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The nonperturbative structure of the photon and gluon propagators plays an important role in governing
the dynamics of quantum electrodynamics (QED) and quantum chromodynamics (QCD), respectively.
Although it is often assumed that these interacting field propagators can be decomposed into longitudinal
and transverse components, as for the free case, it turns out that in general this is not possible. Moreover, the
non-Abelian gauge symmetry of QCD permits the momentum space gluon propagator to contain additional
singular terms involving derivatives of δðpÞ, the appearance of which is related to confinement. Despite the
possibility of the failure of the transverse-longitudinal decomposition for the photon and gluon
propagators, and the appearance of singular terms in the gluon propagator, the Slavnov-Taylor identity
nevertheless remains preserved.
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I. INTRODUCTION

Correlators, and thus propagators, are the central objects
of interest in any quantum field theory (QFT). Despite their
importance, the nonperturbative structure of propagators in
physical theories such as quantum electrodynamics (QED)
and quantum chromodynamics (QCD) remains largely
unknown. Nevertheless, there are several techniques which
have the potential to probe this nonperturbative behavior.
Axiomatic quantum field theory (AQFT) is one such
approach, and consists of defining a QFT in a mathemati-
cally rigorous manner via the definition of a series of
physically motivated axioms [1–5]. Although different
axiomatic schemes have been proposed, these schemes
generally consist of a common core set of axioms which are
often referred to as theWightman axioms [1]. These axioms
include assumptions such as relativistic covariance, fields
as (operator-valued) distributions, and locality.1

In the case of quantized gauge theories such as QED and
QCD, the standard Wightman axioms no longer apply. In
particular, gauge symmetry provides an obstacle to the
locality of fields in the theory. To quantize a gauge theory
one therefore has to either accept that fields can be nonlocal,
as is the case in Coulomb gauge, or one can preserve locality
by adopting a local quantization. In local quantizations,
additional degrees of freedom are introduced into the theory,
resulting in a space of states V which no longer possesses a
positive-definite inner product. Since negative norm states
are unphysical, onemust define an external condition in order
to specify the physical states Vphys ⊂ V. For gauge theories
such as QED and QCD, BRST quantization is an important
example of a local quantization. In this case, auxiliary gauge-
fixing and ghost term are added to the equations of motion of
the theory in order to break the gauge invariance, and thus

preserve the locality of the fields. Although the gauge-fixed
theory is no longer gauge invariant, it remains invariant under
a residual Becchi-Rouet-Stora-Tyutin (BRST) symmetry,
which has a corresponding conserved charge QB. Physical
states are then defined by the requirement that the quantized
equations ofmotionmust hold for these states, and it turns out
that this is equivalent to the condition:QBVphys ¼ 0 [4]. Due
to the preservation of locality, BRST quantization is usually
employed when analyzing the nonperturbative structure of
the photon and gluon propagators. The modification of the
Wightman axioms required to facilitate the indefinite inner
product space of states V in this approach is referred to as the
Pseudo-Wightman formalism [5]. Although many of the
results derived from the standard Wightman axioms are
maintained in this formalism [6], the modification of the
axioms can lead to significant changes in the structure of
correlators and propagators, and it is precisely these
differences which will be explored in this paper.
The rest of this paper is structured as follows: in Sec. II the

general properties of Lorentz covariant correlators is out-
lined, and these properties are applied in order to derive the
general form of the correlator and propagator of an arbitrary
vector field; in Sec. III the results derived in Sec. II, together
with the model-dependent constraints, are used to derive the
structure of the nonperturbative photon propagator in free
(quantized) electromagnetism andQED, aswell as the gluon
propagator in QCD; in Sec. IV, the issue of whether a
transverse-longitudinal decomposition exists for the inter-
acting photon and gluon propagator is discussed; and finally
in Sec. V the key findings are summarized.

II. THE NONPERTURBATIVE STRUCTURE OF
VECTOR CORRELATORS AND PROPAGATORS

A. The vector correlator

In axiomatic formulations of QFT [1], the basic field
correlators h0jϕ1ðx1Þϕ2ðx2Þj0i¼Tð1;2Þðx1−x2Þ are defined
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to be tempered distributions S0ðR1;3Þ, and hence their
Fourier transforms T̂ð1;2ÞðpÞ ¼ F ½Tð1;2Þðx1 − x2Þ� are in
S0ðR1;3Þ. Moreover, since quantized fields are also assumed
to transform covariantly under Lorentz transformations,
T̂ð1;2ÞðpÞ is a Lorentz covariant distribution, and therefore
satisfies the following condition [5]:

T̂ð1;2ÞðΛpÞ ¼ SðΛÞT̂ð1;2ÞðpÞ; ð2:1Þ

where Λ ∈ L↑
þ ≅ SLð2;CÞ. The structure of the Lorentz

covariant distribution T̂ð1;2ÞðpÞ is dependent upon how the
fields ϕ1 and ϕ2 transform under Lorentz transformations. In
particular, T̂ð1;2ÞðpÞ has the following decomposition [5]:

T̂ð1;2ÞðpÞ ¼
XN
α¼1

QαðpÞT̂αð1;2ÞðpÞ; ð2:2Þ

where T̂αð1;2ÞðpÞ are Lorentz invariant distributions [i.e.,

T̂αð1;2ÞðΛpÞ ¼ T̂αð1;2ÞðpÞ], and QαðpÞ are Lorentz covariant
polynomial functions of p which carry the Lorentz index
structure of ϕ1 and ϕ2. Before discussing the specific
structure of the photon and gluon correlators and propa-
gators, one must first consider the general case where ϕi are
both arbitrary vector fields. Given that ϕ1 ¼ Aμ and
ϕ2 ¼ Aν, it turns out that there are two possible Lorentz
covariant polynomials: Q1ðpÞ ¼ gμν and Q2ðpÞ ¼ pμpν.
Due to Eq. (2.2) it therefore follows that

D̂μνðpÞ ¼ F ½h0jAμðxÞAνðyÞj0i�
¼ gμνD̂1ðpÞ þ pμpνD̂2ðpÞ: ð2:3Þ

In order to further specify the structure of D̂μνðpÞ one
must first understand the behavior of the Lorentz invariant
components D̂1ðpÞ and D̂2ðpÞ. It is well known that
Lorentz invariant distributions T̂α ∈ S0ðR1;3Þ have certain
structural properties. In particular, if T̂α is restricted to have
support in the closed forward light cone V̄þ, as is required
in axiomatic formulations of QFT, T̂α can be written in the
following general manner [5]:

T̂αðpÞ¼Pð∂2ÞδðpÞþ
Z

∞

0

dsθðp0Þδðp2−sÞραðsÞ; ð2:4Þ

where Pð∂2Þ is some arbitrary polynomial of finite order in
the d’Alembert operator ∂2 ¼ gμν

∂
∂pμ

∂
∂pν

(with complex

coefficients), and ραðsÞ ∈ S0ðR̄þÞ. This is the spectral
representation of T̂α, and ρα is the spectral density. In
the case of the vector field correlator [Eq. (2.3)], Eq. (2.4)
can be used to write D̂μνðpÞ in the form

D̂μνðpÞ ¼
Z

∞

0

dsθðp0Þδðp2 − sÞ½gμνρ1ðsÞ þ pμpνρ2ðsÞ�

þ ½gμνP1ð∂2Þ þ pμpνP2ð∂2Þ�δðpÞ; ð2:5Þ

where P1 and P2 are polynomials of finite order.
Performing the inverse Fourier transform of this expression
leads to the following general representation of the position
space correlator:

h0jAμðxÞAνðyÞj0i

¼ i
2π

Z
∞

0

ds½−gμνρ1ðsÞ þ ρ2ðsÞ∂μ∂ν�Dð−Þðx − y; sÞ

þ 1

ð2πÞ4 ½gμνP1ð−ðx − yÞ2Þ − ∂μ∂νP2ð−ðx − yÞ2Þ�:

P1 and P2 are arbitrary complex polynomials of finite order
and hence one can set: P1ð∂2Þ ¼ P

L
l¼0 alð∂2Þl, and

P2ð∂2Þ ¼ P
M
m¼0 bmð∂2Þm where al, bm ∈ C. Since the

polynomial term P2ð−ðx − yÞ2Þ involves derivatives, not
all of the terms will contribute to the correlator. In fact, one
can write

∂μ∂νP2ð−ðx − yÞ2Þ

¼ −2b1gμν þ ∂μ∂ν

�XM
m¼2

bmð−ðx − yÞ2Þm � � �
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔ ~P2ð−ðx−yÞ2Þ

:

Finally, by setting ~a0 ¼ a0 þ 2b1 ( ~al ¼ al for l ≥ 1)

h0jAμðxÞAνðyÞj0i

¼ i
2π

Z
∞

0

ds½−gμνρ1ðsÞ þ ρ2ðsÞ∂μ∂ν�Dð−Þðx − y; sÞ

þ 1

ð2πÞ4 ½gμν
~P1ð−ðx − yÞ2Þ − ∂μ∂ν

~P2ð−ðx − yÞ2Þ�;

ð2:6Þ

where now ~P1ð−ðx − yÞ2Þ ¼ P
L
l¼0 ~alð−ðx − yÞ2Þl.

B. The vector propagator

In general, the vector propagator involves a time-ordered
product of fields, and is defined as:

h0jTfAμðxÞAνðyÞgj0i ≔ θðx0 − y0Þh0jAμðxÞAνðyÞj0i
þ θðy0 − x0Þh0jAνðyÞAμðxÞj0i:

ð2:7Þ

Using the spectral representation of the vector correlator in
Eq. (2.5), the propagator can be written
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h0jTfAμðxÞAνðyÞgj0i ¼ θðx0 − y0Þ
Z

∞

0

ds
Z

d4p
ð2πÞ4 e

−ipðx−yÞθðp0Þδðp2 − sÞ½gμνρ1ðsÞ þ pμpνρ2ðsÞ�

þ θðx0 − y0Þ
Z

d4p
ð2πÞ4 e

−ipðx−yÞ½gμν ~P1ð∂2Þ þ pμpν
~P2ð∂2Þ�δðpÞ

þ θðy0 − x0Þ
Z

∞

0

ds
Z

d4p
ð2πÞ4 e

ipðx−yÞθðp0Þδðp2 − sÞ½gμνρ1ðsÞ þ pμpνρ2ðsÞ�

þ θðy0 − x0Þ
Z

d4p
ð2πÞ4 e

ipðx−yÞ½gμν ~P1ð∂2Þ þ pμpν
~P2ð∂2Þ�δðpÞ: ð2:8Þ

In order to simplify this expression one can use the relation

∂x
μ∂x

ν½θðx0 − y0Þe−ipðx−yÞ þ θðy0 − x0Þeipðx−yÞ�
¼ −pμpν½θðx0 − y0Þe−ipðx−yÞ þ θðy0 − x0Þeipðx−yÞ� − iðpμgν0 þ pνgμ0Þδðx0 − y0Þ½e−ipðx−yÞ þ eipðx−yÞ�
þ gμ0gν0δ0ðx0 − y0Þ½e−ipðx−yÞ − eipðx−yÞ�;

which upon substitution into Eq. (2.8) implies that the vector propagator has the following general structure:

h0jTfAμðxÞAνðyÞgj0i ¼
Z

∞

0

ds
2π

½−gμνρ1ðsÞ þ ρ2ðsÞ∂x
μ∂x

ν�iΔFðx − y; sÞ − i
2π

gμ0gν0δðx − yÞ
Z

∞

0

dsρ2ðsÞ

þ 1

ð2πÞ4 ½gμν
~P1ð−ðx − yÞ2Þ − ∂x

μ∂x
ν
~P2ð−ðx − yÞ2Þ�; ð2:9Þ

and thus the Fourier transformed propagator D̂F
μν ¼ F ½h0jTfAμðxÞAνðyÞgj0i� is given by

D̂F
μνðpÞ ¼ i

Z
∞

0

ds
2π

½gμνρ1ðsÞ þ pμpνρ2ðsÞ�
p2 − sþ iϵ

−
i
2π

gμ0gν0

Z
∞

0

dsρ2ðsÞ þ gμν ~P1ð∂2ÞδðpÞ þ pμpν
~P2ð∂2ÞδðpÞ: ð2:10Þ

A shared feature of the position and momentum space
vector propagators is that they both contain an explicitly
noncovariant term proportional to gμ0gν0. This is in fact not
surprising because unlike correlators, propagators involve
time-ordered fields, and this requires one to single out a
noncovariant plane (x0 − y0 ¼ 0) with which to chrono-
logically order the fields. It is clear from Eq. (2.10) that
whether or not this noncovariant term appears depends on
the integral of the spectral density ρ2.
In order to rigorously make sense of the integral

appearing in the first term of Eq. (2.10), one introduces
the following notion of distributional convolution [5]:

�
1

p2 þ iϵ
� ρ; f

�
≔

�
ρ;

1

−p2 þ iϵ
� f

�
; ð2:11Þ

where 1
p2þiϵ�ρ¼

R
ds ρðsÞ

p2−sþiϵ, and ðD; fÞ ≔ R
d4xDðxÞfðxÞ

represents the smearing of the distribution D with the
test function f. For this definition to make sense for all
test functions f ∈ S, this requires that ρ is extended from
the class S0ðR̄þÞ, as defined in Sec. II A, to the class
S0ðR̄þ∪∞Þ. In other words, the distribution ρ must be
permitted to have support at (positive) infinity. The origin

of this requirement stems from the fact that propagators
contain a product between theta distributions and ordinary
correlators [see Eq. (2.7)], which is in general ill-
defined. By extending the domain of validity of ρ, and
thus making sense of the convolution 1

p2þiϵ � ρ, this is

equivalent to defining this product [5]. A direct conse-
quence of this extension is that the constant function
f ≡ 1 is now a valid test function for the spectral density
[since 1 ∈ SðR̄þ∪∞Þ], and this therefore guarantees that
the expressions

R
dsρ2ðsÞ and

R
dsρ1ðsÞ are both well

defined.
An important property of the representations in

Eqs. (2.9) and (2.10) is that they follow only from the
assumption that Fourier transformed correlators are Lorentz
covariant tempered distributions with support in V̄þ. Since
this is a ubiquitous feature of any axiomatically defined
QFT, this means that these representations are model
independent. Therefore, in order to further constrain the
structure of particular propagators, one must introduce
dynamical information about the fields Aμ, such as equa-
tions of motion or (anti-)commutation relations. In Sec. III
these constraints will be outlined in the cases where Aμ is a
free photon field, the photon field in QED, and the gluon
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field in QCD, and the effect that they have on the form of
the corresponding propagators will be discussed.

III. EXPLICIT VECTOR PROPAGATORS

A. The free photon propagator

When Aμ is a free (locally) quantized electromagnetic
field, it satisfies the following equations of motion:

∂νFνμ þ ∂μΛ ¼ 0; ξΛ ¼ ∂μAμ; ð3:1Þ

where Λ is a gauge fixing auxiliary field. As with any free
theory, quantization is performed by imposing equal-time
commutation relations (ETCRs), which in this case are

½ΛðxÞ;ΛðyÞ�x0¼y0 ¼ 0; ð3:2Þ

½ΛðxÞ; AνðyÞ�x0¼y0 ¼ ig0νδðx − yÞ; ð3:3Þ

½F0iðxÞ; AνðyÞ�x0¼y0 ¼ igiνδðx − yÞ; ð3:4Þ

½AμðxÞ; AνðyÞ�x0¼y0
¼ 0: ð3:5Þ

It follows immediately from the equations of motion that:
∂2Λ ¼ −∂μ∂νFνμ ¼ 0, and thus Λ satisfies a free wave
equation. Among other things, this implies that any
unequal-time commutator involving the field Λ is uniquely
determined (as a distribution) by the corresponding equal-
time commutator [4]. In particular, one has

½ΛðxÞ;ΛðyÞ� ¼ 0; ð3:6Þ

½ΛðxÞ; AνðyÞ� ¼ i∂x
νD0ðx − yÞ: ð3:7Þ

Moreover, since Λ is a free field, one can decompose it into
positive and negative frequency components: Λ ¼ Λþþ
Λ−, where the gauge fixing (subsidiary) condition corre-
sponds to:Λ−Vphys ¼ 0. In order to constrain the form of the
photon correlator, one can use the fact that the vacuum state
is physical, from which it follows that

h0jΛðxÞΛðyÞj0i ¼ 0; ð3:8Þ

h0jΛðxÞAνðyÞj0i ¼ h0j½Λ−ðxÞ; AνðyÞ�j0i
¼ i∂x

νD−
0 ðx − yÞ: ð3:9Þ

Now that the equations of motion and ETCRs have been
defined, one can establish the constraints that these
relations impose on the structure of the free photon
correlator and propagator. First, using the equation of
motion ξΛ ¼ ∂μAμ, Eq. (3.8) can be written in the form

h0j∂μAμðxÞ∂νAνðyÞj0i ¼ ∂μ
x∂ν

yh0jAμðxÞAνðyÞj0i ¼ 0:

By inserting in Eq. (2.6), and taking the inverse Fourier
transform of this expression, this then implies the equality

θðp0Þp2½ρ1ðp2Þþp2ρ2ðp2Þ�

þ
�
p2

�XL
l¼0

~alð∂2Þl
�
þðp2Þ2

�XM
m¼2

bmð∂2Þm
��

δðpÞ¼0:

ð3:10Þ

Since the first distribution in the equality above is defined
to have support outside p ¼ 0 (in the closed forward light
cone) [5], whereas the second distribution has support at
p ¼ 0, the equality requires that both distributions must
vanish identically. It turns out that the vanishing of the first
term in Eq. (3.10) implies the relation

ρ1ðsÞ þ sρ2ðsÞ ¼ CδðsÞ; ð3:11Þ

where C is an arbitrary constant. Moreover, by using the
distributional properties of δðpÞ (and its derivatives), one
can write

p2

�XL
l¼0

~alð∂2Þl
�
δðpÞ ¼

XL
l¼1

4lðlþ 1Þ ~alð∂2Þl−1δðpÞ;

ð3:12Þ

ðp2Þ2
�XM

m¼2

bmð∂2Þm
�
δðpÞ

¼
XM
m¼2

16m2ðm − 1Þðmþ 1Þbmð∂2Þm−2δðpÞ: ð3:13Þ

Setting N ≔ minfL − 1;M − 2g and K ≔ maxfL − 1;
M − 2g, the vanishing of the second term then implies

~an ¼ −4ðnþ 1Þðnþ 2Þbnþ1; 1 ≤ n ≤ N þ 1; ð3:14Þ

~an ¼ 0; if M < Lþ 1

bnþ1 ¼ 0; if Lþ 1 < M

�
N þ 2 ≤ n ≤ K þ 1: ð3:15Þ

The constraint in Eq. (3.8) therefore ensures that the
coefficients of the polynomials ~Pi, as well as the spectral
densities ρi, are no longer independent, but are in fact
related to one another.
The next constraint on the free photon correlator and

propagator arises from Eq. (3.9). Again, by using the
equation of motion ξΛ ¼ ∂μAμ, this equation can be written

∂μ
xh0jAμðxÞAνðyÞj0i ¼ ξh0jΛðxÞAνðyÞj0i

¼ iξ∂x
νD−

0 ðx − yÞ:

Inserting Eq. (2.6), and then taking the inverse Fourier
transform of this expression, implies the equality

PETER LOWDON PHYSICAL REVIEW D 96, 065013 (2017)

065013-4



θðp0Þpν½ρ1ðp2Þ þ p2ρ2ðp2Þ þ 2πξδðp2Þ�

þ pν

��XL
l¼0

~alð∂2Þl
�
þ p2

�XM
m¼2

bmð∂2Þm
��

δðpÞ ¼ 0:

Just as with Eq. (3.10), both of the terms in this expression
must vanish separately. Using the distributional identities:

pν

�XL
l¼0

~alð∂2Þl
�
δðpÞ ¼

XL
l¼1

2l ~al∂νð∂2Þl−1δðpÞ; ð3:16Þ

pνp2

�XM
m¼2

bmð∂2Þm
�
δðpÞ

¼
XM
m¼2

8mðm − 1Þðmþ 1Þbm∂νð∂2Þm−2δðpÞ; ð3:17Þ

it turns out that the vanishing of the second term implies
identical constraints to those in Eqs. (3.14) and (3.15).
Furthermore, by considering the ν ¼ 0 component of the
first term, and using the constraint in Eq. (3.11), one
obtains

θðp0Þp0½ρ1ðp2Þ þ p2ρ2ðp2Þ þ 2πξδðp2Þ�
¼ θðp0Þp0½ðCþ 2πξÞδðp2Þ�

¼ p0

�
ðCþ 2πξÞ δðp0 − jpjÞ

2jpj
�
¼ 1

2
ðCþ 2πξÞ ¼ 0;

and thus the constant in Eq. (3.11) is fixed to C ¼ −2πξ. In
summary, the correlators in Eqs. (3.8) and (3.9) imply the
following conditions:

~an ¼ −4ðnþ 1Þðnþ 2Þbnþ1; 1 ≤ n ≤ N þ 1; ð3:18Þ
~an ¼ 0; if M < Lþ 1

bnþ1 ¼ 0; if Lþ 1 < M

�
N þ 2 ≤ n ≤ K þ 1; ð3:19Þ

ρ1ðsÞ þ sρ2ðsÞ ¼ −2πξδðsÞ: ð3:20Þ

Although the constraints imposed by the relations in
Eqs. (3.8) and (3.9) imply that the coefficients of the
polynomials ~P1 and ~P2 are related to one another
[Eqs. (3.18) and (3.19)], these coefficients can still in
principle be any complex numbers. However, it will now
be demonstrated that further constraints on these para-
meters arise due to another important feature of free
electromagnetism—the field strength tensor Fμν is an
observable. The precise definition of operator observability
is discussed in [3], but essentially because Fμν is gauge
invariant this is sufficient to imply it is an observable,
and hence: FμνVphys ⊆ Vphys. Since by definition:
jΨi ∈ Vphys ⇒ hΨjΨi ≥ 0, the observability of Fμν and
the fact that j0i ∈ Vphys therefore gives rise to the following
constraint:

h0jFðfÞ†FðfÞj0i ≥ 0; ð3:21Þ

where FðfÞ ≔ R
d4xFμνðxÞfμνðxÞ, with fμν ∈ SðR1;3Þ.

Because Fμν ¼ ∂μAν − ∂νAμ, one can write

h0jFμνðxÞFρσðyÞj0i
¼ ∂x

μ∂y
ρh0jAνðxÞAσðyÞj0i − ∂x

μ∂y
σh0jAνðxÞAρðyÞj0i

− ∂x
ν∂y

ρh0jAμðxÞAσðyÞj0i þ ∂x
ν∂y

σh0jAμðxÞAρðyÞj0i:
ð3:22Þ

Moreover, due to Eq. (2.6) the vector correlator has the
following form:

h0jAμðxÞAνðyÞj0i

¼ ∂x
μ∂y

ν

�
~P2ð−ðx− yÞ2Þ

ð2πÞ4 −
Z

∞

0

ds
2π

ρ2ðsÞiDð−Þðx− y; sÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔Gðx−yÞ

þ gμν

�
~P1ð−ðx− yÞ2Þ

ð2πÞ4 −
Z

∞

0

ds
2π

ρ1ðsÞiDð−Þðx− y;sÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔Fðx−yÞ

;

ð3:23Þ

which upon substitution into Eq. (3.22) gives

h0jFμνðxÞFρσðyÞj0i ¼ ðgνσ∂x
μ∂y

ρ − gνρ∂x
μ∂y

σ

− gμσ∂x
ν∂y

ρ þ gμρ∂x
ν∂y

σÞFðx − yÞ:
ð3:24Þ

So the Gðx − yÞ component of the vector correlator does
not contribute to the field strength correlator. Since
FðfÞ† ¼ Fðf̄Þ, Eq. (3.24) can then be used to write the
observability condition in Eq. (3.21) as follows:

h0jFðfÞ†FðfÞj0i

¼
Z

d4xd4yh0jFμνðxÞFρσðyÞj0if̄μνðxÞfρσðyÞ

¼
Z

d4xd4yFðx − yÞh̄ρðxÞhρðyÞ ≥ 0; ð3:25Þ

where hρ ≔ ∂μfμρ − ∂μfρμ ∈ SðR1;3Þ. Since hρ is an arbi-
trary test function, Eq. (3.25) implies thatFðx − yÞmust be a
positive-definite distribution. An important feature of pos-
itive-definitive distributions is that their Fourier transform
F̂ðpÞ is a non-negative distribution, and this in turn defines a
measure [5]. Since F̂ðpÞ ¼ R

∞
0 dsρ1ðsÞθðp0Þδðp2 − sÞþ

~P1ð∂2ÞδðpÞ, in particular this means that ~P1ð∂2ÞδðpÞ cannot
contain terms involving derivatives of δðpÞ, because these
distributions do not define measures [7], and thus one must
have: ~ak ¼ 0∀k ≥ 1. Taken together with the relations in
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Eqs. (3.18) and (3.19), this therefore implies the following
constraint on the polynomial coefficients:

~ak ¼ bkþ1 ¼ 0; ∀ k ≥ 1: ð3:26Þ
Due to the definitions of the polynomial terms in Eq. (2.6), an
immediate corollary of this constraint is that: ~P2 ¼ 0,
and ~P1 ¼ ~a0. In other words, the polynomial terms only
contribute to the free photon correlator or propagator if ~a0 is
non-vanishing.
In principle the coefficient ~a0 could be nonvanishing, but

it turns out that F̂ðpÞ defining a measure guarantees that
this is not the case. To see this, consider the following
(cluster) correlator:

h0j ~Fð~xÞ ~Fð~yÞj0i

≔
Z

d4xd4yh0jFμνðxÞFρσðyÞj0if̄μνðx − ~xÞfρσðy − ~yÞ:

Taking the Fourier transform of this expression, and
applying Eq. (3.24), gives

F ½h0j ~Fð~xÞ ~Fð~yÞj0i�

¼ F
�Z

d4xd4yFðx − yÞh̄ρðx − ~xÞhρðy − ~yÞ
�

¼ ˆ̄h
ρð−pÞĥρðpÞF̂ðpÞ:

Since F̂ðpÞ defines a measure it follows that
F ½h0j ~Fð~xÞ ~Fð~yÞj0i� must also define a measure [8].
Moreover, due to Eq. (3.26), this measure has the con-

tribution ~a0
ˆ̄h
ρð0Þĥρð0ÞδðpÞ at the point p ¼ 0. However,

one of the Pseudo-Wightman axioms [5] states that since
the Fourier transform of h0j ~Fð~xÞ ~Fð~yÞj0i defines a
(complex) measure, it must be the case that the contri-
bution of this measure at the point p ¼ 0 is equal to
ð2πÞ4h0j ~Fð~xÞj0ih0j ~Fð~yÞj0iδðpÞ. Therefore, one must have
the equality

~a0
ˆ̄h
ρð0Þĥρð0Þ ¼ ð2πÞ4h0j ~Fð~xÞj0ih0j ~Fð~yÞj0i

¼ ð2πÞ4
Z

d4xd4yh0jFμνðxÞj0ih0jFρσðyÞj0i

× f̄μνðx − ~xÞfρσðy − ~yÞ:
But h0jFμνðxÞj0i ¼ h0jFρσðyÞj0i ¼ 0 because one cannot
have a non-Lorentz invariant condensate, and so it must be
that: ~a0 ¼ 0. Combining this constraint with Eq. (3.26)
implies:

~P1 ¼ ~P2 ¼ 0: ð3:27Þ
Another constraint on the form of the vector correlator,

and in particular the spectral densities ρi, arises from the
equal-time commutation relation

½AμðxÞ; _AνðyÞ�x0¼y0

¼ −i½gμν − ð1 − ξÞg0μg0ν�δðx − yÞ; ð3:28Þ

which itself is derived from the equations of motion and
Eqs. (3.3), (3.4) and (3.5). Setting μ ¼ i, ν ¼ j one has that

½∂0
yh0jAiðxÞAjðyÞj0i − ∂0

yh0jAjðyÞAiðxÞj0i�x0¼y0

¼ −igijδðx − yÞ:

Inserting in the general expression for the correlator in
Eq. (2.6), one obtains the following sum rules:

Z
∞

0

dsρ1ðsÞ ¼ −2π;
Z

∞

0

dsρ2ðsÞ ¼ 0: ð3:29Þ

One should note here that even if the polynomial terms ~Pi
were nonvanishing, they would cancel in the commutator
and hence not affect the constraints in Eq. (3.29). Similarly,
in the case where μ ¼ ν ¼ 0, this instead implies the sum
rules

Z
∞

0

ds½ρ1ðsÞ þ sρ2ðsÞ� ¼ −2πξ;
Z

∞

0

dsρ2ðsÞ ¼ 0:

ð3:30Þ

So both the constraints imply that the integral of the
spectral density ρ2 vanishes, whereas Eq. (3.29) constrains
the integral of ρ1, and Eq. (3.30) constrains the integral of
the combination ρ1 þ sρ2.
A final constraint on the form of the free photon

correlator arises because the equation of motion can be
written: ∂νFνμ þ ∂μΛ ¼ ∂2Aμ þ ð1 − ξÞ∂μΛ ¼ 0, which
means that

∂2h0jAμðxÞAνðyÞj0i ¼ ðξ − 1Þ∂x
μh0jΛðxÞAνðyÞj0i

¼ iðξ − 1Þ∂x
μ∂x

νD−
0 ðx − yÞ:

By inserting the general expression for the correlator in
Eq. (2.6), as well as the constraint ~P1 ¼ ~P2 ¼ 0, and taking
the inverse Fourier transform, this equality implies

θðp0Þ½gμνp2ρ1ðp2Þ þ pμpνp2ρ2ðp2Þ
þ 2πðξ − 1Þpμpνδðp2Þ� ¼ 0:

Substituting in the condition on the spectral densities in
Eq. (3.20) into this relation, one obtains

θðp0Þ½ðgμνp2 − pμpνÞρ1ðp2Þ − 2πpμpνδðp2Þ� ¼ 0;

which upon contraction with gμν implies

θðp0Þ½3p2ρ1ðp2Þ − 2πp2δðp2Þ� ¼ 3θðp0Þp2ρ1ðp2Þ ¼ 0;

PETER LOWDON PHYSICAL REVIEW D 96, 065013 (2017)

065013-6



and hence: ρ1ðp2Þ ¼ Dδðp2Þ for some arbitrary constant
D. By applying the sum rule for ρ1 in Eq. (3.29) it
immediately follows that D ¼ −2π. Since ρ1ðp2Þ ¼
−2πδðp2Þ, this means that ρ2 satisfies the equation

p2ρ2ðp2Þ ¼ 2πð1 − ξÞδðp2Þ: ð3:31Þ

The general solution to this equation has the form:
ρ2ðp2Þ ¼ Eδðp2Þ − 2πð1 − ξÞδ0ðp2Þ, where E is an arbi-
trary constant. It follows from the sum for ρ2 in Eq. (3.29)
that E ¼ 0 and thus one can finally conclude that the
spectral densities for the free photon correlator have the
following exact form:

ρ1ðsÞ ¼ −2πδðsÞ; ρ2ðsÞ ¼ −2πð1 − ξÞδ0ðsÞ: ð3:32Þ

Given these spectral densities, and the fact that ~P1 ¼
~P2 ¼ 0, the momentum space free photon correlator can
therefore be written

D̂μνðpÞ ¼ 2πθðp0Þ½−gμνδðp2Þ þ pμpνðξ − 1Þδ0ðp2Þ�:
ð3:33Þ

Moreover, since the constraints from Eq. (3.28) imply that
the integral of ρ2 vanishes, it follows from Eq. (2.10) that
the free photon propagator has the form

D̂F
μνðpÞ ¼ i

Z
∞

0

ds
2π

½gμνρ1ðsÞ þ pμpνρ2ðsÞ�
p2 − sþ iϵ

; ð3:34Þ

which upon substitution of the expressions for ρ1 and ρ2 in
Eq. (3.32) gives

D̂F
μνðpÞ ¼ −

�
gμν − ð1 − ξÞ pμpν

p2 þ iϵ

�
i

p2 þ iϵ

¼ −
�
gμν −

pμpν

p2 þ iϵ

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

≔Tμν

i
p2 þ iϵ

− iξ
pμpν

ðp2 þ iϵÞ2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
≔Lμν

;

ð3:35Þ
where Tμν and Lμν are referred to as the transverse and
longitudinal projectors respectively.

B. The photon propagator in QED

In QED one requires the fields to be renormalized in
order to make sense of the equations of motion. Once this
renormalization has been performed, the equations of
motion in locally quantized QED have the following form:

∂νFðrÞ
νμ þ ∂μΛðrÞ ¼ jðrÞμ ; ξrΛðrÞ ¼ ∂μAðrÞ

μ ; ð3:36Þ

where the index r indicates that the corresponding quantity

is renormalized, and jðrÞμ is the (conserved) fermion

interaction current. In particular, one has that

AðrÞ
μ ¼ Z

−1
2

3 Að0Þ
μ , where Z3 is the photon field renormaliza-

tion constant and Að0Þ
μ is the unrenormalized bare field. For

simplicity, throughout the rest of this paper the label r will
be dropped, and every quantity should be implicitly
assumed to be renormalized. To quantize QED one imposes
the ETCRs:

½ΛðxÞ;ΛðyÞ�x0¼y0 ¼ 0; ð3:37Þ

½ΛðxÞ; AνðyÞ�x0¼y0 ¼ ig0νδðx − yÞ; ð3:38Þ

½F0iðxÞ; AνðyÞ�x0¼y0
¼ igiνZ−1

3 δðx − yÞ; ð3:39Þ

½AμðxÞ; AνðyÞ�x0¼y0
¼ 0: ð3:40Þ

An important feature here is that even though the equation
of motion includes the nonvanishing current jμ, Λ still
satisfies the free massless wave equation by virtue of the
current conservation condition ∂μjμ ¼ 0. Among other
things, this implies that the renormalization constant Z3

must be finite [4], and therefore the correlators involving
the auxiliary field Λ are the same as those in the free case
(Eqs. (3.8) and (3.9):

h0jΛðxÞΛðyÞj0i ¼ 0; ð3:41Þ

h0jΛðxÞAνðyÞj0i ¼ i∂x
νD−

0 ðx − yÞ: ð3:42Þ

Moreover, because Fμν is gauge invariant, it follows that
Fμν is also an observable in QED. Since the structural
relations for vector correlators and propagators derived in
Sec. II are equally applicable to both free and interacting
theories, the constraints implied by the observability of Fμν

and Eqs. (3.41) and (3.42) are identical to those in the free
photon case:

~P1 ¼ ~P2 ¼ 0; ð3:43Þ

ρ1ðsÞ þ sρ2ðsÞ ¼ −2πξδðsÞ; ð3:44Þ
Z

∞

0

dsρ1ðsÞ ¼ −2πZ−1
3 ;

Z
∞

0

ds½ρ1ðsÞ þ sρ2ðsÞ� ¼ −2πξ;
Z

∞

0

dsρ2ðsÞ ¼ 0: ð3:45Þ

Using the above constraints, it follows analogously to
Sec. III A that the momentum space photon correlator has
the structure:
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D̂μνðpÞ ¼
Z

∞

0

dsθðp0Þδðp2 − sÞ½gμνρ1ðsÞ þ pμpνρ2ðsÞ�;

ð3:46Þ

and hence the photon propagator can be written

D̂F
μνðpÞ ¼ i

Z
∞

0

ds
2π

½gμνρ1ðsÞ þ pμpνρ2ðsÞ�
p2 − sþ iϵ

: ð3:47Þ

An important feature of the spectral densities in QED, as
opposed to the free case, is that despite being related to one
another via Eq. (3.44), the explicit form of the spectral
densities is not determined. This lack of knowledge arises
because of the nontrivial nonperturbative structure of the
theory.

C. The gluon propagator in QCD

In BRST quantized QCD, the equations of motion have
the following form:

ðDνFνμÞa þ ∂μΛa ¼ gjaμ − igfabc∂μC̄bCc;

∂μAa
μ ¼ ξΛa; ð3:48Þ

∂νðDνCÞa ¼ 0; ðDν∂νC̄Þa ¼ 0; ð3:49Þ

where Ca and C̄a are the ghost and antighost fields, and all
of the fields depend on the non-Abelian adjoint index a.
The ETCRs of particular relevance are

½ΛaðxÞ;ΛbðyÞ�x0¼y0 ¼ 0; ð3:50Þ

½ΛaðxÞ; Ab
νðyÞ�x0¼y0

¼ iδabg0νδðx − yÞ; ð3:51Þ

½Fa
0iðxÞ; Ab

νðyÞ�x0¼y0
¼ iδabgiνZ−1

3 δðx − yÞ; ð3:52Þ

½Aa
μðxÞ; Ab

νðyÞ�x0¼y0
¼ 0; ð3:53Þ

where now Z3 is the gluon field renormalization constant.
Although these ETCRs have a similar form to those in QED
and the free case, there is a very important difference in
QCD—the auxiliary field Λa does not satisfy a free wave
equation. This means that unlike in QED and free electro-
magnetism, the ETCRs involving the auxiliary field cannot
be used to determine the value of the commutators at
unequal times. In particular, one cannot assume that
Eq. (3.7) holds. Nevertheless, one can use the BRST
symmetry of the QCD equations of motion to prove that
the auxiliary field correlator h0jΛaðxÞΛbðyÞj0i does in fact
vanish, just like in Secs. III A and III B. The key to this
derivation is that the BRST variation of any product of
fields O vanishes

h0jδBOj0i ¼ h0j½iQB;O��j0i ¼ 0:

This automatically follows from the fact that QBj0i ¼ 0

since j0i ∈ Vphys. By taking O ¼ ∂μAμ;aðxÞC̄bðyÞ one has:

0 ¼ h0jδBð∂μAμ;aðxÞC̄bðyÞÞj0i
¼ h0jδBð∂μAμ;aðxÞÞC̄bðyÞj0i
þ h0j∂μAμ;aðxÞδBðC̄bðyÞÞj0i

¼ h0j∂μδBðAμ;aðxÞÞC̄bðyÞj0i
þ h0j∂μAμ;aðxÞδBðC̄bðyÞÞj0i

¼ h0j∂μðDμCðxÞÞa|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼0

C̄bðyÞj0i

þ h0j∂μAμ;aðxÞð−iΛbðyÞÞj0i
¼ −ih0j∂μAμ;aðxÞΛbðyÞj0i:

Using the equation of motion: ∂μAa
μ ¼ ξΛa this then leads

immediately to: h0jΛaðxÞΛbðyÞj0i ¼ 0. Just as in the case
of QED, one can apply the same analysis as for free photon
correlator and propagator in Sec. III A, and this leads to the
analogous constraints

~aabn ¼ −4ðnþ 1Þðnþ 2Þbabnþ1; 1 ≤ n ≤ N þ 1; ð3:54Þ

~aabn ¼ 0; if M < Lþ 1

babnþ1 ¼ 0; if Lþ 1 < M

�
N þ 2 ≤ n ≤ K þ 1; ð3:55Þ

ρab1 ðsÞ þ sρab2 ðsÞ ¼ CabδðsÞ; ð3:56Þ

where now the spectral densities and coefficients of the
polynomials ~Pab

1 and ~Pab
2 must depend explicitly on the

adjoint indices a and b, and one assumes that the color
symmetry is unbroken, and thus: ρabi ¼ δabρi. Although
one does not have an expression like Eq. (3.7) to determine
the value of Cab, as in the free case and QED, the ETCRs
still give rise to the sum rules

Z
∞

0

dsρab1 ðsÞ ¼ −2πδabZ−1
3 ;

Z
∞

0

ds½ρab1 ðsÞ þ sρab2 ðsÞ� ¼ −2πξδab;
Z

∞

0

dsρab2 ðsÞ ¼ 0; ð3:57Þ

the second of which implies that Cab ¼ −2πξδab, and
hence:

ρab1 ðsÞ þ sρab2 ðsÞ ¼ −2πξδabδðsÞ: ð3:58Þ

An important difference between QCD and QED (or the
free case), is that Fa

μν is no longer an observable. This
means that although one can decompose the gluon corre-
lator in an analogous manner to Eq. (3.23)
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h0jAa
μðxÞAb

νðyÞj0i ¼ gμνFabðx − yÞ þ ∂x
μ∂y

νGabðx − yÞ;
ð3:59Þ

one is not guaranteed that the Fourier transform of
Fabðx − yÞ defines a measure. Since this property is
essential for demonstrating that the coefficients of the
polynomials ~Pab

i vanish, as discussed in Sec. III A, it is
therefore possible that these coefficients are related [via
Eqs. (3.54) and (3.55)] but nonzero. In other words, the fact
that Fabðx − yÞ does not necessarily define a measure
implies that the polynomials ~Pab

i can be nonvanishing,
and hence the propagator is permitted to contain terms
involving derivatives of δðpÞ.
Due to the various constraints in Eqs. (3.54), (3.55), and

(3.57), it follows that the gluon propagator can be written in
the following general form:

D̂abF
μν ðpÞ ¼ i

Z
∞

0

ds
2π

½gμνρab1 ðsÞ þ pμpνρ
ab
2 ðsÞ�

p2 − sþ iϵ

þ
XNþ1

n¼0

½cabn gμνð∂2Þn þ dabn ∂μ∂νð∂2Þn−1�δðpÞ;

ð3:60Þ

where the (complex) coefficients cn and dn are defined by:

cabn ¼
�−2ðnþ1Þð2nþ3Þbabnþ1; 1≤n≤Nþ1

~aab0 ; n¼0
ð3:61Þ

dabn ¼
�
4nðnþ 1Þbabnþ1; 1 ≤ n ≤ N þ 1

0; n ¼ 0
ð3:62Þ

By contrast to the photon propagator, the gluon propa-
gator is only specified up to N þ 2 arbitrary complex
coefficients. In this case the dynamical constraints are not
sufficient to determine whether these coefficients are
vanishing or not, and this ultimately stems from the fact
Fa
μν is no longer an observable in QCD. This therefore

opens up the possibility that the gluon propagator can
contain singular terms involving derivatives of δðpÞ.
Derivatives of δðpÞ have the property of not defining
measures, unlike δðpÞ, and it turns out that this property
allows the correlation strength between clusters of fields to
increase with separation [8]. This mechanism is particu-
larly interesting in the context of QCD, since a growth of
the correlation strength (with increasing distance) between
colored particle-creating fields would be a sufficient con-
dition for confinement. Therefore, the fact that Fa

μν fails to
define an observable, and hence permits derivative of δðpÞ
terms to exist, is suggestive that the non-Abelian nature of
the gauge symmetry may well play an important role in
ensuring that confinement occurs in nonperturbative QCD.

In the literature, the analysis of the gluon propagator is
performed using a variety of different nonperturbative
techniques, including the Schwinger-Dyson equation
[9–12], and lattice QCD [13–15]. Since both of these
approaches aim to uncover the characteristics of the propa-
gator, it is important to understandwhether the singular terms
discussed previously can in fact be detected using these
methods. In the case of the Schwinger-Dyson equation, the
equation itself involves various terms, including products of
the gluon propagator D̂abF

μν ðpÞ with various vertex terms
ΓðpÞ. By introducing general ansätze for ΓðpÞ, this enables
the equation to be solved recursively. However, since the
precise structure of these vertex terms is unknown, one
cannot guarantee that the product ΓðpÞD̂abF

μν ðpÞ is mean-
ingful, particularly if D̂abF

μν ðpÞ contains singular terms. This
issue arises becausebothΓðpÞ and D̂abF

μν ðpÞ are distributions,
not functions, and so their product is not necessarily well-
defined [5]. In order to illustrate this point, consider the
situation where both of these objects contains a δðpÞ
contribution. The Schwinger-Dyson equation would then
necessarily contain the ill-defined expression δðpÞδðpÞ. In
light of these possible ambiguities, it may well be the case
that in order for the Schwinger-Dyson equation to possess a
well-defined solution one must intrinsically assume that no
such singular terms are present. Whether or not this casts
doubt on the existence of these singular terms in the gluon
propagator remains to be seen, but it certainly suggests that if
these singular terms are indeed present, then this method
would potentially have difficulties detecting them. In the
case of lattice QCD, it also unclear as to whether singular
distributional terms like δðpÞ can be observed. Nevertheless,
one can in principle probe quantities like the Schwinger
function [8], which are indirectly sensitive to the distribu-
tional behavior of the propagator2

IV. THE TRANSVERSE-LONGITUDINAL
DECOMPOSITION OF THE PHOTON

AND GLUON PROPAGATORS

In the literature, the structure of the photon and
gluon propagators are often derived using the following
Slavnov-Taylor identity3:

pμpνD̂abF
μν ðpÞ ¼ −iξδab: ð4:1Þ

It is often claimed [16,17] that Eq. (4.1) implies that the
photon and gluon propagators have the following general
transverse-longitudinal structure:

2It turns out that if the gluon propagator did indeed contain
derivatives of δðpÞ, then these terms would introduce a poly-
nomial t2 dependence in the Schwinger function CðtÞ. See [8] for
more details about the definition of CðtÞ.

3In the case of QED this relation is referred to as the Ward-
Takahashi identity, and the adjoint indices a, b are dropped
(i.e. δab ¼ 1) because the gauge group is Abelian.
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D̂abF
μν ðpÞ ¼ TμνDabðp2Þ − iξδabLμν

¼
�
gμν −

pμpν

p2 þ iϵ

�
Dabðp2Þ − iξδab

pμpν

ðp2 þ iϵÞ2 ;

ð4:2Þ

where Dabðp2Þ is Lorentz invariant. In the case of the free
photon propagator [Eq. (3.35)] this structure is indeed
present. However, for QED and QCD it will be argued in
the proceeding section that the propagators cannot in
general be written in this form.
The constraints imposed by the equations of motion and

the ETCRs in QED and QCD imply that the photon and
gluon propagators have the form of Eqs. (3.47) and (3.60),
respectively. As well as defining the general structure, the
constraints on the photon and gluon propagators also imply
that the spectral densities are related to one another [via
Eqs. (3.44) and (3.58)]. Therefore, one can attempt to write
the photon and gluon propagators exclusively in terms of
either ρab1 or ρab2 . In terms of ρab2 , the photon and gluon
propagators have the form

D̂μνðpÞ ¼ i
Z

∞

0

ds
2π

ð−sgμν þ pμpνÞ
ρ2ðsÞ

p2 − sþ iϵ
−

igμνξ

p2 þ iϵ
;

ð4:3Þ

D̂abF
μν ðpÞ ¼ i

Z
∞

0

ds
2π

ð−sgμν þ pμpνÞ
ρab2 ðsÞ

p2 − sþ iϵ

−
igμνξδab

p2 þ iϵ
þ
XNþ1

n¼0

½cabn gμνð∂2Þn

þ dabn ∂μ∂νð∂2Þn−1�δðpÞ: ð4:4Þ

Contracting both of these representations with pμpν one
obtains

pμpνD̂μνðpÞ

¼ ip2

Z
∞

0

ds
2π

ρ2ðsÞ − iξ ¼ −iξ;

pμpνD̂abF
μν ðpÞ

¼ ip2

Z
∞

0

ds
2π

ρab2 ðsÞ − iξδab

þ pμpν
XNþ1

n¼0

½cabn gμνð∂2Þn þ dabn ∂μ∂νð∂2Þn−1�δðpÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

¼ −iξδab;

where the last equality holds in both cases due to the ρab2
integral constraint in Eqs. (3.45) and (3.57), respectively.
This demonstrates that both the photon and gluon propa-
gators do indeed satisfy Eq. (4.1). Nevertheless, it is clear

that both propagator representations in Eqs. (4.3) and (4.4)
do not have the form of Eq. (4.2). The only other possibility
to express these propagators in this form is to write them
exclusively in terms of the spectral density ρab1 . Since ρab2
and ρab1 are related by Eqs. (3.44) and (3.58), this problem
boils down to solving the (distributional) equation

sρab2 ðsÞ ¼ −2πξδabδðsÞ − ρab1 ðsÞ: ð4:5Þ
It turns out that this equation always possesses solutions
[18]. In particular, one can write:Z

dsρab2 ðsÞfðsÞ ≔ ðρab2 ; fÞ

¼ Cabfð0Þ − 2πξδabf0ð0Þ þ ðρab1 ; f1Þ;
where Cab is an arbitrary constant and f ∈ S. This solution
uses the fact that any Schwartz function f can be written in
the form: fðsÞ ¼ fð0Þf0ðsÞ þ sf1ðsÞ, where f0ð0Þ ¼ 1

[5]. However, in order to write ρab2 explicitly in terms of
ρab1 (i.e., independently of the test function f) the last term
must be rewritable in terms of the full function f, and not
just f1. For the free photon case this is indeed possible
because ρ1ðsÞ ¼ −2πδðsÞ, and since sδ0ðsÞ ¼ −δðsÞ, it
follows that:

ðρ1; f1Þ ¼ −2πðδ; f1Þ ¼ 2πðsδ0; f1Þ
¼ 2πðδ0; f − fð0Þf0Þ
¼ 2πðδ0; fÞ − 2πfð0Þðδ0; f0Þ;

which together with Eq. (4.5) and the constraints in
Eq. (3.30) imply that ρ2ðsÞ ¼ −2πð1 − ξÞδ0ðsÞ. However,
for the photon or gluon propagators the form of the spectral
density ρab1 is a priori unknown, and so one cannot express
ρab2 , and hence the full propagator, explicitly in terms of
ρab1 . This means that a transverse-longitudinal representa-
tion as in Eq. (4.2) exists for the free photon propagator
[Eq. (3.35)] but is not in general achievable for either the
photon or gluon propagators. Therefore, the statement that
the structure of D̂abF

μν ðpÞ has the form of Eq. (4.2) due to the
Slavnov-Taylor identity is evidently false. The fact that the
representation of the photon and gluon propagators in
Eqs. (4.3) and (4.4) does not possess this form, and yet
satisfies this identity, proves this point.
As outlined at the end of Sec. III C, there are a variety of

different nonperturbative techniques for analyzing the
structure of propagators, in particular the Schwinger-
Dyson equations and lattice QFT. In light of the findings
in this section, which suggest that the canonical decom-
position in Eq. (4.2) may no longer hold, it is important to
understand if this can potentially cause inconsistencies with
these techniques, and if so, whether this issue can be
circumvented. In the literature it appears that in the case
of both the Schwinger-Dyson [9–12] and lattice [13–15]
approaches, both the photon and gluon propagators are
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assumed to have the structure of Eq. (4.2). In particular, in
Landau gauge (ξ ¼ 0) it is stated that these propagators can
bewritten: TμνDabðp2Þ. Since the representation in Eq. (4.2)
is not in general achievable for either the photon or gluon
propagators, extracting the structure of the propagators
based on this premise could potentially lead to inconsistent
results. Nevertheless, despite the failure of Eq. (4.2) to hold
in general, the representations in Eqs. (4.3) and (4.4) are
guaranteed to hold, and this is independent of the form of the
spectral densities ρ1 and ρ2. Moreover, if instead of
calculating the propagator D̂abF

μν ðpÞ one determines the
contracted quantity gμνD̂abF

μν ðpÞ, this representation issue
no longer arises because this expression takes the form

gμνD̂abF
μν ðpÞ ¼ 3i

Z
ds
2π

ρab1 ðsÞ
p2 − sþ iϵ

−
iδabξ
p2 þ iϵ

þ
XNþ1

n¼0

gabn ð∂2ÞnδðpÞ; ð4:6Þ

where gabn ¼ 4cabn þ dabn . In the case of the photon propa-
gator one has an analogous expression, but without the
singular terms. Besides the possible singular terms, in
Landau gauge one now has an expression which depends
only on the spectral density ρ1, in contrast to the non-
contracted propagator. With regards to lattice calculations
this means that as long as one extracts the (Euclidean)
contracted propagator, one will indeed be sensitive to the
behaviour of ρ1. Similarly, by contracting the Schwinger-
Dyson equation for D̂abF

μν ðpÞwith gμν, one could in principle
solve for gμνD̂abF

μν ðpÞ instead of the propagator, and hence
also remove the ambiguity in this case as well.

V. CONCLUSIONS

Understanding the structure of the photon and gluon
propagators is essential for probing the nonperturbative
dynamics of QED and QCD. Axiomatic approaches to QFT
provide a framework from which one can characterize the
general properties of Lorentz covariant propagators, and the
constraints imposed on them as a result of the dynamical
properties of the fields in the propagators. In this paper we
discuss the constraints on the photon and gluon fields, and
determine the specific effect that they have on the non-
perturbative structure of the photon and gluon propagators.
By virtue of the Abelian gauge symmetry of QED, it
transpires that the photon propagator can be completely
characterized by one of two different interrelated spectral
densities ρ1 and ρ2. Moreover, in QCD the non-Abelian
gauge symmetry also permits additional singular terms
involving derivatives of δðpÞ to appear in the gluon
propagator. The possibility of such terms is particularly
interesting in the context of QCD, since their appearance is
suggestive of confinement. Due to the distributional behav-
ior of the spectral densities of the photon and gluon
propagators, it turns out that the lack of knowledge of
these objects actually prevents one from decomposing these
propagators into transverse and longitudinal components,
as in the free case. Nevertheless, despite the obstruction to
this decomposition both the photon and gluon propagator
representations still satisfy the Slavnov-Taylor identity.
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