂m� ¼ iðm − nÞL̂mþn; ½L̂0; Q̂
I
�� ¼ � i

2
Q̂I

�;

½L̂�1; Q̂
I∓� ¼∓ iQ̂I

�; ½Ĵ; Q̂I
�� ¼

i
2
ϵIJQ̂

J
�;

fQ̂I
�; Q̂

J
�g ¼ 2δIJL̂�1; fQ̂I

�; Q̂
J∓g ¼ 2δIJL̂0 � 2ϵIJĴ;

ð62Þ

where L̂−1 ¼ Ĥ; L̂0 ¼ D̂; L̂1 ¼ K̂; I; J ¼ 1, 2; and
ϵ12 ¼ −ϵ21 ¼ 1.
The eigenvalue equation ĤψEm� ¼Em�ψEm� , forEm�>0,

produces a continuum spectrum with eigenfunctions

ψEmþðr; θÞ ¼ Jj2λþ1
2
−mjðαrÞeimθ

�
1

0

�
;

ψEm−ðr; θÞ ¼ Jj2λþ1
2
þmjðαrÞeimθ

�
0

1

�
; ð63Þ

where Jj2λþ1
2
−mjðαrÞ and Jj2λþ1

2
þmjðαrÞ are Bessel functions

and α ¼ ffiffiffiffiffiffi
2E

p
.

To conclude the analysis of this model, we present it as
supersymmetric quantum mechanics. Let us introduce

Q̂ ¼ Q̂2
− þ iQ̂1

−

2
¼
�
0 A

0 0

�
;

Q̂† ¼ Q̂2
− − iQ̂1

−

2
¼
�

0 0

A† 0

�
: ð64Þ

We get fQ̂; Q̂†g ¼ 2Ĥ and Q̂2 ¼ ðQ̂†Þ2 ¼ 0.
From the expressions (60), it follows that Q̂ψEm−

¼
ψEðmþ2λÞþ and Q̂†ψEmþ ¼ ψEðm−2λÞ− . Sincemþ 2λ andm − 2λ

need to be integer numbers, Q̂ψEm−
and Q̂†ψEmþ belong to

the Hilbert space only if 2λ is an integer number. A
supersymmetric pair is therefore only encountered for
the quantized values of the scaling dimension, either
λ ∈ 1

2
þ Z or λ ∈ Z.

VI. SUPERCONFORMAL QUANTUM
MECHANICS WITH DFF OSCILLATOR

POTENTIAL TERMS:
1D Dð2;1;αÞ AND 2D slð2j1Þ MODELS

In this section, we quantize the worldline trigonometric σ
models obtained from theN ¼ 4 (1, 4, 3) andN ¼ 2 (2, 2,
0) supermultiplets (see Appendix B). They contain (besides
a Calogero potential) an oscillatorial (DFF) term that
furnishes a discrete spectrum, bounded from below. The
associated Dð2; 1; αÞ and slð2j1Þ superconformal algebras,
respectively, act as spectrum-generating algebras for these
models.
The Dð2; 1; αÞ (1, 4, 3) trigonometric σ models

shed some new light on the results of Calogero [3] and
de Alfaro et al. [2]. Indeed, their Casimir energy linearly
depends (in two regions) on the scaling dimension param-
eter α (in contrast with the complicated dependence
expressed in terms of the Calogero coupling constant;
see Ref. [33]).
For what concerns the slð2j1Þ (2, 2, 0) trigonometric σ

models, interesting features are also obtained. The scaling
dimension λ needs to be quantized (either λ ¼ 1

2
þ Z or

λ ∈ Z). At the special λ ¼ − 1
2
value, the ordinary two-

dimensional oscillator (since the Calogero potential
vanishes at this special point) can be recovered after
performing a restriction induced by a superselection rule.
The restriction selects, in particular, a single bosonic
vacuum. The Hilbert space of the unrestricted two-
dimensional models is decomposed into an infinite direct
sum of slð2j1Þ lowest-weight representations. An unex-
pected feature is the existence of fermionic raising
operators [not entering the slð2j1Þ superalgebra] that allow,
together with the slð2j1Þ raising operators, for λ ¼ 1

2
þ Z to

recover the whole Hilbert space of the theory from the two
degenerate (one bosonic and one fermionic) vacua of the
theory. The existence of these extra fermionic operators is
traced to the presence of a discrete symmetry.
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A. Quantum Dð2;1;αÞ trigonometric model
from N = 4 (1, 4, 3)

The quantization of this model follows the same steps as
the quantization of the ospð1j2Þ-invariant trigonometric
model described in Sec. IV. We end up, just like its N ¼ 4
(1, 4, 3) parabolic counterpart of Sec. V, with (anti)
commutators defining the h1 ⊕ C4 superalgebra (46).
We set, for convenience and without loss of generality,
the dimensional parameter ω ¼ 1 (its presence in the
equations can be restored by means of dimensional
analysis).
The quantum operators are [F 4 is the fermion parity

operator introduced in (48)]

Ĥ ¼ eit
�
p̂2

2
−
i
4
ðŷp̂þ p̂ŷÞ − ŷ2

8
þ ð1þ 2αÞ2

8ŷ2

�
I4

þ eit
1þ 2α

4ŷ2
F 4;

D̂ ¼
�
p̂2

2
þ ŷ2

8
þ ð1þ 2αÞ2

8ŷ2

�
I4 þ

ð1þ 2αÞ
4ŷ2

F 4;

K̂ ¼ e−it
�
p̂2

2
þ i
4
ðŷp̂þ p̂ŷÞ − ŷ2

8
þ ð1þ 2αÞ2

8ŷ2

�
I4

þ e−it
1þ 2α

4ŷ2
F 4;

Q̂0 ¼ e
it
2

�
χ̂0p̂ −

i
2
χ̂0ŷþ

ið1þ 2αÞ
6

ϵijk
χ̂iχ̂jχ̂k

ŷ

�
;

Q̂i ¼ e
it
2

�
χ̂ip̂ −

i
2
χ̂iŷ −

ið1þ 2αÞ
2

ϵijk
χ̂0χ̂jχ̂k

ŷ

�
;

ˆ̄Q0 ¼ e−
it
2

�
χ̂0p̂þ i

2
χ̂0ŷþ

ið1þ 2αÞ
6

ϵijk
χ̂iχ̂jχ̂k

ŷ

�
;

ˆ̄Qi ¼ e−
it
2

�
χ̂ip̂þ i

2
χ̂iŷ −

ið1þ 2αÞ
2

ϵijk
χ̂0χ̂jχ̂k

ŷ

�
;

Ĵi ¼ −i
�
1

2
ϵijkχ̂jχ̂k þ χ̂0χ̂i

�
;

L̂i ¼ −i
�
1

2
ϵijkχ̂jχ̂k − χ̂0χ̂i

�
: ð65Þ

The above operators realize theDð2; 1;αÞ superalgebra (49)
with the identifications

Ĥ ¼ E−; D̂ ¼ H; K̂ ¼ −Eþ; Q̂β ¼ 2iF−
β ;

ˆ̄Qβ ¼ −2iFþ
β ; Ĵj ¼ Jj; L̂j ¼ Lj: ð66Þ

The quantum Hamiltonian Ĥ≡ D̂ is, explicitly,

D̂ ¼
 ðp̂2

2
þ 4α2þ8αþ3

8ŷ2 þ ŷ2

8
ÞI2 0

0 ðp̂2

2
þ 4α2−1

8ŷ2 þ ŷ2

8
ÞI2

!
:

ð67Þ

Both upper (bosonic) and lower (fermionic) diagonal
blocks of D̂ contain a Calogero Hamiltonian with the
DFF oscillatorial potential,

ĤDFF ¼ 1

2
p̂2 þ g2

ŷ2
þ ŷ2

8
: ð68Þ

A detailed analysis of this Hamiltonian can be found
in Refs. [3,33]. Just like the parabolic case, the inequality
g2 > − 1

8
guarantees the existence of physically acceptable

solutions. The boundary value problem

ĤDFFϕn¼Enϕn; ϕnð0Þ¼0; n¼0;1;2;… ð69Þ

implies the discrete spectrum

En ¼
1

2
ðnþ νþ 1Þ; ð70Þ

with eigenfunctions given (up to normalization) by

ϕnðyÞ ¼ yνþ1
2 exp

�
−
y2

4

�
Lν
n

�
1

2
y2
�
: ð71Þ

In the right-hand side, Lν
n stands for the modified Laguerre

polynomials. The parameter ν entering the Casimir energy
1
2
ðνþ 1Þ is

ν ¼ 1

2
ð1þ 8g2Þ12: ð72Þ

Comparing Eqs. (67) and (68), we see that gb and gf are
again given by Eqs. (54) so that α ≠ 0;−1 to ensure that both
g2b and g2f are greater than − 1

8
.

Since the Hamiltonian is a Cartan generator of the (65)
superalgebra, the whole spectrum can be recovered from a
lowest-weight representation of Dð2; 1; αÞ, where the Qβ’s
are the lowering and the Q̄β’s are the raising operators. The
vacuum jΛi is introduced by requiring

QβjΛi ¼ 0; β ¼ 0; 1; 2; 3: ð73Þ

From the definition of the Qβ’s in (65), the four differential
equations (73) can be recast into the single differential
equation

�
p̂ −

i
2
ŷ −

ið1þ 2αÞ
2ŷ

F 4

�
jΛi ¼ 0: ð74Þ

In position-space representation, Eq. (74) splits into two
separate equations for the bosonic (þ) and fermionic (−)
subspaces, respectively,
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dϕ0;σ

dy
¼ −

1

2

�
y� 1þ 2α

y

�
ϕ0;σ: ð75Þ

The label σ accounts, just as in the parabolic case, for the
Ĵ,L̂-spin degrees of freedom.
Integrating the above equation, we get, up to normali-

zation, the vacuum solutions

ϕ0;σ ¼ y∓ð1þ2α
2

Þ exp
�
−
y2

4

�
: ð76Þ

This result is in agreement with (71), provided that we set

νb ¼ −ð1þ αÞ; νf ¼ α: ð77Þ

This analysis forces us to conclude that two degenerate
lowest-energy vacua exist for α ≠ − 1

2
. They are bosonic for

α < − 1
2
and fermionic for α > − 1

2
. This is implied by

Eq. (71), which tells us that any bosonic (fermionic)
vacuum should be such that νb þ 1

2
> 0 (νf þ 1

2
> 0).

At the special α ¼ − 1
2
value, we have that Dð2; 1;− 1

2
Þ≡

Dð2; 1Þ ≈ ospð4j2Þ. The Calogero potential terms vanish in
both the upper and lower diagonal blocks. At α ¼ − 1

2
, we

recover four undeformed harmonic oscillator equations. All
the states of the theory (including the minimal energy
states) are four times degenerated, with two bosonic and
two fermionic states of the same energy.
The energy levels of the system are given by

Eb;n ¼
1

2
ðn − αÞ; Ef;n ¼

1

2
ðnþ αþ 1Þ;

n ¼ 0; 1; 2;…: ð78Þ

Eb;n is the whole spectrum of energies recovered from a
bosonic vacum (α < − 1

2
). Conversely, Ef;n is the whole

spectrum when the vacuum is fermionic (α > 1
2
).

For a bosonic (fermionic) vacuum, the energy of the two
degenerate vacua is, respectively, given by

Eb;vac ¼ −
1

2
α;

�
α ≤ −

1

2

�
;

Ef;vac ¼
1

2
ðαþ 1Þ;

�
α ≥ −

1

2

�
: ð79Þ

The scaling dimension α can be regarded as an external
control parameter of the theory so that the vacuum energy
can be interpreted as a Casimir energy. The Casimir energy
of the (1, 4, 3) Dð2; 1; αÞ (un)deformed oscillator admits a
very nice expression in terms of α, being simply given by

Evac ¼
1

4
ð1þ j2αþ 1jÞ: ð80Þ

This expression should be compared with the much
more complicated expression of the vacuum energy in
terms of the Calogero coupling constant g and derived
from (72). This result suggests that the scaling dimension α
has a more direct physical interpretation of the Calogero
coupling constant g. One should also note that, contrary to
g, α directly enters the spectrum-generating superalge-
bra Dð2; 1; αÞ.

B. N = 2 (2, 2, 0) trigonometric model
with slð2j1Þ invariance

As in the parabolic case, we obtain from quantization the
nonvanishing (anti)commutators

½y�; py�� ¼ ½y; py� ¼ iℏ; fχ; χ†g ¼ ℏ
ωC

; ð81Þ

with χ ¼
ffiffiffiffiffi
ℏ
ωC

q
ð 0 1

0 0
Þ and χ† ¼

ffiffiffiffiffi
ℏ
ωC

q
ð 0 0

1 0
Þ. We work with

ℏ ¼ 1,C ¼ 1
2
, andω ¼ 2. Therefore, the quantum operators

of the superalgebra can be written as

Ĥ ¼ i
e−2it

2
ðĤ − yy�I2 þ iðy�py� þ ypy − iÞI2Þ;

D̂ ¼ i
2

�
2pypy� þ

yy�

2
þ ð2λþ 1Þ2

8yy�

�
I2

þ i
2λþ 1

4
ðχχ† − χ†χÞ

�
py�

y
−
py

y�

�
¼ i

2
Ĥ;

K̂ ¼ i
e2it

2
ðĤ − yy�I2 − iðy�py� þ ypy − iÞI2Þ;

Q̂ð1Þ� ¼ −ie∓it

�
1

2

��
y
y�

�1þ2λ
2

py þ py

�
y
y�

�1þ2λ
2

�
χ

−
1

2

��
y�

y

�1þ2λ
2

py� þ py�

�
y�

y

�1þ2λ
2

�
χ†

∓ i
2
ðyy�Þ12

��
y
y�

�
λ

χ −
�
y�

y

�
λ

χ†
��

;

Q̂ð2Þ� ¼ e∓it

�
1

2

��
y
y�

�1þ2λ
2

py þ py

�
y
y�

�1þ2λ
2

�
χ

þ 1

2

��
y�

y

�1þ2λ
2

py� þ py�

�
y�

y

�1þ2λ
2

�
χ†

∓ i
2
ðyy�Þ12

��
y
y�

�
λ

χ þ
�
y�

y

�
λ

χ†
��

;

Ĵ ¼ i
2

�
py�

y
−
py

y�

�
−
1 − 2λ

8
ðχχ† − χ†χÞ: ð82Þ

The fermionic operators Q̂ðIÞ
� , I ¼ 1, 2, entering slð2j1Þ,

can also be expressed as
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Q̂ð1Þ
� ¼ ie∓it

�
0 −A�
B� 0

�
; Q̂ð2Þ

� ¼ e∓it

�
0 A�
B� 0

�
;

ð83Þ

where, using the polar coordinates as in the parabolic case,
we have

A� ¼ −
i
2
ei2λθ

�
∂r −

i
r
∂θ þ

2λþ 1

2r
� r

�
;

B� ¼ −
i
2
e−i2λθ

�
∂r þ

i
r
∂θ þ

2λþ 1

2r
� r

�
: ð84Þ

In the trigonometric case, the Hamiltonian Ĥ is related to
the Cartan generator D̂. We have Ĥ ¼ −2iD̂ so that

Ĥ ¼
�
−
1

2

�
∂2
r þ

1

r
∂r þ

1

r2
∂2
θ

�
þ i

ð2λþ 1Þ
2r2

σ3∂θ

þ ð2λþ 1Þ2
8r2

þ r2

2

�
I2: ð85Þ

In the rhs, σ3 is the diagonal Pauli matrix.
For later use, we also write the operator Ĵ as a differential

operator,

Ĵ ¼ −
i
2
I2∂θ −

2λ − 1

4
σ3: ð86Þ

One can check that the slð2j1Þ superalgebra is recovered
from the (anti)commutators of the operators (82)
using (81).
The differential equation for the radial part of the

eigenfunctions ψ ¼ eimθR�ðrÞe� of Ĥ, where eþ ¼ ð1
0
Þ

and e− ¼ ð0
1
Þ, is

�
−
1

2

�
∂2
rþ

1

r
∂r

�
þ 1

2r2

�
m∓2λþ1

2

�
2

þr2

2
−E

�
R�ðrÞ¼0:

ð87Þ

E is the energy. In Ref. [3], the same equation is found
and solved for the problem of three bodies in a line.
Furthermore, the issue of self-adjointness of the differential
operator acting on R� was investigated in Ref. [35]; sinceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 2λþ1

2
Þ2

q
≥ 0, the existence of a self-adjoint extension

for the Halmiltonian (85) is ensured.
The requirement of single-valuedness for the operators

Q̂ðIÞ
� on the R2 plane implies, from the exponents in (84),

that the constraint 4λπ ¼ 2kπ, with k integer, must be
satisfied. Therefore, the scaling dimension λ has to be
quantized, either λ ¼ 1

2
þ Z or λ ¼ Z. We discuss in detail

the half-integer case, with side remarks about the models
with integer values of λ.

One should note that at λ ¼ − 1
2
one obtains (two copies

of) the Hamiltonian of the undeformed two-dimensional
bosonic oscillator.

For half-integer λ, the Q̂ðIÞ
� operators act as raising/

lowering operators. Let us take, e.g., Q̂ð2Þ
� ; it follows,

from the commutators ½Ĥ; Q̂ð2Þ
� � ¼∓ Q̂ð2Þ

� , that an energy
eigenstate ψ with eigenvalue En is mapped into an

eigenstate Q̂ð2Þ
� ψ with eigenvalue En ∓ 1 (provided that

En ∓ 1 ≠ 0): Ĥψ ¼ Enψ → ĤQ̂ð2Þ
� ψ ¼ ðEn ∓ 1ÞQ̂ð2Þ

� ψ .
Therefore, starting from a lowest-weight state satisfying

Q̂ð2Þ
þ ψ ¼ 0, an infinite tower of higher-energy eigenstates

are constructed by repeatedly applying Q̂ð2Þ
− . The solutions

of the lowest-weight equation Q̂ð2Þ
þ ψ ¼ 0 are given by the

eigenfunctions

ψmþðr; θÞ ¼ Amrðm−2λþ1
2
Þe−r2eimθ

�
1

0

�
;

ψm−ðr; θÞ ¼ Bmr−ðmþ2λþ1
2
Þe−r2eimθ

�
0

1

�
; ð88Þ

where Am and Bm are normalization constants given by

Am ¼ 2
αþ1
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πΓðαþ 1Þp ; α ¼ m −

2λþ 1

2
;

Bm ¼ 2
βþ1
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πΓðβ þ 1Þp ; β ¼ −

�
mþ 2λþ 1

2

�
ð89Þ

and Γ is the gamma function.
To have finite lowest-weight eigenfunctions at the origin,

the integer m is constrained. From the bosonic states, the
necessary condition is

m ≥
2λþ 1

2
; ð90Þ

while from the fermionic states, the necessary condition is

m ≤ −
2λþ 1

2
: ð91Þ

The energy eigenvalue equation of the bosonic and fer-
mionic lowest-weight eigenstates is, respectively, given by

Ĥψmþ ¼
�
1þm −

2λþ 1

2

�
ψmþ;

Ĥψm− ¼
�
1 −

�
mþ 2λþ 1

2

��
ψm−: ð92Þ

Two minimal vacua, one bosonic and the other fermionic,
are obtained with vacuum energy 1. They are recovered
from the “saturated” bosonic and fermionic lowest-weight
eigenstates with, respectively, m ¼ 2λþ1

2
and m ¼ − 2λþ1

2
.
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The same set of lowest-weight states given by for-
mula (88) is obtained from the lowest-weight condition

associated with the lowering operator Qð1Þ
þ (Qð1Þ

þ ψ ¼ 0).
The repeated application of the raising operator Qð1Þ

−
applied to a lowest state reconstructs, up to a phase, the
higher-energy states obtained from the raising opera-
tor Qð2Þ

− .
The theory therefore possesses a degenerate vacuum, one

vacuum state being bosonic and the other one being
fermionic. As discussed in Appendix A, it is possible to
impose a superselection rule, imposed by a projector, which
selects half of the states being physical. The superselected
theory possesses a unique bosonic vacuum, and for λ ¼ − 1

2
,

its spectrum coincides with the spectrum of the ordinary
two-dimensional (undeformed) oscillator, which can there-
fore be recovered as the superselected, λ ¼ − 1

2
, slð2j1Þ

acting on (2, 2, 0), quantum trigonometric model.
We conclude this section with two important remarks.

Contrary to the two vacua of the (not superselected)
λ ¼ 1

2
þ Z theory, the λ ∈ Z quantum deformed oscillators

possess four vacuum states (two bosonic and two fermionic
states). The construction of the Hilbert space follows the
same lines as the half-integer λ case. The main difference
lies in the fact that the necessary conditions (90) and (91)
for the integer m cannot be satisfied as equalities when
λ ∈ Z. It is beyond the scope of this work to present the
detailed analysis of the λ ∈ Z deformed oscillators, which
will be presented elsewhere.
The second important remark concerns the fact that,

for the superselected λ ¼ 1
2
þ Z theory, the Hilbert space

cannot be recovered by repeatedly acting with the slð2j1Þ
raising operators from the vacuum state. The Hilbert space
is decomposed (this point is discussed in Appendix A) in an
infinite direct sum of the slð2j1Þ lowest-weight represen-
tations. This is in sharp contrast with respect to the one-
dimensional harmonic oscillator, of which the single
irreducible lowest-weight representation of the ospð1j2Þ
spectrum-generating superalgebra allows us to recover the
whole Hilbert space.
One can note, however, that it is possible to construct an

extra set of fermionic symmetry operators, Q̄ðIÞ
� , which also

act as raising/lowering operators. The construction goes as
follows. At first, a discrete symmetry operator Ĉ, playing
the role of a charge conjugation operator, is introduced. It is
given by

Ĉ ¼
�

0 eið2λþ1Þθ

e−ið2λþ1Þθ 0

�
: ð93Þ

One can verify that ½Ĥ; Ĉ� ¼ 0, where Ĥ is given in (85),
and that Ĉ2 ¼ I2. The operator Ĉ also commutes with the K̂
and Ĥ operators in (82). It does not commute, however,
with Ĵ and the slð2j1Þ fermionic operators.

With the help of Ĉ, we can introduce the new symmetry
operators

ĈQ̂ð1Þ
� Ĉ ¼ Q̄ð1Þ

� ¼ ie∓it

�
0 C�

−D� 0

�
;

ĈQ̂ð2Þ
� Ĉ ¼ Q̄ð2Þ

� ¼ e∓it

�
0 C�
D� 0

�
; ð94Þ

where

C� ¼ −
i
2
ei2ðλþ1Þθ

�
∂r þ

i
r
∂θ −

2λþ 1

2r
� r

�
;

D� ¼ −
i
2
e−i2ðλþ1Þθ

�
∂r −

i
r
∂θ −

2λþ 1

2r
� r

�
; ð95Þ

and

Ĉ Ĵ Ĉ ¼ J̄ ¼ −
i
2
∂θ −

2λþ 3

4
σ3: ð96Þ

Let us collectively denote as ĝi (i ¼ 1; 2;…; 8) the
slð2j1Þ operators entering (82). By construction, the oper-
ators ḡi ¼ ĈĝiĈ

−1, obtained through a similarity transfor-
mation, close as well the slð2j1Þ superalgebra. It is worth
pointing out that this second set of slð2j1Þ operators cannot
be expressed as a linear combination of the ĝi set of slð2j1Þ
operators. In particular, the (anti)commutators ½ĝi; ḡjg pro-
duce new operators on the right-hand side. It is not clear
which algebraic structure is induced by the combined set of
ĝi and ḡj operators (see the comments in the Conclusions).
An important feature, discussed in Appendix A, is the fact
that we need rasing operators from both sets, ĝi and ḡj, to
produce every excited state of the theory by applying raising
operators on the ground state(s). An exemplification of this is
illustrated, e.g., by the Fig. 1 diagram of Appendix A. Both

Q̂ðIÞ
� and Q̄ðIÞ

� act as rasing/lowering operators. The action of

the Q̂ðIÞ
� raising operators is illustrated by the solid edges,

while the action of the Q̄ðIÞ
� raising operators is illustrated by

the dashed edges.
In terms of Ĉ, we can also introduce the new quantum

operators

J ¼ Ĵ þ J̄ ¼ −i∂θ −
2λþ 1

2
σ3; Nf ¼ σ3 ¼ Ĵ − J̄;

ð97Þ

which allows us to define the new quantum numbers (used
in Appendix A; see Fig. 4):

Ĥjn; j; ϵi ¼ ðnþ 1Þjn; j; ϵi; J jn; j; ϵi ¼ jjn; j; ϵi;
σzjn; j; ϵi ¼ ϵjn; j; ϵi: ð98Þ
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VII. CONCLUSIONS

In this paper, we presented a framework for quantizing
the large class of classical worldline superconformal σ
models derived from supermultiplets. These systems are
defined in Refs. [25] (for the parabolic case) and [1] (for the
trigonometric case). We applied the quantization prescrip-
tion to derive explicitly the N ¼ 4 (1, 4, 3) and the N ¼ 2
(2, 2, 0) quantum superconformal mechanics [with
Dð2; 1; αÞ and slð2j1Þ dynamical symmetry, respectively].
The parameter α ≠ 0;−1 is the scaling dimension of the
(1, 4, 3) supermultiplet, while the scaling dimension of the
(2, 2, 0) supermultiplet is quantized and given by λ ¼ 1

2
þ Z

or λ ∈ Z.
The results concerning the trigonometric models are

particularly relevant. These systems are only softly super-
symmetric; see the discussion in Appendix C. As such, they
have not received much attention like the parabolic models.
The trigonometric models correspond to superconformal
mechanics in the presence of the DFF damping oscillatorial
term; stated otherwise, they are oscillators in which
Calogero potential terms are possibly present. Their spec-
trum is discrete and bounded from below.
For the (1, 4, 3) trigonometric models [i.e., theDð2; 1; αÞ

oscillators], we derive the following nice formula for the
vacuum energy:

Evac ¼
1

4
ð1þ j2αþ 1jÞ: ð99Þ

If α is interpreted as a physical external parameter, then (99)
can be interpreted as a Casimir energy.
A restriction (obtained by imposing a superselection

rule derived by a projector; see Appendix A) of the (2, 2, 0)
trigonometric model at the special value λ ¼ − 1

2
allows us

to recover the spectrum of the ordinary two-dimensional
oscillator.
The (unrestricted) N ¼ 2 (2, 2, 0) trigonometric models

for the λ ∈ 1
2
þ Z and λ ∈ Z quantized values of the scaling

dimension possess an slð2j1Þ dynamical symmetry. As a
consequence, their spectrum is a direct sum of an infinite
tower of slð2j1Þ lowest-weight representations.
The surprising presence of an extra fermionic symmetry

(discussed at length in Sec. VI and in Appendixes A and C)
produces extra fermionic generators that act as raising and
lowering operators. They allow us to reach each state
belonging to the Hilbert space of the two-dimensional
models by repeatedly applying the raising operators to the
vacuum state.
This result seems to suggest the existence of a broader

dynamical symmetry algebra (not necessarily a superalgebra,
it could be, see Ref. [36], a Z2 × Z2-graded dynamical
symmetry algebra), which has to be introduced in order
to recover the spectrum of the N ¼ 2 (2, 2, 0) (deformed)
oscillators from a single, irreducible, lowest-weight

representation. We are planning to address this remarkable
feature in our forthcoming investigations.
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APPENDIX A: DIAGRAMS OF THE SPECTRUM-
GENERATING SUPERALGEBRA FOR THE N = 2,

(2, 2, 0), λ = 1
2 +Z TRIGONOMETRIC CASES

It is convenient, for the two-dimensional cases based on
the N ¼ 2 (2, 2, 0) trigonometric reps, to encode in
diagrams the action of the raising and lowering operators
of the spectrum-generating superalgebra. We explicitly
present three such diagrams, Figs. 1, 2 and 3, respectively,
associated with three values of the scaling dimension,
λ ¼ 1

2
, λ ¼ − 1

2
, and λ ¼ − 3

2
. In a further diagram, the

general features of the λ ¼ 1
2
þ Z case are presented.

In the diagrams, the bosonic (fermionic) states are
denoted by white (black) dots. Gray dots denote the
presence of both bosonic and fermionic states. The vertical
axis represents the energy level, labeled by n, while the
horizontal axis represents the angular momentum, labeled
by m. We denote with ϵ the eigenvalues of the fermion
number operator (ϵ ¼ þ1 for bosons and ϵ ¼ −1 for
fermions). Solid (dashed) lines represent states connected

by Q̂ðIÞ
� (respectively, Q̄ðIÞ

� ) raising and lowering operators
with I ¼ 1, 2; see (83) and (94) (for simplicity, we drop the
indices here).
The slð2j1Þ lowest-weight states appear, in the diagrams,

as the dots where the solid lines originate (in the upward
direction). In Figs. 2 and 4, the existence of such lowest-
weight states is not immediately evident; this is, however,
just a side effect of the condensed notation used (a gray dot
being associated with two states).

The operators Q̂ð1Þ
� , Q̂ð2Þ

� (and, similarly, Q̄ð1Þ
� , Q̄ð2Þ

� ),
applied to a jn;m; ϵi state that does not coincide with a

FIG. 1. λ ¼ 1
2
diagram of Q̂’s and Q̄’s raising and lowering

operators.
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lowest-weight state produce, apart from a normalization
factor, the same state. We can write, for I ¼ 1, 2,

Q̂ðIÞ
� jn;m; ϵi ∝ jn ∓ 1; m − ϵ2λ;−ϵi;

Q̄ðIÞ
� jn;m; ϵi ∝ jn ∓ 1; m − ϵ2ðλþ 1Þ;−ϵi: ðA1Þ

From the three diagrams, Figs. 1, 2, and 3, we can
immediately read several important features. In particular,
in all three cases, the n > 0 higher-energy states are
produced via repeated applications of the Q̂’s and Q̄’s
raising operators from the two (one bosonic and one
fermionic) n ¼ 0 fundamental level states. As a corollary,
we need both types (Q̂’s and Q̄’s) of raising operators to
recover the Hilbert space of the associated model. This
means, stated otherwise, that the Hilbert space is reducible

with respect to the slð2j1Þ superalgebra defined by the Q̂ðIÞ
�

operators alone. In terms of a slð2j1Þ decomposition, an
infinite tower (one state at each given integer value n) of
lowest-weight states needs to be introduced to recover the
Hilbert space of the theory. Therefore, to have an irreduc-

ible description, the Q̄ðIÞ
þ operators need to enter the picture.

One should note that the λ ¼ − 1
2
case corresponds to the

undeformed (namely, without the extra Calogero potential
term) two-dimensional harmonic oscillator. The Hilbert
space defined by Fig. 2 contains a double degeneracy. Two
eigenstates (one bosonic and the other one fermionic) are

associated with each n, m pair of eigenvalues. The
introduction of a suitable projection allows us to remove
the double degeneracy and recover the Hilbert space of the
ordinary two-dimensional harmonic oscillator. The super-
selection rule is defined in terms of the projection operator
P̂ (P̂2 ¼ I), given by

P̂ ¼ NfeiπH; ðA2Þ

where Nf is the fermion parity operator and Ĥ ¼ −2iD̂ is
the Hamiltonian (its eigenvalues are the non-negative
integers n). The

P̂jΨi ¼ jΨi ðA3Þ

superselection rule implies that the Hilbert space of the
superselected theory is given by bosonic states at even
energy eigenvalues (n ¼ 2k, with k ¼ 0; 1; 2;…) and
fermionic states at odd energy eigenvalues ðn ¼ 2kþ 1Þ.
The superselection removes, in particular, the degen-

eracy of the vacuum, the single vacuum state being now
bosonic. The spectrum of the ordinary two-dimensional
harmonic oscillator is therefore recovered from the super-
selected N ¼ 2 (2, 2, 0) model at scaling dimen-
sion λ ¼ − 1

2
.

For any half-integer value λ ¼ 1
2
þ Z, the Hilbert space

of the two-dimensional deformed (due to the presence,
besides the quadratic potential, of a Calogero potential
term) harmonic oscillator can be formally recovered from
the λ ¼ − 1

2
Fig. 2 diagram, by replacing the angular

momentum m with the j eigenvalues of the J operator
introduced in (97) (this is also true for the λ ¼ 1

2
;− 3

2
cases

explicitly introduced in Figs. 1 and 3).
Let us introduce the basis defined by the quantum

numbers

Ĥjn; j; ϵi ¼ ðnþ 1Þjn; j; ϵi;
Ĵ jn; j; ϵi ¼ jjn; j; ϵi; ðj ∈ ZÞ;
Nfjn; j; ϵi ¼ ϵjn; j; ϵi; ðϵ ¼ �1Þ:

FIG. 2. λ ¼ − 1
2
diagram of Q̂’s and Q̄’s raising and lowering

operators.

FIG. 3. λ ¼ − 3
2
diagram of Q̂’s and Q̄’s raising and lowering

operators.

FIG. 4. The λ ¼ 1
2
þ Z general diagram.
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In this basis, the action of Q̂ðIÞ
� , Q̄ðIÞ

� on a state that does not
coincide with a lowest-weight state, reads as follows:

Q̂ðIÞ
� jn; j; ϵi ∝ jn ∓ 1; jþ ϵ;−ϵi;

Q̄ðIÞ
� jn; j; ϵi ∝ jn ∓ 1; j − ϵ;−ϵi: ðA4Þ

The λ ¼ 1
2
þ Z associated diagrams are presented in Fig. 4.

This makes clear that the superselection rule induced
by (A2) can be imposed on any λ ¼ 1

2
þ Z deformed

oscillator, guaranteeing in all these cases the existence of
a Hilbert space with a single bosonic vacuum.

APPENDIX B: THE CLASSICAL (2, 2, 0)
slð2j1Þ-INVARIANT MODELS

We present, for completeness, the construction of the
slð2j1Þ-invariant classical actions obtained from the para-
bolic and the trigonometric D-module reps acting on the
(2, 2, 0) supermultiplet.
The parabolic D-module rep is given by the trans-

formations

Lnxi ¼ tnðt_xi þ ðnþ 1ÞλxiÞ;

Lnψ i ¼ tn
�
t _ψ i þ ðnþ 1Þ

�
2λþ 1

2

�
ψ i

�
; n ¼ 0;�1;

Jxi ¼ −λϵijxj; Jψ i ¼ −
2λ − 1

2
ϵijψ j;

Q1
�xi ¼ t

1�1
2 ϵijψ j; Q1

�ψ i ¼ −it1�1
2 ϵijðt_xj þ ð1� 1ÞλxjÞ;

Q2
�xi ¼ t

1�1
2 ψ i; Q2

�ψ i ¼ it
1�1
2 ðt_xi þ ð1� 1ÞλxiÞ;

ðB1Þ

where the xi’s (i ¼ 1; 2) are the propagating bosons and the
ψ i’s are the fermionic fields. The above transformations
close the slð2j1Þ superalgebra.
The slð2j1Þ-invariant action is obtained from the

Lagrangian L ¼ Q2þQ1þð12Fϵijψ iψ jÞ, with the operators

Q2þ, Q1þ acting on the prepotential F ¼ CðxixiÞ−2λþ1
2λ (C

is a normalization constant). Explicitly, the invariant action
of the classical (2, 2, 0) parabolic model is

S ¼
Z

dtL ¼
Z

dtðFð_xi _xi − i _ψ iψ iÞ − iFi _xjψ iψ jÞ: ðB2Þ

The trigonometric D-module rep is given by the trans-
formations

Lnxi ¼
e−inωt

−iω
ð_xi − inλωxiÞ;

Lnψ i ¼
e−inωt

−iω

�
_ψ i − in

�
2λþ 1

2

�
ωψ i

�
; n ¼ 0;�1;

Jxi ¼ −λϵijxj; Jψ i ¼ −
2λ − 1

2
ϵijψ j;

Q1
�xi ¼ e∓iω

2
tϵijψ j; Q1

�ψ i ¼
e∓iω

2
t

iω
ϵijð_xj ∓ iλωxjÞ;

Q2
�xi ¼ e∓iω

2
tψ i; Q2

�ψ i ¼
e∓iω

2
t

−iω
ð_xi ∓ iλωxiÞ: ðB3Þ

Without loss of generality, we can set ω ¼ 1. The classical
action, slð2j1Þ invariant under the (B3) trigonometric
transformations, is therefore given by

S ¼
Z

dtL

¼
Z

dtðFð_xi _xi − i _ψ iψ iÞ − iFi _xjψ iψ j þ Cλ2ðxixiÞ− 1
2λÞ:

ðB4Þ

APPENDIX C: ON THE SOFT SUPERSYMMETRY
OF THE OSCILLATORS

We make some comments here on the role of super-
algebras applied to oscillators (either the ordinary quantum
oscillators or the oscillators which are “deformed” by the
presence of a Calogero potential term).
The starting point is the famous work of Wigner [37]. In

modern terms, after the concept of superalgebra was
introduced in mathematics, Wigner’s results can be reinter-
preted (see Ref. [38]) according to the following lines. For
the ordinary quantum oscillator, with creation/annihilation
operators a and a† (satisfying ½a; a†� ¼ 1) and symmetrized
Hamiltonian H ¼ fa; a†g, we can assign odd grading to
the operators a and a† so that they belong to a set of five
operators, a, a†, a2, ða†Þ2, and H ¼ fa; a†g, closing the
ospð1j2Þ superalgebra under (anti)commutations. The last
three (bosonic) operators close the slð2Þ subalgebra. Under
this construction, we have an alternative point of view for
describing the computation of the spectrum of the ordinary
(one-dimensional) harmonic oscillator: we can state that,
instead of deriving it from the Fock vacuum j0i, annihilated
by a (aj0i ¼ 0), the spectrum is obtained from a lowest-
weight representation of ospð1j2Þ, the Hamiltonian being
the Cartan element. By adopting this viewpoint, the super-
algebra ospð1j2Þ becomes a spectrum-generating super-
algebra for the ordinary quantum oscillator, with its Hilbert
space being recovered from a single, irreducible, ospð1j2Þ
lowest-weight representation.
One should note that the bosonic slð2Þ subalgebra also

acts as a spectrum-generating algebra for the harmonic
oscillator. The Hilbert space of the harmonic oscillator is,
however, reducible under the slð2Þ decomposition. It is
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given by the direct sum of two irreducible slð2Þ lowest-
weight representations. The first lowest state is the vacuum
of the theory (proportional to the Gaussian e−x

2

under
proper conventions and normalization). The other lowest
state is the first excited state, with the eigenfunction
proportional to xe−x

2

and having odd parity with respect
to the x ↦ −x transformation. The two slð2Þ lowest-weight
reps correspond to, respectively, the even-parity and the
odd-parity energy eigenstates. The role of the fermionic
operators in ospð1j2Þ consists in connecting energy eigen-
states of even and odd parity.
After the introduction and the subsequent classification

of simple Lie superalgebras [39,40], the Wigner approach
was advocated in Ref. [41], with special emphasis on
parastatistics, prompting a series of investigations on low-
est-weight representations of simple Lie superalgebras (for
a recent review, see, e.g., Ref. [42]).
On a separate development, the DFF “trick” of intro-

ducing oscillator damping potentials in conformal mechan-
ics relates oscillators (with/without the Calogero potential
term) to conformal algebras.
It was recognized inRef. [27] that, due to theDFF trick, the

introduction of new potentials for conformal mechanics
becomes possible. The two aspects, superalgebra vs con-
formal algebra, were reconciled in Ref. [1]. The notion of
parabolic vs trigonometric/hyperbolic D-module reps of
superconformal algebras was pointed out, with the latter
class describing the (deformed or undeformed) oscillators and
potentials bounded from below in the trigonometric case.
The main property shared by the two big classes of

superconformal theories, parabolic vs trigonometric, is that
at the classical level their respective actions are super-
conformally invariant. Concerning their differences, we
have the following:

(i) The parabolic models are, both classically and
quantum, superconformal and supersymmetric.
The supersymmetry implies the existence of a
symmetry operator Q, which is the “square root”
of the Hamiltonian H, namely, Q2 ¼ H.

(ii) The trigonometric models, on the other hand, despite
being superconformally invariant, are not supersym-
metric. In this case, symmetry operatorsQ andZ exist
such thatQ2 ¼ Z. The key point is that the operatorZ
does not coincide with the Hamiltonian: Z ≠ H.

One can easily say that the trigonometric models are
“intermediate” between the supersymmetric and the non-
supersymmetric theories. This “intermediate notion of
supersymmetry,” namely, Q2 ¼ Z ≠ H, has no special
name in the literature. In Ref. [1], the notion of “weak
supersymmetry” was employed, borrowing the term from a
construction described in Ref. [43], which shares a similar
feature. The use of the term weak supersymmetry, however,
could be misleading since the models in Ref. [43] are not
based on superconformal algebras. In that paper, a “weak
supersymmetric oscillator” that has no relation with the
oscillators derived from the trigonometric D-module reps
of superconformal algebras is discussed.
For this reason, it seems more appropriate to denote

this important class of trigonometric models (which
include, as shown in this paper, the ordinary one-dimen-
sional and two-dimensional harmonic oscillators) as
softly supersymmetric. As far as we know, the term
‘soft supersymmetry” has not been employed in a differ-
ent context, making this term both suitable and available
to describe the special properties of the trigonometric
superconformal mechanics.
The softly supersymmetric trigonometric models are

characterized by the following:
(i) There is classical superconformal invariance of the

action.
(ii) There is spontaneous breaking of the superconfor-

mal invariance. Indeed, in the simplest application,
the Fock vacuum j0i of the harmonic oscillator is
annihilated by a and not by the Hermitian operator
aþ a†: ðaþ a†Þj0i ≠ 0.

(iii) In the quantum case, the role of the superconformal
algebra is that of a spectrum-generating super-
algebra.

Concerning the last point, we indeed proved, see
Appendix A, that the spectrum of the ordinary two-
dimensional oscillator is decomposed into an infinite
tower of slð2j1Þ irreducible lowest-weight representa-
tions. The puzzling presence of the extra fermionic
generators (94) that connect eigenstates belonging to
different lowest-weight reps reminds us of the role,
just discussed above, played by the ospð1j2Þ fermionic
generators in connecting the two slð2Þ lowest-weight reps
of the one-dimensional oscillator.
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