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Nonperturbative structure of the photon and gluon propagators
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The nonperturbative structure of the photon and gluon propagators plays an important role in governing
the dynamics of quantum electrodynamics (QED) and quantum chromodynamics (QCD), respectively.
Although it is often assumed that these interacting field propagators can be decomposed into longitudinal

and transverse components, as for the free case, it turns out that in general this is not possible. Moreover, the
non-Abelian gauge symmetry of QCD permits the momentum space gluon propagator to contain additional
singular terms involving derivatives of 5(p), the appearance of which is related to confinement. Despite the

possibility of the failure of the transverse-longitudinal decomposition for the photon and gluon
propagators, and the appearance of singular terms in the gluon propagator, the Slavnov-Taylor identity

nevertheless remains preserved.
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I. INTRODUCTION

Correlators, and thus propagators, are the central objects
of interest in any quantum field theory (QFT). Despite their
importance, the nonperturbative structure of propagators in
physical theories such as quantum electrodynamics (QED)
and quantum chromodynamics (QCD) remains largely
unknown. Nevertheless, there are several techniques which
have the potential to probe this nonperturbative behavior.
Axiomatic quantum field theory (AQFT) is one such
approach, and consists of defining a QFT in a mathemati-
cally rigorous manner via the definition of a series of
physically motivated axioms [I-5]. Although different
axiomatic schemes have been proposed, these schemes
generally consist of a common core set of axioms which are
often referred to as the Wightman axioms [1]. These axioms
include assumptions such as relativistic covariance, fields
as (operator-valued) distributions, and locality.1

In the case of quantized gauge theories such as QED and
QCD, the standard Wightman axioms no longer apply. In
particular, gauge symmetry provides an obstacle to the
locality of fields in the theory. To quantize a gauge theory
one therefore has to either accept that fields can be nonlocal,
as is the case in Coulomb gauge, or one can preserve locality
by adopting a local quantization. In local quantizations,
additional degrees of freedom are introduced into the theory,
resulting in a space of states } which no longer possesses a
positive-definite inner product. Since negative norm states
are unphysical, one must define an external condition in order
to specify the physical states Vs C V. For gauge theories
such as QED and QCD, BRST quantization is an important
example of a local quantization. In this case, auxiliary gauge-
fixing and ghost term are added to the equations of motion of
the theory in order to break the gauge invariance, and thus
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'See [1-5] for a more in-depth discussion of these axioms.
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preserve the locality of the fields. Although the gauge-fixed
theory is no longer gauge invariant, it remains invariant under
a residual Becchi-Rouet-Stora-Tyutin (BRST) symmetry,
which has a corresponding conserved charge Q. Physical
states are then defined by the requirement that the quantized
equations of motion must hold for these states, and it turns out
that this is equivalent to the condition: Qg Vs = 0 [4]. Due
to the preservation of locality, BRST quantization is usually
employed when analyzing the nonperturbative structure of
the photon and gluon propagators. The modification of the
Wightman axioms required to facilitate the indefinite inner
product space of states )V in this approach is referred to as the
Pseudo-Wightman formalism [5]. Although many of the
results derived from the standard Wightman axioms are
maintained in this formalism [6], the modification of the
axioms can lead to significant changes in the structure of
correlators and propagators, and it is precisely these
differences which will be explored in this paper.

The rest of this paper is structured as follows: in Sec. II the
general properties of Lorentz covariant correlators is out-
lined, and these properties are applied in order to derive the
general form of the correlator and propagator of an arbitrary
vector field; in Sec. III the results derived in Sec. II, together
with the model-dependent constraints, are used to derive the
structure of the nonperturbative photon propagator in free
(quantized) electromagnetism and QED, as well as the gluon
propagator in QCD; in Sec. IV, the issue of whether a
transverse-longitudinal decomposition exists for the inter-
acting photon and gluon propagator is discussed; and finally
in Sec. V the key findings are summarized.

II. THE NONPERTURBATIVE STRUCTURE OF
VECTOR CORRELATORS AND PROPAGATORS

A. The vector correlator

In axiomatic formulations of QFT [1], the basic field
correlators (0|¢ (x1)(x2)|0) =Ty 2)(x; —x,) are defined
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to be tempered distributions S'(R!?), and hence their
Fourier transforms T(Lz)(p) = F[T(12)(x1 = x,)] are in
S'(R!3). Moreover, since quantized fields are also assumed
to transform covariantly under Lorentz transformations,
T(m)( p) is a Lorentz covariant distribution, and therefore
satisfies the following condition [5]:

T(l,z) (Ap) = S(A)T(Lz)(l?)’ (2.1)
where A € 5_1 ~ SL(2,C). The structure of the Lorentz
covariant distribution T(Lz) (p) is dependent upon how the

fields ¢; and ¢, transform under Lorentz transformations. In
particular, T(m)( p) has the following decomposition [5]:

(2.2)

where Ta(lﬁz)(p) are Lorentz invariant distributions [i.e.,
Ta(m) (Ap) = Ta(l.Z)( p)], and Q,(p) are Lorentz covariant
polynomial functions of p which carry the Lorentz index
structure of ¢; and ¢,. Before discussing the specific
structure of the photon and gluon correlators and propa-
gators, one must first consider the general case where ¢; are
both arbitrary vector fields. Given that ¢, =A, and
¢, = A,, it turns out that there are two possible Lorentz
covariant polynomials: Q,(p) = g,, and Q,(p) = p,p,.
Due to Eq. (2.2) it therefore follows that

D, (p) = FI{0|4,(x)A,(»)/0)]

:gyuDl(p)+pupul§2(p) (23)

In order to further specify the structure of D/w( p) one
must first understand the behavior of the Lorentz invariant
components D,(p) and D,(p). It is well known that
Lorentz invariant distributions 7, € S'(R'?) have certain
structural properties. In particular, if 7', is restricted to have
support in the closed forward light cone V7, as is required
in axiomatic formulations of QFT, ?a can be written in the
following general manner [5]:

T4m=Pw%am+Amwwww@%wmaw, (2.4)

where P(0?) is some arbitrary polynomial of finite order in

the d’Alembert operator 9*> = gﬂ,,%% (with complex
_ U v

coefficients), and p,(s) € S'(R,). This is the spectral

representation of T,, and p, is the spectral density. In
the case of the vector field correlator [Eq. (2.3)], Eq. (2.4)

can be used to write ﬁ”y( p) in the form
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bwwr=A”wmwwuﬂ—wmmmw+nmmxm
+ [g;wPl(az) + pupvPZ(az)]é(p)’ (25)

where P; and P, are polynomials of finite order.
Performing the inverse Fourier transform of this expression
leads to the following general representation of the position
space correlator:

(014, (x)A, (¥)[0)

i o
o [ sl gupi(6) 4 2(509,0000 (5= i)
.Jo

+ @ [0 P1(=(x = ¥)2) = 8,0,P5(=(x = y)?)].

P, and P, are arbitrary complex polynomials of finite order
and hence one can set: Py(0%) =3kt a,(8%)!, and
Py(0*) =M b, (0*°)" where a;, b, €C. Since the
polynomial term P,(—(x —y)?) involves derivatives, not
all of the terms will contribute to the correlator. In fact, one
can write

aﬂauPZ(_('x - y)Z)

= —2by g + 0,0, (f) by (=(x = y)2)" - - ) .

m=2

:=i’2(—(x—y)2)
Finally, by setting ay = ay + 2b, (a; = a; for [ > 1)
(0]A, (x)A,(¥)0)

i o
" ds[_gﬂppl(s) +p2(s)8M8D]D<_)(x—y;s)

- 27 0
+@;mwﬁku—w%—@aﬂkw—wm,
(2.6)

where now P (—(x —y)?) = Yoo a(—=(x—y)*).

B. The vector propagator

In general, the vector propagator involves a time-ordered
product of fields, and is defined as:

(0T{A,(x)A,(»)}|0) := O(x" = y°)(0]A, (x)A,(»)|0)
+0(y° = x°)(01A, (y)A,(x)[0).
(2.7)

Using the spectral representation of the vector correlator in
Eq. (2.5), the propagator can be written
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O A, WA =060 =57 [ as [ SLze

4
o ‘”/(02[ 5

0(y° — x° ds

000 — ) / P girts- v>[g,wP (02) + ppyBa(82)16(p).

(27)*
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_1'(

P X—}')Q(po)é(pz - s)[gﬂypl(s) + Pﬂpup2(s)}

eIt g, By (6%) + pup, P (87)]8(p)

M0(p°)5(p* = ) [gupi(s) + Pupupa(s)]

(2.8)

In order to simplify this expression one can use the relation

OO0 — y0)eP) 4 9(y0 — x0)eiP )]

= —pup,[0(x° = y) e PO 1+ 6(y0 — x0)e P — i(p,g,0 + Puguo)(x0 — yO)[eT PO 4 P )]

+ gﬂogyoﬁ’(xo - yo)[e—ip(X—y) —_ eip(x—y)]’

which upon substitution into Eq. (2.8) implies that the vector propagator has the following general structure:

(0IT{A, (x)A,(y)}0) = m;ls

0 T
1
27)*

+ [gmxpl(_(x_y)z)

and thus the Fourier transformed propagator f)ﬁy =

. [ ds [gupi(s) + pupupa(s)] i
DF — o W H -
yv<p> l A 27 P2 —s+ie o0 gﬂogyo

A shared feature of the position and momentum space
vector propagators is that they both contain an explicitly
noncovariant term proportional to g,g,0- This is in fact not
surprising because unlike correlators, propagators involve
time-ordered fields, and this requires one to single out a
noncovariant plane (x° — y° = 0) with which to chrono-
logically order the fields. It is clear from Eq. (2.10) that
whether or not this noncovariant term appears depends on
the integral of the spectral density p,.

In order to rigorously make sense of the integral
appearing in the first term of Eq. (2.10), one introduces
the following notion of distributional convolution [5]:

1 1
(p2+i€*p’f> ::( -p? +z€*f>

Hle, and (D, f) = [d*xD(x)f(x)
represents the smearing of the distribution D with the
test function f. For this definition to make sense for all
test functions f € S, this requires that p is extended from
the class S'(R,), as defined in Sec. II A, to the class
S'(R,Uco). In other words, the distribution p must be
permitted to have support at (positive) infinity. The origin

(2.11)

where 2+ *p= fds

— Py (—(x -
FO]T{A,(x)A

/0 " dsps(s) + 9P (02)8(p) + pup,P2(32)8(p).

: i o
(=01 (5) + POGO5AHx = 325) = 5 gu0503(x =) [ " dspa(s)

¥, (2.9)
(¥)}0)] is given by

(2.10)

|
of this requirement stems from the fact that propagators
contain a product between theta distributions and ordinary
correlators [see Eq. (2.7)], which is in general ill-
defined. By extending the domain of validity of p, and
thus making sense of the convolution ﬁ* p, this is
equivalent to defining this product [5]. A direct conse-
quence of this extension is that the constant function
Jf =1 1is now a valid test function for the spectral density
[since 1 € S(R,Uco)], and this therefore guarantees that
the expressions [dsp,(s) and [dsp,(s) are both well
defined.

An important property of the representations in
Egs. (2.9) and (2.10) is that they follow only from the
assumption that Fourier transformed correlators are Lorentz
covariant tempered distributions with support in V. Since
this is a ubiquitous feature of any axiomatically defined
QFT, this means that these representations are model
independent. Therefore, in order to further constrain the
structure of particular propagators, one must introduce
dynamical information about the fields A,, such as equa-
tions of motion or (anti-)commutation relations. In Sec. III
these constraints will be outlined in the cases where A, is a
free photon field, the photon field in QED, and the gluon
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field in QCD, and the effect that they have on the form of
the corresponding propagators will be discussed.

III. EXPLICIT VECTOR PROPAGATORS
A. The free photon propagator

When A, is a free (locally) quantized electromagnetic
field, it satisfies the following equations of motion:
*Fy+0,A=0, EN=0'A,, (3.1)
where A is a gauge fixing auxiliary field. As with any free
theory, quantization is performed by imposing equal-time
commutation relations (ETCRs), which in this case are

A Ay, = O, (3:2)
ACLA Oy, = i dx-y).  (3.3)
Forl). A0l gyoy, = igu0(x =), (34)

A, 4,0, =O. (3.5)

It follows immediately from the equations of motion that:
A = —0"9F,, =0, and thus A satisfies a free wave
equation. Among other things, this implies that any
unequal-time commutator involving the field A is uniquely
determined (as a distribution) by the corresponding equal-
time commutator [4]. In particular, one has

[A(x). A(y)] =0, (3.6)

[A(x). A, (y)] = i0;Do(x — y). (3.7)
Moreover, since A is a free field, one can decompose it into
positive and negative frequency components: A = AT+
A~, where the gauge fixing (subsidiary) condition corre-
sponds to: A™ V¢ = 0. In order to constrain the form of the
photon correlator, one can use the fact that the vacuum state
is physical, from which it follows that

(OIAG)A()[0) =0, (3.8)
(OIAG)A, ()10) = (O][A~(x). A, (»)][0)
= i:D; (x ). (3.9)

Now that the equations of motion and ETCRs have been
defined, one can establish the constraints that these
relations impose on the structure of the free photon
correlator and propagator. First, using the equation of
motion éA = 8"Aﬂ, Eq. (3.8) can be written in the form

(004, (x)0"A, (¥)|0) = :3y(0]A,(x)A,(¥)[0) = 0.
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By inserting in Eq. (2.6), and taking the inverse Fourier
transform of this expression, this then implies the equality

0(p°)p*lp1(p*)+ Pp2(p?)]

[ (S a@r) - (3w ) s -0

m=2

(3.10)

Since the first distribution in the equality above is defined
to have support outside p = O (in the closed forward light
cone) [5], whereas the second distribution has support at
p = 0, the equality requires that both distributions must
vanish identically. It turns out that the vanishing of the first
term in Eq. (3.10) implies the relation
pi(s) +spa(s) = Ca(s), (3.11)
where C is an arbitrary constant. Moreover, by using the
distributional properties of §(p) (and its derivatives), one
can write
L L
P (S @@ o) = Sttt + Naer)-'aip)
1=0 =1
(3.12)

= EM: 16m*(m — 1)(m + 1)b,,(0*)"28(p).  (3.13)

Setting N :=min{L —1,M —2} and K :=max{L — I,
M — 2}, the vanishing of the second term then implies

a,=—4n+D)(n+2b,y, 1<n<N+1, (3.14)

ifM<L+1
ifL+1<M

G, =0,

N+2<n<K+1. (3.15
bn+1:O7 } ( )

The constraint in Eq. (3.8) therefore ensures that the
coefficients of the polynomials E, as well as the spectral
densities p;, are no longer independent, but are in fact
related to one another.

The next constraint on the free photon correlator and
propagator arises from Eq. (3.9). Again, by using the
equation of motion A = 9*A,, this equation can be written

X (0[A, (x)A,(v)]0) = &(0]A(x)A,(y)[0)
=i&0; Dy (x = y).

Inserting Eq. (2.6), and then taking the inverse Fourier
transform of this expression, implies the equality
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0(p°)p.lp1 (p?) + pPpa(p?) + 22€5(p?)]

+pyK§a,a2 )+p (Zb (82)" )} p) =

Just as with Eq. (3.10), both of the terms in this expression
must vanish separately. Using the distributional identities:

P (an(az)’)é(p) = 21a,0,(0*)'s(p).  (3.16)
=0 =1
DD b, (0P )e
pr? (3 bul@) )
= EM:Sm(m— +1)0,,0,(%)"*6(p).  (3.17)
m=2

it turns out that the vanishing of the second term implies
identical constraints to those in Egs. (3.14) and (3.15).
Furthermore, by considering the v = 0 component of the
first term, and using the constraint in Eq. (3.11), one
obtains

0(p°) polp1 (P?) + P*p2(p?) + 27E5(p?)]
= 0(p°) pol(C + 27£)5(p?)]
= Po (C+2ﬂ~§)(2|||p|> %(c+2m§) =0,

and thus the constant in Eq. (3.11) is fixed to C = —2z¢. In
summary, the correlators in Egs. (3.8) and (3.9) imply the
following conditions:

a, = —4(I’l+ 1)(n+2)bn+19

a, =0,
bn+1 =0,

1<n<N+1, (3.18)

ifM<L+1

, N+2<n<K+1, (3.19)
if L+1<M

pi(s) + spa(s) = —2m&5(s). (3.20)

Although the constraints imposed by the relations in
Egs. (3.8) and (3.9) imply that the coefficients of the
polynomials 131 and 132 are related to one another
[Egs. (3.18) and (3.19)], these coefficients can still in
principle be any complex numbers. However, it will now
be demonstrated that further constraints on these para-
meters arise due to another important feature of free
electromagnetism—the field strength tensor F,, is an
observable. The precise definition of operator observability
is discussed in [3], but essentially because F,, is gauge
invariant this is sufficient to imply it is an observable,

and hence: F,, Vs © Vpnys- Since by  definition:
|¥) € Vpnys = <‘P|‘I‘> > 0, the observability of F,, and
the fact that |0) € V), therefore gives rise to the following
constraint:
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(OIF(f)TF(£)]0) >0, (3.21)

where F(f)
Because F,

= af d*xF,,(x
=0,A
uy

)" (x), with f# ES(RL3)_

- d,A,, one can write

(O1F u (x) F s ()10)
= 0,0,(0]A, (x)A,(y)[0) — 0;95(0|A, (x)A,(¥)[0)
= 0,05 (014, (x)A;(y)[0) + 9505 (0| A, (x)A, (v)]0).
(3.22)

Moreover, due to Eq. (2.6) the vector correlator has the
following form:

(014, (x)A, (»)]0)
[Py(—(x—y)?  ds |
=00} %—A ;Z—ﬂpz(S)iD(‘)(x—y;s)_
=G(x—y)
+ G _%—Amg—;m@m“(x—y;s)_,
=F(x=y)

(3.23)

which upon substitution into Eq. (3.22) gives

<0|F/w( ) /)o'( )|O> (guaaxuaz _gv/)axyaryf

- gﬂaaﬁ% + gﬂ/)az)fa%)F(x - y)
(3.24)

So the G(x —y) component of the vector correlator does

not contribute to the field strength correlator. Since

F(f)" = F(f), Eq. (3.24) can then be used to write the
observability condition in Eq. (3.21) as follows:

F(f)|0)
d*xd*y (O|FW (x)

(OIF(f)"
where h, := 0, f*, — 0,f,# € S(R"?). Since h,, is an arbi-
trary test function, Eq. (3.25) implies that F(x — y) mustbe a
positive-definite distribution. An important feature of pos-
itive-definitive distributions is that their Fourier transform
F(p)isanon- negative distribution and this in turn defines a
measure [5]. Since F(p) = [ dspi( )¢9(p0)5(p2 —s5)+

P (8%)8(p), in particular thlS means that P, (82)6(p) cannot
contain terms involving derivatives of §(p), because these

distributions do not define measures [7], and thus one must
have: a; = OVk > 1. Taken together with the relations in

F oo (3)[0)7# (x) 7 (y)

d*xd*yF(x — y)h* (x)h,(y) > 0, (3.25)
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Egs. (3.18) and (3.19), this therefore implies the following
constraint on the polynomial coefficients:

&k — bk+l — O, V k Z 1 (326)

Due to the definitions of the polynomial terms in Eq. (2.6), an
immediate corollary of this constraint is that: P, =0,

and 131 = agy. In other words, the polynomial terms only
contribute to the free photon correlator or propagator if aj is
non-vanishing.

In principle the coefficient a, could be nonvanishing, but
it turns out that F (p) defining a measure guarantees that
this is not the case. To see this, consider the following
(cluster) correlator:

OIF@EF)0)
= / dxd*y (O1F , (x)F o () 0} (x = )y — 5).

Taking the Fourier transform of this expression, and
applying Eq. (3.24), gives

FIOIF(Z)F(3)[0)]

Since F(p) defines a measure it follows that
F[(O|F(X)F(3)|0)] must also define a measure [8].
Moreover, due to Eq. (3.26), this measure has the con-
tribution @yh” (0)/3,,(0)5( p) at the point p = 0. However,
one of the Pseudo-Wightman axioms [5] states that since
the Fourier transform of (0|F(X)F(7)|0) defines a
(complex) measure, it must be the case that the contri-
bution of this measure at the point p =0 is equal to

(27)*(0|F(%)|0)(0|F(7)|0Y8( p). Therefore, one must have
the equality

aoh’ (0)h,(0) = (27)*(0|F(3)[0) (0] ()[0)
= (2n)* / d*xd*y(0|F,,(x)|0) (0| F,,(y)|0)
X fr(x = X)fr(y = 3).

But (0|F,,(x)|0) = (0|F,,(y)|0) = 0 because one cannot
have a non-Lorentz invariant condensate, and so it must be
that: ay = 0. Combining this constraint with Eq. (3.26)
implies:

Another constraint on the form of the vector correlator,
and in particular the spectral densities p;, arises from the
equal-time commutation relation

PHYSICAL REVIEW D 96, 065013 (2017)

[A” (x>7 Ay(y)]x(F)‘o

= _i[g/w - (1 - 5)90/4901/]5()( - y)’ (328)

which itself is derived from the equations of motion and
Egs. (3.3), (3.4) and (3.5). Setting # = i, v = j one has that

[93(0]A4;(x)A;()[0) = D3(0IA;()A;(x)[0)]

Xo=Yo

= —ig;;6(x —y).

Inserting in the general expression for the correlator in
Eq. (2.6), one obtains the following sum rules:

/ooo dspi(s) = =2, /0 Tdspa(s) =0, (3.29)

One should note here that even if the polynomial terms P;
were nonvanishing, they would cancel in the commutator
and hence not affect the constraints in Eq. (3.29). Similarly,
in the case where y = v = 0, this instead implies the sum
rules

/ ™ dslpy(s) + spa(s)] = —2x€,

0

Am dsp,(s) = 0.
(3.30)

So both the constraints imply that the integral of the
spectral density p, vanishes, whereas Eq. (3.29) constrains
the integral of p;, and Eq. (3.30) constrains the integral of
the combination p; + sp,.

A final constraint on the form of the free photon
correlator arises because the equation of motion can be
written: &F,, + 0,A = 0*A, + (1 — £)0,A =0, which
means that

*(0]A,(x)A, (»)|0) = (£ = 1)3;,(0]A(x)A,(¥)]0)
= i(& - 1)LOLD; (x - ).

By inserting the general expression for the correlator in
Eq. (2.6), as well as the constraint P; = P, = 0, and taking
the inverse Fourier transform, this equality implies

0(P°) 9 pP’P1(P?) + PupP?P2(P?)
+27(& - 1)p,p,8(p*)] = 0.

Substituting in the condition on the spectral densities in
Eq. (3.20) into this relation, one obtains

0(P°)[(guwp® = Pupu)P1(P?) = 22p,p,8(p*)] = 0,

which upon contraction with ¢** implies

0(p°)[Bp*p1(p*) — 2zp*6(p*)] = 30(p°) p*p1(p*) =0,
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and hence: p;(p*) = D§(p?) for some arbitrary constant
D. By applying the sum rule for p; in Eq. (3.29) it
immediately follows that D = —2z. Since p;(p?) =
—278(p?), this means that p, satisfies the equation

p*pa(p?) = 22(1 = £)3(p?). (3.31)
The general solution to this equation has the form:
p2(p?) = ES(p?) = 2x(1 — £)8'(p?), where E is an arbi-
trary constant. It follows from the sum for p, in Eq. (3.29)
that £ =0 and thus one can finally conclude that the
spectral densities for the free photon correlator have the
following exact form:
pi(s) = =278(s).  pals) = —2a(1 =) (s).  (3.32)
Given these spectral densities, and the fact that P, =

152 = 0, the momentum space free photon correlator can
therefore be written

A

Dy, (p) = 220(p°)[=9,,8(p*) + pup.(& = 1)8' (p?)].
(3.33)
Moreover, since the constraints from Eq. (3.28) imply that

the integral of p, vanishes, it follows from Eq. (2.10) that
the free photon propagator has the form

DF (p) = Z.Awﬁ[g,wm@) + Pupupa(s)]

Df , 3.34
2n p*—s+ie ( )

Hv

which upon substitution of the expressions for p; and p, in
Eq. (3.32) gives

A PuDy [
DF — _ — (1= H
A R e
_ (g PuP R 1.2
WoopP+ie) pP+ie  C(p?+ie)?
=T, =L

122 %

(3.35)

where T, and L,, are referred to as the transverse and
longitudinal projectors respectively.

B. The photon propagator in QED

In QED one requires the fields to be renormalized in
order to make sense of the equations of motion. Once this
renormalization has been performed, the equations of
motion in locally quantized QED have the following form:

Fy) +0,A0 =i, AN =orAl), (3.36)
where the index r indicates that the corresponding quantity

(r)

is renormalized, and j,  is the (conserved) fermion
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interaction current. In particular, one has that

-1
A,(f> =27, ZALO), where Z; is the photon field renormaliza-

tion constant and A,(,O) is the unrenormalized bare field. For
simplicity, throughout the rest of this paper the label r will
be dropped, and every quantity should be implicitly
assumed to be renormalized. To quantize QED one imposes
the ETCRs:

A Ay, = O, (3.37)
AW Ay, = i08(x—y).  (3.38)
For(x). A 0]y, = i9Z5'6(x—y),  (339)
A.A,0),_, = 0. (3.40)

An important feature here is that even though the equation
of motion includes the nonvanishing current j,, A still
satisfies the free massless wave equation by virtue of the
current conservation condition 9#j, = 0. Among other
things, this implies that the renormalization constant Z;
must be finite [4], and therefore the correlators involving
the auxiliary field A are the same as those in the free case
(Egs. (3.8) and (3.9):

(OIA(x)A(y)[0) =0, (3.41)

(OJA(x)A,(9)|0) = id; DG (x —y).  (3.42)
Moreover, because F,, is gauge invariant, it follows that
F,, is also an observable in QED. Since the structural
relations for vector correlators and propagators derived in
Sec. II are equally applicable to both free and interacting
theories, the constraints implied by the observability of F,,
and Eqgs. (3.41) and (3.42) are identical to those in the free
photon case:

P, =P, =0, (3.43)
p1(s) + spa(s) = —2288(s), (3.44)
/ " dspy(s) = 2223,
0
[ dsons) + spafs)) = -2
A " dspy(s) = 0. (3.45)

Using the above constraints, it follows analogously to
Sec. III A that the momentum space photon correlator has
the structure:
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N

D) = / ® ds0(p)5(p? — )[gu1(5) + Pupupals)],

(3.46)
and hence the photon propagator can be written
- . [ ds [gupi(s) + pupupa(s)]
Df = — nZE . 3.47
() =i [ Pl (3.47)

An important feature of the spectral densities in QED, as
opposed to the free case, is that despite being related to one
another via Eq. (3.44), the explicit form of the spectral
densities is not determined. This lack of knowledge arises
because of the nontrivial nonperturbative structure of the
theory.

C. The gluon propagator in QCD

In BRST quantized QCD, the equations of motion have
the following form:

(Dvaﬂ)a + aﬂAa — gjz _ l'gfabcaﬂébcc’

AL = ENC, (3.48)

o"(D,C)* =0, (D¥9,C)* =0, (3.49)
where C¢ and C* are the ghost and antighost fields, and all
of the fields depend on the non-Abelian adjoint index a.

The ETCRs of particular relevance are

[A(x). AP ()], = O. (3.50)

(M) AL )] oy, = i6%g0,8(x —y).  (3.51)

F4 (). AL, = 0025 6(x —y),  (3.52)
AS(x). ALV, = O. (3.53)

where now Zj3 is the gluon field renormalization constant.
Although these ETCRs have a similar form to those in QED
and the free case, there is a very important difference in
QCD—the auxiliary field A* does not satisty a free wave
equation. This means that unlike in QED and free electro-
magnetism, the ETCRs involving the auxiliary field cannot
be used to determine the value of the commutators at
unequal times. In particular, one cannot assume that
Eq. (3.7) holds. Nevertheless, one can use the BRST
symmetry of the QCD equations of motion to prove that
the auxiliary field correlator (O|A“(x)A?(y)|0) does in fact
vanish, just like in Secs. IIl A and III B. The key to this
derivation is that the BRST variation of any product of
fields O vanishes

(0165010) = (0[[iQ. O].]0) = 0.
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This automatically follows from the fact that Q3|0) =0
since |0) € Vppys. By taking O = 9,A*“(x)C"(y) one has:

0 = (0[65(9,A"(x)C(y))[0)
= (0[65(9, A" (x))C"(y)[0)
+(0[0, A" (x)65(C*())10)
= (0]0,85(4%(x))C"(y)[0)
+(0[0, A" (x)65(C*())10)
= (09, (D"C(x))*C*(y)|0)
————
=0
+(0[0, A% (x) (—iA"(y))[0)
= —i(0]0,A"“(x)A"(y)|0).
Using the equation of motion: 0#A§ = £A“ this then leads
immediately to: (O|A%(x)A’(y)|0) = 0. Just as in the case
of QED, one can apply the same analysis as for free photon

correlator and propagator in Sec. IIT A, and this leads to the
analogous constraints

at® =—4(n+1)(n+2)b%%,, 1<n<N+1, (3.54)

a® =0, ifM<L+1
, , N+2<n<K+1, (3.553)
b, =0, if L+1<M

pib(s) + spih (s) = Co0(s). (3.56)
where now the spectral densities and coefficients of the
polynomials P{® and P4” must depend explicitly on the
adjoint indices a and b, and one assumes that the color
symmetry is unbroken, and thus: p? = §%p,. Although
one does not have an expression like Eq. (3.7) to determine
the value of C%, as in the free case and QED, the ETCRs
still give rise to the sum rules

/oo dsp®(s) = —2m6°°73",
0

/ " dslpi (s) + spsP ()] = ~2n5.
0
/ " dspg?(s) = 0.

0

(3.57)

the second of which implies that C% = —2z£5%, and
hence:

pib(s) + spiP(s) = —2nE6™6(s).  (3.58)
An important difference between QCD and QED (or the
free case), is that Fy, is no longer an observable. This

means that although one can decompose the gluon corre-
lator in an analogous manner to Eq. (3.23)
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(0[5 ()AL (¥)10) = g F**(x = y) + 0L0LG (x = y),

(3.59)

one is not guaranteed that the Fourier transform of
F(x —y) defines a measure. Since this property is
essential for demonstrating that the coefficients of the
polynomials i’?b vanish, as discussed in Sec. IIT A, it is
therefore possible that these coefficients are related [via
Egs. (3.54) and (3.55)] but nonzero. In other words, the fact
that F (x —y) does not necessarily define a measure
implies that the polynomials i’?h can be nonvanishing,
and hence the propagator is permitted to contain terms
involving derivatives of 5(p).

Due to the various constraints in Egs. (3.54), (3.55), and
(3.57), it follows that the gluon propagator can be written in
the following general form:

DabF _ 0
17% (p)_l 0

N+1

+ Z Cn gy 82 " d?tbayau(({y)n_l]é(p)’

(3.60)

ds [9upi”(s) + pupups”(s)]
2n p>—s+ie

where the (complex) coefficients ¢, and d, are defined by:

—2(n+1)2n+3)b%,, 1<n<N+1
C;:b:{ ( )( ) n+1 (361)
a(“)b, n=0
b — {4n(n—|— Wb, 1<n<N+1 (3.62)
0, n=20

By contrast to the photon propagator, the gluon propa-
gator is only specified up to N + 2 arbitrary complex
coefficients. In this case the dynamical constraints are not
sufficient to determine whether these coefficients are
vanishing or not, and this ultimately stems from the fact
Fj, is no longer an observable in QCD. This therefore
opens up the possibility that the gluon propagator can
contain singular terms involving derivatives of &(p).
Derivatives of §(p) have the property of not defining
measures, unlike §(p), and it turns out that this property
allows the correlation strength between clusters of fields to
increase with separation [8]. This mechanism is particu-
larly interesting in the context of QCD, since a growth of
the correlation strength (with increasing distance) between
colored particle-creating fields would be a sufficient con-
dition for confinement. Therefore, the fact that Fy,, fails to
define an observable, and hence permits derivative of 5(p)
terms to exist, is suggestive that the non-Abelian nature of
the gauge symmetry may well play an important role in
ensuring that confinement occurs in nonperturbative QCD.
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In the literature, the analysis of the gluon propagator is
performed using a variety of different nonperturbative
techniques, including the Schwinger-Dyson equation
[9-12], and lattice QCD [13-15]. Since both of these
approaches aim to uncover the characteristics of the propa-
gator, itis important to understand whether the singular terms
discussed previously can in fact be detected using these
methods. In the case of the Schwinger-Dyson equation, the
equation itself involves various terms, including products of
the gluon propagator D“bF (p) with various vertex terms
I'(p). By introducing general ansitze for I'(p), this enables
the equation to be solved recursively. However, since the
precise structure of these vertex terms is unknown, one
cannot guarantee that the product I'( p)ﬁ%’F (p) is mean-
ingful, particularly if ﬁ,‘jij (p) contains singular terms. This
issue arises because both I'( p) and DZSF (p) are distributions,
not functions, and so their product is not necessarily well-
defined [5]. In order to illustrate this point, consider the
situation where both of these objects contains a &§(p)
contribution. The Schwinger-Dyson equation would then
necessarily contain the ill-defined expression §(p)d(p). In
light of these possible ambiguities, it may well be the case
that in order for the Schwinger-Dyson equation to possess a
well-defined solution one must intrinsically assume that no
such singular terms are present. Whether or not this casts
doubt on the existence of these singular terms in the gluon
propagator remains to be seen, but it certainly suggests that if
these singular terms are indeed present, then this method
would potentially have difficulties detecting them. In the
case of lattice QCD, it also unclear as to whether singular
distributional terms like 5( p) can be observed. Nevertheless,
one can in principle probe quantities like the Schwinger
function [8], which are indirectly sensitive to the distribu-
tional behavior of the propagator2

IV. THE TRANSVERSE-LONGITUDINAL
DECOMPOSITION OF THE PHOTON
AND GLUON PROPAGATORS

In the literature, the structure of the photon and
gluon propagators are often derived using the following
Slavnov-Taylor identity3:

pp Dt (p) = —igs™. (4.1)
It is often claimed [16,17] that Eq. (4.1) implies that the
photon and gluon propagators have the following general
transverse-longitudinal structure:

’It turns out that if the gluon propagator did indeed contain
derivatives of 5(p), then these terms would introduce a poly-
nomial > dependence in the Schwinger function C(t). See [8] for
more details about the definition of C(z).

’In the case of QED this relation is referred to as the Ward-
Takahashi identity, and the adjoint indices a, b are dropped
(i.e. 6’ = 1) because the gauge group is Abelian.
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DahF( ) Dab (p ) i§5abLﬂy
Pulu b by Puly
— _ D¢ sab TRV
(g"” P+ ie) (p*) i (p* +ie)?
(4.2)

where D (p?) is Lorentz invariant. In the case of the free
photon propagator [Eq. (3.35)] this structure is indeed
present. However, for QED and QCD it will be argued in
the proceeding section that the propagators cannot in
general be written in this form.

The constraints imposed by the equations of motion and
the ETCRs in QED and QCD imply that the photon and
gluon propagators have the form of Eqgs. (3.47) and (3.60),
respectively. As well as defining the general structure, the
constraints on the photon and gluon propagators also imply
that the spectral densities are related to one another [via
Eqgs. (3.44) and (3.58)]. Therefore, one can attempt to write
the photon and gluon propagators exclusively in terms of
either p¢® or ps’. In terms of p4’, the photon and gluon
propagators have the form

A . [ds p2(s) i9u&
D — iy - .
/w(p) l% 271_( SGw + pypv) P2 s tie P2 T ie
(4.3)
A ds s’ (s)
DahF _ 2
) =1 [ s+ pun)
. a N+1
19, 6" 5
— a n
pz +ie + E,O n g;w )
+ di?9,0,(9%)"'15(p). (4.4)

Contracting both of these representations with p* p* one
obtains

P"p*D,,(p)
o (s
. 2 “s _iE
ip A 2ﬂP2(S) i£ = —ig,
p*p*Dit (p)
o (s
— ip2 - ab _ 5ab
i [T -t
N+1

+ prp Z

2 9u(0)" + d;0,0,(0%)"]8(p)

=0
— _l'géab’

where the last equality holds in both cases due to the p4?
integral constraint in Egs. (3.45) and (3.57), respectively.
This demonstrates that both the photon and gluon propa-
gators do indeed satisfy Eq. (4.1). Nevertheless, it is clear
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that both propagator representations in Egs. (4.3) and (4.4)
do not have the form of Eq. (4.2). The only other possibility
to express these propagators in this form is to write them
excluswely in terms of the spectral density p¢®. Since p3?
and p{ b are related by Eqgs. (3.44) and (3.58), this problem
boils down to solving the (distributional) equation

sps?(s) = ~2mE56(s) - P (s).

It turns out that this equation always possesses solutions
[18]. In particular, one can write:

(4.5)

/ dsps? (5)f(s) = (o, f)
= C£(0) = 22E8° £/(0) + (p%°, f1),

where C is an arbitrary constant and f € S. This solution
uses the fact that any Schwartz function f can be written in
the form: f(s) = £(0)fo(s) + sfi(s), where fy(0) =1
[5]. However, in order to write pgh explicitly in terms of

4 (i.e., independently of the test function f) the last term
must be rewritable in terms of the full function f, and not
just f,. For the free photon case this is indeed possible
because p;(s) = —278(s), and since s&'(s) = —5(s), it
follows that:

(p1, f1) = =2x(8, f1) = 22(s8', f1)
=2x(8', f = £(0)fo)
=2x(5, f) = 2x£(0)(8. fo),

which together with Eq. (4.5) and the constraints in
Eq. (3.30) imply that p,(s) = —2z(1 — £)&'(s). However,
for the photon or gluon propagators the form of the spectral
density p‘fb is a priori unknown, and so one cannot express
p3P, and hence the full propagator, explicitly in terms of

4> This means that a transverse-longitudinal representa-
tion as in Eq. (4.2) exists for the free photon propagator
[Eqg. (3.35)] but is not in general achievable for either the
photon or gluon propagators. Therefore, the statement that
the structure of D,‘jf]F (p) has the form of Eq. (4.2) due to the
Slavnov-Taylor identity is evidently false. The fact that the
representation of the photon and gluon propagators in
Egs. (4.3) and (4.4) does not possess this form, and yet
satisfies this identity, proves this point.

As outlined at the end of Sec. III C, there are a variety of
different nonperturbative techniques for analyzing the
structure of propagators, in particular the Schwinger-
Dyson equations and lattice QFT. In light of the findings
in this section, which suggest that the canonical decom-
position in Eq. (4.2) may no longer hold, it is important to
understand if this can potentially cause inconsistencies with
these techniques, and if so, whether this issue can be
circumvented. In the literature it appears that in the case
of both the Schwinger-Dyson [9—-12] and lattice [13-15]
approaches, both the photon and gluon propagators are
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assumed to have the structure of Eq. (4.2). In particular, in
Landau gauge (¢ = 0) it is stated that these propagators can
be written: T, D?(p?). Since the representation in Eq. (4.2)
is not in general achievable for either the photon or gluon
propagators, extracting the structure of the propagators
based on this premise could potentially lead to inconsistent
results. Nevertheless, despite the failure of Eq. (4.2) to hold
in general, the representations in Egs. (4.3) and (4.4) are
guaranteed to hold, and this is independent of the form of the
spectral densities p; and p,. Moreover, if instead of
calculating the propagator Dl‘jﬁ’F (p) one determines the
contracted quantity g"”ﬁ,‘ij (p), this representation issue
no longer arises because this expression takes the form

. ds p(s) iswe
l/Dlle =3 -7 1 —
9Dy (p) l/2ﬂp2—s+ie p*+ie
N+l
+ > g (9*)"8(p). (4.6)
n=0

where g% = 4¢% 4 d®. In the case of the photon propa-
gator one has an analogous expression, but without the
singular terms. Besides the possible singular terms, in
Landau gauge one now has an expression which depends
only on the spectral density p;, in contrast to the non-
contracted propagator. With regards to lattice calculations
this means that as long as one extracts the (Euclidean)
contracted propagator, one will indeed be sensitive to the

behaviour of p;. Similarly, by contracting the Schwinger-
Dyson equation for ﬁzf’ F(p) with ¢, one could in principle
solve for g"”ﬁﬁL’F (p) instead of the propagator, and hence

also remove the ambiguity in this case as well.
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V. CONCLUSIONS

Understanding the structure of the photon and gluon
propagators is essential for probing the nonperturbative
dynamics of QED and QCD. Axiomatic approaches to QFT
provide a framework from which one can characterize the
general properties of Lorentz covariant propagators, and the
constraints imposed on them as a result of the dynamical
properties of the fields in the propagators. In this paper we
discuss the constraints on the photon and gluon fields, and
determine the specific effect that they have on the non-
perturbative structure of the photon and gluon propagators.
By virtue of the Abelian gauge symmetry of QED, it
transpires that the photon propagator can be completely
characterized by one of two different interrelated spectral
densities p; and p,. Moreover, in QCD the non-Abelian
gauge symmetry also permits additional singular terms
involving derivatives of &(p) to appear in the gluon
propagator. The possibility of such terms is particularly
interesting in the context of QCD, since their appearance is
suggestive of confinement. Due to the distributional behav-
ior of the spectral densities of the photon and gluon
propagators, it turns out that the lack of knowledge of
these objects actually prevents one from decomposing these
propagators into transverse and longitudinal components,
as in the free case. Nevertheless, despite the obstruction to
this decomposition both the photon and gluon propagator
representations still satisfy the Slavnov-Taylor identity.
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