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A simple theorem is proved: When a gauge-invariant local field theory is written in terms of matter fields
alone, a composite gauge boson or bosons must be formed dynamically. The theorem results from the fact
that the Noether current vanishes in such theories. The proof is carried out by use of the charge-field algebra
at equal time in the Heisenberg picture together with the well-established analyticity of the form factor
of the current. While there is no need of diagram calculation for the proof, we demonstrate in the leading
1=N expansion of the existing models what the theorem means in diagrams and how the composite gauge
boson emerges.
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I. INTRODUCTION

Some theories possess a local gauge symmetry, yet do
not contain a gauge field explicitly. The CPN model [1] is
one of the examples. It was shown in the leading 1=N
expansion of the CPN−1 model that a U(1) gauge boson is
indeed generated as a composite state of matter particles
[2]. The U(1) gauge symmetry of the CPN model was
extended by Akhmedov [3] to the SU(2) symmetry. More
recently, models were built with fermion matter alone [4].
Whether the symmetry is Abelian or non-Abelian, the
models with fermion matter cannot be reproduced by
extension of the CPN model nor by means of the auxiliary
field trick [5,6]. Nonetheless, it was explicitly shown by the
large N expansion of the diagram calculation that these
models indeed generate the composite gauge bosons as the
massless bound states of the matter particles.
There is one peculiar feature common to the Lagrangian

of composite gauge bosons. That is, the Noether current
does not exist. This can be shown generally as a direct
consequence of local gauge invariance without referring to
specific binding forces [4]. In fact, in the case of the non-
Abelian gauge theory, if the Noether current existed,
formation of composite gauge bosons would contradict
with the theorem of Weinberg and Witten [7].
The diagrammatic study of the composite gauge bosons

has been limited to the leading order of the 1=N expansion
which amounts to summing up an infinite series of loop
diagrams of the matter particles [2,4]. Because of the
complexity of perturbative computation, we cannot keep
such calculation under control beyond the leading order
of 1=N. Nonetheless, it is natural to speculate that the
composite gauge bosons are always formed irrespectively
of specific details of the binding force when the total
Lagrangian is gauge invariant with matter particles alone.
In this paper, we attempt to prove the formation of

composite gauge bosons to all orders of binding inter-
actions without recourse to diagrams. The proof is based
on the equal-time algebra of charges and fields in the

Heisenberg picture, which incorporates all orders of inter-
actions. We show that a composite gauge boson must
appear as a pole in the form factor of the current carrying its
quantum numbers. Although a diagrammatic verification is
redundant for the proof, it is reassuring and also visually
helpful to understand the proof in terms of diagrams. After
completing our proof, therefore, we demonstrate in the
leading 1=N expansion of an existing model how the
statement of our theorem is realized in diagrams.
We organize the paper as follows: First, the theorem is

stated in Sec. II. After the necessary input of field theory is
carefully reviewed in Sec. III, the theorem is proved in
Sec. IV with the equal-time algebra of charges and fields
for the non-Abelian gauge theories of the boson matter. In
Sec. V, we demonstrate in diagrams how the statement of
the theorem is realized in the leading 1=N order of a
concrete non-Abelian model. It is shown in Sec. VI that the
theorem holds just as well for the U(1) gauge theories.
In order to apply our argument to the fermion matter, we
discuss in Sec. VII an issue in the canonical quantization
of the Dirac field, specifically, a problem related to the
quantization of constrained systems and a possibility of
justifying the charge-field algebra without relying on the
canonical quantization. We conclude with some perspec-
tives in theory and phenomenology in Sec. VIII.

II. THEOREM

The theorem is stated as follows:
If a gauge-invariant Lagrangian field theory is written in

terms of matter fields alone, there must be a composite
gauge boson or bosons made of the matter particles.
The gist of the theorem is that formation of the composite

gauge boson(s) is not a possibility but the necessity.
The input crucial to prove this theorem is the absence of
theNoether current in this class of theories.We study the form
factor of the current in the equal-time commutation relation of
charges and fields by starting away from the gauge-symmetry
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limit. Then we approach the gauge symmetry by continu-
ously varying a certain parameter and prove the theorem
without referring to diagrams or details of binding forces.
The theorem holds in the flat space-time of (3þ 1)

dimensions for both the Abelian and non-Abelian theories
with boson or fermionmatters. It is not dual to theWeinberg-
Witten theorem [7], which states that the non-Abelian
massless gauge bosons cannot exist if the corresponding
Lorentz-covariant conserved currents exist. Their theorem is
mute as towhether the non-Abelian gauge bosons must exist
or not when such currents are absent.

III. NON-ABELIAN SYMMETRY WITH
BOSON MATTER

All that we use for the proof is the basic quantum field
theory and its simple applications. To emphasize specific
subtleties relevant to our proof, however, we give a brief
review on elementary subjects, some of which may have
fallen into oblivion by now.

A. Gauge variation of Lagrangian

The reason to discuss the spinless boson matter first
is mainly the notational and technical simplicity related to
the spins. But there is one complication in the canonical
quantization of the Dirac field. Otherwise, no intrinsic
difference exists between the boson matter and the fermion
matter.
The Lagrangian is in the form of

Ltot ¼ ∂μΦ†∂μΦ −m2Φ†Φþ Lint: ð1Þ
A set of the scalar fields Φ=Φ† transform locally like an
n=n̄-dimensional representation of a Lie group;

Φ → UΦ; Φ† → Φ†U†; ð2Þ
where U is given in terms of the n × n generator matrices
Ta as

U ¼ exp½iTaαaðxÞ�: ð3Þ
The matrices Ta obey ½Ta; Tb� ¼ ifabcTc with the structure
constants fabc.
We introduce N copies of the n-component complex

scalar pairs Φi=Φ†
i (i ¼ 1; 2; 3 � � �N) since, after complet-

ing the proof, we make the large N expansion in the
diagram calculation to demonstrate how the theorem works
in the explicit model.1 However, we shall suppress the copy
index i hereafter unless we need to recall it.

The interaction Lagrangian Lint is a functional of Φ, Φ†

and their first derivatives in the known models. We assume
that Lint does not contain time derivatives of fields higher
than the first derivative. That is, Lint should be just as
singular as the free Lagrangian L0 in regard to the
derivatives of the field. Otherwise, the gauge variation of
L0 cannot be compensated with that of Lint.

2

Since the free Lagrangian L0 is not invariant under the
local gauge transformation, Eq. (2), the interaction
Lagrangian Lint must counterbalance the gauge variation
δL0 of the free Lagrangian as

δLint ¼ −δL0: ð4Þ

Since δL0 is known from the free Lagrangian in Eq. (1) as

δL0 ¼ ∂μΦ†ðU†∂μUÞΦþΦ†ð∂μU†UÞ∂μΦ

þΦ†ð∂μU†∂μUÞΦ; ð5Þ

the relation of Eq. (4) determines the gauge variation δLint
uniquely even without knowing Lint itself. We place an
emphasis on this trivial but powerful constraint of gauge
invariance since it allows us to proceed in our proof without
knowing an explicit form of Lint. We would need the form
of Lint only when we carry out, as we shall do later, a
diagrammatic demonstration of the theorem in the inter-
action picture.
Whereas we are interested in the gauge-invariant

Lagrangian of Eq. (1), we insert a parameter λ in front of
Lint as

Lλ
tot ¼ L0 þ λLint; ð6Þ

and study how physics varies as λ approaches unity.
The purpose of this seemingly redundant procedure is
the following: Since the composite gauge boson carries the
same quantum numbers JPC ¼ 1−− as the Noether current,
we wish to study the gauge boson through the Noether
current. However, if we stayed exactly in the gauge-
symmetry limit (λ ¼ 1), we would not be able to do so
since the Noether current vanishes there according to the
general theorem. (cf. Appendix A.) In order to study the
pole of a composite gauge boson in the form factor,
therefore, we must approach the gauge-symmetry limit
with Lλ

tot of Eq. (6) by continuously varying the value of
parameter λ to 1. By doing so, we can study where the
bound-state pole of JPC ¼ 1−− is located off the gauge
symmetry and how it moves to zero, turning into the

1In fact, there is another reason for considering a large N.
In our proof one-particle states will be treated as the asymptotic
states. If confinement occurs with the composite gauge bosons,
the one-matter-particle states are, strictly speaking, not the
asymptotic states of the S matrix. The simplest way to avoid
this inconvenience is to consider the case that there exists a
sufficient number of matter multiplets to counter the confinement.

2Higher derivatives would ruin causality in dynamics. Recall
in classical physics that the solutions are acausal when the force
contains a higher derivative, for instance, the radiation damping
of a point charge. The same happens in classical field theory.
In quantum theory we would not be able to quantize canonically
in the Heisenberg picture if Lint is more singular.
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massless gauge boson in the gauge limit. With Lλ
tot as given

in Eq. (6), we approach the gauge limit along one special
path in the functional space of the Lagrangian.3

B. Noether current

The Noether current vanishes in the gauge-symmetric
field theories for which the Lagrangian consists only of
matter fields. This is a simple inevitable consequence
of gauge invariance, Abelian or non-Abelian. Since the
Noether current due to the free Lagrangian cannot vanish
by itself, this must happen such that the contribution from
the interaction Lagrangian cancels that from the free
Lagrangian. The proof is very simple, as is given in
Appendix A for the non-Abelian boson matter. Extension
to other cases is trivial.
In short, the gauge-symmetric Lagrangian Ltot varies

under the infinitesimal local phase transformation by αaðxÞ
of Eqs. (2) and (3) as

δLtot ¼ ið∂μJaμÞαa þ iJaμ∂μαa þOðα2Þ; ð7Þ

after use of the equations of motion for Φ and Φ† in the
first term. Since αaðxÞ is an arbitrary function of x, we can
treat αaðxÞ and ∂μαaðxÞ as independent of each other.
Consequently, the first term of Eq. (7) leads to the definition
of the Noether current and its conservation. The second term
simply states that the Noether current must vanish.
Both L0 and Lint contribute to Jaμ since both contain the

first derivatives of Φ and Φ† in order to satisfy gauge
invariance. When we modify Ltot into L0 þ λLint, it is
no longer gauge invariant away from λ ¼ 1 and therefore
the Noether current Jλaμ survives. It is simply given
(cf. Appendix A) by

Jλaμ ¼ ið1 − λÞðΦ†Ta∂
↔

μΦÞ: ð8Þ

The factor (1 − λ) in front indicates the fact that the Noether
current vanishes in the gauge limit. The Noether current
thus takes the form identical with that of the free field
theory up to the factor (1 − λ):

Jfreeaμ ¼ lim
λ→0

�
1

1 − λ
Jλaμ

�
: ð9Þ

However, we make a trivial but important remainder about
Eq. (8). That is,

Jλaμ ≠ ð1 − λÞJfreeaμ : ð10Þ

The reason is that when we use Eq. (8) the fields in right-
hand side are in the Heisenberg picture; that is, the Φ=Φ†

fields in Jλaμ incorporate all the λ dependence through the
interaction, while the Φ=Φ† fields in Jfreeaμ are independent
of λ (¼ 0) by definition. It would be clearer in this respect if
we wrote the fields of the Heisenberg picture asΦðx; λÞ and
Φ†ðx; λÞ. The implicit λ dependence of Φ and Φ† in the
Heisenberg picture incorporates all interactions and it is
responsible for the formation of the bound states among
others.

C. Equal-time algebra of charges and fields

We use the equal-time algebra of the charges and fields
in the Heisenberg picture for our proof of the theorem.With
the “canonical momentum” defined by Π≡ ∂L=∂ð∂0ΦÞ,
the field Φ obeys the equal-time commutation relation,

½Φrðx; tÞ;Πsðy; tÞ� ¼ iδrsδðx − yÞ: ð11Þ

The subscripts ðr; sÞ refer to components of the
n-dimensional representation. Equation (11) holds sepa-
rately for each of N copies. Φ† and Π† obey the same form
of commutation relation, and all other equal-time commu-
tators among Φ, Φ†, Π, and Π† vanish. In terms of these
canonical variables, the charge component of the Noether
current is expressed as

Jλa0 ¼ iðΦ†TaΠ† − ΠTaΦÞ
¼ ið1 − λÞðΦ†Ta∂

↔

0ΦÞ; ð12Þ
where the summation over the N copies is understood.
Notice that the factor (1 − λ) appears when Ja0 is written
in Φ, Φ† and their time derivatives. But Eq. (12) does not
mean that Π and Π† are proportional to 1 − λ
(cf. Appendix B). The Noether charge is defined by

Qλ
a ¼

Z
d3xJλa0ðx; tÞ: ð13Þ

It is independent of time since the Noether current is
conserved. By use of the canonical commutation relations,
one can show that the charges form the Lie algebra,

½Qλ
a; Qλ

b� ¼ ifabcQλ
c: ð14Þ

The commutation relations of Qλ
a with the fields Φ=Φ†

form the charge-field algebra,

½Qλ
a;ΦrðxÞ� ¼ −ðTaÞrsΦsðxÞ; ð15Þ

and the Hermitian conjugates. It should be emphasized that
both Eqs. (14) and (15) are the direct consequences of the
canonical commutation relations given by Eq. (11) and
therefore valid irrespectively of Lint. The peculiarity of the

3Obviously there are many different ways to approach the
gauge limit. For instance, one may let λ → 1 with the Lagrangian
Ltot ¼ L0 þ Lint þ ð1 − λÞLbr where Lbr is some arbitrarily
chosen gauge-breaking interaction. Instead, we have chosen here
the specific form Lλ

tot for which the Noether current away from
λ ¼ 1 takes the simple form determined by the free Lagrangian
L0 alone.
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matter gauge theories to be emphasized here is that
the Noether charge operator Qλ

a vanishes in the gauge-
symmetry limit according to Eq. (12).
Now here comes the key point. One might notice that

something does not look quite right about Eqs. (14) and
(15) at least superficially. Let us take the matrix elements of
both sides of Eq. (15), for instance. When the charge Qλ

a is
expressed with the Noether current as written in the second
line of Eq. (12), it looks as if its matrix elements were
always proportional to (1 − λ). If so, when they are
substituted in Eq. (15), the left-hand side would be
infinitesimally small like (1 − λ) near λ ¼ 1. On the other
hand, the matrix element of the right-hand side does not
vanish at λ ¼ 1. The same superficial inconsistency appears
as ð1 − λÞ2 vs (1 − λ) from Eq. (14) too. How should we
answer to this question?
There is no computational error here. The fact that

charge operator Qλ is proportional to (1 − λ) is a manifes-
tation of the absence of the Noether current in the gauge-
invariant theories that consist only of matter fields. Then,
how can the charge-field commutation relation of Eq. (15)
hold near λ ¼ 1?
We shall find that this is the place where the formation of

the composite gauge bosons enters and solves the puzzle.
By examining the form factor of the Noether current in the
following section, we shall find that a composite vector
bound state is formed in the channel of Jλaμ, and therefore

that the matrix element of iðΦ†Ta∂
↔

μΦÞ at zero momentum
transfer turns out to be proportional to 1=ð1 − λÞ and
compensates the factor (1 − λ) in front of the operator

ðΦ†Ta∂
↔

μΦÞ.

D. Dispersion relation for the form factor
of the Noether current

To study the consistency of the powers of (1 − λ), we
need to examine the matrix elements for both sides of
Eq. (15) between the vacuum h0j and the one-particle state
jpi, in particular, the one-particle matrix element of Jλaμ
near the zero momentum-transfer limit.

We define the Lorentz-scalar form factor Fðt; λÞ by
separating (1 − λ) from Jλaμ as

1

1 − λ
hp0; sjJλaμð0Þjp; ri

¼ hp0; sjiðΦ†Ta∂μ

↔
ΦÞjp; ri

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4Ep0Ep

s
ðp0 þ pÞμðTaÞsrFðt; λÞ; ð16Þ

where the variable t is the invariant momentum transfer
t ¼ ðp0 − pÞ2. Even after the factor (1 − λ) is removed from
the Noether current, the form factor Fðt; λÞ still depends
on λ. This λ dependence comes from the multiple inter-
actions of Lλ

int of Eq. (6), which is implicit in the Heisenberg

operator iðΦ†Ta∂μ

↔
ΦÞ, as we have already pointed out.

Analyticity of the function Fðt; λÞ is well known. Fðt; λÞ
is analytic in the variable t with the branch points on the
positive real axis of the complex t plane. The lowest branch
point t0 is located at the invariant mass squared of the
lowest two-particle threshold. If there is a bound state of
JPC ¼ 1−− with mass mbound, the function Fðt; λÞ has a
simple pole at m2

bound below t0 and, barring a tachyon,
above t ¼ 0 for λ ≠ 1. (See the left-side figure in Fig. 1.)
The inverse of the form factor 1=Fðt; λÞ possesses the

cuts at the same locations as Fðt; λÞ, but a bound-state
pole of Fðt; λÞ becomes a zero of 1=Fðt; λÞ and therefore
does not generate a singularity. The dispersion relation for
1=Fðt; λÞ therefore takes the form of4

Im t Im t

 Re t Re t

F(t, λ) 1/F(t, λ)

FIG. 1. Analyticity of Fðt; λÞ and 1=Fðt; λÞ in the complex t plane. The cross in the left-side figure indicates the pole due to a bound
state of JPC ¼ 1−− for Fðt; λÞ. The crosses in the right-side figure are due to possible poles of 1=Fðt; λÞ, that is, zeros of Fðt; λÞ.

4If Fðt; λÞ has a zero, it turns into a pole of 1=Fðt; λÞ, which
would have to be taken into account in writing the dispersion
relation for 1=Fðt; λÞ. Such zeros can appear, in general, on the
real axis of t and/or pairwise symmetrically above and below the
real axis because of the relation Fðt; λÞ� ¼ Fðt�; λÞ, where
the asterisk indicates a complex conjugate. But a zero does
not appear for Fðt; λÞ at t ¼ 0. The reason for Fð0; λÞ ≠ 0 is that
ð1 − λÞFð0; λÞ is equal to the nonvanishing charge of the global
symmetry for λ ≠ 1, which must be nonzero.
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1

Fðt; λÞ ¼
1

π

Z
∞

t0

Imð1=Fðt0; λÞÞ
t0 − t − iϵ

dt0 þ
X
i

ciðλÞ
tiðλÞ − t

þ c0ðλÞ;

ð17Þ

where tiðλÞ’s (i ¼ 1; 2; � � �) are the locations of zeros of
Fðt; λÞ and ciðλÞ’s are constants independent of t with
c0ðλÞ ¼ 1=Fð∞; λÞ. We are interested in the formation of
a composite vector boson with small mass (→ 0 as λ → 1),
that is, a zero of 1=Fðt; λÞ on the positive real axis in the
neighborhood of t ¼ 0. Given Eq. (17), we can expand
1=Fðt; λÞ in the Taylor series in t in the neighborhood of
t ¼ 0 as

1

Fðt; λÞ ¼ a0ðλÞ þ a1ðλÞtþOðt2Þ; ðλ ≠ 1Þ; ð18Þ

where a0ðλÞ and a1ðλÞ are some real finite constants that
may depend on λ. Having expressed the behavior of
1=Fðt; λÞ in the form of Eq. (18), we are ready to prove
the theorem.

IV. PROOF OF THEOREM

We take the matrix element of Eq. (15) between the
vacuum h0j and the one-matter-particle state jp; si, and
insert a complete set of states

P jnihnj between Qλ
a and

ΦðxÞ. Since Qλ
a is a generator of a Lie group, only the one-

particle state that belongs to the same representation as
jp; si survives in the sum. We use Eq. (16) to express
hp; sjQλ

ajp; ri in terms of the form factor. We also use the
relations,

h0jΦrðxÞjp; si ¼
ffiffiffiffiffiffiffiffi
1

2Ep

s ffiffiffiffiffi
Z2

p
δrse−ipx;

h0jQλ
a ¼ 0; ð19Þ

where Z2 is the wave-function renormalization of the
matter particle (0 < Z2 < 1). It should be emphasized that
Eq. (19) is valid to all orders of interaction. After factoring
out the group-theory coefficients and

ffiffiffiffiffi
Z2

p
, we are simply

left with

ð1 − λÞFð0; λÞ ¼ 1; ð20Þ

or

Fð0; λÞ ¼ 1

1 − λ
: ð21Þ

This is what the charge-field algebra imposes on the form
factor Fðt; λÞ at t ¼ 0. Since the charge-field algebra is just
as fundamental as quantum field theory itself, the form
factor Fðt; λÞ must obey Eq. (21) no matter what the
interaction of matter particles may be.
How can the form factor of iðΦ†Ta∂

↔

μΦÞ satisfy
Eq. (21)? There must be some dynamical reason for it.

The only possibility allowed by analyticity is that a bound
state is present in this channel with the mass square
proportional to (1 − λ) so that Fðt; λÞ ∼ 1=ðm2

bound − tÞ near
t ¼ 0. No other possibility exists according to the behavior
of the form factor allowed by analyticity.
When we compare Eq. (21) with Eq. (18), namely, the

expansion of 1=Fðt; λÞ near t ¼ 0, we obtain

a0ðλÞ ¼ 1 − λ; ð22Þ

therefore,

1

Fðt; λÞ ¼ ð1 − λÞ þ a1ðλÞtþOðt2Þ: ð23Þ

The coefficient a1ðλÞ cannot be determined by the group
theory alone. Equation (23) means that Fðt; λÞ has a
dynamical pole at

t ¼ −
1 − λ

a1ðλÞ
: ð24Þ

We call this pole dynamical since it is not an artifact
due to a definition or a kinematical choice of amplitude.
The value of a1ðλÞ that determines the location of the
pole depends not only on λ but also on details of the binding
force. Therefore, this pole in t possesses all the properties
of a physical bound state. It ought to be a composite
vector meson.
Analyticity of the form factor follows from local field

theory. With the help of analyticity, the charge-field algebra
thus requires that a bound state be formed in the channel of
JPC ¼ 1−− with the mass squared proportional to (1 − λ).
When this happens, the multiplicative factor 1 − λ of the
charge operator Qλ

a coming from the Noether current is
canceled by the dynamical factor 1=ð1 − λÞ due to the
bound-state pole ∼1=ðm2

bound − tÞ in Fðt; λÞ, where
m2

bound ∝ ð1 − λÞ. There is no other possibility. The puzzle
is thus solved and the proof has been completed.
It should be pointed out that the crucial relation

Eq. (21) for our proof can also be obtained in the form
of ½ð1 − λÞFð0; λÞ�2 ¼ ð1 − λÞFð0; λÞ by taking the one-
particle expectation value for both sides of the charge
algebra Eq. (14).
We add a few remarks before closing this short section.
The preceding argument gives us one interesting by-

product: Although the local Noether current vanishes in the
gauge limit, the conserved Noether charge can still be
defined for the matter particles through the limiting value
limλ→1ð1 − λÞFð0; λÞ. The value of this charge is equal to
what we would naively assign as the global charge to the
matter particle. It is reassuring that we still have the global
Noether charge as the conserved quantum number in the
gauge-symmetry limit even though the Noether current
operator itself disappears.
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Existence of the non-Abelian Noether charges as the
limiting values has no conflict with the Weinberg-Witten
theorem. To rule out the non-Abelian gauge-boson for-
mation by the Weinberg-Witten theorem, we must have a
Lorentz-covariant conserved current density that is capable
of transferring spatial momentum [7]. In the gauge theories
that consist only of matter fields, such a local current
density does not exist in the gauge-symmetry limit.
Therefore the global charge as defined above does not
interfere with the Weinberg-Witten theorem.
Once a set of massless vector-bound states are formed in

a gauge-invariant theory, these bosons ought to be the
gauge bosons of the underlying Lie group. The argument
leading to this conclusion is, in short, that there is no other
way known in field theory to accommodate such massless
vector bosons in conformity with the gauge symmetry built
in the total Lagrangian. When the couplings of higher
dimension are included, perturbative renormalizability does
not hold in the space-time dimension of four. Nonetheless,
when they are written in terms of effective gauge fields,
all interactions up to the dimension four are exactly the
same as in the standard renormalizable gauge theory.
The couplings of the higher dimension for the matter fields
can be combined and cast into gauge-invariant combina-
tions with the effective vector gauge fields. The explicit
demonstration was given through diagram computation of
the higher-dimensional couplings up to the dimension six
in the 1=N expansion of the known Abelian and non-
Abelian models [4].

V. DIAGRAMMATIC STUDY

The proof of our theorem is complete in the preceding
section. Nothing needs to be added mathematically. Since
the proof does not refer to any specific group property of
the matter fields or their interactions, the theorem should
hold for all non-Abelian gauge theories of boson matter.
Nonetheless, it is reassuring to see that the bound-state pole
is indeed generated in the form factor and that the pole
migrates with the value of parameter λ in the way as we
have asserted. It will help us to envision the theorem in
terms of diagrams since the diagrams often give us better or
more intuitive understanding of physics.
For diagrammatic demonstration, we choose the SU(2)-

doublet model and make the large N expansion. Except for
keeping the leading 1=N terms, the diagrammatic calcu-
lation below makes no approximation. To work in the large
N expansion, we introduce the N doublets of matter. The
interaction Lagrangian of the SU(2) gauge symmetry is
given by [3,4]

Lλ
int ¼ λ

ðPiΦ
†
i τa∂

↔

μΦiÞð
P

jΦ
†
jτa∂

↔μ
ΦjÞ

4
P

kΦ
†
kΦk

; ð25Þ

where the summations over i, j, and k run from 1 to N.
When the free Lagrangian ofΦ andΦ† is added to this Lλ

int,

the total Lagrangian L0 þ Lλ
int is SU(2) gauge invariant at

λ ¼ 1. When the value of λ is in a right range, this
interaction generates an SU(2) triplet of bound states in
the channel of JPC ¼ 1−−. In the gauge-symmetry limit, the
force is just right to make the bound states exactly massless
in the leading 1=N order.5

When we perform the diagram calculation, we express
the denominator of Eq. (25) in sum of its vacuum expect-
ation value and normal-ordered product and expand it
around the vacuum expectation value in the power series of
the normal-ordered terms [4],

Lλ
int ¼ λ

ðPiΦ
†
i τa∂

↔

μΦiÞð
P

jΦ
†
jτa∂

↔μ
ΦjÞ

4
P

kh0jΦ†
kΦkj0i

×
X
l¼0

ð−1Þl
� P

k∶Φ
†
kΦk∶P

kh0jΦ†
kΦkj0i

�
l
; ð26Þ

where ∶Φ†Φ∶ denotes the normal-ordered product of Φ†Φ.

To obtain the form factor Fðt; λÞ of iðΦ† 1
2
τa∂

↔

μΦÞ defined
in Eq. (16), we follow the leading 1=N computation of the
two-body scattering amplitude performed in Ref. [4].
It amounts to an iteration of the bubble diagrams, as shown
in Fig. 2.
After the group-theory coefficients have been factored

out, the form factor Fðt; λÞ is obtained as the solution of the
simple algebraic equation

Fðt; λÞ ¼ 1þ KðtÞFðt; λÞ; ð27Þ

where KðtÞ comes from the single bubble in the left-side
figure of Fig. 2. Since we are interested in Fðt; λÞ near
t ¼ 0, we need KðtÞ also near t ¼ 0 in Eq. (27). We carry
out the loop integral of the bubble with the dimensional
regularization to preserve gauge invariance. The result is

pp’ p’p

q q

Q Q

FIG. 2. The form factor Fðt; λÞ in the leading 1=N order
(t ¼ q2). Each bubble in the left-side figure gives the function
KðtÞ in Eq. (27) and its iteration generates a vector-bound state in
the right-side figure.

5We should remark here that the form of Lint appears to be
unique up to the addition of terms that are gauge invariant by
themselves, e.g., globally invariant nonderivative interactions. It
is easy to show that such nonderivative interactions do not affect
the composite gauge-boson mass nor coupling in the leading 1=N
order [4].
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KðtÞ ¼ λ

�
1þ ð1 −D=2Þ t

6m2

�
þOðt2Þ; ð28Þ

wherem is the matter-particle mass andD is the space-time
dimension. With this function KðtÞ, the inverse form factor
is given by

1

Fðt; λÞ ¼ ð1 − λÞ − λ
ð1 −D=2Þt

6m2
þOðt2Þ: ð29Þ

This form of 1=Fðt; λÞ clearly shows that a vector-boson
pole exists in Fðt; λÞ and that the pole goes to zero as
λ → 1. By comparing Eq. (29) with the coefficients defined
in Eq. (18) in the preceding section, we find

a0ðλÞ ¼ 1 − λ;

a1ðλÞ ¼ −λð1 −D=2Þ=6m2: ð30Þ

The coefficient a0ðλÞ ¼ 1 − λ agrees with what we have
obtained in Eq. (22) in the preceding section. This is no
surprise since it is a requirement of the Noether charge
being the generator of the global symmetry group off λ ¼ 1.
The coefficient a1ðλÞ determines the location of the bound-
state pole m2

bound as a function of λ and the matter-particle
massm. As we expect, the location of the pole reaches zero
as we approach the gauge-symmetry limit, λ → 1:

m2
bound ¼

6ð1 − λÞ
λð1 −D=2Þm

2: ð31Þ

This exercise in the SU(2) model illustrates how our
theorem works. While the Noether current operator disap-
pears like (1 − λ) aswe approach the gauge limit, the location
of the bound-state pole converges to zero so as to cancel this
(1 − λ) factor with 1=m2

bound ∝ 1=ð1 − λÞ at t ¼ 0.
The diagrammatic exercise presented here indicates that

up to a proportionality constant the Noether current acts
like a composite vector-boson field Vμ whose mass turns to
zero in the gauge limit. This may recall some theorists of
the field-current identity of Kroll, Lee, and Zumino [8] that
identified the gauge current of hadrons with the (massive)
gauge field. They attempted to equate the electromagnetic
current JEMμ to the ρ° − ω or ρ° − ω − ϕ field up to a scale
factor; JEMμ ¼ fVρ−ω

μ . But there is a fundamental differ-
ence. Being massive, the ρ°=ω mesons are not gauge
bosons of the flavor SUð2Þ × Uð1Þ. The photon being
composite was not their option. Our passing remark here
is only that if one lets m2

ρ, m2
ω → 0 in the field-current

identity, such a limit has some resemblance to our matter
gauge models.
Although the SU(2) matter model was shown to produce

the gauge bosons as bound states in the leading order of
1=N expansion [4], going beyond this order in the diagram
calculation is nearly impossible because of the complexity

of the nonleading orders. However, now that our theorem
has been proved, the gauge-boson generation is correct to
all orders of the 1=N expansion; that is, there is no need to
do higher-order diagram calculation. This is one place
where the power of our theorem should be appreciated.
We make one closing remark for this section. Our proof

turns out to be extremely simple primarily because the
charge operator Qλ

a connects a one-particle state only to
another one-particle state that belongs to the same multi-
plet. This would not be the case if the momentum transfer q
is nonvanishing across the current. The spatial Fourier
components Qλ

aðq; tÞ of the charge density Jλa0ðx; tÞ do not
form a finite algebra:

½Qλ
aðq; tÞ;Φðq0; tÞ� ¼ −TaΦðqþ q0; tÞ: ð32Þ

When we insert a complete set of states
P jnihnj between

Qλ
aðq; tÞ andΦðq0; tÞ, all multiparticle states also contribute

as long as their quantum numbers are right. In this
case, the one-particle matrix element hp0jQλ

aðq; tÞjpi ∼
1=ðm2

bound þ jqj2Þ vanishes like (1 − λ) as λ → 1 since
q2 ≠ 0. Then, comparing the matrix elements on both
sides of Eq. (32), it may look as if our power dependence
argument of (1 − λ) would fail like (1 − λ) vs 1 since the
one-particle state no longer provides 1=ð1 − λÞ in the left-
hand side. In this case, however, multiparticle states inP jnihnj contribute as well without a constraint of energy
conservation.6 In particular, the composite vector boson
enters the continuum and its polarization sum generates the
mass singularity ∼ð−gμν þ kμkν=m2

boundÞ through its longi-
tudinal polarization [11]. This mass singularity would be
canceled out if the vector-boson mass is generated by
spontaneous symmetry breaking [12,13] and if the matrix
elements are a set of physically observable scattering
amplitudes. Since our matrix elements satisfy neither
conditions, it ought to happen that the mass singularity
proportional to 1=ð1 − λÞ of the light vector composite
survives and restores consistency in the (1 − λ) powers. We
do not attempt a computation of the mass singularities here.

VI. U(1) GAUGE THEORIES

We can repeat our argument made for the non-Abelian
theories and show that the theorem works for the U(1)
gauge theories as well. Since the U(1) Noether current also
vanishes in the gauge limit, we approach the U(1) gauge-
symmetry limit by multiplying the same parameter λ on Lint
as we have done. To avoid arbitrariness in the overall U(1)
charge scale, we define the Noether current as

6We end up with a sum rule which involves a continuum of
states all the way up to infinite energies. Some examples using the
charge density algebra are found in Ref. [9]. See also Ref. [10].
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Jλμ ¼ −i
∂Lλ

∂μΦ
Φþ iΦ† ∂Lλ

∂μΦ† ;

¼ ið1 − λÞðΦ†∂↔μΦÞ;

Qλ ¼
Z

Jλ0ðx; tÞd3x: ð33Þ

Just as in the non-Abelian case, the factor (1 − λ) does not
appear in Jλ0 when we express it by use of Π=Π†;

Jλ0 ¼ iðΦ†Π† − ΠΦÞ: ð34Þ

Consequently the charge-field commutation relation does
not have an explicit dependence on (1 − λ);

½Qλ;Φðx; tÞ� ¼ −Φðx; tÞ; ð35Þ

in spite that Qλ ¼ ið1 − λÞ R ðΦ†∂↔0ΦÞd3x.
We take the matrix element between the vacuum h0j and

the one-particle state jpi for both sides of Eq. (35). When
we insert a complete set of states

P jnihnj between the Qλ

and Φðx; tÞ, we are immediately led to

hpjQλjpi ¼ 1: ð36Þ

The reasoning goes from here exactly as in the non-Abelian
case: When hp0jQλjpi is written as ð1 − λÞFðt; λÞ with the

form factor Fðt; λÞ of the Heisenberg operator iðΦ†∂↔μΦÞ,
Eq. (36) requires that the function Fðt; λÞ must behave like

Fðt; λÞ → 1

1 − λ
þOðtÞ ð37Þ

near λ ¼ 1 in the neighborhood of t ¼ 0. This is realized
only if Fðt; λÞ has a bound-state pole, μ2=ðm2

bound − tÞ, on
the real axis in the complex t plane and if m2

bound reaches
zero at λ → 1 as m2

bound ¼ μ2ð1 − λÞ.

VII. FERMION MATTER

The Noether theorem is based on the invariance of the
Lagrangian under the phase rotation of fields. Therefore,
whether fields are canonically independent or not, the
conserved Noether current consists of all the fields that
enter the Lagrangian,

Jaμ ¼ −i
∂L

∂ð∂μΨÞTaΨþ iΨ†Ta
∂L

∂ð∂μΨ†Þ : ð38Þ

If we want to treat Ψ and Ψ† on the equal footing, we may
choose the free Lagrangian in the form

L0 ¼
i
2
Ψ ∂↔Ψ −mΨΨ; ð39Þ

by adding a total divergence term. With Lλ
int added to this

L0, it may look trivial to repeat our proof for the boson
matter to prove the theorem for the fermion matter. But it is
not the case.
If we formally defined the conjugate momentum by Π ¼

∂L=∂ð∂0ΨÞ with L0 þ Lλ
int and similarly for Π†, the

Noether charge density would take the form of

Jλa0 ¼ iðΨ†TaΠ† − ΠTaΨÞ; ð40Þ

where Ta ¼ 1
2
τa for the SU(2) doublet and Ta → 1 for a

unit U(1) charge. If we blindly imposed the canonical
anticommutation relations by treating (Ψ, Π, Ψ†, Π†) as all
independent of each other, it looks that we would obtain the
charge-field algebra at equal time,

½Qλ
a;Ψ� ¼ −TaΨ ð41Þ

and its Hermitian conjugate just as in the case of bosons.
Then, with Eq. (41), our proof for the boson models would
apply to the fermion models with no modification.
However, we encounter one problem: This naive derivation
of Eq. (41) is incorrect although the final result is most
likely correct. There is a subtlety special to the canonical
formalism of the Dirac field [14–18].
The problem arises from the fact that the Lagrangian of

the Dirac field is linear in the time derivative and therefore
that only two of those four variables above can be treated
as canonically independent. For instance, if one chooses Ψ
andΠ as independent variables,Ψ† andΠ† are functions ofΨ
and Π. This turns the equal-time anticommutator fΨ;Ψ†gþ
nontrivial and dependent on the interaction, in general.
In the matter gauge theories, the interaction Lint contains

the derivatives of field in order to counterbalance the gauge
variation of the free Lagrangian L0. In a such case, unlike
the Dirac field interacting with a nonderivative interaction,
we do not have an option of setting Π† ¼ 0 by choosing L0

asymmetric in Φ and Φ†. Consequently the equal-time
anticommutator between Ψ and Ψ† may become dependent
on Lint in general. Although the prescription to determine
the anticommutators has been known when this happens,
one has to go through cumbersome steps. The canonical
quantization is thus not best suited for our purpose in the
case of the Dirac field since we would have to check
each model one by one to make sure that the algebra of
Eq. (41) is indeed valid for a given interaction.
In some cases we can circumvent this procedure. For

instance, in the known model of the U(1) symmetry [4], we
can remove the time derivative of Ψ† entirely and realize
Π† ¼ 0 by an appropriate rewriting of the Lagrangian.
Then the independent canonical variables are onlyΨ andΠ,
and they obey the simple equal-time anticommutator
fΨ;Πgþ ¼ iδðx − yÞ. It is interesting to note that in this
case Π turns out to be twice as large as what we would
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obtain formally by ignoring the interdependency of the
variables. Since the Noether charge is given by a single
term Jλ0 ¼ −iΠΨ in the case of Π† ¼ 0, the correct charge-
field algebra ½Qλ;Ψ� ¼ −Ψ immediately follows in the
same form as that for the bosons. We shall describe in
Appendix C how it works for the U(1) model.
In the case of the boson matter the charge-field algebra is

an immediate consequence of the canonical quantization.
In contrast, its derivation through the canonical quantiza-
tion requires some knowledge of the interaction in advance
in the case of the Dirac field. Our goal is to prove the
theorem as generally as possible without referring to
specific properties of the interaction or without knowing
the interaction at all. For this purpose, it is desirable to
derive the charge-field algebra of Eq. (41) in a way that
does not rely on the canonical quantization.
In fact, a line of argument can be made to advocate the

validity of the charge-field algebra irrespectively of the
interaction. It goes as follows: The charge-field algebra of
Eq. (41) is obtained as the OðαÞ terms of the global
symmetry rotation of the fields by angle α,

e−iQαΨðxÞeiQα ¼ eiαΨðxÞ ð42Þ
for the field of a unit U(1) charge. For non-Abelian
symmetries, Q and α should be modified appropriately
by attaching relevant group-component indices. Then,
going from Eq. (42) backward, ask what kind of operator
the Q can be. The operator Q must be a space-time
independent Lorentz-scalar since the symmetry at λ ≠ 1
is global but unbroken. The operator Q is dimensionless
and has a negative charge parity since it generates a phase
of the opposite sign for Ψ† as Ψ†e−iα. The only possible
candidate for Q is a charge of some conserved vector
current Jμ. Up to an overall proportionality constant,
therefore, this current ought to be the Noether current that
arises from the phase rotation of the fields. It is the only
candidate that we have at hand. The Noether current has the
right scale of proportionality constant since its scale is fixed
by Eq. (42), which corresponds to the rotation per a unit
angle of α. This argument is a little wordy, but it is almost
equally as good as the derivation based on the canonical
quantization. It works for the boson matter too.
Once Eq. (41) has been accepted in one way or another,

we can repeat what we have done for the boson matter. We
define the electric and magnetic form factors in the standard
way as

1

1 − λ
hp0jJλaμð0Þjpi

¼ hp0jΨTaγμΨjpi

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m2

Ep0Ep

s
ūp0Ta

�
γμF1ðt; λÞ þ

iσμνqν

2m
F2ðt; λÞ

�
up;

ð43Þ

where we have suppressed the indices for spins, copies, and
multiplet components of the fermion. Compare the one-
particle matrix elements for both sides of the charge algebra
equation (41) near λ ¼ 1. The consistency in the power of
(1 − λ) on both sides requires that the electric form factor
F1ðt; λÞ must obey

F1ð0; λÞ ¼
1

1 − λ
: ð44Þ

It means the existence of a pole of the composite gauge
boson in F1ðt; λÞ at t ¼ m2

bound ∝ ð1 − λÞ. The magnetic
form factor F2ðt; λÞ does not enter the (qμ ¼ 0) limit
because of the kinematical factor iσμνqν.
Our proof ought to hold for any SU(2) multiplet other

than the doublet and for any group higher than SU(2) as
well, if such a model is built.
The diagrammatic demonstration is a little less simple

for the fermion matter since two channels 3S1 and 3D1

couple to form the vector bound state [4]. But it is no more
than a small technical complication.

VIII. SUMMARY AND DISCUSSION

We can realize gauge invariance without introducing a
fundamental vector gauge field of any kind. In order to
connect between the matter fields at separate space-time
points in such theories, the interaction Lagrangian must be
carefully concocted by including the derivatives of matter
fields. In this paper we have proved that such matter
interactions inevitably generate composite gauge bosons.
The proof is based on the following three properties:
(1) Most importantly, the Noether current vanishes in

the gauge-symmetry limit of such theories.
(2) The equal-time charge-field algebra holds in the

Heisenberg picture.
(3) The form factor of current obeys the well-established

analyticity.
In our proof we have started with a globally invariant but

not locally invariant theory (λ ≠ 1) and then have
approached the gauge symmetry by continuously varying
the value of parameter λ. When we follow this path to the
gauge symmetry, consistency of the charge-field algebra
requires that a bound state must be present in the channel of
JPC ¼ 1−− and turn massless in the gauge-symmetry limit.
The proof has been given step by step in detail for the non-
Abelian gauge theories of the boson matter. The proof has
been trivially extended to the Abelian theories. The
theorem holds for the fermion matter as well. But we have
cautioned about the issue that we encounter if we rely on
the canonical quantization of the Dirac field. Our proof is
valid to all orders of interactions since the theorem has been
proved in the Heisenberg picture.
This theorem gives us another way to understand why

the composite state of JCP ¼ 1−− cannot be massless if the
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Noether current exists: Because, if a massless bound state
were formed in the presence of the nonvanishing Noether
current, it would lead to the inconsistency Oð1=ð1 − λÞÞ ¼
Oð1Þ as λ → 1 in the charge-field algebra. This observation
applies to the Abelian theories equally well, while the
theorem of Weinberg and Witten [7] is limited to the non-
Abelian theories.
The gauge-boson formation was proved in the past only

in the leading 1=N order of the perturbative diagram
calculation [2,4]. Now we have no need to attempt the
higher-order perturbative calculation. With our theorem,
the gauge-boson formation is valid to all orders. This is
certainly one significant advancement. If someone suc-
ceeds in writing a matter gauge Lagrangian with a higher
symmetry or with a multiplet of a higher representation
within SU(2), our theorem guarantees that such a theory
must have composite gauge bosons before they are
shown by diagrammatic computation. This is the main
advancement.
Looking forward, some may ask how useful or relevant

our theorem will be to phenomenology of particle physics.
It is natural to wonder whether one can introduce in one
way or another the idea of the composite gauge bosons into
the standard model in the flat space-time of dimension four.
At present, we have one obvious problem of group theory
in doing so. That is, the non-Abelian models have been
built only with the SU(2)-doublet matter particles. This is
sufficient for the minimal electroweak interaction of
SUð2Þ × Uð1Þ. But what shall we do about the composite
gluons? Is the so-far unsuccessful attempt to build a matter
gauge theory beyond the SU(2) doublet only for a technical
reason or for a more fundamental reason? In the past we
saw a few cases in which physics cannot be extended
beyond SU(2). One is the G parity (G ¼ C exp½iT2π�) of
low-energy hadron physics. We know why it cannot.
Another is the instanton solution of the non-Abelian gauge
theory [19]. This is because of the winding number arising
from mapping of the SU(2) solution onto the sphere S3 of
the four-dimensional space-time. Recall that the QCD
instanton is no more than the SU(2) instantons embedded
into the SU(3) parameter space. In our case, unlike the
instanton, there seems to be nothing topological. In the no-
Abelian models so far invented, the special property of 1

2
τa

for the SU(2) doublet plays a crucial role. If an extension is
possible beyond the SU(2) doublet, it appears that we shall
need a very different approach to model building.
Once we have proved the formation of composite gauge

bosons, it is not necessary every time to go back to the
original matter Lagrangian as far as the gauge-boson
interactions of dimension four are concerned. An obvious
question is how to handle the effective interactions of
dimensions higher than four. This is the place where we
expect to see difference between the elementary gauge
bosons and the composite ones phenomenologically. It is
too early to speculate on it.
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APPENDIX A: NOETHER CURRENT

We show that the Noether current is identically zero in
gauge theories which consist only of matter fields [4]. Since
this is the basis of our theorem, we reiterate it in the
simplest way. We choose the non-Abelian gauge theory of
boson matter as an example. An extension to fermion
matter involves only minor modifications due to spins and
anticommutativity.
Gauge invariance of the action of the total Lagrangian

Ltot requires to the first order in αaðxÞ,

∂μ

� ∂L
∂ð∂μΦÞTaΦ −Φ†Ta

∂L
∂ð∂μΦ†Þ

�
αa

þ
� ∂L
∂ð∂μΦÞTaΦ −Φ†Ta

∂L
∂ð∂μΦ†Þ

�
∂μαa þ 0ðα2Þ ¼ 0;

ðA1Þ

where the equation of motion has been used in the first term
as usual. Since αa are arbitrary functions of xμ, the terms
proportional to αa and ∂μαa must vanish separately in
Eq. (A1). The terms proportional to αa allow us to define
the Noether current Jμa and lead us to its conservation:

Jaμ ≡ −i
∂L

∂ð∂μΦÞTaΦþ iΦ†Ta
∂L

∂ð∂μΦ†Þ ; ðA2Þ

∂μJaμ ¼ 0: ðA3Þ

Then the requirement that the terms proportional to ∂μαa be
zero in Eq. (A1) is nothing other than the vanishing of the
Noether current:

Jaμ ¼ 0: ðA4Þ

When Lint is multiplied with λ and turned into Lλ
int,

Lint → λLint ≡ Lλ
int; ðA5Þ

it breaks gauge invariance of the total Lagrangian Lλ
tot ≡

L0 þ λLint so that the Noether current Jaμ no longer
vanishes for λ ≠ 1. However, we do not need an explicit
form of Lint to obtain the Noether current for λ ≠ 1 since the
variation of Lint is determined by that of the free Lagrangian
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L0 alone through gauge invariance of L0 þ Lint. To obtain
the Noether current in this case, split the Lagrangian as

Lλ
tot ¼ ð1 − λÞL0 þ λðL0 þ LintÞ: ðA6Þ

The second term does not contribute to the Noether current
since it is gauge invariant. The Noether current arises only
from the first term and takes the form of (1 − λ) times the
Noether current due to L0;

Jλaμ ¼ ið1 − λÞðΦ†Ta∂
↔

μΦÞ: ðA7Þ

APPENDIX B: EFFECT OF INTERACTION
IN EQUAL-TIME ALGEBRAS

The equal-time algebras of the charge Qλ
a are free of an

explicit dependence on the factor (1 − λ). It is because this
factor does not appear in Qλ

a when it is written in terms of
Π and Π† instead of ∂0Φ and ∂0Φ†. The purposes of
Appendix B is to show how the charge density acquires the
factor (1 − λ) when we switch from Π and Π† to ∂0Φ and
∂0Φ†, but that neither Π nor Π† vanishes individually
as λ → 1.
We go back to the canonical quantization rule of

quantum mechanics in the Heisenberg picture, ½qi; pj� ¼
iδij, and make the correspondence qiðtÞ → Φðx; tÞ and
piðtÞ → Πðx; tÞ ¼ ∂Ltot=∂ð∂0Φðx; tÞÞ. According to the
standard quantization rule, a pair of the canonical “coor-
dinate” and “momentum” obeys the equal-time commuta-
tion relation,

½Φðx; tÞ;Πðy; tÞ� ¼ iδðx − yÞ; ðB1Þ

and so forth. The unit matrices are to be understood in the
right-hand side of Eq. (B1) with respect to the components
of the group indices, the copies and so forth.
According to Eq. (A2), the charge density can be

expressed as

Jλa0 ¼ iðΦ†TaΠ† − ΠTaΦÞ: ðB2Þ

A factor of (1 − λ) does not appear in the right-hand side of
Eq. (B2). Consequently, the celebrated equal-time algebra
of the charge densities results [9] as

½Jλa0ðx; tÞ; Jλb0ðy; tÞ� ¼ ifabcJλc0ðx; tÞδðx − yÞ ðB3Þ

without (1 − λ). Similarly

½Jλa0ðx; tÞ;Φðy; tÞ� ¼ −TaΦðy; tÞδðx − yÞ: ðB4Þ

When the Noether charge is written with ∂0Φ and ∂0Φ†

instead of Π and Π†, the factor of (1 − λ) appears. But this
does not mean that Π and Π† are proportional to (1 − λ).
It is interesting to see in the known model how the factor

(1 − λ) appears in the charge density upon switching from
Π and Π† to ∂0Φ and ∂0Φ†.
Take the SU(2)-doublet model [4] as an example.

The interaction is given by

Lint ¼ λ
ðΦ†τa∂

↔μ
ΦÞðΦ†τa∂

↔

μΦÞ
4ðΦ†ΦÞ : ðB5Þ

The momenta conjugate to Φ and Φ† are given by

Π ¼ ∂Lλ
tot

∂ð∂0ΦÞ ¼ ∂0Φ† þ λ
ðΦ†τa∂

↔

0ΦÞ
2ðΦ†ΦÞ Φ†τa; ðB6Þ

and its Hermitian conjugate, respectively. Notice that
neither Π nor Π† vanishes as λ → 1. However, taking
the combination of Φ†τaΠ† − ΠτaΦ and using ½τa; τb� ¼
2δab, we obtain

i

�
Φ† τa

2
Π† − Π

τa
2
Φ
�

¼ ð1 − λÞ
�
Φ† τa

2
∂↔0Φ

�
: ðB7Þ

Dependence on the interaction enters the Noether current
through Π and Π†. However, in the combination of
ðΦ† 1

2
τaΠ† − Π 1

2
τaΦÞ, the contribution of the interaction

turns out to be simply λ times ðΦ† 1
2
τa∂

↔

0ΦÞ with a
minus sign.

APPENDIX C: CANONICAL QUANTIZATION
OF THE DIRAC FIELD

The complication in the canonical quantization of the
Dirac field is due to the fact that the Lagrangian is linear in
the time derivative and therefore the Hermitian conjugate
field Ψ† is no longer canonically independent of (Ψ, Π)
after Ψ and Π are chosen as the canonical variables. This is
an example of the so-called constrained dynamical systems
[14–18,20].
Let us first recall the free Dirac field. When we choose

the Lagrangian in the asymmetric form,

L0 ¼ iΨ∂Ψ −mΨΨ; ðC1Þ

we obtainΠ ¼ ∂L0=∂ð∂0ΨÞ ¼ iΨ† and impose fΨ;Πgþ ¼
iδðx − yÞ at equal time. The canonical quantization is
complete with this condition since Π† ¼ ∂L=∂ð∂0Ψ†Þ ¼ 0.
We may add a total divergence term to L0 and anti-

symmetrize it with respect to ∂μΨ and ∂μΨ† as

L0 ¼
i
2
Ψ ∂↔Ψ −mΨΨ: ðC2Þ

In this case we cannot proceed with the naive rule of
quantization by treating both Ψ and Ψ† as independent
coordinates.
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Let us consider the interacting Dirac fields. We can
sometimes circumvent the difficulty by modifying Lint
without changing physics. Consider the U(1) matter model
[4] as an example. The interaction is given by

Lλ
int ¼ −

iλ
2

ðΨγμΨÞðΨ∂↔μ
ΨÞ

ðΨΨÞ : ðC3Þ

We add a total derivative term,

ΔLλ
int ¼ −

iλ
2
∂μððΨ̄γμΨÞ logðΨ̄ΨÞÞ; ðC4Þ

to the interaction of Eq. (C3) and turn it into

Lλ
int þ ΔLλ

int ¼ −iλ
ðΨγμΨÞðΨ∂μΨÞ

ðΨΨÞ : ðC5Þ

Here we have used ∂μðΨ̄γμΨÞ ¼ 0. The purpose of adding
ΔLλ

int is to remove the term ∂0Ψ† from the interaction.
Now the total Lagrangian reads

Lλ
tot ¼ iΨ∂Ψ −mΨΨ − iλ

ðΨγμΨÞðΨ∂μΨÞ
ðΨΨÞ : ðC6Þ

Since Π† ¼ ∂L=∂ð∂0Ψ†Þ ¼ 0 for this Lagrangian, we can
now choose Ψ and Π as canonically independent variables
and treat Ψ† as a trivial dependent variable, i.e., the
constraint variable. The variable Π defined by Π ¼
∂L=∂ð∂0ΨÞ with the Lagrangian of Eq. (C6) turns out
to be twice as large as what we would obtain for Π by
pretending (Ψ, Π, Ψ†, Π†) as all independent in the
original Lagrangian. Since the simple canonical quanti-
zation relation

fΨðx; tÞ;Πðy; tÞgþ ¼ iδðx − yÞ ðC7Þ

holds, we are led to the desired result, Eq. (41) for ½Q;Ψ�.
Its Hermitian conjugate correctly gives what we want for
½Q;Ψ†�.
Alternatively we can choose Ψ and Ψ†, instead of Ψ and

Π, as the canonical variables for the original Lλ
tot. To do so,

we must take account of the interdependency of the
variables by making sure that Hamilton’s equation of
motion should hold correctly. The general prescriptions
of this procedure have been discussed in length, but the
case of the Lagrangian linear in the time derivative can be
presented in a compact mathematical form, which is found,
for instance, in Ref. [20].
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