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In the SUð2ÞL × SUð2ÞR linear sigma model with partially conserved axial-vector currents, a tower of
Ward-Takahashi identities (WTI) have long been known to give relations among 1-scalar-particle-
irreducible (1-ϕ-I) Green’s functions, and among I-scalar-particle-reducible (1-ϕ-R) transition-matrix
(T-matrix) elements for external scalars [i.e. the Brout-Englert-Higgs (BEH) scalar H, and three
pseudoscalars π⃗]. In this paper, we extend these WTI and the resulting relations to the SUð3ÞC × SUð2ÞL ×
Uð1ÞY linear sigma model including the heaviest generation of Standard Model (SM) fermions—the
ungauged (i.e. global) Standard Model SMG

tbτντ
—supplemented with the minimum necessary neutrino

content—right-handed neutrinos and Yukawa-coupling-induced Dirac neutrino mass—to obtain the
charge-parity (CP)-conserving νDSMG

tbτντ
, and extract powerful constraints on the effective Lagrangian:

e.g. showing that they make separate tadpole renormalization unnecessary, and guarantee infrared
finiteness. The crucial observation is that ultraviolet quadratic divergences (UVQD), and all other relevant
operators, contribute only to m2

π , a pseudo-Nambu-Goldstone boson (NGB) mass-squared, which appears
in intermediate steps of calculations. A WTI between T-matrix elements (or, in this global theory
equivalently the Goldstone theorem) then enforces m2

π ¼ 0 exactly for the true NGB in the spontaneous
symmetry breaking (SSB) mode of the theory. The Goldstone theorem thus causes all relevant operator
contributions, originating to all-loop-orders from virtual scalars H; π⃗, quarks qcL; t

c
R; b

c
R and leptons

lL; ντR; τR with (c ¼ r, w, b), to vanish identically.
We show that our regularization-scheme-independent, WTI-driven results are unchanged by the

addition of certain SUð3ÞC × SUð2ÞL × Uð1ÞY heavy (M2
Heavy ≫ jq2j; m2

Weak) CP-conserving matter, such

as originate in certain beyond the SM (BSM) models. The global axial-vector WTI again cause all UVQD
and finite relevant operators to vanish, in the νDSMG

tbτντþHeavy model. We demonstrate this with two

examples: a singlet M2
S ≫ m2

Weak real scalar field S with discrete Z2 symmetry and hSi ¼ 0; and a singlet
right-handed type I see-saw Majorana neutrino νR with M2

νR ≫ m2
Weak. Specifically, we prove that these

heavy degrees of freedom decouple completely from the low-energy νDSMG
tbτντ

effective Lagrangian,

contributing only irrelevant operators after quartic-coupling renormalization.

DOI: 10.1103/PhysRevD.96.065006

I. INTRODUCTION

Ward-Takahashi identities (WTI) are relations among
Green’s functions or amplitudes of field theories that result
from the symmetries of the theory. They exist both in
“unbroken” theories (in which the vacuum shares the
symmetries of the Lagrangian) and in spontaneously
broken theories (in which the vacuum does not share the
symmetries of the Lagrangian). In this paper we are
concerned specifically with the global SUð2ÞL ×Uð1ÞY
Schwinger [1] linear sigma model (LΣ M), the ungauged
scalar sector of the Standard Model (SM), augmented by

the third generation of SM fermions with their usual
Yukawa couplings to the Higgs doublet (and so augmenting
the symmetry with a global SUð3ÞC factor), as well as by a
right-handed τ neutrino, with its allowed Yukawa cou-
plings. For brevity, we call this global theory the νDSMG

tbτντ
,

with G for global and D indicating that the neutrinos have
only Dirac masses. With SM isospin and hypercharge
quantum numbers for fermions, the third-generation
νDSMG

tbτντ
has zero axial anomaly. We prove here that

the charge-parity (CP)-conserving νDSMG
tbτντ

is governed
by axial-vector WTI directly analogous with those proved
by B. W. Lee [2] for the SUð2ÞL × SUð2ÞR Gell-Mann-
Lévy [3] with partially conserved axial-vector currents
(PCAC). One of those axial-vector WTIs is equivalent in
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this global theory to the Goldstone theorem [4–6], which
protects the mass of the Nambu-Goldstone bosons (NGB)
from nonzero contributions.1

We also demonstrate that there exists a wide class of
heavy matter M2

Heavy ≫ m2
Weak particles from which the

low-energy effective νDSMG
tbτντ

Lagrangian, fortified by the
WTI, is protected. It may be no coincidence that this class
includes heavy Majorana masses for right-handed neutri-
nos, as envisioned in the see-saw models of light neutrinos.
Another theory might well have been less effectively
protective.
Here we prove properties of the spontaneously broken

mode of a quantum field theory with global symmetries
that are the rigid versions of the local symmetries of the
Standard Model, in anticipation of extending our argu-
ments to the one-generation standard electroweak
model itself [10,11]. We discover how the physics of
the theory (as embodied in on-shell transition-matrix
(T-matrix) elements) is more symmetric than the effective
Lagrangian, because consistency conditions on the states
constrain the physics. A particularly crucial role is played
by a WTI among T-matrix elements, which is equivalent
to the Goldstone theorem in this global theory. In
upcoming papers we extend these results, first to a
Uð1ÞY gauge theory, the CP-conserving Abelian Higgs
model (AHM) [12], and then to the CP-conserving
gauged electroweak SM, with the third generation of
quarks, charged leptons, νL, νR, and Dirac-mass neutri-
nos, νDSMtbτντ [10,11]. Along the way we discover that
the important T-matrix WTI and the Goldstone theorem
contain independent information.
The structure of the remainder of this paper is as

follows.
Section II concerns the correct (i.e. axial-vector-

WTI-obedient) renormalization of the scalar-sector
effective νDSMG

tbτντ
Lagrangian in its Goldstone (i.e.

spontaneously broken) mode. In this section we treat the
νDSMG

tbτντ
, with its SM fermions, augmented by a right-

handed neutrino, and consequently a Dirac neutrino mass,
as a stand-alone flat-space quantum field theory, not
embedded or integrated into any higher-scale “beyond
the SM” (BSM) physics.

Section III extends our results to M2
Heavy ≫ m2

BEH, the
mass-squared of the Brout-Englert-Higgs particle a.k.a. the
Higgs boson, heavy SUð3Þcolor × SUð2ÞL ×Uð1ÞY matter
representations, such as arise in certain BSM models.
Section IV draws a historical lesson.
In the Appendix extends the proof of B. W. Lee [i.e.

for the WTI of SUð2ÞL × SUð2ÞR Gell-Mann-Lévy
with PCAC], to WTI for SUð3ÞC × SUð2ÞL ×Uð1ÞY
νDSMG

tbτντ
—the mathematical basis on which the results

of this paper rest.

II. AXIAL-VECTOR-WTI-OBEDIENT
RENORMALIZATION OF THE GLOBAL

SUð3ÞC × SUð2ÞL × Uð1ÞY νDSMG
tbτντ

EFFECTIVE LAGRANGIAN

The global SUð3ÞC × SUð2ÞL × Uð1ÞY Lagrangian of
SM scalar and third generation fermion fields,2 extended
with a right-handed neutrino with Dirac mass3 is

LνDSMG
tbτντ

ðϕ; lL; τR; ντR; qcL; bcR; tcR; μ2ϕ; λ2ϕ; yb; yt; yτ; yντÞ:
ð1Þ

νDSMG
tbτντ

parameters include quadratic and quartic scalar
couplings μ2ϕ; λ

2
ϕ,

4 and real Yukawa couplings. This
Lagrangian conserves CP.
We define a complex BEH doublet representation for the

scalars

ϕ≡ 1ffiffiffi
2

p
�

H þ iπ3
−π2 þ iπ1

�
: ð2Þ

1In June 2011 [7] one of us (BWL) introduced these ideas. A
December 2011 pedagogical companion paper [8] simplified the
treatment of UVQDs in the context of the global Gell-Mann-
Lévy model [3] with PCAC. In [9] we showed that, what we
called the Goldstone theorem, but to be specific is really a WTI
equivalent to the Goldstone theorem in this global theory, protects
the weak-scale global spontaneous symmetry breaking (SSB)
SOð2Þ Schwinger model [1] (i.e. against 1-loop relevant oper-
ators ∼M2

Heavy ≫ m2
Weak which arise from virtual heavy particles)

by way of 2 explicit 1-loop examples: a real singlet scalar S and a
singlet Majorana neutrino νR with M2

S;M
2
νR ≫ jq2j; hHi2.

2The νDSM matter fields are well-known: a spin S ¼ 0
complex scalar doublet ϕ; S ¼ 1

2
left-handed and right-handed

leptons liL ¼ ½νiLeiL�T; eiR, νiR, with i running over the three
generations; S ¼ 1

2
left-handed and right-handed quarks

qi;cL ¼ ½di;cL ui:cL �T; di;cR ; ui;cR , with i running over the three gener-
ations, and c ¼ r, w, b over the SUð3ÞC color index. Quarks, and
separately leptons, have complex Yukawas, Dirac masses and
mixings. The observable 3 × 3 Cabibbo-Kobayashi-Maskawa
(CKM) and Pontecorvo—Maki—Nakagawa—Sakata (PMNS)
matrices connect the weak eigenstates with mass eigenstates. In
order to assure CP conservation, we limit ourselves to one
generation of fermions, the third-generation of the Standard
Model.

3Before the experimental observation of neutrino mixing, the
SM was defined to include only left-handed neutrinos νiL. The
proof of our new axial-vector WTI’s requires CP-conservation
and that neutrinos be massive. We therefore pay homage to
experimentally observed neutrino mixing, and study in this paper
the CP-conserving νDSMG

tbτντ
, here defined to include a right-

handed neutrino νR; and a Dirac mass mν
Dirac ¼ yνhHi= ffiffiffi

2
p

.
4We follow the language and power counting of the early

literature [2], taking the quartic coupling constant to be λ2ϕ rather
than the modern [13] λ. Renormalized λ2ϕ ≥ 0.
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[This can trivially be mapped to an O(4) quartet of real
scalars, since ϕ†ϕ ¼ 1

2
ðH2 þ π⃗2Þ.] We use this manifestly

renormalizable linear representation for the scalars in order
to control relevant operators.
The Lagrangian (1) has three modes, which we charac-

terize by the values of the renormalized BEH-vacuum-
expectation-value (VEV) hHi and the renormalized
(pseudo-)NGBmass-squaredm2

π: hHi ¼ 0; m2
π > 0, known

as the “Wigner mode”; hHi ¼ m2
π ¼ 0, the classically

scale-invariant point; and hHi ≠ 0; m2
π ¼ 0, the spontane-

ously broken or “Goldstone mode.”
This paper distinguishes carefully between the global

SUð3Þcolor×SUð2ÞL×Uð1ÞY Lagrangian of (a single gene-
ration of) SM matter fields [i.e. (1)] and the νDSMG

tbτντ
itself: i.e. the νDSMG

tbτντ
is the “Goldstone mode” of (1).

(1) Symmetric hHi ¼ 0; m2
π ≠ 0 Wigner mode: This is

analogous with the Schwinger-model x-axis
Fig. 12-12 in the textbook by C. Itzykson and
J-C. Zuber [14] and the similar Fig. 1 in [8]. The
analysis and renormalization of Wigner mode (e.g.
its infrared structure with massless fermions) is
outside the scope of this paper. Thankfully, nature
is not in Wigner mode. Our Universe is, instead, in
the SSB Goldstone mode.

(2) Classically scale-invariant point hHi ¼ 0; m2
π ¼ 0

is analogous with the Schwinger-model origin in
Fig. 12-12 in the textbook by C. Itzykson and J-C.
Zuber [14] and Fig. 1 in [8]. The analysis and
renormalization of the classically scale-invariant
point is outside the scope of this paper.

(3) Spontaneously broken hHi ≠ 0; m2
π ¼ 0 Goldstone

mode: The νDSMG
tbτντ

is the Goldstone mode of
LνdSMG in (1). The “physics” is the spectrum of
physical particles—S ¼ 0 bosons, and the third
generation of S ¼ 1

2
Dirac-massive quarks and lep-

tons—and their associated dynamics.
The one-generation global νDSMG

tbτντ
is invariant under

global SUð3ÞC × SUð2ÞL × Uð1ÞY transformations and
conserves CP. Global axial-vector WTI therefore govern
the dynamics of the ϕ-sector (i.e. BEH scalar H and three
pseudoscalars π⃗) of the all-loop-orders renormalized
νDSMG

tbτντ
effective Lagrangian.5 There are two sets of

such CP-conserving axial-vector WTI. One set governs
relations among connected amputated 1-(h; π⃗) scalar-
particle-irreducible (1-ϕ-I) Green’s functions. A separate
set governs relations among connected amputated 1-(h; π⃗)
scalar-particle-reducible (1-ϕ-R) T-matrix elements. As

observed by Lee for the Gell-Mann-Lévy model,6 one of
those T-matrix WTI is equivalent to the Goldstone theorem
in this global theory.
We use “pion-pole dominance” arguments to derive

these axial-vector WTIs for the SSB νDSMG
tbτντ

in the
Appendix, and so rely on the masslessness of the NGB in
Goldstone mode. In this global theory (although not in the
gauge theories that we consider in [10–12]) that massless-
ness translates precisely into the masslessness of the
pseudoscalar boson m2

π ¼ 0 when hHi ≠ 0.
LνdSMG

tbτντ
jhHi≠0 is the subject of the remainder of this

section.
These global axial-vector WTI for the νDSMG

tbτντ
are a

generalization of the classic work of B. W. Lee [2], who
constructed the all-loop-orders renormalized tower of
quantum WTIs for the SUð2ÞL × SUð2ÞR Gell-Mann-
Lévy (GML) model [3] with partially conserved axial-
vector currents (PCAC). We replace GML’s strongly
interacting LΣM with a weakly interacting BEH LΣM:
σ → H; π⃗ → π⃗; mσ → mh; fπ → hHi; we eliminate the
explicit symmetry breaking of PCAC (γ ¼ 0), and reduce
the symmetry from SUð2ÞL × SUð2ÞR to SUð2ÞL ×Uð1ÞY
when we add SM fermions and their attendant Yukawa
couplings. We also introduce a quark SUð3ÞC, so that the
resultant generation has SM couplings, which ensures that
our WTI have zero axial anomaly.

5Our interest in axial-vector WTI may be surprising, given that
while SUð2ÞL is a symmetry of the Lagrangian, SUð2ÞL−R is not.
This interest is justified by our insistence on CP conservation, as
described in detail in the Appendix. In future work, we will
consider the interesting consequences for our WTI, and for
physics, of small amounts of CP violation.

6Reference [8] used B. W. Lee’s Gell-Mann-Lévy (GML) WTI
to construct the all-loop-orders renormalized low-energy
ðjq2j; hHi2; m2

Weak ≪Euclidean UV cutoff Λ2), effective GML
Lagrangian including UV quadratic divergences (UVQD). The
SUð2ÞL × SUð2ÞR ð1

2
; 1
2
Þ representation is Φ≡ 1ffiffi

2
p ½H þ iσ⃗ · π⃗�,

while the SUð2ÞL ×Uð1ÞY doublet in this paper is ϕ≡Φ½ 1
0
�.

Including all OðΛ2Þ;OðlnΛ2Þ divergences,

LEff;All-loops;
GML ¼ 1

2
Trj∂μΦj2 − VEff

GMLV
Eff;All-loops
GML

¼ λ2ϕ
4

�
H2 þ π⃗2 −

�
hHi2 −m2

π

λ2ϕ

��
2

− hHim2
πH

þOGML
Ignore; ð3Þ

causes tadpoles to vanish identically, so that separate tadpole
renormalization is unnecessary. OGML

Ignore denotes finite operators
that do not contribute to UVQD,

OGML
Ignore ¼ OGML

D>4 þOGML
D≤4;NonAnalytic þOGML

1=Λ2;Irrelevant
:

The effective potential (3) reduces to the three effective potentials
of the Schwinger model [1] as: hHi → 0; m2

π ≠ 0 (Schwinger
Wigner mode); hHi → 0; m2

π → 0 (Schwinger scale-invariant
point); or hHi ≠ 0; m2

π → 0 (Schwinger Goldstone mode). Refer-
ence [8] extended (3) to include SM quarks and leptons, but
possible IR divergences, due to massless SM neutrinos, were out
of scope and ignored.
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A. Axial-vector Ward-Takahashi identities in νDSMG
tbτντ

We focus on the global isospin axial-vector current
J⃗μ
L−R;νDSMG

tbτντ

. The global color SUð3ÞC, SUð2ÞLþR and

electromagnetic currents are vector currents and are not
spontaneously broken, so they do not yield further WTI
information of interest to this paper. In the Appendix, we
describe how CP conservation enables us to consider
amplitudes of the axial-vector current, and derive towers
of WTI. In future work, we will consider the generalization
to the case where CP is violated.
Because we are interested in global-symmetric relations

among 1-scalar-particle-irreducible (1-ϕ-I) connected
amputated Green’s functions (GF) with external ϕ scalars,
it is convenient to use tools (e.g. canonical quantization)
from vintage quantum field theory (V-QFT), a name coined
by Ergin Sezgin. Analysis is done in terms of the exact
renormalized interacting νDSMG

tbτντ
fields, which asymp-

totically become the in/out states, i.e. free fields for physical
scattering-matrix (S-matrix) elements. In the Appendix
gives details of the derivation of our rigid axial-vector
WTIs, some highlights of which we present in this section.
For hHi ≠ 0, the pseudoscalars π⃗ are massless.7

We therefore solve/obey the axial-vector “pion-pole-
dominance” T matrix (which recall is related to the
better-known S matrix by S ¼ 1þ iT) identity proved in
the Appendix,

hHiTt1…tMt
2 ðp1…pN ; q1…qM0Þ

¼
XM
m¼1

δttmTt1:::btm…tMðp1…pNqm; q1…cqm…qMÞ

−
XN
n¼1

Tt1…tMtðp1…p̂n…pN ; q1…qMpnÞ ð5Þ

with N renormalized h ¼ H − hHi external legs (coordi-
nates x, momenta p), and M renormalized (CP ¼ −1) π⃗
external legs (coordinates y, momenta q, isospin t).
Equation (5) relates either T-matrix elements all with

even numbers of π⃗ (if M is odd), or T-matrix elements all
with odd numbers of π⃗ (if M is even). Because CP is
conserved, T-matrix elements with odd numbers of π⃗
vanish, hence (5) is of interest only for M odd.
Here T ≡ T1 þ T2. T1 includes only diagrams with an

extra zero-momentum external leg π⃗, attached directly to an
external h or another external π⃗ leg as in Fig. 1. The
notation cpn;cqm; btm indicates that “hatted” external fields
and momenta are to be omitted.
A tower of quantum WTI recursion relations, among

renormalized connected amputated 1-scalar-particle-
irreducible (1-ϕ-I) Green’s functions (GF) Γt1…tM

N;M ðp1…
pN ; q1…qMÞ, with N external renormalized h ¼ H − hHi
(coordinates x, momenta p), and M external (CP ¼ −1)
renormalized π⃗ (coordinates y, momenta q, isospin t), is
shown in the Appendix to be a solution to the T-matrix
identity (5). The resulting WTI relate a 1-ϕ-I connected
amputated GF with ðN þM þ 1Þ external fields, including
an extra zero-momentum π⃗, to two 1-ϕ-I amputated GFs
with (N þM) external fields. For π⃗ with CP ¼ −1, the
result

hHiΓt1…tMt
N;Mþ1ðp1…pN ; q1…qM0Þ

¼
XM
m¼1

δttmΓt1… ˆtm…tM
Nþ1;M−1 ðp1…pNqm; q1…q̂m…qMÞ

−
XN
n¼1

Γt1…tMt
N−1;Mþ1ðp1…p̂n…pN ; q1…qMpnÞ ð6Þ

is valid for N;M ≥ 0, though nontrivial only for odd M.
(Hatted quantities are again omitted.)
We form the ϕ-sector effective Lagrangian as a sum

L
Eff;νDSMG

tbτντ
ϕ ¼

X
N;M

L
Eff;νDSMG

tbτντ
ϕ;N;M ð7Þ

over all possible numbers of external scalars h and

pseudoscalars πi. Each term, L
Eff;νDSMG

tbτντ
ϕ;N;M is obtained by

attaching to Γt1:::tM
N;M : N appropriate external scalar wave

functions; M appropriate external pseudoscalar wave

7The masslessness of π⃗,m2
π ¼ 0, in Goldstone mode, is closely

related to the masslessness of the Nambu-Goldstone bosons of
the broken global symmetry in this ungauged theory. To identify
the NGBs, we must pass from the linear representation (2) to the
unitary Kibble representation [13,15], with transformed fields ~H
and ~⃗π, and VEVs h ~Hi ¼ hHi and h ~⃗πi ¼ 0,

ϕ ¼ 1ffiffiffi
2

p ~HU; U ≡ exp

�
i
σ⃗ · ~⃗π
hHi

��
1

0

�
: ð4Þ

~⃗π (not π⃗) are the purely derivatively coupled NGBs. We note that
it is the ability to transform to the unitary representation that
makes ~⃗π derivatively coupled. The transformation (4) is not
possible in Wigner mode nor at the scale-invariant point. In the
ungauged theory it is also possible to add a Polkinghorne PCAC
term γH that explicitly violates the axial symmetry. In [8] we
follow [2] in considering the jhHij vs. m2

π quarter plane, in which
the Wigner mode is the x-axis (hHi ¼ 0), the Goldstone mode is
the y-axis (m2

π ¼ 0), the scale-invariant point is the origin, and the
symmetry is explicitly broken off these axes. Lee [2] points out a
remarkable WTI: γ ¼ hHim2

π . The Goldstone mode and the
Wigner mode are thus just the m2

π → 0 and hHi → 0 limits of
the explicitly broken theory. In the quarter plane, the trans-
formation to the Kibble representation finds that ~⃗π has nonde-
rivative couplings, including a mass, proportional tom2

π . These all
vanish in the m2

π → 0 limit, and the Goldstone theorem (among
other WTIs) is recovered. This connection between m2

π ¼ 0 and
m2

NGB ¼ 0 appears to be severed in the gauge theory where the
explicit breaking term is thought to be forbidden by unitarity.
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functions, with sums over isospins; and combinatoric
factors for identical external boson fields h; π⃗.
It is worth emphasizing that all perturbative quantum

loop corrections, to all-loop-orders, are included in the ϕ-
sector effective Lagrangian: 1-ϕ-I connected amputated
GF Γt1…tM

N;M ðp1…pN ; q1…qMÞ in (6); wave-function
renormalizations; renormalized scalar propagators (9),
(10); the BEH VEV hHi. Equation (6) includes the full
set of quantum all-loop-orders from the global SUð3ÞC ×
SUð2ÞL ×Uð1ÞY theory, originating in loops containing
virtual νDSMG

tbτντ
: quarks qcL; t

c
R; b

c
R and leptons lL, ντR; τR,

with colors c ¼ r, w, b; and scalars h; π⃗. Because they arise
entirely from global axial-vector WTI, our results are
independent of regularization-scheme [16].
There remains, however, one more crucial step. We must

impose all those symmetries of the 1-ϕ-R T matrix that are
not symmetries of the 1-ϕ-I Green’s functions (6) nor of the
complete effective Lagrangian (7).8 In particular the
νDSMG

tbτντ
-analogue of the Adler self-consistency condi-

tions [17,18] (see for example [2] p. 37), derived in the
Appendix, of which the Goldstone theorem is a special
case, ensures the infrared finiteness of the theory for exactly
zero pseudoscalar masses, m2

π ¼ 0.

B. Construction of SM scalar-sector effective
Lagrangian from axial-vector Ward-Takahashi IDs

We want to classify operators arising from νDSMG
tbτντ

degrees of freedom, and separate the finite operators from
the divergent ones. There are finite operators that arise
entirely from νDSMG

tbτντ
degrees of freedom. Although

important for computing “physical observables” in the
νDSMG

tbτντ
(e.g. the analogy of the successful 1-loop

high-precision Standard Model predictions for the top-
quark from Z-pole physics [19,20] in 1984 and the W�
mass [20,21] in 1980, as well as the 2-loop BEH mass from
Z-pole physics [19,22,23] and the W� mass [21–23]), they
are not the point of this paper. We want instead to focus on
UVQD, logarithmic UV divergences, and finite relevant
operators, to see how they are related by the WTIs. The
reader might imagine OðΛ2Þ and OðlnΛ2Þ divergences,
never taking the limit Λ2 → ∞.
In actuality, there are three classes of finite operators in

the νDSMG
tbτντ

that we will ignore:

(i) finite O
νDSMG

tbτντ

1=Λ2;Irrelevant
vanish as m2

Weak=Λ2 → 0;

(ii) O
νDSMG

tbτντ
Dim>4 are finite dimension > 4 operators;

(iii) O
νDSMG

tbτντ
Dim≤4;NonAnalytic are finite dimension ≤ 4 operators

that are nonanalytic in momenta or in a renormal-
ization scale μ2.

Such finite operators appear throughout the axial-vector
Ward-Takahashi IDs (6):

(i) N þM ≥ 5 gives relations among O
νDSMG

tbτντ

1=Λ2;Irrelevant

and O
νDSMG

tbτντ
Dim>4 ;

(ii) the left-hand side of (6) for N þM ¼ 4 is also

O
νDSMG

tbτντ
Dim>4 or O

νDSMG
tbτντ

1=Λ2;Irrelevant
;

(iii) N þM ≤ 4 operators O
νDSMG

tbτντ
Dim≤4;NonAnalytic also appear

in those WTI.
All such operators will be ignored below,

O
νDSMG

tbτντ
Ignore ¼ O

νDSMG
tbτντ

1=Λ2;Irrelevant

þO
νDSMG

tbτντ
Dim>4 þO

νDSMG
tbτντ

Dim≤4;NonAnalytic: ð8Þ

Finally, there are N þM ≤ 4 operators that are analytic
in momenta. We expand these in powers of momenta, count
the resulting dimension of each term in the operator Taylor

series, and ignore O
νDSMG

tbτντ
Dim>4 and O

νDSMG
tbτντ

1=Λ2;Irrelevant
terms.

We seek next to classify the relevant operators, in this
case the π⃗ and h inverse propagators (together with
tadpoles).
Define the exact renormalized pseudoscalar propagator

(no sum on j) in terms of a π⃗ pole, the Källén-Lehmann
spectral density ρπ [14,24], and wave-function renormal-
ization. We assume π⃗ decays weakly,

Δπðq2Þ ¼ −ið2πÞ2h0jT½πjðyÞπjð0Þ�j0ijFourierTransform

¼ 1

q2 −m2
π;Pole þ iϵ

þ
Z

dm2
ρπðm2Þ

q2 −m2 þ iϵ

Z−1
ϕ ¼ 1þ

Z
dm2ρπðm2Þ: ð9Þ

Define similarly the BEH scalar propagator in terms of a
BEH scalar pole, the spectral density ρBEH, and the same
wave-function renormalization. We assume h also decays
weakly and resembles a resonance,

ΔBEHðq2Þ ¼ −ið2πÞ2h0jT½hðxÞhð0Þ�j0ijFourierTransform

¼ 1

q2 −m2
h;Pole þ iϵ

þ
Z

dm2
ρBEHðm2Þ

q2 −m2 þ iϵ

Z−1
ϕ ¼ 1þ

Z
dm2ρBEHðm2ÞZ

dm2ρπðm2Þ ¼
Z

dm2ρBEHðm2Þ: ð10Þ

The connected amputated 1-ϕ-I π⃗ and h inverse propa-
gators are

8Failing to impose those T-matrix symmetries (e.g. crucially
the one that is equivalent to the Goldstone theorem) results in a
mistake.
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Γt1t2
0;2 ð; q;−qÞ≡ δt1t2Γ0;2ð; q;−qÞ
Γ0;2ð; q;−qÞ≡ ½Δπðq2Þ�−1
Γ2;0ðq;−q; Þ≡ ½ΔBEHðq2Þ�−1: ð11Þ

The spectral density parts of the propagators

ΔBEH
Spectral Densityðq2Þ ¼

Z
dm2

ρBEHðm2Þ
q2 −m2 þ iϵ

Δπ⃗
Spectral Densityðq2Þ ¼

Z
dm2

ρπðm2Þ
q2 −m2 þ iϵ

ð12Þ

are clearly finite. From dimensional analysis of (9), (10),
the contribution of a state of mass/energy ∼MHeavy to
the spectral densities ρπðM2

HeavyÞ and ρBEHðM2
HeavyÞ,

and to ΔBEH
Spectral Density;Δπ⃗

Spectral Density, scale as M−2
Heavy. The

Euclidean cutoff therefore contributes only ∼ 1
Λ2.

We now form the all-loop-orders renormalized scalar-
sector effective Lagrangian for (h; π⃗) with CP ¼ ð1;−1Þ

LEff
ϕ;νDSMG

tbτντ

¼ Γ1;0ð0; Þhþ 1

2!
Γ2;0ðp;−p; Þh2

þ 1

2!
Γt1t2
0;2 ð; q;−qÞπt1πt2 þ

1

3!
Γ3;0ð000; Þh3

þ 1

2!
Γt1t2
1;2 ð0; 00Þhπt1πt2 þ

1

4!
Γ4;0ð0000; Þh4

þ 1

2!2!
Γt1t2
2;2 ð00; 00Þh2πt1πt2

þ 1

4!
Γt1t2t3t4
0;4 ð; 0000Þπt1πt2πt3πt4 þOIgnore

νDSMG
tbτντ

:

ð13Þ

The connected amputated Green’s function identities (6)
severely constrain the effective Lagrangian (13). For
pedagogical clarity, we first separate out the isospin indices

Γt1t2
0;2 ð;q;−qÞ≡δt1t2Γ0;2ð;q;−qÞ;

Γt1t2
1;2 ð−q;q0Þ≡δt1t2Γ1;2ð−q;q0Þ;
Γt1t2
2;2 ð00;00Þ≡δt1t2Γ2;2ð00;00Þ;

Γt1t2t3t4
0;4 ð;0000Þ≡Γ0;4ð;0000Þ½δt1t2δt3t4þδt1t3δt2t4þδt1t4δt2t3 �:

ð14Þ

Itemizing the relevant WTI and their effects on (13),
setting momenta to zero except where needed, suppressing
the isospin indices, and indicating the finite operators as
simply OIgnore:

(i) WTI N ¼ 0, M ¼ 1

δt1t2Γ1;0ðq; Þ ¼ hHiΓt1t2
0;2 ð; q;−qÞ;

Γ1;0ð0; Þ ¼ hHiΓ0;2ð; 00Þ; ð15Þ

since no momentum can run into the tadpoles.
(ii) WTI N ¼ 1, M ¼ 1

δt1t2Γ2;0ð−q; q; Þ − Γt1t2
0;2 ð; q;−qÞ

¼ hHiΓt1t2
1;2 ð−q; q0Þ;

Γ2;0ð−q; q; Þ − Γ0;2ð; q;−qÞ
¼ hHiΓ1;2ð−q; q0Þ ¼ hHiΓ1;2ð0; 00Þ þOνDSMG

Ignore ;

Γ2;0ð00; Þ ¼ Γ0;2ð; 00Þ þ hHiΓ1;2ð0; 00Þ ð16Þ

(iii) WTI N ¼ 2, M ¼ 1

hHiΓt1t2
2;2 ð00;00Þ ¼ δt1t2Γ3;0ð000;Þ− 2Γt1t2

1;2 ð0;00Þ;
hHiΓ2;2ð00;00Þ ¼ Γ3;0ð000;Þ− 2Γ1;2ð0;00Þ: ð17Þ

(iv) WTI N ¼ 0, M ¼ 3

−hHiΓt1t2t3t4
0;4 ð; 0000Þ ¼ δt1t2Γt3t4

1;2 ð0; 00Þ
þ δt1t3Γt2t4

1;2 ð0; 00Þ
þ δt1t4Γt2t3

1;2 ð0; 00Þ;
−hHiΓ0;4ð; 0000Þ ¼ Γ1;2ð0; 00Þ: ð18Þ

(v) WTI N ¼ 1, M ¼ 3

δt1t2Γt3t4
2;2 ð00;00Þþδt1t3Γt2t4

2;2 ð00;00Þþδt1t4Γt2t3
2;2 ð00;00Þ

−Γt1t2t3t4
0;4 ð;0000Þ¼0;

Γ2;2ð00;00Þ¼Γ0;4ð;0000Þ: ð19Þ

(vi) WTI N ¼ 3, M ¼ 1

−δt1t2Γ4;0ð0000; Þ þ 3Γt1t2
2;2 ð00; 00Þ ¼ 0;

−Γ4;0ð0000; Þ þ 3Γ2;2ð00; 00Þ ¼ 0: ð20Þ

The quadratic and quartic coupling constants are defined
in terms of 2-point and 4-point 1-ϕ-I connected amputated
GF

Γ0;2ð; 00Þ≡ −m2
π

Γ0;4ð; 0000Þ≡ −2λ2ϕ: ð21Þ

The pseudoscalar and h (BEH) scalar masses are most
usefully defined as
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m2
π≡−Γ0;2ð;00Þ¼

�
1

m2
π;Pole

þ
Z

dm2
ρπðm2Þ
m2

�
−1

m2
h≡−Γ2;0ð00;Þ¼

�
1

m2
h;Pole

þ
Z

dm2
ρBEHðm2Þ

m2

�
−1
: ð22Þ

The third N ¼ 1, M ¼ 1 WTI of Eq. (16) can then be
rewritten instructively as a mass relation between the BEH
h scalar and the three pseudoscalar bosons π⃗

m2
h ¼ m2

π þ 2λ2ϕhHi2; ð23Þ

a more familiar form which we have employed in previous
papers [7–9].
The all-loop-orders renormalized ϕ-sector effective

Lagrangian (13), constrained only by those axial-vector
WTIs governing Green’s functions (6), may be written

LWigner;SI;Goldstone ¼ LKinetic −VWigner;SI;GoldstoneþO
νDSMG

tbτντ
Ignore :

ð24Þ

The kinetic term incorporates the nontrivial (but finite)
wave-function renormalization

LKinetic ¼ 1

2
ðΓ0;2ð;p;−pÞ − Γ0;2ð; 00ÞÞh2

þ 1

2
ðΓ0;2ð; q;−qÞ − Γ0;2ð; 00ÞÞπ⃗ 2; ð25Þ

with

Γ0;2ð;q;−qÞ − Γ0;2ð; 00Þ ∼ q2; ð26Þ
while the effective potential

VWigner;SI;Goldstone ¼ m2
π

�
h2 þ π⃗2

2
þ hHih

�

þ λ2ϕ

�
h2 þ π⃗2

2
þ hHih

�
2

ð27Þ

incorporates all three modes (i.e. Wigner mode, the scale-
invariant point (SI) and Goldstone mode) of the Lagrangian
(1).9 The effective potential in (27) becomes in various limits:
Wigner mode ðhHi¼0;m2

π ¼m2
h≠0Þ; scale-invariant point

9It is instructive, and we argue [9] dangerous, to ignore vacuum energy and rewrite the potential in (27) as

VWigner;SI;Goldstone
νDSMG ¼ λ2ϕ

�
ϕ†ϕ −

1

2

�
hHi2 −m2

π

λ2ϕ

��
2

ð28Þ

using h2þπ⃗2

2
þ hHih ¼ ϕ†ϕ − 1

2
hHi2. If one then minimizes VWigner;SI;Goldstone

ϕ while ignoring the crucial constraint imposed by the
Goldstone theorem, (or more precisely by the WTI that is equivalent to the Goldstone theorem in this ungauged theory: see Sec. II C),
the resultant (incorrect and unphysical) minimum hHi2FT ≡ ðhHi2 − m2

π

λ2ϕ
Þ does not distinguish properly between the three modes (32) of

(28). At issue is the renormalized

m2
π ¼ μ2ϕ;Bare þ CΛΛ2 þ CBEHm2

BEH þ δm2
π þ CHeavyM2

Heavy þ CHeavy;lnM2
Heavy lnðM2

HeavyÞ þ CHeavy;ΛM2
Heavy lnðΛ2Þ þ λ2ϕhHi2; ð29Þ

where the C’s are constants, andm2
h ¼ m2

π þ 2λ2hHi2. It is “fashionable” to simply drop the UVQD term CΛΛ2 in (29), and argue that it
is somehow an artifact of dimensional regularization (DR), even though M. J. G. Veltman [25] showed that UVQD do appear at 1-loop in
the SM and are properly handled by DR’s poles at dimension Dim ¼ 2. We keep UVQD. For pedagogical efficiency, we have included
in (29) terms with M2

Heavy ≫ m2
Weak, such as might arise in BSM physics (cf. Sec. III). In Wigner mode, where hHi ¼ 0,

m2
h ¼ m2

π ∼ Λ2; M2
Heavy ≫ m2

Weak: ð30Þ

During renormalization of a tree-level weak-scale BEH mass-squared m2
h;Bare ∼m2

Weak, relevant operators originating in quantum loops
appear to “naturally” force the renormalized value up to the heavy scale (30). Wigner mode is therefore quantum-loop unstable, because
the heavy scale cannot decouple from the weak scale. Equation (30) is the motivation for much BSM physics, even though our Universe
is not in Wigner mode.
In the spontaneously broken Goldstone mode, where hHi ≠ 0, in obedience to a WTI (equivalent to the Goldstone theorem) in Sec. II C
below, the bare counterterm μ2ϕ;Bare in (29) is defined by

m2
π ≡ 0: ð31Þ

We show in Sec. II C that, for constant θ⃗, the zero-value in (31) is protected by the NGB shift symmetry

~⃗π → ~⃗π þ ~⃗π × θ⃗ þ hHiθ⃗ þOðθ2Þ: ð32Þ
Minimization of (28) violates stationarity of the true minimum at hHi [14] and destroys the theory’s renormalizability and unitarity,
which require that dimensionless wave function-renormalization hHiBare ¼ ½Zϕ�1=2hHi contain no relevant operators [7,14,24]. The
crucial observation is that, in obedience to the Goldstone theorem, RenormalizedðhHi2BareÞ ≠ hHi2FT .

GLOBAL SUð3ÞC × SUð2ÞL ×Uð1ÞY … PHYSICAL REVIEW D 96, 065006 (2017)

065006-7



ðhHi¼0;m2
π¼m2

h¼0Þ; or Goldstone mode hHi ≠ 0;

m2
π ¼ 0;m2

h ≠ 0Þ;

VWigner ¼ m2
π

�
h2 þ π⃗2

2

�
þ λ2ϕ

�
h2 þ π⃗2

2

�
2

VScale Invariant ¼ λ2ϕ

�
h2 þ π⃗2

2

�
2

VGoldstone ¼ λ2ϕ

�
h2 þ π⃗2

2
þ hHih

�
2

: ð33Þ

Equation (33) has exhausted the constraints, on the
allowed terms in the ϕ-sector effective Lagrangian, due
to those axial-vector WTIs which govern 1-ϕ-I connected
amputated Green’s functions ΓN;M. In order to distinguish
among the effective potentials in (33), we must turn to those
axial-vector WTIs that govern 1-ϕ-R connected amputated
T-matrix elements.

C. Infrared finiteness, Goldstone theorem,
and automatic tadpole renormalization

“Whether you like it or not, you have to include in the
Lagrangian all possible terms consistent with locality
and power counting, unless otherwise constrained by
Ward identities.” Kurt Symanzik, in a 1970 private letter
to Raymond Stora [26].

In the Appendix we extend Adler’s self-consistency
condition [17,18] [originally written for the SUð2ÞL ×
SUð2ÞR Gell-Mann-Lévy model [3]], to the case of the
νDSMG

tbτντ
Lagrangian (1)

limqμ→0hHiTtt1…tMðp1…pN ; qq1…qMÞjp
2
1
¼…p2

N¼m2
h

q2
1
¼…q2M¼0

≡ hHiTtt1…tMðp1…pN ; 0q1…qMÞjp
2
1
¼…p2

N¼m2
h

q2
1
¼…q2M¼0

¼ 0; ð34Þ
where, for pedagogical simplicity, we will suppress
M þ 1 isospin indices in Ttt1:::tMðp1:::pN ; qq1:::qMÞ
going forward. The T matrix vanishes as one of the pion
momenta goes to zero, provided all other physical scalar
particles are on mass-shell. These are “1-soft-pion” theo-
rems [18]. Equation (34) asserts the absence of infrared
divergences in the physical-scalar sector in Goldstone
mode νDSMG

tbτντ
. “Although individual Feynman diagrams

may be IR divergent, those IR divergent parts cancel
exactly in each order of perturbation theory. Further-
more, the Goldstone mode amplitude must vanish in the
soft-pion limit [2]”.
A special case of (34) is the Goldstone theorem itself, or

at least equivalent to it—the N ¼ 0, M ¼ 1 case of (34)
reads

hHiT0;2ð; 00Þ ¼ 0; ð35Þ

where momentum conservation forces q1 ¼ 0 (so that
q21 ¼ 0). We may write10 (35) as a further constraint on
the 1-ϕ-I connected amputated Green’s functions

hHiΓ0;2ð; 00Þ≡ −hHim2
π ¼ 0: ð36Þ

As described in footnote 7 above, the actual Goldstone
theorem states that the mass of the NGB ~π vanishes, where
~π are the angular degrees of freedom in the unitary
representation of the Φ field. However, m2

~π ¼ 0 if and
only if m2

π ¼ 0 in this global theory.
A crucial effect of the Adler relation (35), together

with the N ¼ 0, M ¼ 1 Ward-Takahashi Green’s function
identity (15), is to automatically eliminate tadpoles
in (40)

Γ1;0ð0; Þ ¼ hHiΓ0;2ð; 00Þ ¼ 0; ð37Þ
so that separate tadpole renormalization is unnecessary.
With hHi ≠ 0, (35) and (36) may be written,

−Γ0;2ð; 00Þ≡ −½Δπð0Þ�−1 ≡m2
π

¼ m2
π;Pole

�
1þm2

π;Pole

Z
dm2

ρπðm2Þ
m2

�
−1

¼ 0: ð38Þ

The pole mass of the pseudoscalars π⃗ in the νDSMG
tbτντ

therefore vanishes exactly

m2
π;Pole ¼ m2

π

�
1 −m2

π

Z
dm2

ρπðm2Þ
m2

�
−1

¼ 0; ð39Þ

which is the reason that ~⃗π are Nambu-Goldstone bosons.

D. νDSMG
tbτντ

scalar-sector effective Lagrangian
obedient to Goldstone theorem hHi ≠ 0;m2

π ≡ 0

We now rewrite the effective Lagrangian (24) including
the constraint from (36), i.e. m2

π ¼ 0,

LEff
νDSMG

tbτντ

¼ LKinetic
νDSMG

tbτντ

− VEff;Goldstone
νDSMG

tbτντ

þO
νDSMG

tbτντ
Ignore ð40Þ

10Recall that T0;2 is 1-P-R, while Γ0;2 is 1-P-I. Consider the
sum of all diagrams contributing to T0;2ð; 00Þ to all loops. Each of
these diagrams has exactly two (amputated) external legs, both
zero four-momentum π’s. Attach to either of these external legs a
π propagator (at zero four-momentum) Δπð0Þ and a Γ0;2ð; 00Þ.
This diagram is also a contribution to T0;2ð; 00Þ. [Indeed, we can
repeat this procedure an arbitrary number of times, and each
resulting diagram must again be a contribution to T0;2ð; 00Þ.]
Now Δπð0Þ has a pole at zero four-momentum when m2

π ¼ 0. so
if these contributions to T0;2ð; 00Þ are not to diverge, Γ0;2 must
vanish as the external momenta go to zero, so that the product
Δπð0ÞΓ0;2ð; 00Þ does not diverge.
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with the all-loop-orders renormalized Goldstone-mode
SSB νDSMG

tbτντ
effective potential11

VEff;Goldstone
νDSMG

tbτντ

¼ λ2ϕ

�
ϕ†ϕ −

1

2
hHi2

�
2

: ð41Þ

Equations (40) and (41) are the νDSMG
tbτντ

effective SSB
Lagrangian, derived from the global SUð3Þcolor ×
SUð2ÞL ×Uð1ÞY Lagrangian LνDSMG

tbτντ
in (1). It obeys

the Goldstone theorem; is minimized at ðH ¼ hHi;
π⃗ ¼ 0Þ; obeys stationarity of that true minimum [14] at
hHi; and preserves the theory’s renormalizability and
unitarity, which require [2,14,27–29] that dimensionless
wave-function renormalization hHiBare ¼ Z1=2

ϕ hHi not
attract any relevant operators.
With Goldstone mode wave-function renormalization

Γ0;2ð; q;−qÞ − Γ0;2ð; 00Þ ¼ q2 þOνDSMG

Ignore ; ð42Þ

the coordinate-space effective Lagrangian reads

LEff
νDSMG

tbτντ

¼ j∂μϕj2 − λ2ϕ

�
ϕ†ϕ −

1

2
hHi2

�
2

þO
νDSMG

tbτντ
Ignore

¼ j∂μϕj2 − λ2ϕ

�ðh2 þ π⃗2Þ
2

þ hHih
�
2

þO
νDSMG

tbτντ
Ignore :

ð43Þ

We conclude Sec. II with a few observations about
Eq. (43):

(i) It includes all OðΛ2Þ;OðlnΛ2Þ and finite terms that
arise, to all perturbative loop-orders, in the full
SUð3ÞColor × SUð2ÞL ×Uð1ÞY theory, i.e. due to
virtual fermions and scalars.

(ii) SUð2ÞL × Uð1ÞY is spontaneously broken.
(iii) The ultraviolet properties of the Goldstone-mode

νDSMG
tbτντ

effective potential are analogous with
those of the Goldstone mode of the global
Schwinger LΣM [1] corresponding to the y-axis
of the quarter plane characterizing the Gell-Mann-
Lévy LΣM with PCAC, as in Fig. 1 in [8] and
Fig. 12-12 in the textbook by C. Itzykson and J-C.
Zuber [14].

(iv) All relevant operators [e.g. UVQD ∼OðΛ2Þ in the
νDSMG

tbτντ
] have vanished identically due to the

Goldstone theorem.

(v) The N ¼ M ¼ 1 WTI

Γ2;0ð00; Þ ¼ hHiΓ1;2ð0; 00Þ þ Γ0;2ð; 00Þ
¼ hHiΓ1;2ð0; 00Þ ð44Þ

relates the BEH mass-squared from (43) to the
coefficient of the hπ⃗2 vertex, so that

m2
h ≡m2

BEH ¼ 2λ2ϕhHi2 ð45Þ

arises entirely from SSB.
(vi) The observable BEH resonance pole-mass-squared,

m2
h;Pole ¼ 2λ2ϕhHi2

�
1 − 2λ2ϕhHi2

Z
dm2

ρhðm2Þ
m2 − iϵ

�
−1

þOνDSMG

Ignore : ð46Þ

(vii) hHi ¼ Z
−1
2

ϕ hHiBare absorbs no relevant operators (i.e.
at worst ∼ lnΛ2).

(viii) As promised, ~⃗π are true NGB. In the unitary Kibble
representation [13,15],

LEff
νDSMG

tbτντ

¼ 1

2
ð∂μ

~HÞ2 þ 1

4
~H2Tr½∂μU†∂μU�

−
λ2ϕ
4
½ ~H2 − hHi2�2 þOνDSMG

Ignore

U ¼ eiσ⃗· ~⃗π=hHi: ð47Þ

(ix) The vanishing ofm2
π allows ~⃗π to have only derivative

couplings and therefore possess the required shift
symmetry for constant θ⃗

~⃗π → ~⃗π þ ~⃗π × θ⃗ þ hHiθ⃗ þOðθ2Þ: ð48Þ

III. THE GOLDSTONE THEOREM AND
AXIAL-VECTOR WTI CAUSE CERTAIN HEAVY
BSM PARTICLES TO DECOUPLE FROM THE
LOW-ENERGY νDSMG

tbτντ
SCALAR-SECTOR

EFFECTIVE LAGRANGIAN

If the Euclidean cutoff Λ2 were a true proxy for very
heavy BSM particles, we would already be in a position to
comment on their decoupling. Unfortunately, although the
literature often cites such proxy, it is simply not true. To
quote Ergin Sezgin “In order to prove theorems that reveal
symmetry-driven results in field theories, one must keep all
of the terms arising from all Feynman graphs, not just a
selection of interesting terms from a representative subset
of Feynman graphs.”

11It is not lost on the authors that, since we derived it from
connected amputated Green’s functions (where all vacuum
energy and disconnected vacuum bubbles are absorbed into an
overall phase, which cancels exactly in the S matrix [14,24]), the

vacuum energy in L
Eff;νDSMG

tbτντ
ϕ in (40) is exactly zero.
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A. Criteria for the extension of axial-vector
WTIs to include the νDSMG

tbτντ
, extended

with certain heavy BSM particles

In the Appendix, we derive the T-matrix and Green’s
function WTI for the case of the νDSMG

tbτντ
Lagrangian,

extended to include neutrino Dirac masses.
We here derive criteria that anomaly-free beyond the

BSM spin S ¼ 0 scalars Φ, and S ¼ 1
2
fermions ψ , must

obey in order that the axial-vector WTI remain true.
(1) Begin by focusing on the global SUð2ÞL νDSMG

tbτντ
isospin current and dividing it into vector and
axial-vector parts,

2J⃗μ
LþR;νDSMG

tbτντ

¼ π⃗×∂μπ⃗þ
X
c

q̄cγμt⃗qcþ l̄γμt⃗l

2J⃗μ
L−R;νDSMG

tbτντ

¼ π⃗∂μH−H∂μπ⃗

þ
X
c

q̄cγμγ5 t⃗qcþ l̄γμγ5 t⃗l

J⃗μ
L;νDSMG

tbτντ

¼ J⃗μ
LþR;νDSMG

tbτντ

þ J⃗μ
L−R;νDSMG

tbτντ

ð49Þ

with colors c ¼ r, w, b, isospin t⃗ ¼ 1
2
σ⃗, Pauli

matrices σ⃗.
The classical equations of motion show only that

the SUð2ÞL isospin current is conserved

∂μJ⃗
μ
L;νDSMG

tbτντ

¼ 0: ð50Þ

But in the νSMG
udeν studied here, CP is conserved, so

that on-shell and off-shell connected amputated
T-matrix elements and Green’s functions of an
odd number of π⃗s and their derivatives are zero.
They also vanish for an odd number of π⃗s and
fermion bilinears with the isospin quantum numbers
of π⃗.
SUð2ÞL−R is not a subgroup of the SUð2ÞL

symmetry group, but CP conservation ensures that
the global vector current transforms as an even
number of π⃗s, while the global axial-vector current
transforms as an odd number of π⃗s. Thus, for M
even,

h0jT½ðJ⃗μ
L−R;νDSMG

tbτντ

ðzÞÞ
×hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0iMeven

Connected ¼ 0

h0jT½ð∂μJ⃗
μ
L−R;νDSMG

tbτντ

ðzÞÞ
×hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0iMeven

Connected ¼ 0:

ð51Þ

Meanwhile, (49) and (50) show that, for M odd,

h0jT½∂μðJ⃗μL−R;νDSMG
tbτντ

ðzÞÞ
× hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0iModd

Connected

¼ h0jT½∂μðJ⃗μL;νDSMG
tbτντ

− J⃗μ
LþR;νDSMG

tbτντ

ÞðzÞ
× hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0iModd

Connected

¼ h0jT½ð∂μJ⃗
μ
L;νDSMG

tbτντ

ðzÞÞ
× hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0iModd

Connected

¼ 0: ð52Þ

Thus the SUð2ÞL−R current is “effectively con-
served.”
Similarly, although SUð2ÞLþR is not a subgroup

of SUð2ÞL, its current is also effectively conserved
for Green’s functions and T-matrix elements for
all M,

h0jT½ð∂μJ⃗
μ
LþR;νDSMG

tbτντ

ðzÞÞ
×hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0iConnected¼0:

ð53Þ

This paper is based on the effective conservation
of J⃗μ

L−R;νDSMG
tbτντ

for on-shell and off-shell connected

amputated Green’s functions and T-matrix elements,
in (51) and (52).12

(2) We extend the νDSMG
tbτντ

with certain BSM matter
particles. These must carry zero anomaly.
In order to force renormalized connected ampli-

tudes with an odd number of πs to vanish, the new
particlesΦ, ψ are taken in this paper to conserve CP.
Divide the conserved isospin current into axial-
vector (i.e. transforming as an odd number of π⃗s
under isospin) and vector (i.e. transforming as an
even number of π⃗s under isospin) parts.

∂μJ⃗
μ
L;Total ≡ ∂μðJ⃗μL;νDSMG

tbτντ

þ J⃗μL;BSMÞ ¼ 0

J⃗μLþR;BSM þ J⃗μL−R;BSM ≡ J⃗μL;BSM

J⃗μL−R;νDSMG þ J⃗μL−R;BSM ≡ J⃗μL−R;Total

h0jT½ð∂μJ⃗
μ
L−R;TotalðzÞÞhðx1Þ…hðxNÞ

× πt1ðy1Þ…πtMðyMÞ�j0iConnected ¼ 0: ð54Þ

12Had CP not been conserved, the vector and axial-vector
currents would not have separately been conserved. We look
forward to future works to exploring the consequences of soft CP
violation on WTIs.
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(3) Canonical quantization is imposed on the exact
renormalized fields, yielding equal-time quantum
commutators at space-time points y, z. The BSM
axial-vector currents must commute with H and π⃗,

δðz0 − y0Þ½J⃗ 0
L−R;BSMðzÞ; HðyÞ� ¼ 0

δðz0 − y0Þ½J 0;i
L−R;BSMðzÞ; πjðyÞ� ¼ 0: ð55Þ

Only certain BSM matter will obey this condition.
(4) BSM scalars must have zero VEV.Only certain BSM

matter will obey this condition. Note that Green’s
functions are then usually 1-BSM scalar-reducible,
by cutting a BSM-scalar line.

(5) Certain surface integrals must vanish: the Appendix
used pion-pole dominance to derive 1-soft-pion
theorems, which require that the connected surface
integral (56) vanish. In (56) we have N external
renormalized h ¼ H − hHi (coordinates x, mo-
menta p), M external (CP ¼ −1) renormalized π⃗
(coordinates y, momenta q, isospin t). Because CP is
conserved, only axial-vector WTI are needed to put
the effective Lagrangian into the desired form. We
form the surface integral

lim
kλ→0

Z
d4zeikz∂μh0jT½ð2J⃗μL−R;Total þ hHi∂μπ⃗ÞðzÞ

× hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0iConnected
¼

Z
d4z∂μh0jT½ð2J⃗μL−R;Total þ hHi∂μπ⃗ÞðzÞ

× hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0iConnected
¼

Z
3−surface

d3zẑμ3−surface

× h0jT½ð2J⃗μL−R;Total þ hHi∂μπ⃗Þðz3−surface → ∞Þ
× hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0iConnected

¼ 0; ð56Þ

where we have used Stokes theorem, and ẑμ3−surface

is a unit vector normal to the 3 − surface. The time-
ordered-product constrains the 3 − surface to lie on,
or inside, the light cone.
At a given point on the surface of a large enough

4-volume
R
d4z (i.e. the volume of all space-time):

all fields are asymptotic in-states and out-states,
properly quantized as free fields, with each field
species orthogonal to the others, and they are
evaluated at equal times, making time-ordering
unnecessary at ðz3−surface → ∞Þ. Input the global
axial-vector current (49) to (56), using ∂μhHi ¼ 0.
The contribution to (56) from νDSMG

tbτντ
vanishes

Z
3−surface

d3zẑμ3−surfaceh0jT
��

π⃗∂μh − h∂μπ⃗

þ
X
c

q̄cγμγ5 t⃗qc þ l̄γμγ5t⃗l

�
ðz3−surface → ∞Þ

× hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ
�
j0iConnected

¼ 0: ð57Þ

The first and second terms vanish because the BEH
boson h is massive. The third term vanishes because
all quarks have nonzero Dirac masses. The 4th term
vanishes because all leptons in the νDSMG

tbτντ
,

including neutrinos [30], have nonzero Dirac
masses. Propagators connecting massive h; qcL; lL
from points on z3−surface → ∞ to the localized
interaction points ðx1…xN ; y1…yMÞ, must stay in-
side the light cone, die off exponentially with mass,
and are incapable of carrying information that far.
It is the central observation for “pion-pole-

dominance” and this paper, that this argument fails
for the remaining term in the axial-vector current
2J⃗μ

L−R;νDSMG
tbτντ

in (49).

Z
2−surface

d2zẑμ2−surface

× h0jT½ð−hHi∂μπ⃗Þðz2−surface →∞Þ
×hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0iConnected ≠ 0:

ð58Þ

π⃗ is massless, capable of carrying (along the light
cone) long-ranged pseudoscalar forces out to the
2 − surface ðz2−surface → ∞Þ, i.e. the very ends of
the light cone (but not inside it). That masslessness is
the basis of our pion-pole-dominance-based axial-
vector WTIs which, as derived in the Appendix, give
1-soft-pion theorems, infrared finiteness for m2

π ¼ 0,
and a “Goldstone theorem.”

(6) In order to include spin S ¼ 0 scalar, and S ¼ 1
2

fermionic, BSM matter representations in our axial-
vector Ward-Takahashi identities, a certain surface
integral must vanish.

Z
d4z∂μh0jT½ðJ⃗μL−R;BSMðzÞÞ

× hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0i ¼ 0:

ð59Þ

Additional BSM particles must generically be mas-
sive, and thus incapable of carrying information to
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the surface at infinity. They must also have zero
vacuum expectation values. Only certain BSM
matter will obey this condition.
We examine below the consequences of extending

the νDSMG
tbτντ

to include certain high-mass-
scale M2

Heavy ≫ m2
Weak BSM matter, especially

the relevant operator contributions OðΛ2Þ,
OðM2

Heavy lnΛ2Þ, OðM2
Heavy lnM

2
HeavyÞ, OðM2

HeavyÞ,
OðM2

Heavy lnm
2
WeakÞ and Oðm2

Weak lnM
2
HeavyÞ, to the

effective Lagrangian of weak-scale νDSMG
tbτντ

scalars
ϕ. We show that, for low-energy jq2j; m2

Weak ≪
M2

Heavy physics, the heavy degrees of freedom de-
couple completely,13 including marginal operators
∼OðlnM2

HeavyÞ, leaving only irrelevant operators, at
worst ∼OðM−2

HeavyÞ. We demonstrate this below for
two heavy BSM-particle examples, a heavy fermion
and a heavy scalar.

B. νMSMG
tbτντ

: Singlet right-handed type I see-saw
Majorana neutrino νR with M2

νR ≫ m2
BEH

For the heavy fermion we consider a global SUð3ÞC ×
SUð2ÞL ×Uð1ÞY singlet right-handed Majorana neutrino
νR, withM2

νR ≫ m2
Weak, such as might be involved in a type

1 see-saw with a left-handed neutrino νL, with Yukawa
coupling yν and resulting Dirac massmD ¼ yνhHi= ffiffiffi

2
p

. We
add to the renormalized theory

LMajorana
νR ¼ −MνRðνRνR þ ν̄Rν̄RÞ=2: ð60Þ

Since νR is a SUð2ÞL singlet, its currents

J⃗μ;Majorana
L;νR

¼ J⃗μ;Majorana
LþR;νR

¼ J⃗μ;Majorana
L−R;νR ¼ 0 ð61Þ

satisfy all of the criteria, in Sec. III A, for the extension of
our axial-vector Ward-Takahashi IDs,

h0jT½∂μðJ⃗μL−R;νDSMG
tbτντ

þ J⃗ μ;Majorana
L−R;νR ÞðzÞ

× hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0iConnected ¼ 0

× δðz0 − y0Þ½J⃗ 0;Majorana
L−R;νR ðzÞ; HðyÞ� ¼ 0

× δðz0 − y0Þ½J⃗ 0;Majorana
L−R;νR ðzÞ; π⃗ðyÞ� ¼ 0

×
Z

d4z∂μh0jT½ðJ⃗μ;Majorana
L−R;νR ðzÞÞ

· hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0i ¼ 0: ð62Þ

Since it is massive νR cannot carry information to the
surface of the 4-volume

R
d4z, nor can it induce any

“neutrino-pole-dominance” terms. It follows that the

WTI for T-matrix elements (5), Green’s functions (6),
Adler’s self-consistency and IR finiteness (34), and
Goldstone theorem (36), are still true for the νDSMG

tbτντ
with a nonzero Majorana neutrino mass.
In order that total neutrino masses∼m2;Dirac

ν =MνR remain
nonzero in this type I see-saw, we can not take the strict
MνR → ∞ limit: that would destroy our axial-vector WTIs.
Instead we take 1 ≫ m2

Weak=M
2
νR > 0, so that νR decouples

in practice.
The weak-scale effective Lagrangian therefore remains

(40) with (41).

C. Singlet M2
S ≫ m2

BEH real scalar field S with
discrete Z2 symmetry and hSi= 0

Consider an SUð3ÞC × SUð2ÞL ×Uð1ÞY singlet real
scalar S, with (S → −S) Z2 symmetry, M2

S ≫ m2
h, and

hSi ¼ 0. We add to the renormalized theory

LS ¼
1

2
ð∂μSÞ2 − VϕS

VϕS ¼
1

2
M2

SS
2 þ λ2S

4
S4 þ 1

2
λ2ϕSS

2

�
ϕ†ϕ −

1

2
hHi2

�
ð63Þ

with M2
S > 0. Again,

J⃗μL;S ¼ J⃗μLþR;S ¼ J⃗μL−R;S ¼ 0 ð64Þ

and all the analogues of Eq. (62) follow.
Since it is massive, S cannot carry information to the

surface of the 4-volume
R
d4z. S − h mixing, which might

well have spoiled the protection that the WTI provide to
m2

h, is forbidden by the Z2 symmetry S → −S. It follows
that the axial-vector WTI for T-matrix elements (5),
Green’s functions (6), Adler’s self-consistency and
IR finiteness (34), including the Goldstone theorem, are
still true for the νDSMG

tbτντ
extended to include this

scalar singlet. Note that Green’s functions are usually
1 − S-Reducible, by cutting an S line.
In the m2

Weak=M
2
S → 0 limit, the weak-scale effective

Lagrangian therefore again remains (40) with (41).

IV. CONCLUSION: HISTORICALLY, COMPLETE
DECOUPLINGOFHEAVY INVISIBLE PARTICLES

IS THE USUAL PHYSICS EXPERIENCE

We defined the νDSMG
tbτντ

as the global SUð3ÞC ×
SUð2ÞL ×Uð1ÞY model of a complex Higgs doublet and
third-generation SM quarks and leptons, augmented by a
right-handed neutrino with Dirac mass. With SM isospin
and hypercharge assignments for fermions, νDSMG

tbτντ
has

zero axial anomaly. We showed that, in the presence of CP
conservation, the weak-scale low-energy effective
Lagrangian of the spontaneously broken νDSMG

tbτντ
is13Except for high-precision electroweak T and U [13,31,32].
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severely constrained by, and protected by, new rigid/global
SSB axial-vector Ward-Takahashi identities (WTI) includ-
ing an equivalent of the Goldstone theorem. In particular,
the weak-scale SSB νDSMG

tbτντ
has an SUð2ÞL shift sym-

metry for constant θ⃗

~⃗π → ~⃗π þ ~⃗π × θ⃗ þ hHiθ⃗ þOðθ2Þ: ð65Þ
This protects it, and causes the complete decoupling of
certain heavy M2

Heavy ≫ m2
Weak BSM matter-particles.

(Note that such decoupling is modulo special cases: e.g.
heavy Majorana νR, and possibly ODim≤4;nonanalytic;heavy

νDSMG ,

which are dimension ≤ 4 operators, nonanalytic in
momenta or a renormalization scale μ2, involve heavy
particles, and are beyond the scope of this paper.)
Such heavy-particle decoupling is historically the usual

physics experience at each energy scale as experiments
probed smaller and smaller distances. After all, Willis Lamb
did not need to know the top-quark or BEH mass [33] in
order to interpret theoretically the experimentally observed
Oðmeα

5 ln αÞ splitting in the spectrum of hydrogen.
Such heavy-particle decoupling may be the reason why

the Standard Model, viewed as an effective low-energy
weak-scale theory, is the most experimentally and observa-
tionally successful and accurate theory of nature known to
humans, i.e. when augmented by classical general relativity
and neutrino mixing, that “core theory” [34] has no known
experimental or observational counterexamples.
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APPENDIX: PROOF OF THE WARD-TAKAHASHI
IDENTITIES FOR SUð2ÞL × SUð2ÞR

and SUð2ÞL × Uð1ÞY
In 1970, B. Lee presented a series of lectures at the

Cargese Summer School on Chiral Dynamics, with detailed

results on the renormalization of the Gell Mann-Lévy
model—the SUð2ÞL × SUð2ÞR linear sigma model
(LΣM) with an approximate SUð2ÞL−R chiral symmetry,
but with an explicit breaking term [known as the partially
conserved axial current (PCAC), or Polkinghorne term]. Of
specific interest to us, in Sec. Vof those lectures, he proved
a tower of SUð2ÞL−R Ward-Takahashi identities (WTI)
among ðh; π⃗ Þ scalar-sector (Φ-sector) connected amputated
Green’s functions, Adler’s self-consistency conditions, and
the Goldstone theorem.
Those WTI, and the proof thereof, are of immense value

to us in this and companion papers. Unfortunately, the
volume in which the lecture appears [2] is difficult to
obtain. We therefore present in this Appendix, for the
benefit of the reader, those WTI and Lee’s proof of them for
the case of conserved axial-vector currents. We hew closely
to Lee’s presentation, language, notation and pedagogy.
Although we sometimes comment/elaborate on specific
details, we mostly just let Lee explain. Because we are
interested in weak interactions rather than strong inter-
actions, we set the explicit PCAC SUð2ÞL−R breaking term
(parametrized by γ in Lee’s notation) to zero: the result is
the SUð2ÞL × SUð2ÞR Schwinger model [1]. Because we
are interested in including SM fermions, whose Yukawa
couplings break global SUð2ÞL × SUð2ÞR explicitly to
global SUð2ÞL ×Uð1ÞY , we derive SUð3ÞC × SUð2ÞL ×
Uð1ÞY WTIs, analogous with those of Lee.
The conserved vector and axial-vector currents of the Φ-

sector SUð2ÞL × SUð2ÞR LΣM with the Lagrangian (3) are

V⃗μ ¼ π⃗ × ∂μπ⃗; ∂μV⃗μðxÞ ¼ 0

A⃗μ ¼ π⃗∂μH −H∂μπ⃗; ∂μA⃗μðxÞ ¼ 0: ðA1Þ

In Lee’s lectures, there is an explicit PCAC breaking of
the chiral symmetry, ∂μA⃗

μðxÞ ¼ γπ⃗ðxÞ. In this paper we
take γ ≡ 0.
In SUð2ÞL ×Uð1ÞY , we are interested in the left-handed

combination of V⃗μ and A⃗μ: 2J⃗
μ
L ≡ V⃗μ þ A⃗μ. The addition of

fermions in SUð3ÞC × SUð2ÞL ×Uð1ÞY representations
adds contributions to both V⃗μ and A⃗μ: The various
SUð2ÞL; SUð2ÞLþR; SUð2ÞL−R currents in the νDSMG

tbτντ
,

together with their conservation laws, are given in Eqs. (49)
through (53). We focus the remainder of our attention on
the SUð3ÞC × SUð2ÞL ×Uð1ÞY case, which has some
additional subtleties compared to Lee’s SUð2ÞL × SUð2ÞR.
We examine time-ordered amplitudes of products of the

axial-vector current J⃗L−Rμ , with N scalars (coordinates x,
momenta p), andM pseudoscalars (coordinated y, momenta
q, isospin t): h0jT½J⃗L−Rμ ðzÞhðx1Þ � � � hðxNÞπt1ðy1Þ � � �
πtMðyMÞ�j0i. Here h ¼ H − hHi and π⃗ are all-loop-orders
renormalized fields, normalized so that h0jhð0Þjhi ¼ 1

and h0jπið0Þjπji ¼ δij. We want the divergence of such
amplitudes.
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We are reminded that, as discussed in Sec. III A, such axial-vector-current amplitudes (as distinct from left-handed
current amplitudes) are of interest, and can be considered separately from vector-current amplitudes, solely because of CP
conservation. Making use of axial-vector-current conservation [Eqs. (49) through (53)], and the equal-time commutation
relations (again assuming CP conservation)

δðz0 − x0Þ½2JL−R;i0 ðzÞ; hðxÞ� ¼ −iπiðxÞδð4Þðx − zÞ
δðz0 − y0Þ½2JL−R;i0 ðzÞ; πjðyÞ� ¼ þiδijhðyÞδð4Þðy − zÞ: ðA2Þ

A short calculation reveals

∂μh0jT½2JL−R;tμ ðzÞhðx1Þ � � � hðxNÞπt1ðy1Þ � � � πtMðyMÞ�j0i

¼ i
XM
m

h0jT½hðx1Þ � � � hðxNÞhðzÞπt1ðy1Þ � � � dπtmðymÞ � � � πtMðyMÞ�j0iδð4Þðym − zÞδt;tm

þ ihHi
XM
m

h0jT½hðx1Þ � � � hðxNÞπt1ðy1Þ � � � dπtmðymÞ � � � πtMðyMÞ�j0iδð4Þðym − zÞδi;ij

− i
XN
n

h0jT½hðx1Þ � � � dhðxnÞ � � �hðxNÞπtðxnÞπt1ðy1Þ � � � πtMðyMÞ�j0iδð4Þðxn − zÞ; ðA3Þ

where dπtmðymÞ or dhðxnÞ indicates that copy of π or h is to be omitted from the product of fields. The lhs of (A3) hasM pion
fields. On the rhs, the first two terms have M − 1, and the third term M þ 1, pions.
The fermion contributions to J⃗L−Rμ commute with hðxÞ and πðyÞ and so do not contribute to the rhs of (A3). Fermion

contributions to the lhs remain.
We define the Fourier transform of these amplitudes in the usual way

iGt;t1���tM
μ ðk;p1 � � �pN ; q1 � � � qMÞð2πÞ2δð4Þ

�
kþ

XN
n

pn þ
XM
m

qm

�

≡
Z

d4zeik·zΠN
n¼1

Z
d4xneipn·xnΠM

m¼1

Z
d4ymeiqm·ymh0jT½2JL−R;tμ ðzÞhðx1Þ � � � hðxNÞπt1ðy1Þ � � � πtMðyMÞ�:j0i ðA4Þ

To economize on notation, going forward wewill omit all isospin indices, letting momenta stand in for the isospin indices
as well.
The reader is warned that, in this Appendix (and in Lee), it is assumed that π⃗ are the only massless fields in the theory, so

that certain surface integrals, which are discussed in the body of this paper, vanish.
Taking the Fourier transform of the divergence of the amplitude, and applying Stokes theorem,

Z
d4zeik·zΠN

n¼1

Z
d4xieipn·xnΠM

m¼1

Z
d4ymeiqj·ym∂μ

zh0jT½2JLμ ðzÞhðx1Þ � � � hðxNÞπðy1Þ � � � πðyMÞ�j0i

¼ kμGμðk;p1 � � �pN ; q1 � � � qMÞð2πÞ4δð4Þ
�
kþ

XN
n

pn þ
XN
m

qm

�
ðA5Þ
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kμGμðk;p1 � � �pN ; q1 � � � qMÞ

¼
XM
n

Gðp1 � � � cpm � � �pN ; kþ pm; q1 � � � qMÞ

−
XM
m

Gðkþ qm; p1 � � �pN ; q1 � � �cqm � � � qMÞδt;tm

− hHi
XM
m

Gðp1 � � �pN ; q1 � � �cqm � � � qMÞ

× δt;tmð2πÞ4δð4Þðkþ qmÞ: ðA6Þ

This holds for all N;M ≥ 1. For N ¼ 0 and M ¼ 1,

kμGμðk; ; qÞ ¼ ihHi: ðA7Þ

The T matrix restricts us to connected graphs. The last
term on the rhs of (A6) corresponds entirely to discon-
nected graphs. Denote by Hμ and H the connected parts of
the amplitudes Gμ and G defined above. Then

kμHμðk;p1 � � �pN ;q1 � � �qMÞ

¼
XN
n

Hðp1 � � �cpn � � �pN ;kþpn;q1 � � �qMÞ

−
XM
m

Hðkþqm;p1 � � �pN ;q1 � � �cqm � � �qMÞδt;tm ðA8Þ

for all N;M ≥ 1. For N ¼ 0 and M ¼ 1,

kμHμðk; ; qÞ ¼ ihHi: ðA9Þ

In order to derive “1-soft-pion theorems”, the limit
k → 0 is taken in Eqs. (A8) and (A9). Here we must be
careful. Because of the pion pole in Hμ at k2 ¼ 0,
kμHμ → constant. We therefore isolate the pion-pole con-
tribution to Hμ by writing

Hμðk;p1 � � �pN ; q1 � � � qMÞ
≡ ihHikμHðk;p1 � � �pN ; q1 � � � qMÞ
þ H̄μðk;p1 � � �pN ; q1 � � � qMÞ: ðA10Þ

The first term contains the pion-pole contribution; the
second term is nonsingular at k2 ¼ 0.
With this new decomposition, the lhs of Eq. (A8) is

ihHik2Hðp1 � � �pN ; kq1 � � � qMÞ þ kμH̄μ: ðA11Þ

As k → 0, the second term vanishes, and the first term goes
to a limit, since H has a pole at k2 ¼ 0. Therefore

ihHilim
k→0

k2Hðp1 � � �pN ; kq1 � � � qMÞ

¼
XN
n

Hðp1 � � �cpn � � �pN ;pn; q1 � � � qMÞ

−
XM
m

Hðp1 � � �pNqm; q1 � � �cqm � � � qMÞδt;tm ðA12Þ

for all N;M ≥ 1. For N ¼ 0, and M ¼ 1,

hHi lim
k2→0

ðk2Δπðk2ÞÞ ¼ hHi; ðA13Þ

where

iHð; q;−qÞ ¼
Z

d4xeiq·xh0jT½πðxÞπð0�ji

≡ iΔπðq2Þ; ðA14Þ

andΔπðq2Þ is the pion propagator. The relation (A13) looks
like the Goldstone theorem and is indeed equivalent to it in
this ungauged theory, where the masslessness of the NGB ~π
is equivalent to the masslessness of π, as discussed in the
body of the paper.
Equations (A12) and (A13) are the Ward-Takahashi

identities (WTI) of the theory. They are the fundamental
identities upon which the arguments of this paper are based.
We can combine them to write (for N ≥ 0;M ≥ 1),

− hHi½iΔπð0Þ�−1Hðp1 � � �pN ; 0q1 � � � qMÞ

¼
XM
n

Hðp1 � � �cpn � � �pN ;pnq1 � � � qMÞ

−
XM
m

Hðp1 � � �pnqm; q1 � � �cqm � � � qMÞ: ðA15Þ

Equation (A15) is of the form

hHiðN þM þ 1Þ − point function

∝
X

½ðN þMÞ − point functions�: ðA16Þ

B. W. Lee develops perturbation theory as an expansion
in his λ, the square-root of his all-loop-orders renormalized
4-point coupling λ2 (written less compactly λ2ϕ in the body
of this paper). Treating hHi as Oðλ−1Þ, Lee points out that
Eq. (A15), being of the form (A16), “is satisfied in each
order of perturbation theory.” That is, if the N þM þ 1-
point function on the lhs is computed in the l-loop
approximation, that is to order λ2ðl−1ÞþNþMþ1, and the
N þM-point functions on the rhs are computed in the
same l-loop approximation, that is to order λ2ðl−1ÞþNþM,
then the equation is identically satisfied.
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The off-mass-shell T matrix for the N scalar, M
pseudoscalar process is obtained from the connected
amplitude Hðp1 � � �pN ;q1 � � � qMÞ by “amputating” the
propagators of the external lines,

Hðp1 � � �pN ;q1 � � �qMÞ
¼ ΠN

n¼1½iΔhðp2
nÞ�ΠM

m¼1½iΔπðq2mÞ�Tðp1 � � �pN ;q1 � � �qMÞ:
ðA17Þ

The off-shell 1-ðh; πÞ scalar-particle-reducible (1-ϕ-R)
connected amputated T-matrix elements are expressed
in terms of the all-loop-orders renormalized h and π
propagators,

iΔhðp2Þ ¼
Z

d4xeip·xh0jT½hðxÞhð0Þ�j0i

iδijΔπðq2Þ ¼
Z

d4xeiq·xh0jT½πiðxÞπjð0Þ�j0i; ðA18Þ

and 1-ðh; πÞ-Scalar-Particle-Irreducible (1-ϕ-I) connected
amputated Green’s functions ΓN;Mðp1 � � �pN ;q1 � � � qMÞ,
which cannot be disconnected by cutting a h or π
propagator line.

Tðp1 � � �pN ; q1 � � � qMÞ
¼ ΓN;Mðp1 � � �pN ; q1 � � � qMÞ þ reducible part: ðA19Þ

ΓN;Mðp1 � � �pN ; q1 � � � qMÞ is the 1-ϕ-I vertex for N h’s and
M π’s. The “reducible part” can be written in terms of
irreducible vertices of lower order and full propagators.
Expressed in terms of the full propagators and the irre-
ducible vertices, the T matrix has a tree structure—i.e. it
can be represented by graphs without loops.
Because the T matrix contains only connected graphs,

and our WTI concern only the axial-vector current, and CP
is conserved,

Γ0;0 ¼ Γ0;1 ¼ Γ1;1 ¼ 0: ðA20Þ

In terms of connected amputated Green’s functions, the
propagators

Γ2;0ðp;−p; Þ≡ ½Δhðp2Þ�−1
Γ0;2ð; q;−qÞ≡ ½Δπðq2Þ�−1: ðA21Þ

We now examine Γ1;2. By definition

Hðp; 0;−pÞ ¼ ½iΔhðp2Þ�½iΔπð0Þ�
× ½iΔπðp2Þ�Γ1;2ðp; 0;−pÞ ðA22Þ

so with (A15) we have

hHiΓ1;2ðp;0;−pÞ¼ ½Δhðp2Þ�−1− ½Δπðp2Þ�−1
¼Γ2;0ðp;−p;Þ−Γ0;2ð;p;−pÞ: ðA23Þ

We can easily verify that this holds to lowest order
where Γ1;2ðp; 0;−pÞ ¼−2λ2hHi, ½Δhðp2Þ�−1¼p2−m2

h¼
p2−2λ2hHi2 and ½Δπðp2Þ�−1 ¼ p2.
To proceed further, we must express the WTI in terms of

the connected amputated T matrix rather than the Green’s
functions. We can rewrite Eq. (A15) for N ≥ 0, M ≥ 1,

hHiTðp1 � � �pN ; 0q1 � � �qMÞ

¼
XM
m

iΔhðq2mÞ½iΔπðq2mÞ�−1

× Tðp1 � � �pNqm; q1 � � �cqm � � � qMÞ

−
XN
n

iΔπðp2
nÞ½iΔhðp2

nÞ�−1

× Tðp1 � � � p̂t � � �pN ; q1 � � � qMptÞ: ðA24Þ
A corollary of (A24) are Adler’s self-consistency con-

ditions for global SUð2ÞL ×Uð1ÞY ,

hHi lim
q1→0

Tðp1 � � �pN ; q1 � � � qMÞjq
2
2
¼���q2M¼0

p2
1
¼���¼p2

N¼m2
h
¼ 0; ðA25Þ

which shows that, for hHi ≠ 0, the T matrix vanishes as one
of the pion momenta goes to zero, provided all the external
particles are on the mass shell. Equation (A25) asserts the
absence of infrared divergences in Goldstone mode.
“Individual Feynman diagrams are IR divergent, but the
divergent parts must cancel in every order of perturbation
theory. Furthermore, the amplitude must vanish in the soft-
pion limit [2].”
In (A24), the zero-momentum pion in Tðp1 � � �

pN ; 0q1 � � � qMÞ can either come off a “branch” (Lee’s
word for an external ϕ line) or off the “body” (our word)
of the diagram. Let T1 be the sum of the subset of the tree
graphs belonging to Tðp1 � � �pN ; 0q1 � � � qMÞ in which the
zero-momentum pion comes off a branch, as in Fig. 1. The
branch is either a π branch (left-hand graph of Fig. 1), with
finite-momentum qm, written

FIG. 1. Tt1…tMt
1 ðp1…pN ; q1…qM0Þ: Hashed circles are 1-ϕ-R

Tt1…tM ðp1…pN ; q1…qMÞ, solid lines π⃗, dashed lines h. One
(zero-momentum) soft pion is attached to an external leg (i.e. a
branch) in all possible ways. Figure 1 is the SUð3ÞC × SUð2ÞL ×
Uð1ÞY νDSMG

tbτντ
analogy of B.W. Lee’s Fig. 10 [2].
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iΓ1;2ðpn; 0;−pnÞiΔπðp2
nÞTðp1 � � �cpn � � �pN ;pn; q1 � � � qMÞ

or a h branch (right-hand graph of Fig. 1), with momentum
qm, written

iΓ1;2ðqm; 0;−qmÞiΔπðq2mÞTðp1 � � �pN ; q1 � � �cqm � � � qMÞ:

Forming T1 from these, and using (A23)

hHiT1 ¼
XM
m

Tðp1 � � �pNqm; q1 � � �cqm � � � qMÞ

× ð1 − ½iΔπðq2mÞ�−1½iΔhðq2mÞ�Þ

−
XN
n

Tðp1 � � �cpn � � �pN ; q1 � � �qMpnÞ

× ð1 − ½iΔhðp2
nÞ�−1½iΔπðp2

nÞ�Þ: ðA26Þ

Having accounted for T1, we define

T1 þ T2 ≡ Tðp1 � � �pN ; 0q1 � � �qMÞ ðA27Þ

so that, combining (A24), (A26), (A27), the WTI for T2 are
simply

hHiT2ðp1 � � �pN ; 0q1 � � � qMÞ

¼
XM
m

Tðp1 � � �pNqm; q1 � � �cqm � � � qMÞ

−
XN
n

Tðp1 � � �cpn � � �pN ; q1 � � � qMpnÞ ðA28Þ

for N ≥ 0, M ≥ 1
These are identities for T-matrix elements. How do they

translate into relations among the irreducible vertices? Lee
shows that Eq. (A28) is satisfied for N ≥ 0, M ≥ 1 if

hHiΓN;Mþ1ðp1 � � �pN ; 0q1 � � � qMÞ

¼
XM
m

ΓNþ1;M−1ðp1 � � �pNqm; q1 � � �cqm � � � qMÞ

−
XN
n

ΓN−1;Mþ1ðp1 � � �cpn � � �pN ; q1 � � � qMpnÞ:

ðA29Þ

The proof of (A29) is by induction on N þM, starting
from N ¼ M ¼ 1, which is just Eq. (A23). Assume then
that (A29) holds for N þM < nþm. Let N ¼ n, M ¼ m.
T2 in (A29) contains two classes of graphs, shown in Fig. 2:

(i) Figure 2, top graphs are reducible graphs in which
the zero-momentum pion comes out of an irreduc-
ible vertex. However, this does not include graphs in
which the zero-momentum pion comes out of a

three-prong irreducible vertex of which two prongs
are external lines, since those belong to T1, not T2.
For the sum of the 1-ϕ-R graphs, we may use (A29),
for N þM < nþm, to show that the 1-ϕ-I con-
tributions from both sides of (A28) are identical and
cancel. This leaves only 1-ϕ-I vertices on both sides
of Eq. (A29), giving us (A29) for N ¼ n,M ¼ m, as
desired.

(ii) Figure 2, bottom graph is 1-ϕ-I, and already
satisfies (A29).

Having proved Eq. (A29), we can now restore all the
isospin indices and display it in its full glory,

hHiΓt;t1���tM
N;Mþ1ðp1 � � �pN ; 0q1 � � � qMÞ

¼
XM
m

δt;tmΓt1���btm���tM
Nþ1;M−1ðp1 � � �pNqm; q1 � � �cqm � � � qMÞ

−
XN
n

Γt1���tMt
N−1;Mþ1ðp1 � � �cpn � � �pN ; q1 � � � qMpnÞ;

ðA30Þ

valid for all N;M ≥ 0, and nontrivial for M odd.
As Lee emphasizes for the SUð2ÞL × SUð2ÞR symmetric

theory, “the identities (A30) are valid in any renormaliz-
able theory in which the divergence [of the axial vector
current vanishes] ... and the H; π⃗ fields transform as the
½1
2
; 1
2
� representation under chiral SUð2Þ × SUð2Þ trans-

formations. Whether ... other fields are included is irrel-
evant, so long as the chiral symmetry is broken in a way to
ensure the divergence remains zero. When there are other
fields present, the irreducible vertices we have defined here
may still be reducible with respect to these [new] fields.”.
To Lee’s statement, we add the strong constraint: as long as
the new fields are massive.
With the addition of massive Standard Model fermions

to the SUð2ÞL × SUð2ÞR symmetric scalar theory, the
symmetry is explicitly broken down to SUð2ÞL × Uð1ÞY .

FIG. 2. Circles are 1-ϕ-I Γn;m, solid lines π⃗, dashed lines h, with
nþm < N þM. One (zero-momentum) soft pion emerges in all
possible ways from the connected amputated Green’s functions.
Figure 2 is the SUð3ÞC × SUð2ÞL × Uð1ÞY νDSMG

tbτντ
analogy of

B. W. Lee’s Fig. 11 [2].
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The addition of certain other new massive BSM particles that do not contribute to the divergence of the SUð2ÞL ×Uð1ÞY
current will again leave the form (A25), (A30) of the WTI identities, and the Goldstone theorem, unchanged. This is
discussed more explicitly in Sec. III.
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