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In this paper we discuss a disordered d-dimensional Euclidean λφ4 model. The dominant contribution to
the average free energy of this system is written as a series of the replica partition functions of the model. In
each replica partition function, using the saddle-point equations and imposing the replica symmetric ansatz,
we show the presence of a spontaneous symmetry breaking mechanism in the disordered model. Moreover,
the leading replica partition function must be described by a large-N Euclidean replica field theory. We
discuss finite temperature effects considering periodic boundary condition in Euclidean time and also using
the Landau-Ginzburg approach. In the low temperature regime we prove the existence of N instantons in
the model.
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I. INTRODUCTION

One of the most fruitful ideas in classical and quantum
field theory has been the concept of spontaneous symmetry
breaking. This mechanism is the basis for the construction
of renormalizable models of weak and electromagnetic
interactions. On the other hand, in disordered systems the
replica symmetry breaking, with its physical consequences,
has also been intensively discussed [1–8]. Frequently one
has to consider averages of extensive quantities, as for
example the disorder-dependent free energy [9]. Different
methods have been developed to compute this quantity.
Among them, we mention the cavity method [10,11] and
the replica method [12], whose several predictions have
been confirmed by using other techniques. Concerning the
replica approach, a replica symmetry breaking mechanism
was introduced by Parisi [13–16] in order to prevent the
emergence of unphysical results (for instance, a negative
entropy at low temperatures), which would arise with the
assumption of a replica-symmetric solution in a fully-
connected mean-field model [17].
The basic problems that arise in disordered systems

defined in the continuum limit are of two types. First, for a
given realization of the disorder, the correlation functions
Gðx; x0Þ depend on both x and x0, and not on the difference
of x − x0, as in translational invariant systems. Therefore,
since a disordered system is intrinsically inhomogeneous, it
is a hard task to perform a perturbative expansion in any
model. In addition, in the presence of the disorder field,
ground state configurations of the continuous field are

defined by a saddle-point equation, where the solutions of
such an equation depend on particular configurations of the
disorder field. Moreover, it is complicated to implement a
perturbative expansion in the situation where there are
several local minima in the model. One way to solve both
problems is to average the free energy over the disorder
field. In this case, one is mainly interested in averaging the
disorder-dependent free energy, which amounts to averag-
ing the logarithm of the partition function.
Recently, an alternative method was proposed to average

the disorder-dependent free energy [18,19]. In this
approach, the dominant contribution to the average free
energy is written as a series of the integer moments of the
partition function of the model. This method is closely
related to the use of spectral zeta functions for computing
the free energy [20–25] or the Casimir energy of different
systems in quantum field theory. Although different global
methods can be used to obtain the Casimir energy of
quantum fields, as for example an exponential cut-off or an
analytic regularization procedure [26–28], the spectral zeta
function is powerful and elegant. One of the main objec-
tives of the present paper is to discuss, within this
framework, the relationship that exists between the sponta-
neous symmetry breaking mechanism and the replica
symmetry ansatz in a disordered scalar model. Such a
connection seems to have gone unnoticed so far.
We are interested in studying a d-dimensional Euclidean

λφ4 model in the presence of a disorder field, linearly
coupled with a scalar field. The issue of Euclidean
fields interacting with delta-correlated disorder has already
been investigated in the literature [29,30]. In this scenario,
Aharony and collaborators recently considered a Euclidean
conformal field theory in the presence of disorder [31]. In
the case where the quantum fluctuations are replaced by the
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thermodynamic ones, the model discussed here is the
continuous version of the random-field Ising model in a
d-dimensional space [32–38]. For instance, in order to
model binary fluids confined in porous media, when the
pore surfaces couple differently to the two components of a
phase-separating mixture, the random field has been used
by the literature [39–41].
The purpose of this paper is to discuss the physical

consequences of the adoption of the aforementioned alter-
native description for an evaluation of the average free
energy. There are some interesting features brought about
by this formalism that we would like to point out. For
instance, a connection between the spontaneous symmetry
breaking mechanism and the structure of the replica space
in the disordered model is manifested in the present
context. First, in a generic replica partition function, the
structure of the replica space is investigated using the
saddle-point equations. In order to describe the disorder
system, according to the distributional zeta-function
method, in each replica partition function we must impose
the replica symmetry ansatz, the unique solution for the
problem of the structure in replica space. In this scenario,
we also show that the system can develop a spontaneous
symmetry breaking. The leading term of this series expan-
sion is a large-N Euclidean replica field theory [42–44].
Next, we discuss the finite temperature effects in the

disordered model. Finite size effects in quantum field
theory [45–49], critical phenomena [50], and classical
random systems [51–54] are areas of intense activity in
recent years. In Ref. [55], finite-size effects in the disor-
dered λφ4 model were discussed, applying the standard
replica method in the one-loop approximation and also
using a gap equation [56–58]. Questions concerning the
nature of the phase transition in the continuous version of
the random-field Ising model in a d-dimensional space can
be analyzed, following the Landau-Ginzburg approach.
Using a mean-field description for phase transitions, we
show that for high temperatures in the large-N approxi-
mation, the symmetry ½Z2 × Z2 � � � × Z2� is realized. For
low temperatures, taking only the leading order term of the
series that represents the average free energy, i.e., the large-
N approximation, the symmetry ½Z2 × Z2 � � � × Z2� is
broken. In order to go beyond the tree-level approximation
in the replica field theory, we also consider periodic
boundary conditions in Euclidean time. We discuss the
dependence of the renormalized mass on the radius of the
compactified dimension in a scenario of spontaneous
symmetry breaking in the one-loop approximation. We
prove that there is a critical temperature where the renor-
malized mass vanishes.
Another interesting issue concerns the presence of

instantons in the model at very low temperatures. We
study the dominant replica partition function using a
representation closely related to the strong-coupling expan-
sion in the field theory investigated in Refs. [59–62].

See also the linked-cluster expansion [63–67]. The main
difference, in our case, is that instead of an independent-
value action, we have a functional differential operator
connecting replica fields acting on a modified replica
partition function. The first term in this perturbative
expansion is the diluted instanton approximation. We show
that for σN > m2

0 > −3σN, where σ is a parameter that
characterizes the strength of the disorder, one finds the
existence of N complex instantons in the model; further-
more, for m2

0 < −3σN such instantons are real [68–71].
The organization of this paper is the following. In Sec. II,

using the distributional zeta-function method, we discuss
each replica field theory of the disordered λφ4 model. In
Sec. III, in a generic replica partition function, we discuss
the structure of the replica space using the saddle-point
equations of the model. In Sec. IV, we discuss temperature
effects in the replica field theory. In Sec. V we demonstrate
the emergence of N instantons in the model. Conclusions
are given in Sec. VI. We use units such that ℏ ¼
c ¼ kB ¼ 1.

II. FROM THE DISORDERED MODEL
TO THE REPLICA FIELD THEORY

The aim of this section is to obtain replica field theories
from a Euclidean scalar field theory in the presence of a
disorder field. In the functional integral formulation of field
theory there are two kinds of random variables. The first
ones are the Euclidean fields. These fields describe gen-
eralized Euclidean processes with zero mean and a covari-
ance defined in terms of gradients. There are also variables,
the disorder fields, with the absence of any differential
operator. For such fields, the two-point correlation function
is not defined in terms of gradients. These are the non-
propagating degrees of freedom of the theory.
Let us assume a Euclidean d-dimensional λφ4 model in

the presence of a disorder field, where the disordered
functional integral ZðhÞ is defined by

ZðhÞ ¼
Z

½dφ� exp
�
−Sþ

Z
ddxhðxÞφðxÞ

�
: ð1Þ

In the above equation, S ¼ S0 þ SI is the Euclidean-
invariant action functional of the real scalar field where
S0ðφÞ, given by

S0ðφÞ ¼
Z

ddx

�
1

2
ð∂φÞ2 þ 1

2
m2

0φ
2ðxÞ

�
; ð2Þ

which is the free field Euclidean action and SIðφÞ,
defined by

SIðφÞ ¼
Z

ddx
λ0
4!
φ4ðxÞ; ð3Þ

is the self-interacting non-Gaussian contribution. In
Eq. (1), ½dφ� is a formal Lebesgue measure, given by
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½dφ� ¼ Q
xdφðxÞ. Usually, the quantities λ0 and m2

0 are,
respectively, the bare coupling constant and the mass
squared of the model. Finally, hðxÞ is a disorder field of
the Euclidean field theory. For simplicity, we are assuming
a linear coupling between the Euclidean scalar field and
the disorder field. In order to construct a probability
measure, a normalization factor is introduced. We must
have ZðhÞjh→0 ¼ 1. For simplicity, the normalization factor
is absorbed in the formal Lebesgue measure. We impose to
the scalar field, for example, the Dirichlet boundary
conditions, φðxÞ → 0 as jxj → ∞. We want to stress that
our starting point is the semiclassical (tree) approximation.
In this case, λ0 and m0 are renormalized quantities.
Consequently, our discussion will be in the tree-level
approximation until Section IV.
There are two different ways to eliminate the disorder

field. For a given probability distribution PðhÞ of the
disorder, one averages the disordered functional integral
ZðhÞ and takes the logarithm of this quantity. Then we
define the annealed free energy Fa as

Fa ¼ − ln

�Z
½dh�PðhÞZðhÞ

�
: ð4Þ

Here we wish to obtain a different free energy, that is
called the quenched free energy in the literature. For a given
probability distribution of the disorder, one is mainly
interested in averaging the logarithm of the disordered
functional integral ZðhÞ. Relying on the similarity upon
statistical mechanics, we call it the disorder-dependent free
energy FðhÞ. It reads

FðhÞ ¼− ln
Z

½dφ�exp
�
−
Z

ddx

�
1

2
φðxÞð−Δþm2

0ÞφðxÞ

þ λ0
4!
φ4ðxÞ−hðxÞφðxÞ

��
; ð5Þ

where the symbol Δ denotes the Laplacian in Rd. The
average free energy Fq is defined as

Fq ¼ −
Z

½dh�PðhÞ lnZðhÞ; ð6Þ

where ½dh� ¼ Q
xdhðxÞ is again a formal Lebesgue mea-

sure. To justify Eq. (6), let us first assume a compact
domain. Suppose that we divide the domain into subsys-
tems. We consider each subsystem representing a realiza-
tion of the disorder field, and the coupling between the
subsystems is negligible. The value of any extensive
variable for the whole system is equal to the average of
the values of this quantity over the subsystems. From the
extensive property of the free energy, we get the self-
averaging property. Next, using the fact that the self
averages of the free energy hold when the domain is

noncompact, we justify the averaging of the logarithm of
the partition function.
Coming back to the problem, we assume that the

disorder field hðxÞ is described by a Gaussian distribution,
i.e., the probability distribution of the disorder, is written as
½dh�PðhÞ, where

PðhÞ ¼ p exp

�
−

1

2σ

Z
ddxðhðxÞÞ2

�
: ð7Þ

The quantity σ is a positive parameter associated
with the disorder, and p is a normalization constant. In
this case we have a delta correlated disorder field, i.e.,
E½hðxÞhðyÞ� ¼ σδdðx − yÞ.
An established technique for computing the average free

energy is the replica method. This consists in the following
steps. First, one constructs the (integer) k-th power of the
partition function ZkðhÞ. Second, the expected value of the
partition function’s k-th power E½ZkðhÞ� is computed by
integrating over the disorder field on the new model.
Finally, the average free energy is obtained using the
formula

E½lnZðhÞ� ¼ lim
k→0

∂
∂kE½Z

kðhÞ�:

The average value of the free energy in the presence of
the disorder is then obtained taking the limit k → 0.
An alternative approach to compute the average

free energy of disordered systems was presented in
Refs. [18,19]. We call it the distributional zeta-function
method. An attractive characteristic of such a method is
that one can find an analytic expression for the free
energy, unlike the standard replica method as it involves
derivatives of the integer moments of the partition
function. Observing that if ðX;A; μÞ is a measure
space and f∶X → ð0;∞Þ is measurable, a generalized
ζ-function is defined

ζμ;fðsÞ ¼
Z
X
fðxÞ−sdμðxÞ; ð8Þ

for those s ∈ C such that f−s ∈ L1ðμÞ, where in the
above integral f−s ¼ expð−s logðfÞÞ is obtained using
the principal branch of the logarithm. This formalism
contains some well-known examples of zeta-functions
for fðxÞ ¼ x: the Riemann zeta-function [72,73] is obtained
if X ¼ N and μ is the counting measure; however, if μ
counts only the prime numbers, we get the prime zeta
function [74,75]; if X ¼ R and μ counts the eigenvalues of
an elliptic operator, with their respective multiplicities, the
spectral zeta function is obtained. Further extending this
formalism for the case where fðhÞ ¼ ZðhÞ and dμðhÞ ¼
½dh�PðhÞ leads to the definition of the distributional zeta
function ΦðsÞ as
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ΦðsÞ ¼
Z

½dh�PðhÞ 1

ZðhÞs ; ð9Þ

for s ∈ C, this function being defined in the region where
the above integral converges. Note that the free energy of
the system with an annealed disorder is given by

Fa ¼ − lnΦðsÞjs¼−1: ð10Þ

Following the usual steps of the spectral zeta function,
the average free energy Fq can be written as

Fq ¼ ðd=dsÞΦðsÞjs¼0þ ; ReðsÞ ≥ 0; ð11Þ

where ΦðsÞ is well defined. Using analytic tools, the
average free energy can be represented as

Fq ¼
X∞
k¼1

ð−1Þkak
k!k

E½Zk� þ ðlnðaÞ þ γÞ − RðaÞ ð12Þ

where

jRðaÞj ≤ 1

Zð0Þa expð−Zð0ÞaÞ; ð13Þ

with a being an arbitrary dimensionless constant.
In Eq. (12), the free energy is independent of a. Since we

are not able to estimate the contribution of RðaÞ to the free
energy, an approximation is necessary. The contribution of
RðaÞ to the free energy can be made as small as desired,
taking a large enough such that a ≫ 1=Zð0Þ. As we will
see, this system must be described by a large-N Euclidean
replica field theory where the dimensionless parameter
a can be absorbed in the formal Lebesgue measure.
With respect to this fact, a remark is in order. All of the
local quantities obtained from the replica partition function
are independent of a, as for example, the two-point
correlation function in the field theory formulation for a
directed polymer and an interface in a quenched random
potential [76].
From Eq. (12), we have to compute the replica partition

function E½Zk�. First, it is easy to show that Zk is given by

ðZðhÞÞk ¼
Z Yk

i¼1

½dφi� exp
�
−
Xk
i¼1

Sðφi; hÞ
�
: ð14Þ

Moreover, using the probability distribution of the
disorder defined by Eq. (7), after integrating over the
disorder we get a generic replica partition function that
can be written as

E½Zk� ¼
Z Yk

i¼1

½dφi� expð−SeffðφiÞÞ; ð15Þ

where the effective action SeffðφiÞ is given by

SeffðφiÞ ¼
1

2

Xk
i;j¼1

Z
ddx

Z
ddyφiðxÞDijðx − yÞφjðyÞ

þ λ0
4!

Xk
i¼1

Z
ddxφ4

i ðxÞ: ð16Þ

In the above equation we have that Dijðx − yÞ ¼
Dijðm0; σ; x − yÞ, where

Dijðm0; σ; x − yÞ ¼ ðδijð−Δþm2
0Þ − σÞδdðx − yÞ: ð17Þ

Equations (15), (16), and (17) are similar to a Euclidean
field theory for k interacting replica fields. Being more
precise, Eq. (15) with an external source is the generating
functional of the correlation functions of the model. Using a
statistical mechanics language, we call it a replica partition
function.
Let us analyze these results in the momentum space.

After a Fourier transform, we obtain

SeffðφiÞ ¼
1

2

Xk
i;j¼1

Z
ddp
ð2πÞd φiðpÞ½G0�−1ij φjð−pÞ þ

λ0
4!

Xk
i¼1

φ4
i ;

ð18Þ

where in the quadratic part of SeffðφiÞ, the quantity ½G0�−1ij
is defined as

½G0�−1ij ðpÞ ¼ ðp2 þm2
0Þδij − σ; ð19Þ

which can be inverted; hence,

½G0�ijðpÞ ¼
δij

ðp2þm2
0Þ
þ σ

ðp2þm2
0Þðp2þm2

0− kσÞ : ð20Þ

This is the two-point correlation function of the replica
field theory in the tree-level approximation.

III. SPONTANEOUS SYMMETRY BREAKING
IN REPLICA FIELD THEORY

The aim of this section is to show the presence of a
spontaneous symmetry breaking mechanism in the disor-
dered model. In the presence of the disorder field being
linearly coupled with the scalar field, ground state con-
figurations of the field φðxÞ are defined by a saddle-point
equation, where the solutions of such an equation depend
on particular configurations of the disorder fields. The
saddle-point equation of the disordered model reads

ð−Δþm2
0ÞφhðxÞ þ

λ0
3!
φ3
hðxÞ ¼ hðxÞ; ð21Þ
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where φh means the field φ defined for a particular
configuration of the disorder. The situation with several
local minima in the model precludes the realization of a
perturbative expansion in a straightforward way. After
integrating out the disorder field in a generic replica
partition function, E½Zk�, the saddle-point equations reads

ð−Δþm2
0ÞφiðxÞ þ

λ0
3!
φ3
i ðxÞ ¼ σ

Xk
j¼1

φjðxÞ: ð22Þ

According to the distributional zeta-function method, the
average free energy is written as a series of the integer
moments of the partition function of the model. Therefore,
the only choice in each replica partition function is the
replica symmetric ansatz, i.e., all of the replica fields must
be equal in each replica partition function, φiðxÞ ¼ φjðxÞ.
This choice then implies that the saddle-point equations
read

ð−Δþm2
0 − kσÞφiðxÞ þ

λ0
3!
φ3
i ðxÞ ¼ 0: ð23Þ

In principle, observe that within this approach one must
take into account all replica partition functions contributing
to the average free energy, i.e., all values of k must be
considered. In the following, in order to proceed, we are
assuming m2

0 > 0. Let us define a critical kc such that kc ¼
⌊m2

0=σ⌋ where ⌊x⌋ means the integer part of x. Form2
0 ≥ σ,

in a generic replica partition function, m2
0 − kσ ≥ 0 is

satisfied as k ≤ kc. In such a case, each replica field
fluctuates around the zero value, the stable equilibrium
state. One must notice an interesting fact here, the effective
mass of the replica fields in different replica partition
functions are not equal. This situation is quite different
when the contribution to the average free energy comes
from the replica partition functions where k > kc. From
Eq. (23), all of these replica fields fluctuate around the zero
value, which is not an equilibrium state anymore. In the
framework of field operators, this means that the vacuum
expectation value of such fields do not vanish. This is
exactly the scenario in which spontaneous symmetry
breaking emerges.
Before continuing, we would like to summarize the main

differences between the consequences of our formalism and
the standard replica method. In the standard replica method,
in the replica partition function, we must take the limit
k → 0. After choosing the replica symmetric ansatz, the
saddle-point equation reduces to the standard model with-
out disorder. In our formalism, for each replica field theory,
investigating the saddle-point equations and imposing the
replica symmetric ansatz we obtain a critical kc. We can
now ask what assumptions we must use to circumvent the
above mentioned problem.
The point that we wish to stress is that due to replica

fields for replica partition functions such that k > kc, a

spontaneous symmetry breaking mechanism occurs. To
proceed, let us investigate some choices in the replica
space. An interesting question is whether there are different
choices for replica symmetry breaking. Consider a generic
term of the series given by Eq. (12) with replica partition
function given by E½Zl�. One choice in the structure of the
fields in each replica partition function is given by

(
φðlÞ
i ðxÞ ¼ φðxÞ for l ¼ 1; 2;…; kc

φðlÞ
i ðxÞ ¼ 0 for l > kc

ð24Þ

where, for the sake of simplicity, we still employ the same
notation for the field. However, the effect of this choice
may represent a very constraining truncation for the series
representation of the average free energy, given by Eq. (12).
Indeed, as discussed previously, this choice in replica space
is not consistent with the distributional zeta-function
method. In order to take into account more terms in this
series, we consider N > kc, where m2

0 − kσ < 0, for
N > k > kc. To proceed, we must study in each replica
partition function the vacuum structure that emerges in our
scenario. In this situation we must consider the following
structure of the replica space

8>>><
>>>:
φðlÞ
i ðxÞ ¼ φðxÞ for l¼ 1;…; kc and i¼ 1;…; l

φðlÞ
i ðxÞ ¼ ϕðxÞþ v for l¼ kcþ 1;…;N and i¼ 1;…; l

φðlÞ
i ðxÞ ¼ 0 for l > N;

ð25Þ

where

v ¼
�
6ðσN −m2

0Þ
λ0

�
1=2

: ð26Þ

In terms of these new shifted fields, we get a positive
mass squared with new self-interaction vertices, ϕ3 and ϕ4.
There is a spontaneous symmetry breaking for a finite N.
We are interested in the case with large-N, which will be
discussed in the following sections. This structure in replica
space, defined by Eq. (25), also with the large-N limit, is
quite natural, and it is the only choice compatible with the
method developed in Refs. [18,19]. In conclusion, our
arguments stated here show the uniqueness of the solution
for the problem of the structure in replica space. Notice that
all of the replica fields are the same in each replica partition
function. This is not true anymore for different replica
partition functions. Being more precise, in the scenario
constructed by the replica method, the breaking of replica
symmetry in a unique replica partition function occurs by
choosing different replica fields. In the distributional zeta-
function method, a priori, all replica fields are the same in
each replica partition function. Since the replica fields of
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different replica partition function are different, we also call
it replica symmetry breaking.
In the following, we are using the structure of replica

space given by Eq. (25). With this choice, the dominant
contribution to the average free energy can be written as

FqðaÞ ¼
XN
k¼1

ð−1Þkak
k!k

E½Zk�: ð27Þ

Notice that this series representation has two kinds of
replica partition functions. For k ≤ kc, E½Zk� is given by
Eqs. (15), (16), and (17). For kc < k ≤ N, the replica
partition function E½Zk� is

E½Zk� ¼
Z Yk

j¼1

½dϕj� expð−SeffðϕjÞÞ; ð28Þ

where SeffðϕjÞ is given by

SeffðϕiÞ ¼
1

2

Xk
i;j¼1

Z
ddx

Z
ddyϕiðxÞCijðx − yÞϕjðyÞ

þ λ0v
3!

Xk
i¼1

Z
ddxϕ3

i ðxÞ þ
λ0
4!

Xk
i¼1

Z
ddxϕ4

i ðxÞ;

ð29Þ

and the operator Cijðx − yÞ is

Cijðx − yÞ ¼ ½ð−Δþ 3σN − 2m2
0Þδij − σ�δdðx − yÞ: ð30Þ

Equation (29) is the first important result of the paper,
i.e., the spontaneous symmetry breaking in the disorder
scenario. As in the case without spontaneous symmetry
breaking, performing a Fourier transformation from the
quadratic part in Eq. (29), we can again identify the inverse
of the two-point correlation function of the replica field
theory that is now given by

½G0�−1ij ¼ ðp2 þ 3σN − 2m2
0Þδij − σ: ð31Þ

Using the projector operators, we can write the corre-
lation function ½G0�ij as

½G0�ijðpÞ ¼
δij

ðp2þ 3σN − 2m2
0Þ

þ σ

ðp2þ 3σN − 2m2
0Þðp2þ σð3N − kÞ− 2m2

0Þ
:

ð32Þ

We shall now examine the presence of Goldstone bosons
in the model. The main difference between the usual
situation in the literature and the scenario discussed here,

is that Goldstone bosons appear when there is a breaking of
a continuous symmetry. There are no Goldstone bosons in
the model, since we are breaking a discrete symmetry. This
issue will be clarified in Sec. IVA. As we discussed before,
for a large enough a, the leading term in the series
representation defined by Eq. (27) is given by k ¼ N. In
this situation, for the replica partition function, E½ZN � for
m2

0 ≥ σN, all of the replica fields are oscillating around the
trivial vacuum. For m2

0 < σN, all of the replica fields now
oscillate around the nontrivial vacuum. In this case, the
replica partition function reads

E½ZN � ¼
Z YN

i¼1

½dϕi� expð−SeffðϕiÞÞ; ð33Þ

where the effective action SeffðϕiÞ is given by

SeffðϕiÞ ¼
1

2

XN
i;j¼1

Z
ddx

Z
ddyϕiðxÞCijðx − yÞϕjðyÞ

þ λ0v
3!

XN
i¼1

Z
ddxϕ3

i ðxÞ þ
λ0
4!

XN
i¼1

Z
ddxϕ4

i ðxÞ;

ð34Þ

and Cijðx − yÞ is given by Eq. (30).
Let us summarize our results. The leading contribution

for the free energy consists in a series in which all of the
replica partition functions contribute. The subtle issue here
is that as we perform an expansion in the integer moments
of the partition function, we choose the structure in the
replica space with the most symmetric case, namely all of
the replica fields are the same in each replica partition
function. All of the above discussion leads us to the large-N
scenario in replica field theory. Notice that instead of
having one ’t Hooft coupling, which means that g0 ¼ λ0N
is finite althoughN → ∞ and λ0 → 0, we also have another
’t Hooft coupling, f0 ¼ σN, which is finite although
N → ∞ and σ → 0 (weak disorder). Here, we are mainly
interested in the situation where the disorder is weak. In this
context, we have just established a path to clarify the
relationship between two hitherto unconnected results. It is
known that for d > 6, the critical region in the random-field
Ising model can be described using the mean-field expo-
nents [77]. In turn, in the OðNÞ symmetric field theory of
any real scalar fields with interaction λ0ðφ2

iφ
2
i Þ2=4!, the

1=N expansion for d > 6 is not useful [8]. Hence, the 1=N
expansion is efficient when disorder affects the critical
region in the random-field Ising model in a nontrivial way.
We interpret this connection as a consequence of approach-
ing quenched disorder in a large-N scenario in replica field
theory. In any case, despite the above remark, we assert that
all calculations can be carried out irrespective of the space
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dimensions; in particular, for d < 6, one may resort to a
large-N expansion.

IV. TEMPERATURE EFFECTS IN THE
REPLICA FIELD THEORY

The aim of this section is to discuss temperature effects
in the replica field theory defined by Eqs. (33) and (34). As
we discussed before, when the quantum fluctuations are
replaced by the thermodynamic ones, the model studied is
the continuous version of the random-field Ising model in a
d-dimensional space. In order to describe the phase
transition in this model, we follow the Landau-Ginzburg
phenomenological approach where, for a system without
disorder, the mass squared depends on the reduced temper-
ature, defined by t ¼ ðT − TcÞ=Tc, where T is the temper-
ature and Tc is the critical temperature of the system. On
the other hand, in order to go beyond the tree-level
approximation with quantum fluctuations, one must take
into account loop corrections. With this respect, we depart
from the Landau-Ginzburg formalism and assume instead
that the fields in the replica field theory satisfy a periodic
boundary condition in Euclidean time.

A. Landau-Ginzburg approach in replica field theory

The model considered in this work is also the continuous
version of the random-field Ising model in a d-dimensional
space, where the dependence from the temperature is
concentrated in m2

0. In the following, we continue to use
the semiclassical (tree) approximation. For a system with-
out disorder at sufficiently high temperatures, there is no
spontaneous symmetry breaking where the system presents
a Z2 symmetry. On the other hand, in the low temperature
regime (T < Tc), we have spontaneous symmetry break-
ing, i.e., the Z2-symmetry is broken.
In this disordered system, this situation is more involved,

since the average free energy is written as a series defined
by Eq. (27). Inspired in the above situation, we will assume
that m2

0 depends on the temperature, it is not positive
definite, and it is a monotonically increasing function on
the temperature. For simplicity, let us assume that the
disorder is weak and fixed. Before taking the large-N limit,

one has three interesting cases with two temperatures, Tð1Þ
c

and Tð2Þ
c .

(I) For temperatures such that m2
0 ≥ σN, all of the

replica fields in the replica partition functions in
Eq. (27) oscillate around the trivial vacuum φ ¼ 0.
In this case, for a very large a, the average free
energy is written as

FqðaÞ ¼
XN
k¼1

ð−1Þkak
k!k

Eð1Þ½Zk�; ð35Þ

where the replica partition functions Eð1Þ½Zk� are

Eð1Þ½Zk� ¼
Z Yk

i¼1

½dφi� expð−Sð1Þeff ðφiÞÞ: ð36Þ

The effective action Sð1Þeff ðφiÞ is given by

Sð1Þeff ðφiÞ ¼
Z

ddx

�Xk
i¼1

�
1

2
φiðxÞð−Δþm2

0ÞφiðxÞ

þ g0
4!N

φ4
i ðxÞ

�
−

f0
2N

Xk
i;j¼1

φiðxÞφjðxÞ
�
:

ð37Þ
In the large-N limit, such that a ≫ N, the leading

term of the series of the average free energy is given
by the replica partition function with N fields φi.
Hence, we have the symmetry ½Z2 × Z2 � � � × Z2�
for N replica fields. The temperature Tð1Þ

c

occurs when m2
0 ¼ Nσ. Below this temperature,

½Z2 × Z2 � � � × Z2� symmetry is broken.
(II) For σN > m2

0 ≥ σ, the temperature decreases. Be-
fore taking the large-N limit, all of the replica fields
of some replica partition functions oscillate around
the nontrivial vacuum, and all of the replica fields of
the remaining replica partition functions oscillate
around ϕ ¼ 0. Defining kcðTÞ ¼ ⌊m2

0ðTÞ=σ⌋, we
can write the series representation of the average free
energy in the Landau-Ginzburg approach as

FqðaÞ ¼
XkcðTÞ
k¼1

ð−1Þkak
k!k

Eð1Þ½Zk�

þ
XN

k¼kcðTÞþ1

ð−1Þkak
k!k

Eð2Þ½Zk�; ð38Þ

where Eð1Þ½Zk� is given by Eq. (36) and

Eð2Þ½Zk� ¼
Z Yk

j¼1

½dϕj� expð−Sð2Þeff ðϕjÞÞ: ð39Þ

The effective action Sð2Þeff ðϕiÞ is written as

Sð2Þeff ðϕiÞ

¼
Z

ddx

�Xk
i¼1

�
1

2
ϕiðxÞð−Δþ 3f0 − 2m2

0ÞϕiðxÞ

þ
�
f0g0
3!N

�1
2

�
1 −

m2
0

f0

�1
2

ϕ3
i ðxÞ þ

g0
4!N

ϕ4
i ðxÞ

�

−
f0
2N

Xk
i;j¼1

ϕiðxÞϕjðxÞ
�
: ð40Þ

Therefore, in this region, one has two types
of replica partition functions in the series
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representation of the average free energy. In the
large-N approximation, using again that a ≫ N, the
average free energy is described by a unique replica
partition function with all of the replica fields
oscillating around the nontrivial vacuum.

(III) For m2
0 < σ, all of the replica fields in replica

partition functions are oscillating around the non-

trivial vacuum. The temperature Tð2Þ
c is given by

m2
0 ¼ σ. The average free energy describing this

case is given by

FqðaÞ ¼
XN
k¼1

ð−1Þkak
k!k

Eð2Þ½Zk�; ð41Þ

where Eð2Þ½Zk� is given by Eq. (39).
For a ≫ N, a very large N limit consists in taking

the leading term of the series, which is given by a
unique replica partition function with N replica
fields ϕi. This situation is equivalent to the
Z2-broken symmetry for a system without disorder.
The symmetry ½Z2 × Z2 � � � × Z2� for N replica
fields remains broken.

In summary, in the disordered system, before taking the

large-N approximation, there are two temperatures, Tð1Þ
c

and Tð2Þ
c . Above Tð1Þ

c , the average free energy is written by a
series of replica partition functions where, in all of them,
the replica fields are oscillating around the trivial vacuum.

Below Tð1Þ
c and above Tð2Þ

c , the average free energy is
defined by two kinds of replica partition functions with
replica fields φi and ϕi, respectively. In the large-N limit, as
only the leading term is considered, one has that all of the
replica fields of this leading replica partition function are

oscillating around the nontrivial vacuum. Below Tð2Þ
c , all of

the replica’s partition functions that define the average free
energy are composed by ϕi fields. In the large-N regime, as
one is forced to consider the leading replica partition
function, one has only one phase transition temperature,

i.e., Tð1Þ
c .

B. Finite size effects in the replica field theory

Here we are investigating temperature effects in a
disordered λφ4 model defined in a d-dimensional
Euclidean space, going beyond the tree-level approxima-
tion. We assume that the fields in the replica field theory
satisfy a periodic boundary condition in Euclidean time and
that kc < 1, where we have spontaneous symmetry
breaking.
A periodic boundary condition in Euclidean time implies

that this replica field theory is defined in S1 × Rd−1 with the
Euclidean topology for a field theory at a finite temperature
[78–80]. We consider the system defined in a space
with periodic boundary conditions in Euclidean time using
the following nontrivial replica structure given by Eq. (25).

In this situation, the momentum-space integrals over
one component are replaced by a sum over discrete
frequencies. Let us define the radius of the compactified
dimension of the system by β ¼ T−1, where T is the
temperature of the system.
Let us calculate the one-loop correction to renormalized

mass. We have two types of loop corrections, one from the
ϕ4 vertex, which is written as

½Gð4Þ�lmðx − y; βÞ ¼
XN
i¼1

Z
ddz½G0�liðx − z; βÞ½G0�ii

× ðz − z; βÞ½G0�imðz − y; βÞ; ð42Þ

and, another contribution, from two ϕ3 vertices

½Gð3Þ�lmðx − y; βÞ ¼
XN
ij¼1

Z
ddz

Z
ddz0½G0�liðx − z; βÞ½G0�2ij

× ðz − z0; βÞ½G0�jmðz0 − y; βÞ: ð43Þ

To compute the renormalized mass, we must study the
amputated correlation function in replica space. At the one-
loop approximation, definingM2

0 ¼ 3σN − 2m2
0, the renor-

malized temperature-dependent mass squared can be
written as

m2
RðM0; β; σÞ ¼ m2

1ðM0; β; σÞ þm2
2ðM0; β; σÞ ð44Þ

where

m2
1ðM0;β;σÞ ¼M2

0þ
λ0
2

XN
k¼1

ðf1ðM0;β;kÞþf2ðM0;β;σ;kÞÞ

ð45Þ

and

m2
2ðM0; β; σÞ ¼

XN
k¼1

ðm2
aðM0; β; kÞ þm2

bðM0; β; σ; kÞ

þm2
cðM0; β; σ; kÞÞ: ð46Þ

All of these quantities are discussed in the Appendix.
For a very large N in d ¼ 4, the temperature dependent
renormalized mass squared can be written as

m2
RðβÞ ¼ M2

0 þ
λ0N
4π2

� ffiffiffi
π

2

r X∞
n¼1

ffiffiffiffiffiffiffiffiffiffiffi
M0

ðnβÞ3
s

e−nβM0

þ ffiffiffi
π

p �
1ffiffiffi
2

p −
1

σ

�X∞
n¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
nβM0

p e−nβM0

�
: ð47Þ

For the large-N limit, the thermal mass correction in the
one-loop approximation is given by Eq. (47). Notice that in
the above equation there is a term proportional to σ−1, a
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nonperturbative effect produced by the disorder. In turn, for
a weak disorder parameter σ ≪ 1 and for sufficiently small
temperatures, β ≫ 1, the last term dominates over the
second and the third. In this case, it is easy to see that
there is a specific temperature in which the renormalized
mass squared goes to zero. It can be said that the system of
large-N replica fields presents a phase transition at such a
critical temperature. One way to proceed is to use the gap
equation to obtain nonperturbative results.
In the next section, we again use the mean-field

descriptions for phase transitions. We will restrict our
attention to the regime of very low temperatures, inves-
tigating a different perturbative expansion for the replica
field theory.

V. REPLICA INSTANTONS IN THE LARGE-N
APPROXIMATION

The aimof this section is to show the presence of instantons
(real or complex) in themodel at some range of temperatures.
At this point, let us introduce an external source JiðxÞ in
replica space, linearly coupled with each replica field. From
Eqs. (33) and (34), we are able to define the generating
functional of all correlation functions for a large-N Euclidean
replica field theory asE½ZNðJÞ� ¼ ZðJÞ. Hence, it is possible
to define the generating functional of connected correlation
functions and also the generating functional of one-particle
irreducible correlations (vertex functions) in the theory. From
the effective action, it is possible to find the effective potential
of this theory. This is a natural tool to investigate the vacuum
structure of the field theory.
However, in the following, we are going to discuss a

different perturbative expansion. Let us define Rðx − yÞ ¼
σδdðx − yÞ, and at the large-N limit, we must have a fixed
f0 ¼ σN as discussed before. We write the replica partition
functionZðJÞ as a functional differential operator acting on
a modified replica partition function without the interaction
between the replicas that we call Q0ðJÞ. This is a good
representation for ZðJÞ in the weak disorder limit, and also
for m2

0 < σN. The representation for the replica partition
function, in the presence of an external source, is similar to
the strong-coupling expansion in field theory. We have

ZðJÞ ¼ exp

�
−
1

2

XN
i;j¼1

Z
ddxddy

δ

δJiðxÞ
Rðx − yÞ δ

δJjðyÞ
�

×Q0ðJÞ; ð48Þ
where Q0ðJÞ is given by

Q0ðJÞ ¼
Z YN

j¼1

½dϕj� expð−Sð0Þeff ðϕj; JÞÞ: ð49Þ

In the above equation, taking the large-N limit,

Sð0Þeff ðϕi; JÞ is defined as

Sð0Þeff ðϕi; JÞ ¼
XN
i¼1

Z
ddx

�
1

2
ϕiðxÞð−Δþ 3f0 − 2m2

0ÞϕiðxÞ

þ
�
f0g0
3!N

�1
2

�
1 −

m2
0

f0

�1
2

ϕ3
i ðxÞ

þ g0
4!N

ϕ4
i ðxÞ þ JiðxÞϕiðxÞ

�
: ð50Þ

The action defined by the above equation describes a
large-N replica field theory with two fixed parameters g0
and f0. Notice that all of the ultraviolet divergences of this
model are fixed by Eqs. (49) and (50). It is possible to go
beyond the tree-level approximation. Working with the bare
quantities, and introducing the renormalization constants
Zϕ, Zg, and Zm, one is able to renormalize the model for
d ≤ 4. This is the standard procedure. All of the divergen-
ces of this theory can be eliminated by a wave function,
coupling constant, and mass renormalization. In practice,
performing the perturbative expansion defined by Eq. (48)
is not difficult. For instance, the two-point correlation
function is defined as

hϕiðxÞϕjðyÞi ¼
δ2ZðJÞ

δJiðxÞδJjðyÞ
����
Ji¼Jj¼0

: ð51Þ

In the following, we are interested to go in another
direction. We would like to investigate the vacuum struc-
ture in the first term of Eq. (48). For each replica field, we
can define the following potential UðϕÞ

UðϕÞ ¼ 1

2
ð3f0 − 2m2

0Þϕ2 þ λ0v
3!

ϕ3 þ λ0
4!

ϕ4; ð52Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðf0 −m2

0Þ=λ0
p

. The false and the true vac-
uum states ϕ� are given by

ϕ� ¼ −
3v
2
� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

f0
2λ0

−
m2

0

6λ0

s
: ð53Þ

Therefore, we obtained the following interesting result:
there are instantons in our model. For f0 > m2

0 > −3f0, the
system develops a spontaneous symmetry breaking in the
replica partition function. In this case, all N instantons are
complex. On the other hand, for m2

0 < −3f0 we get a
similar situation as before, however all of the N instantons
are real [81].
Let us briefly discuss the decay rate for one replica field

in this case of real instantons. Since we would like to
discuss such problems exactly as in the bounce problem in
quantum mechanics, let us define a Euclidean time τ such
that ϕðxÞ≡ ϕðτ; x⃗Þ. We have a false vacuum in the infinite
past, and we come back to it in the infinite future

ϕðτ; x⃗Þ → ϕþ; τ → �∞: ð54Þ
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In order to have a finite action for the bounce, we also
need to go to the vacuum value at spatial infinity. Hence,
we have

ϕðτ; x⃗Þ → ϕþ; jx⃗j → �∞: ð55Þ

As discussed in the literature, the picture is a formation
of bubbles in the middle of the false vacuum. Actually,
asymptotically in Euclidean space, the replica configura-
tion is in the false vacuum. A different state appears in the
core of the bubble. The probability of decay can be
calculated. There is a standard procedure to find the decay
rate in a scalar theory [82–84]. One interesting unsolved
problem is the phase diagram of liquids in a random,
porous media. Assuming strong coupling between the
fluid and the porous media, for such confined fluids, the
random-field Ising model is used to describe such systems.
These systems can develop a second or a first-order phase
transition. Since bubble nucleation is a first-order phase
transition, we expect that our approach reveals a route to
investigate such systems.

VI. CONCLUSIONS

In this paper, we consider a disorder field linearly
coupled with the scalar field of the λφ4 model defined
in a d-dimensional Euclidean space. In the presence of the
disorder field, ground state configurations of the field φðxÞ
are defined by a saddle-point equation, where the solutions
of such an equation depend on particular configurations of
the disorder field. As discussed in the literature, perturba-
tion theory is inappropriate to be used in systems where the
disorder defines a large number of local minima in the
model. One way to circumvent this problem is to average
the free energy over the disorder field.
Recently, an alternative approach to obtain the average

free energy of this system still using the replicas was
proposed. The dominant contribution to the average free
energy of this system is written as a series of the integer
moments of the partition function of the model. Each term
of the series defines a replica field theory.
A crucial point is that, in each replica partition function,

all of the replica fields must be equal in principle, and the
number of replica fields must be very large. This shows
that we are in the large-N scenario. Since we study
fluctuations around the saddle-point equations, we obtain
two groups. In one group is a generic replica partition
function with k ≤ kc, and the replica fields are fluctuating
around the zero value, which is a stable equilibrium state.
On the other hand, in the other group of replica partition
functions, the zero value of the fields does not describe
stable equilibrium states. For replica partition functions,
such that k > kc and we must define shifted fields, we

establish a connection between a spontaneous symmetry
breaking mechanism and the structure of the replica space
in the disordered model. This was done using a replica
symmetry ansatz, the only choice that is consistent with
the method. This leads to the aforementioned large-N
expansion in Euclidean replica field theory. By inves-
tigating finite-size effects in the one-loop approximation,
we showed that there is a critical temperature β−1c where
the renormalized mass is zero.
Also, following the Landau-Ginzburg approach, we

obtained that in the case where m2
0 ≥ Nσ, all of the N

replica fields in each replica partition function oscillate
around the trivial vacuum. In the large-N approximation,
the symmetry ½Z2 × Z2 � � � × Z2� is realized. This range is
equivalent to the Z2-symmetric phase for systems without
disorder. For σN > m2

0 ≥ σ, the average free energy is
defined by two kinds of replica partition functions, with
replica fields φi and ϕi, respectively. In the large-N limit, as
only the leading term is considered, one has that all the
replica fields of this leading replica partition function are
oscillating around the nontrivial vacuum. Form2

0 < σ, all of
the N replica fields in each replica partition function are
oscillating around the nontrivial vacuum. Again, taking
only the leading order term of the series that represent the
average free energy, i.e., the large-N, the symmetry
½Z2 × Z2 � � � × Z2� is broken. This situation is equivalent
to the Z2-broken symmetry for a system without disorder.
Moreover, in the large-N limit, for m2

0 < σN, we wrote
the dominant replica partition function as a functional
differential operator acting on a modified replica partition
function without the interaction between the replicas,
which has its similarities with the strong-coupling expan-
sion in field theory. Furthermore, from Eq. (53), the value
m2

0 ¼ −3σN is a boundary between real and complex
instantons. For m2

0 > −3σN, there are N complex instan-
tons in the system. For m2

0 < −3σN, the system presents N
real instantons. This conclusion is obtained in the diluted
instanton approximation. The consequences of these results
deserve further investigation.
A natural continuation of this paper is, for real instan-

tons, to study the system beyond the diluted instanton
approximation. Another continuation of this paper is to
calculate the critical exponents associated with the random-
field Ising model using the Landau-Ginzburg approach.
These issues are under investigation by the authors.
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APPENDIX: THE TEMPERATURE-DEPENDENT
RENORMALIZED MASS IN THE
ONE-LOOP APPROXIMATION

The aim of this Appendix is to discuss the temperature-
dependent renormalized mass in the one-loop approxima-
tion. We consider the system at finite temperature, i.e., with
periodic boundary conditions in Euclidean time, using the
nontrivial structure in the replica space given by Eq. (25).
In this situation, the momentum-space integrals over
one component are replaced by a sum over discrete
frequencies. For the case of Bose fields, we must perform
the replacement

Z
ddp
ð2πÞd fðpÞ →

1

β

Z
dd−1p
ð2πÞd−1

X∞
n¼−∞

f

�
2nπ
β

;p

�
; ðA1Þ

where β is the radius of the compactified dimension of the
system. This field theory on S1 × Rd−1 has the Euclidean
topology of a field theory at finite temperature. From the
two-point Schwinger function, we have to calculate

fð1Þij ðM0; βÞ ¼
δij
β

Z
dd−1p
ð2πÞd−1

X∞
n¼−∞

1

ðð2πnβ Þ2 þ p2 þM2
0Þ
ðA2Þ

and

fð2ÞðM0; β; σÞ

¼ σ

β

Z
dd−1p
ð2πÞd−1

X∞
n¼−∞

×
1

ðð2πnβ Þ2 þ p2 þM2
0Þðð2πnβ Þ2 þ p2 þM2

0 − kσÞ ;

ðA3Þ

where p ¼ ðp2; p3; ::; pdÞ. The integral fð1Þij ðM0; βÞ can be
calculated using dimensional regularization [85–89]. We
obtain

fð1Þij ðM0; βÞ ¼
δij
2β

1

ð2 ffiffiffi
π

p Þd−1 Γ
�
3 − d
2

�

×
X∞
n¼−∞

1

ðð2πnβ Þ2 þM2
0Þ

3−d
2

: ðA4Þ

After using dimensional regularization, we have to
analytically extend the modified Epstein zeta function
[90,91]. This zeta function is defined as

Eðs; aÞ ¼
X∞
n¼−∞

1

ðn2 þ a2Þs ; ðA5Þ

which converges absolutely and uniformly for ReðsÞ >
1=2. Its analytic continuation defines a meromorphic
function of s, with poles at s¼1=2;−1=2;−3=2;−5=2;…
and analytic at s ¼ 0. A useful representation of the
analytic extension of this function is

Eðs; aÞ ¼
ffiffiffi
π

p
ΓðsÞa2s−1

×

�
Γ
�
s −

1

2

�
þ 4

X∞
n¼1

ðnπaÞs−1
2Ks−1

2
ð2πnaÞ

�
;

ðA6Þ

where KνðzÞ is the modified Bessel function of the second
kind. Using a modified minimal subtraction renormaliza-
tion scheme, we discuss each term that contributes to the

renormalized mass squared. Using that f1ðM0; β; kÞ ¼
δijfð1Þij ðM0; β; kÞ we get

f1ðM0; β; kÞ ¼
k

ð2πÞd=2
X∞
n¼1

�
M0

nβ

�d
2
−1
Kd

2
−1ðnβM0Þ: ðA7Þ

Let us discuss fð2Þðσ;M0; β; kÞ. We have

fð2ÞðM0; β; σ; kÞ

¼ σ

β
rðdÞ

Z
dqqd−2

X∞
n¼−∞

×
1

ðð2πnβ Þ2 þ q2 þM2
0Þðð2πnβ Þ2 þ q2 þM2

0 − kσÞ ; ðA8Þ

where

rðdÞ ¼ 2πðd−2Þ=2

Γðd−2
2
Þ

is an analytic function in d. Let us use the following integral

Z
∞

0

dx
xμ−1

ðx2 þ αÞðx2 þ γÞ ¼
π

2

γ
μ
2
−1 − α

μ
2
−1

α − γ
csc

�
πμ

2

�
: ðA9Þ

Defining

qðdÞ ¼ π

2
rðdÞ csc

�
π

2
ðd − 1Þ

�

we can write fð2Þðσ;M0; β; kÞ as

fð2ÞðM0; β; σ; kÞ ¼ fð21ÞðM0; β; kÞ þ fð22ÞðM0; β; σ; kÞ;
ðA10Þ

where
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fð21ÞðM0;β;kÞ¼−
qðdÞ
βk

X∞
n¼−∞

1

ðð2πnβ Þ2þM2
0Þ

3−d
2

ðA11Þ

and

fð22ÞðM0; β; σ; kÞ ¼
qðdÞ
βk

X∞
n¼−∞

1

ðð2πnβ Þ2 þM2
0 − kσÞ3−d2 :

ðA12Þ

Using the definition of the Epstein zeta function defined
before and cðdÞ given by

cðdÞ ¼ πð3d−6Þ=2

2ð3−dÞΓðd−2
2
Þ csc

�
π

2
ðd − 1Þ

�
; ðA13Þ

we can write fð21ÞðM0; β; kÞ and fð22Þðσ;M0; β; kÞ, respec-
tively, as

fð21ÞðM0; β; kÞ ¼ −
cðdÞ
k

β2−dE

�
3 − d
2

;
M0β

2π

�
ðA14Þ

and

fð22ÞðM0; β; σ; kÞ ¼
cðdÞ
k

β2−dE

�
3 − d
2

;
β

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − kσ
q �

:

ðA15Þ

We will once again use the analytic representation of the
function Eðs; aÞ and the modified minimal subtraction
renormalization scheme. Defining

g1ðM0; d; kÞ ¼ 2π
d−3
2

Γðd−1
2
Þ

Γðd−2
2
Þ
Md−2

0

k

and

g2ðM0; d; kÞ ¼ 2π
d−1
2

Γðd−1
2
Þ

Γðd−2
2
Þ
ðM2

0 − kσÞd−22
k

we can write the Eq. (A14) and Eq. (A15) as

fð21ÞðM0; β; kÞ ¼ −g1
X∞
n¼0

ðnM0βÞ3−d2 K3−d
2
ðnβM0Þ ðA16Þ

and

fð22ÞðM0;β;σ;kÞ

¼ g2
X∞
n¼0

�
nβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0− kσ
q 	3−d

2 K3−d
2

�
nβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − kσ
q 	

: ðA17Þ

The renormalized temperature-dependent mass squared
m2

1ðM0; β; σ; kÞ can be written as

m2
1ðM0; β; σ; kÞ ¼ M2

0 þ λ
XN
k¼1

ðf1ðM0; β; kÞ

þ fð21ÞðM0; β; kÞ þ fð22ÞðM0; β; σ; kÞÞ:
ðA18Þ

Let us defined m2
aðM0; β; kÞ, m2

bðM0; β; σ; kÞ and
m2

cðM0; β; σ; kÞ, such that the contribution given by
m2

2ðM0; β; σ; kÞ is written as

m2
2ðM0; β; σÞ ¼

XN
k¼1

ðm2
aðM0; β; kÞ þm2

bðM0; β; σ; kÞ

þm2
cðM0; β; σ; kÞÞ: ðA19Þ

We have

m2
aðM0; β; kÞ ¼

k
β

Z
dd−1p
ð2πÞd−1

X∞
n¼−∞

1

ðð2πnβ Þ2 þ p2 þM2
0Þ2

;

ðA20Þ
m2

bðM0; β; σ; kÞ

¼ kσ
β

Z
dd−1p
ð2πÞd−1

×
X∞
n¼−∞

1

ðð2πnβ Þ2 þ p2 þM2
0Þ2ðð2πnβ Þ2 þ p2 þM2

0 − kσÞ
ðA21Þ

and finally

m2
cðM0; β; σ; kÞ

¼ σ2

β

Z
dd−1p
ð2πÞd−1

×
X∞
n¼−∞

1

ðð2πnβ Þ2 þ p2 þM2
0Þ2ðð2πnβ Þ2 þ p2 þM2

0 − kσÞ2 :

ðA22Þ
After using dimensional regularization and considering

the analytical extension for the Epstein function we can
write m2

aðM0; L; kÞ as

m2
aðM0; β; kÞ ¼

Md−4
0 k

ð2πÞd=2
X∞
n¼1

ðnβM0Þ4−d2 K4−d
2
ðnβM0Þ: ðA23Þ

To solve the integral in m2
b and m2

c, we can use the
Feynman parametrization

1

asbl
¼ Γðsþ lÞ

ΓðsÞΓðlÞ
Z

1

0

dx
xs−1ð1 − xÞl−1

½axþ bð1 − xÞ�sþl ; ðA24Þ

to write the respective integrands in an adequate form. After
this and using the expression
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Z
ddq
ð2πÞd

ðq2Þa
ðq2 þ AÞb ¼

Γðb − a − d=2ÞΓðaþ d=2Þ
ð4πÞd2ΓðbÞΓðd=2Þ A−ðb−a−d=2Þ; ðA25Þ

and defining

h1ðdÞ ¼
1

ð2πÞd2ðd − 3Þðd − 5ÞΓ
�
7 − d
2

�

and

h2ðdÞ ¼
1

ð2πÞd2ðd − 3Þðd − 5Þðd − 7ÞΓ
�
9 − d
2

�

such contributions are given by

m2
bðM0; β; σ; kÞ ¼ h1ðdÞ

� ffiffiffi
8

p ðd − 3Þ
Γð5−d

2
Þ

kMd−4
0

σ

X∞
n¼1

ðnβM0Þ4−d2 K4−d
2
ðnβM0Þ

−
16

Γð3−d
2
Þ
Md−2

0

σ2
X∞
n¼1

ðnβM0Þ2−d2 K2−d
2
ðnβM0Þ

þ 16

Γð3−d
2
Þ
ðM2

0 − kσÞd−22
σ2

X∞
n¼1

�
nβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − kσ
q 	2−d

2 K2−d
2

�
nβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − kσ
q 	�

ðA26Þ

and

m2
cðM0; β; σ; kÞ ¼ h2ðdÞ

� ffiffiffiffiffi
32

p ðd − 3Þ
Γð5−d

2
Þ

Md−4
0

k2
X∞
n¼1

ðnβM0Þ4−d2 K4−d
2
ðnβM0Þ

−
32

Γð3−d
2
Þ
Md−2

0

k3σ

X∞
n¼1

ðnβM0Þ2−d2 K2−d
2
ðnβM0Þ þ

2ðd − 3Þ
Γð7−d

2
Þ
Md−6

0

k2
X∞
n¼1

ðnβM0Þ6−d2 K6−d
2
ðnβM0Þ

þ 32

Γð3−d
2
Þ
ðM2

0 − kσÞd−22
k3σ

X∞
n¼1

�
nβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − kσ
q 	2−d

2 K2−d
2

�
nβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − kσ
q 	�

: ðA27Þ
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