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The weak-scale Uð1ÞY Abelian Higgs model (AHM) is the simplest spontaneous symmetry breaking

(SSB) gauge theory: a scalar ϕ ¼ 1ffiffi
2

p ðH þ iπÞ≡ 1ffiffi
2

p ~Hei ~π=hHi and a vector Aμ. The extended AHM

(E-AHM) adds certain heavy (M2
Φ;M

2
ψ ∼M2

Heavy ≫ hHi2 ∼m2
Weak) spin S ¼ 0 scalars Φ and S ¼ 1

2

fermions ψ . In Lorenz gauge, ∂μAμ ¼ 0, the SSB AHM (and E-AHM) has a global Uð1ÞY conserved
physical current, but no conserved charge. As shown by T.W. B. Kibble, the Goldstone theorem applies, so
~π is a massless derivatively coupled Nambu-Goldstone boson (NGB).

Proof of all-loop-orders renormalizability and unitarity for the SSB case is tricky because the Becchi-
Rouet-Stora-Tyutin (BRST)-invariant Lagrangian is not Uð1ÞY symmetric. Nevertheless, Slavnov-Taylor
identities guarantee that on-shell T-matrix elements of physical states Aμ,ϕ, Φ, ψ (but not ghosts ω, η̄) are
independent of anomaly-free local Uð1ÞY gauge transformations. We observe here that they are therefore
also independent of the usual anomaly-free Uð1ÞY global/rigid transformations. It follows that the
associated global current, which is classically conserved only up to gauge-fixing terms, is exactly
conserved for amplitudes of physical states in the AHM and E-AHM. We identify corresponding
“undeformed” [i.e. with full global Uð1ÞY symmetry] Ward-Takahashi identities (WTI). The proof of
renormalizability and unitarity, which relies on BRST invariance, is undisturbed.

In Lorenz gauge, two towers of “1-soft-pion” SSB global WTI govern the ϕ-sector, and represent a
new global Uð1ÞY ⊗ BRST symmetry not of the Lagrangian but of the physics. The first gives relations
among off-shell Green’s functions, yielding powerful constraints on the all-loop-orders ϕ-sector SSB
E-AHM low-energy effective Lagrangian and an additional global shift symmetry for the NGB:
~π → ~π þ hHiθ. A second tower, governing on-shell T-matrix elements, replaces the old Adler self-
consistency conditions with those for gauge theories, further severely constrains the effective potential, and
guarantees infrared finiteness for zero NGB ( ~π) mass. The on-shell WTI include a Lee-Stora-Symanzik
theorem, also for gauge theories. This enforces the strong conditionm2

π ¼ 0 on the pseudoscalar π (not just
the much weaker condition m2

~π ¼ 0 on the NGB ~π), and causes all relevant-operator contributions to the
effective Lagrangian to vanish exactly.

In consequence, certain heavy CP-conserving Φ, ψ matter decouple completely in the
m2

Heavy=m
2
weak → ∞ limit. We prove four new low-energy heavy-particle decoupling theorems that are

more powerful than the usual Appelquist-Carazzone decoupling theorem: including all virtual ϕ and ψ loop
contributions, relevant operators operators vanish exactly due to the exact Uð1ÞY symmetry of 1-soft-π
Adler-self-consistency relations governing on-shell T-matrix elements.

Underlying our results is that global Uð1ÞY transformations δUð1ÞY , and nilpotent s2 ¼ 0 BRST
transformations, commute: we prove ½δUð1ÞY ; s� in G. ’t Hooft’s Rξ gauges. With its on-shell T-matrix
constraints, SSB E-AHM physics therefore has more symmetry than does its BRST-invariant Lagrangian

L
Rξ

E-AHM: i.e. global Uð1ÞY ⊗ BRST symmetry.
The NGB ~π decouples from the observable particle spectrum Bμ, ~h, ~Φ, ~ψ in the usual way, when the

observable vector Bμ ≡ Aμ þ 1
ehHi ∂μ ~π absorbs it, as if it were a gauge transformation, hiding both towers of

Uð1ÞY WTI from observable particle physics.
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I. INTRODUCTION

What are the symmetries driving spontaneously broken
Abelian Higgs model (AHM) physics [1]? Although the
symmetries of the Uð1ÞY AHM Lagrangian are well known
[2], local gauge invariance is lost in the AHM Lagrangian,
broken by gauge-fixing terms, and replaced with global
Becchi-Rouet-Stora-Tyutin (BRST) invariance [3–5].
In their seminal work, Elisabeth Kraus and Klaus Sibold

[6] showed important new practicalities of the renormaliz-
ability and unitarity (to all loop orders) of the spontaneous
symmetry breaking (SSB) AHM. They did this by deriving
rigid invariance from BRST invariance. The SSB case is
tricky because the globally Becchi-Rouet-Stora-Tyutin
(BRST)-invariant Lagrangian is not Uð1ÞY symmetric.
But they identified a set of “deformed” [i.e. with no
remnant of the original Uð1ÞY group symmetry] rigid/
global AHM transformations which, after inclusion of
well-defined Uð1ÞY breaking by quantum loops (e.g. in
scalar wave-function renormalization beyond the classical
AHM), are compatible with BRST symmetry.
Kraus and Sibold then constructed deformed Ward-

Takahashi identities (WTI) for quantum AHM Green’s
functions, showing them (with appropriate normalization
conditions) to obey all-loop-orders renormalizability and
unitarity. Because their renormalization relies only on
deformed WTI, Kraus and Sibold’s results are independent
of the regularization scheme, for any acceptable scheme
(i.e. if one exists). They did not construct WTI for on-shell
T-matrix elements.
Nevertheless, Slavnov-Taylor identities [7] prove that the

on-shell S-matrix elements of “physical states” Aμ, ϕ,Φ, ψ ,
(i.e. spin S ¼ 0 scalars h, π, Φ, S ¼ 1

2
(CP-conserving)

fermions ψ , and S ¼ 1 gauge bosons Aμ, but not fermionic
ghosts ω or antighosts η̄) are independent, in the AHM,
of the usual undeformed anomaly-free Uð1ÞY local/gauge
transformations, even though these break the Lagrangian’s
BRST symmetry. We observe here that they are therefore
also independent of anomaly-free undeformed Uð1ÞY
global/rigid transformations, resulting in “new” global/
rigid currents and appropriate undeformed Uð1ÞY Ward-
Takahashi Identities.
We here distinguish carefully between off-shell Green’s

function WTI, which constrain the (unobservable) effective
Lagrangian and action, and on-shell T-matrix WTI, which
further severely constrain observable physics. We show
here that, in the SSB Abelian Higgs model, a tower of WTI
relates all relevant-operator contributions to AHM physi-
cal-scalar-sector physical observables to one another. An
on-shell T-matrix WTI, i.e. the equivalent of an Adler self-
consistency relation but for this gauge theory, then causes
all such contributions to vanish. It does so through its
insistence that the scalar mass squared vanishes exactly,

m2
π ¼ 0; ð1Þ

in spontaneously broken (hHi ≠ 0) theories, which we
term the Lee-Stora-Symanzik (LSS)1 theorem after the
three physicists who recognized its central role in the
renormalization of global linear sigma models, and the one
who was central to our understanding of its role in the
renormalization of gauge theories.2 In addition to con-
straining the parameters of the theory, the LSS theorem
permits us to employ pion-pole dominance to compute
the WTI.
The crucial advance over [18], which considered the

global SUð2ÞL × Uð1ÞY linear sigma model, is a proof that
the WTI remain in place in a SSB gauge theory, with the
LSS theorem playing the same protective role as did the
Goldstone theorem in the global theory [18].
Our new rigid Uð1ÞY WTI govern the scalar sector of the

AHM and of the extensions we consider in Sec. IV. They
are therefore independent of regularization scheme (assum-
ing one exists). Although not a gauge-independent pro-
cedure, it may help the reader to imagine that loop integrals
are cut off at a short-distance finite Euclidean UV scale, Λ,
never taking the Λ2 → ∞ limit. Although that cutoff can be
imagined to be near the Planck scale Λ≃MPl, quantum
gravitational loops are not included.
The structure of this paper is as follows:
Section II introduces Uð1ÞY ⊗ BRST symmetry for the

AHM and extended AHM (E-AHM) in a general ’t Hooft
Rξ gauge, and explains why physical quantities obey that
new symmetry.

1Raymond Stora would never have named anything after
himself, but we judge that, given the stature of B. W. Lee, R.
Stora and K. Symanzik (now all deceased) in the history of the
relevant physics, the community would refer to that result as the
LSS theorem anyway.

2As first noted by Kibble [8], in Lorenz gauge a relation similar
in appearance to (1), m2

~π ¼ 0, enforces the masslessness of a
Nambu Goldstone boson (NGB) ~π, i.e. is a Goldstone theorem
[9–11] for this gauge theory. This is regardless of the fact that the
NGB is not a physical degree of freedom, but is absorbed
(“eaten”) by the gauge boson. However, as we describe in greater
detail below [cf. Eq. (20)], ~π is the angular degree of freedom in
the Kibble representation of the complex scalar field, while π is
the pseudoscalar degree of freedom in the linear representation. In
global linear sigma models ðLΣMÞ, the masslessness of the NGB
and the LSS condition (III D) are equivalent. Indeed, B. Lee [12],
K. Symanzik [13,14], A. Vassiliev [15] and classic texts [16]
advocate that the spontaneously broken (Goldstone) mode of a
Uð1Þ global LΣM is to be understood as the zero-explicit-
breaking limit (i.e. m2

π → 0) of the explicit Uð1Þ-breaking par-
tially conserved axial-vector current (PCAC) term, LPCAC ¼
hHim2

πH, included in the Uð1Þ version of the Gell-Mann and
Lévy LΣM [17]. The existence and masslessness of the purely
derivatively coupled NGB is a result of and requires the vanishing
of the explicit-symmetry-breaking pseudoscalar mass squared.
In the Uð1ÞY AHM gauge theory, the Goldstone theorem and the
LSS theorem are not equivalent. To see this (or to at least suspect
it) the reader should remember that one cannot incorporate
explicit PCAC breaking of the local Uð1ÞY symmetry into the
AHM gauge theory [7], without spoiling unitarity.
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Section III concerns the correct renormalization of the
spontaneously broken AHM in Lorenz gauge. We treat the
AHM in isolation, as a stand-alone flat-space weak-scale
quantum field theory, not embedded or integrated into any
higher-scale “beyond-AHM” physics.
Section IV extends our AHM results to include the all-

loop-orders virtual contributions of certain M2
Heavy ≫

m2
Weak heavy Uð1ÞY matter representations (which might

arise in certain beyond-AHM models).
Section V reminds the reader [19] how the NGB ~π

disappears from the observable particle spectrum of the
E-AHM.
Section VI discusses the exacting mathematical rigor that

would have fully satisfied Raymond Stora.
Section VII reminds us that historically (with an impor-

tant exception) the decoupling of heavy particles is the
usual experience of physics.
Appendix A gives a complete and pedagogical derivation

of the Uð1ÞY WTI governing the ϕ-sector of the AHM. Our
renormalized WTI include all contributions from virtual
transverse gauge bosons, ϕ scalars, and ghosts, Aμ, h and π,
and η̄ and ω, respectively.
Appendix B gives a complete and pedagogical

derivation of Uð1ÞY ðh; πÞ-sector WTI in the E-AHM,
which now include the all-loop-orders contributions of
certain additional Uð1ÞY matter representations: spin S ¼ 0

scalars Φ, and S ¼ 1
2
anomaly-canceling (CP-conserving)

fermions ψ . They include all contributions from virtual
transverse gauge bosons, ghosts, scalars, and fermions,
Aμ; h; π; η̄;ω;Φ;ψ .

II. Uð1ÞY ⊗ BRST symmetry in ’t Hooft Rξ gauges

The BRST-invariant [3–5] Lagrangian of the Uð1ÞY
AHM gauge theory may be written, in a general ’t
Hooft Rξ gauge, in terms of a transverse vector Aμ, a
complex scalar ϕ, a ghost ω, and an antighost η̄,

L
Rξ

AHM ¼ LGauge Invariant
AHM þ L

Gauge Fix;Rξ

AHM þ L
Ghost;Rξ

AHM ; ð2Þ

where

LGauge Invariant
AHM ¼ jDμϕj2 −

1

4
AμνAμν − VAHMðϕ†ϕÞ ð3Þ

with

Dμϕ ¼ ð∂μ − ieYϕAμÞϕ;
Aμν ¼ ∂μAν − ∂νAμ;

VAHM ¼ μ2ϕðϕ†ϕÞ þ λ2ϕðϕ†ϕÞ2; ð4Þ

and

ϕ ¼ 1ffiffiffi
2

p ðH þ iπÞ; H ¼ hHi þ h and Yϕ ¼ −1:

ð5Þ

In G. ’t Hooft’s Rξ gauges, gauge fixing and DeWitt-
Fadeev-Popov ghost terms [20,21] are written in terms of a
Nakanishi-Lautrup field b [22,23], and the SSB vector
mass mA ¼ eYϕhHi ¼ −ehHi > 0.

L
Gauge Fix;Rξ

AHM þ L
Ghost;Rξ

AHM ¼ 1

2
ξb2 þ bð∂μAμ þ ξmAπÞ

− η̄

�
∂2 þ ξ

m2
A

hHiH
�
ω

¼ s

�
η̄

�
FA þ 1

2
ξb

��
FA ¼ ∂μAμ þ ξmAπ ð6Þ

with global BRST transformations [3–5,22–24] s,

sAμ ¼ ∂μω; sη̄ ¼ b;

sH ¼ −eπω; sb ¼ 0;

sπ ¼ eHω; sω ¼ 0; ð7Þ

so that the Lagrangian (2) is BRST invariant,

sL
Rξ

AHM ¼ 0: ð8Þ

The classical equation of motion for the ghost is

sFA ¼
�
∂2 þ ξ

m2
A

YϕhHiH
�
ω ¼ 0: ð9Þ

Now define the properties of the various fields under the
usual anomaly-free undeformed rigid/global Uð1ÞY trans-
formation by a constant Ω,

δUð1ÞYAμ ¼ 0; δUð1ÞY η̄ ¼ 0;

δUð1ÞYH ¼ −eπΩ; δUð1ÞY b ¼ 0;

δUð1ÞYπ ¼ eHΩ; δUð1ÞYω ¼ 0: ð10Þ

We discover that the Rξ-gauge Lagrangian (2) is not
invariant under such Uð1ÞY transformations,

δUð1ÞYL
Rξ

AHM ¼ δUð1ÞY

�
s

�
η̄

�
FA þ 1

2
ξb

���
¼ ξemAðbH þ eη̄πωÞΩ

¼ s

�
δUð1ÞY

�
η̄

�
FA þ 1

2
ξb

���
≠ 0: ð11Þ
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Still, the actions of the BRST transformations (7) and the
Uð1ÞY transformation (10) commute on all fields.

½δUð1ÞY ; s�Aμ ¼ 0; ½δUð1ÞY ; s�ω ¼ 0;

½δUð1ÞY ; s�H ¼ 0; ½δUð1ÞY ; s�η̄ ¼ 0;

½δUð1ÞY ; s�π ¼ 0; ½δUð1ÞY ; s�b ¼ 0: ð12Þ
Thus, with the nilpotent property s2 ¼ 0 applied in (11),

½δUð1ÞY ; s�L
Rξ

AHM ¼ 0; ð13Þ
and the two separate global symmetries can therefore
coexist in AHM physics.
Now add to (2) anyUð1ÞY local/gauge invariant, and there-

fore BRST invariant, Lagrangian LGaugeInvariant
beyondAHM ðAμ;ϕ;Φ;ψÞ

involving new bosonic spin-zero fields Φ and new anomaly-
canceling fermionic spin-1

2
fields ψ so as to form the E-AHM.

Then

sL
Rξ

E-AHM ¼ 0;

δUð1ÞYL
Rξ

E-AHM ¼ sðξemAη̄HΩÞ ≠ 0;

½δUð1ÞY ; s�L
Rξ

E-AHM ¼ 0: ð14Þ
We show in this paper that, due to (7), (10), (13), and

(14), the AHM, and the E-AHM, simultaneously obey both
the usual BRST symmetry and a global Uð1ÞY symmetry
that controls Green’s functions and on-shell T-matrix
elements. We also show that our effective potential can
be made gauge independent.
We reason as follows:
(i) All aspects of the SSB AHM and E-AHM obey

BRST symmetry.
(ii) In both the special ξ → 0 case of Landau gauge and

in the closely related Lorenz gauge,

LLandau
AHM ¼ LGauge Invariant

AHM

− lim
ξ→0

1

2ξ
ð∂μAμ þ ξmAπÞ2 − η̄∂2ω;

LLorenz
AHM ¼ LGauge Invariant

AHM

− lim
ξ→0

1

2ξ
ð∂μAμÞ2 − η̄∂2ω;

ð15Þ

global Uð1ÞY symmetry and the larger global
Uð1ÞY ⊗ BRST symmetry are preserved,

δUð1ÞYL
Lorenz
AHM ¼ 0;

δUð1ÞYL
Rξ

AHM⇒
ξ→0

δUð1ÞYL
Landau
AHM ¼ 0;

sLLorenz
AHM ¼ 0;

sLLandau
AHM ¼ 0; ð16Þ

similarly for LLorenz
E-AHM and LLandau

E-AHM.

(iii) Physical states and time-ordered amplitudes of the
exact renormalized scalar ϕ ¼ 1ffiffi

2
p ðH þ iπÞ and

vector Aμ obey G. ’t Hooft’s gauge condition [25]

0 ¼ h0jT½ð∂μAμðzÞÞ
× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected ð17Þ

in Landau or Lorenz gauges. Here we have N
external renormalized scalars h ¼ H − hHi (coor-
dinates xi), and M external (CP ¼ −1) renormalized
pseudoscalars π (coordinates yi).

(iv) We prove in Appendix A for the AHM and in
Appendix B for the E-AHM that, in Lorenz gauge
∂μAμ ¼ 0, scalar-sector connected amputated on-
shell T-matrix elements obey (17) and the Uð1ÞY
symmetry. Such on-shell WTI are gauge indepen-
dent (i.e. true for general Rξ gauges) even though
(11) and (14) show that the BRST-invariant AHM
(and E-AHM) Lagrangian is not invariant under the
Uð1ÞY symmetry.

(v) We prove in Appendix A for the AHM and in
Appendix B for the E-AHM that, in Lorenz
gauge ∂μAμ ¼ 0, scalar-sector connected amputated
gauge-dependent Green’s functions also obey (17)
and the Uð1ÞY symmetry.

(vi) We show that our AHM and E-AHM effective
potentials can be made physical (i.e. gauge-
independent) in Sec. V B 2, thus generalizing them
to ’t Hooft Rξ (and all other well-behaved) gauges.

III. THE ABELIAN HIGGS MODEL
IN LORENZ GAUGE

A. The Abelian Higgs model in Lorenz gauge

We form the AHM Lagrangian in Lorenz gauge

LLorenz
AHM ¼ LGauge Invariant

AHM

þ LGauge Fix;Lorenz
AHM þ LGhost;Lorenz

AHM ð18Þ

with (3), by writing the gauge-fixing and ghost terms,

LGauge Fix;Lorenz
AHM ¼ −lim

ξ→0

1

2ξ
ð∂μAμÞ2

LGhost;Lorenz
AHM ¼ −η̄∂2ω: ð19Þ

The complex scalar ϕ is manifestly renormalizable in the
linear representation (5). After SSB, m2

A ¼ e2Y2
ϕhHi2.

This paper distinguishes carefully between the local
BRST-invariant Uð1ÞY Lagrangian (18) and its three
physical modes [12–16]: symmetric Wigner mode, the
classically scale-invariant (SI) point and physical
Goldstone mode.
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(1) Symmetric Wigner mode hHi ¼ 0; m2
A ¼ 0; m2

π ¼
m2

BEH ¼ μ2ϕ ≠ 0:
This is QED with massless photons and massive

charged scalars. Thankfully, nature is not in Wigner
mode. Further analysis and renormalization of the
Wigner mode lies outside the scope of this paper.

(2) Classically scale-invariant point hHi ¼ 0; m2
A ¼ 0;

m2
π ¼ m2

BEH ¼ 0:
Analysis of the scale-invariant point is also out-

side the scope of this paper.
(3) Spontaneously broken Goldstone mode hHi ≠ 0;

m2
A ¼ e2hHi2 ≠ 0; m2

π ¼ 0; m2
BEH ≠ 0:

The famous Abelian Higgs model, with its NGB
eaten by the Brout-Englert-Higgs mechanism [and,
as we see, WTI governed by the (Goldstone-like)
LSS theorem] is the SSB Goldstone mode of the
BRST-invariant local Lagrangian (18), and is the
subject of this paper. We work in Lorenz gauge for
many reasons.
(a) The Uð1ÞY ghosts ðη̄;ωÞ decouple from the

quantum loop dynamics, and can (and will) be
benevolently ignored going forward.

(b) After a subtlety concerning their mixing, π and
Aμ are orthonormal species. A term ∼Aμ∂μπ
arises from jDμϕj2 after SSB in (18); a term
∼π∂μAμ is shown to vanish for physical states in
(A4) and (B4). The resultant surface term
∂μðπAμÞ vanishes (for physical states) because
Aμ is massive.

(c) Only in the SSB Goldstone mode of the BRST-
invariant Lagrangian (18), and only after first
renomalizing in the linear ϕ representation, does
the renormalized Kibble ϕ unitary representation

ϕ ¼ 1ffiffiffi
2

p ðH þ iπÞ≡ 1ffiffiffi
2

p ~He−iYϕ ~π=hHi

H ¼ hHi þ h; ~H ¼ hHi þ ~h

~π ≡ hHiϑ ð20Þ

make sense. Here the ϕ-hypercharge Yϕ ¼ −1.
(d) We prove to all loop orders the AHM Lee-Stora-

Symanzik theorem (50), (A27), a gauge theory
analogue of an old theorem for global LΣM [12],
which forces the π mass squared m2

π ¼ 0.
(e) We use pion-pole dominance (i.e.m2

π ¼ 0Þ argu-
ments to derive Uð1ÞY SSB WTI (49), (A22),
and (A30).

(f) We prove with Uð1ÞY WTI that, in SSB Gold-
stone mode, ~π in (20) is a NGB, and that the
resultant SSB gauge theory has a shift symmetry
~π → ~π þ hHiθ for constant θ.

Analysis is done in terms of the exact renormalized
interacting fields, which asymptotically become the in/out
states, i.e. free fields for physical S-matrix elements.

An important issue is the classification and disposal of
relevant operators, in this case the π, h and Aμ inverse
propagators (together with tadpoles). Define the exact
renormalized pseudoscalar propagator in terms of a mass-
less π, the Källén-Lehmann [12,26] spectral density ρπAHM,
and wave-function renormalization Zϕ

AHM. In Lorenz
gauge,

Δπ
AHMðq2Þ ¼ −ið2πÞ2h0jT½πðyÞπð0Þ�j0ijFourierTransform

¼ 1

q2 þ iϵ
þ
Z

dm2
ρπAHMðm2Þ

q2 −m2 þ iϵ

½Zϕ
AHM�−1 ¼ 1þ

Z
dm2ρπAHMðm2Þ: ð21Þ

Define also the Brout-Englert-Higgs (BEH) scalar propa-
gator in terms of a BEH scalar pole and the (subtracted)
spectral density ρBEH, and the same wave-function renorm-
alization. We assume h decays weakly, and resembles a
resonance,

ΔBEH
AHMðq2Þ ¼ −ið2πÞ2h0jT½hðxÞhð0Þ�j0ijFourierTransform

¼ 1

q2 −m2
BEH;Pole þ iϵ

þ
Z

dm2
ρBEHAHMðm2Þ

q2 −m2 þ iϵ

½Zϕ
AHM�−1 ¼ 1þ

Z
dm2ρBEHAHMðm2ÞZ

dm2ρπAHMðm2Þ ¼
Z

dm2ρBEHAHMðm2Þ: ð22Þ

The spectral density parts of the propagators are

Δπ;Spectral
AHM ðq2Þ≡

Z
dm2

ρπAHMðm2Þ
q2 −m2 þ iϵ

;

ΔBEH;Spectral
AHM ðq2Þ≡

Z
dm2

ρBEHAHMðm2Þ
q2 −m2 þ iϵ

:

Dimensional analysis of the wave-function renormaliza-
tions (21) and (22) shows that the contribution of a state of
mass/energy ∼MHeavy to the spectral densities
ρπAHMðM2

HeavyÞ and ρBEHAHMðM2
HeavyÞ ∼ 1

M2
Heavy

, and similarly

its contribution to Δπ;Spectral
AHM and ΔBEH;Spectral

AHM includes only
irrelevant terms ∼ 1

M2
Heavy

. The finite Euclidean cutoff con-

tributes only irrelevant terms ∼ 1
Λ2.

B. Rigid/global Uð1ÞY WTI and conserved rigid/global
current, for the physical states of the SSB AHM,

in Lorenz gauge. Rigid/global Uð1ÞY charge
is not conserved

In their seminal work, E. Kraus and K. Sibold [6]
identified, in the Abelian Higgs model, “rigid and current
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Ward identity (sic) in accordance with … BRS[T] invari-
ance.” They are called deformed because they have no
remnant of the original anomaly-free Uð1ÞY symmetry.
The SSB case is tricky because gauge-fixing terms

explicitly break both local and global Uð1ÞY symmetry
in the BRST-invariant Lagrangian. Still, Kraus and Sibold’s
construction allowed them to demonstrate (with appropriate
normalization conditions) proof of all-loop-orders renor-
malizability and unitarity for the SSB Abelian Higgs
model. Because their renormalization relies only on
deformed WTI, Kraus and Sibold’s results are independent
of a regularization scheme, for any acceptable scheme (i.e.
if one exists).3

Nevertheless, Slavnov-Taylor identities [7] prove that the
on-shell S-matrix elements of “physical particles” [i.e. spin
S ¼ 0 scalars h, π, and S ¼ 1 transverse gauge bosons Aμ,
but not fermionic ghosts ðη̄;ωÞ] are independent of the
usual (undeformed) anomaly-free Uð1ÞY local/gauge trans-
formations, even though these break the Lagrangian’s
BRST symmetry.
We observe here that SSB S-matrix elements are

therefore also independent of anomaly-free undeformed
Uð1ÞY global/rigid transformations, resulting in a new
global/rigid current and appropriate undeformed Uð1ÞY
Ward-Takahashi identities. All this is done without
reference to the unbroken Wigner mode and scale-invariant
point.
We are interested in rigid-symmetric relations among

1-ðh; πÞ-irreducible (1-ϕ-I) connected amputated Green’s
functions ΓN;M, and among 1-ðh; πÞ-reducible (1-ϕ-R)
connected amputated transition-matrix (T-matrix) elements
TN;M, with external ϕ scalars. Because these are 1-Aμ-R in
the AHM, and also 1-Φ-R in the E-AHM (i.e. reducible by
cutting an Aμ orΦ line), it is convenient to use the powerful
old tools (e.g. canonical quantization) from vintage quan-
tum field theory (vintage QFT), a name coined by Ergin
Sezgin.
We focus on the rigid/global AHM current4 constructed

with (10),

JμAHM ¼ π∂μH −H∂μπ − eAμðπ2 þH2Þ: ð23Þ

Rigid/global transformations of the fields arise, as usual,
from the equal-time commutators (A7),

δUð1ÞYHðt; y⃗Þ ¼ −i
Z

d3z½J0AHMðt; z⃗Þ; Hðt; y⃗Þ�eΩ

¼ −
Z

d3zπðt; z⃗Þδ3ðz⃗ − y⃗ÞeΩ

¼ −πðt; y⃗ÞeΩ;

δUð1ÞYπðt; y⃗Þ ¼ −i
Z

d3z½J0AHMðt; z⃗Þ; πðt; y⃗Þ�eΩ

¼
Z

d3zHðt; z⃗Þδ3ðz⃗ − y⃗ÞeΩ

¼ Hðt; y⃗ÞeΩ; ð24Þ

so JμAHMðt; z⃗Þ serves as a “proper” local current for
commutator purposes.
In contrast, we show below that, in Lorenz gauge, the

Uð1ÞY AHM [and therefore also theUð1ÞY E-AHM] has no
associated proper global charge Q because d

dt QðtÞ ≠ 0.
[See Eq. (32) below.]
The classical equations of motion reveal a crucial

fact: due to gauge-fixing terms in the BRST-invariant
Lagrangian (18), the classical current (23) is not conserved.
In Lorenz gauge

∂μJ
μ
AHM ¼ HmAFA; ð25Þ

with

mA ¼ ehHi ð26Þ

and FA being the gauge-fixing condition,

FA ≡ ∂βAβ: ð27Þ

The global Uð1ÞY current (23) is, however, conserved by
the physical states, and therefore still qualifies as a “real”
current for commutator purposes (24). Strict quantum
constraints must be imposed to force the relativistically
covariant theory of gauge bosons to propagate only its true
number of quantum spin S ¼ 1 degrees of freedom. These
constraints are implemented, in the modern literature, by
use of spin S ¼ 0 fermionic Fadeev-Popov ghosts ðη̄;ωÞ.
The physical states and their time-ordered products, but not
the BRST-invariant Lagrangian (18), then obey G. ’t
Hooft’s [25] Lorenz-gauge gauge-fixing condition (17).
Equations (17) and (A4) restore conservation of the

rigid/global Uð1ÞY current for the ϕ-sector connected time-
ordered products

h0jT½ð∂μJ
μ
AHMðzÞÞ

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected ¼ 0: ð28Þ

3E. Kraus and K. Sibold also constructed, in terms of deformed
WTI, all-loop-orders renormalized QED, QCD, and the electro-
weak standard model [27,29], independent of regularization
scheme. From this grew the powerful technology of “algebraic
renormalization,” used by them, W. Hollik and others [30], to
renormalize supersymmetry (SUSY) QED, SUSY QCD, and the
minimal supersymmetric standard model.

4This is related to the rigid/global hypercharge current
of the third-generation global Dirac neutrino standard model
(νDSMG

tbτντ
) explored in [18]: replace π → π3; π2 → π⃗2, ungauge

Aμ, add a charged pion current π2∂μπ1 − π1∂μπ2, add the third
generation of SM quarks (three colors and two flavors) and
leptons (one charged flavor), add one νR with SSB Dirac mass
mν, and change the overall sign Jμ;So Modified

AHM → −JμY;νDSM.
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It is in this physical connected-time-ordered-product sense
that the rigid global Uð1ÞY physical current is conserved:
the current-conservation equation (28) is obeyed only when
the divergence of the current is projected in this way on the
physical states. Current conservation is not a property of
the abstract Noether-current operator derived from the
BRST-invariant Lagrangian (18).
Appendix A derives two towers of quantum Uð1ÞY WTI

that exhaust the information content of (28), severely
constrain the dynamics (i.e. the connected time-ordered
products) of the ϕ-sector physical states of the SSB AHM
and realize the new Uð1ÞY ⊗ BRST symmetry of Sec. II.
We might have hoped to also build a charge

QAHMðtÞ ¼
Z

d3zJ0AHMðt; z⃗Þ ð29Þ

which would be conserved when similarly restricted to
physical connected time-ordered products,

h0jT
��

d
dt

QAHMðtÞ
�

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ
�
j0iconnected

¼
Z

d3zh0jT½ð∇⃗ · J⃗AHMðt; z⃗ÞÞ

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected;

¼
Z
2−surface

d2zẑ2−surface · h0jT½ðJ⃗AHMðt; z⃗ÞÞ

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected; ð30Þ
where we have used Stokes’ theorem, and ẑμ2−surface is a
unit vector normal to the 2-surface. The time-ordered
product constrains the 2-surface to lie on or inside the
light cone.
At a given point on the surface of a large enough

3-volume
R
d3z (e.g. the volume of all space) that lies

on or inside the light cone, all fields on the z2−surface are
asymptotic in states and out states; are properly quantized
as free fields, with each field species orthogonal to the
others; and are evaluated at equal times, so that time
ordering is unnecessary.
Nevertheless, the time derivative of this charge does not

vanish even in this restricted physical sense, because, with
the symmetry spontaneously broken, a specific term in the
surface integral of the right-hand side of (23) does not
vanish,Z

light cone→∞
dzẑlight cone · h0jT½ð−hHi∇⃗πðzÞÞ

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0i ≠ 0: ð31Þ

In the SSB AHM, π is massless (in Lorenz gauge), and so
capable of carrying (along the light cone) long-ranged

pseudoscalar forces out to the very ends of the light
cone ðzlight cone → ∞Þ.
Equations (30) and (31) then show that the spontane-

ously brokenUð1ÞY AHM charge is not conserved, even for
connected time-ordered products, in Lorenz gauge�
0jT

��
d
dt

QAHMðtÞ
�

× hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ
�
j0
�

connected
≠ 0;

ð32Þ
dashing, at least for the authors, all further hope of a
conserved charge.
The classic proof of the Goldstone theorem [8,10,11]

requires a conserved charge d
dt Q ¼ 0, so that proof fails for

spontaneously broken gauge theories. This is a very famous
result [8,19,31,32], and allows the spontaneously broken
AHM to generate a mass gap mA for the vector Aμ and to
avoid massless particles in its observable physical spec-
trum. This is true even in Lorenz gauge, where there is a
Goldstone theorem, and consequently ~π is a derivatively
coupled (hence massless) NGB [8,19], and where there is a
LSS theorem, so π is massless.
Massless π (not ~π) is the basis of our pion-pole-

dominance-based Uð1ÞY WTI, derived in Appendix A,
which give relations among 1-ϕ-I connected amputated ϕ-
sector Greens functions ΓN;M (33) and (A31); 1-soft-pion
theorems (49), (A22), and (A30); infrared (IR) finiteness
form2

π ¼ 0 (49) and (A22); a LSS (and Goldstone) theorem
(50) and (A27); and vanishing 1-ϕ-R connected amputated
on-shell ϕ-sector T-matrix elements TN;M (49) and (A30)
that realize the full Uð1ÞY ⊗ BRST symmetry of Sec. II.

C. Construction of the scalar-sector effective
Lagrangian from those Uð1ÞY WTI that govern
connected amputated 1-ϕ-I Greens functions

In Appendix A we derive Uð1ÞY pion-pole-dominance
1-ϕ-R connected amputated T-matrix WTI (A30)
for the SSB AHM. Their solution is a tower of recursive
Uð1ÞY WTI (A31) that govern 1-ϕ-I ϕ-sector connected
amputated Greens functions ΓN;M. For π with CP ¼ −1,
the result

hHiΓN;Mþ1ðp1…pN ; 0q1…qMÞ

¼
XM
m¼1

ΓNþ1;M−1ðqmp1…pN ; q1…cqm…qMÞ

−
XN
n¼1

ΓN−1;Mþ1ðp1…cpn…pN ;pnq1…qMÞ ð33Þ

is valid forN;M ≥ 0. On the left-hand side of (33) there are
N renormalized h external legs (coordinates x, momenta p),
M renormalized (CP ¼ −1) π external legs (coordinates y,
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momenta q), and one renormalized soft external πðkμ ¼ 0Þ
(coordinates z, momenta k). “Hatted” fields with momenta
ðcpn;cqmÞ are omitted.
The rigid Uð1ÞY WTI 1-soft-pion theorems (33)

relate a 1-ϕ-I Green’s function with ðNþMþ1Þ external
fields (which include a zero-momentum π) to two
1-ϕ-I Green’s functions with (N þM) external fields.5

The Green’s functions ΓN;Mðp1…pN ;q1…qMÞ are not
themselves gauge independent. Furthermore, although
1-ϕ-I, they are 1-Aμ-reducible (1-Aμ-R) by cutting a
transverse Aμ gauge boson line.
The 1-ϕ-I π and h inverse propagators are

Γ0;2ð; q;−qÞ≡ ½Δπðq2Þ�−1;
Γ2;0ðq;−q; Þ≡ ½ΔBEHðq2Þ�−1: ð34Þ

We can now form the ϕ-sector effective momentum-
space Lagrangian in Lorenz gauge. All perturbative quan-
tum loop corrections, to all loop orders and including all
UVQD, log-divergent and finite contributions, are included
in the ϕ-sector effective Lagrangian: 1-ϕ-I Green’s func-
tions ΓN;Mðp1…pN ; q1…qMÞ, wave-function renormaliza-
tions, renormalized ϕ-scalar propagators (21) and (22), the
BEH vacuum expectation value (VEV) hHi (A35), and all
gauge boson and ghost propagators. This includes the full
all-loop-orders renormalization of the AHM ϕ-sector,
originating in quantum loops containing transverse virtual
gauge bosons, ϕ scalars and ghosts: Aμ, h; π; η̄;ω, respec-
tively. Because they arise entirely from global Uð1ÞY WTI,
our results are independent of regularization scheme [6].

We want to classify operators arising in AHM loops, and
separate the finite operators from the divergent ones. We
focus on finite relevant operators, as well as quadratic and
logarithmically divergent operators.
There are three classes of finite operators.
(i) Finite O1=Λ2;Irrelevant

AHM vanish as m2
Weak=Λ2 → 0;

(ii) Od>4;Light
AHM are finite-dimension d > 4 operators,

where only the light degrees of freedom Aμ,
h; π; η̄;ω contribute to all-loop-orders renormali-
zation;

(iii) Od≤4;Non Analytic
AHM are finite-dimension d ≤ 4 operators

that are nonanalytic in momenta or in a renormal-
ization scale μ2 (e.g. finite renormalization-group
logarithms).

All such operators are ignored.

OIgnore
AHM ¼ O1=Λ2;Irrelevant

AHM þOd>4;Light
AHM

þOd≤4;Non Analytic
AHM : ð35Þ

Such finite operators appear throughout the Uð1ÞY
WTI (33),

(i) N þM ≥ 5 is O1=Λ2;Irrelevant
AHM and Od>4;Light

AHM ;
(ii) the left-hand side of (33) for N þM ¼ 4 is also

O1=Λ2;Irrelevant
AHM and Od>4;Light

AHM ;

(iii) N þM ≤ 4 operatorsOd≤4;Non Analytic
AHM appear in (33).

Finally, there are N þM ≤ 4 operators that are analytic
in momenta. We expand these in powers of momenta, count
the resulting dimension of each term in the operator Taylor

series, and ignore Od>4;Light
AHM and O1=Λ2;Irrelevant

AHM terms in that
series.
Suppressing gauge fields, the all-loop-orders renormal-

ized scalar-sector effective Lagrangian with operator
dimension less than or equal to 4 is then formed for (h,
π) with CP ¼ ð1;−1Þ,

LEff;Wigner;SI;Goldstone
AHM;ϕ;Lorenz ¼Γ1;0ð0;Þhþ

1

2!
Γ2;0ðp;−p;Þh2

þ 1

2!
Γ0;2ð;q;−qÞπ2þ

1

3!
Γ3;0ð000;Þh3

þ 1

2!
Γ1;2ð0;00Þhπ2þ

1

4!
Γ4;0ð0000;Þh4

þ 1

2!2!
Γ2;2ð00;00Þh2π2

þ 1

4!
Γ0;4ð;0000Þπ4þOAHM

Ignore: ð36Þ

The WTI (33) for Green’s functions severely constrain
the effective Lagrangian (36).

(i) N ¼ 0, M ¼ 1 WTI,

Γ1;0ð0; Þ ¼ hHiΓ0;2ð; 00Þ; ð37Þ

since no momentum can run into the tadpoles.

5The rigid Uð1ÞY WTI (33) for the Uð1ÞY AHM gauge theory
are a generalization of the classic work of B. W. Lee [12], who
constructed two all-loop-orders renormalized towers of WTI for
the global SUð2ÞL × SUð2ÞR Gell-Mann Lévy (GML) model
[17] with PCACs. We replace GML’s strongly interacting linear
sigma model (LΣ M) with a weakly interacting BEH LΣ M, with
explicit PCAC breaking. Replace σ → H, π⃗ → π,mσ → mBEH
and fπ → hHi, and add local gauge group Uð1ÞY . This generates
a set of global Uð1ÞY WTI governing relations among weak-
interaction 1-ϕ-R T-matrix elements TN;M . A solution set of those
Uð1ÞY WTI then governs relations among Uð1ÞY 1-ϕ-I Green’s
functions ΓN;M .
As observed by Lee for GML, one of those on-shell T-matrix
WTI is equivalent to the Goldstone theorem. This equivalence
relies on the ability to incorporate a PCAC term into the global
theory, and then retrieve the spontaneously broken theory in the
appropriate zero-explicit-breaking limit, namely m2

π → 0. In the
gauge theory, although explicit-breaking terms are allowed by
power-counting, they violate the BRST symmetry and spoil
unitarity [33]. Yet, the T-matrix WTI persists and forces m2

π ¼ 0
in Lorenz gauge, which is now the new LSS theorem. The
Goldstone theorem also persists in Lorenz gauge, and forces
m2

~π ¼ 0.
Appendix A includes, in Table I, a translation between the WTI
proofs in this paper (a gauge theory) and in B.W. Lee (a global
theory).
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(ii) N ¼ 1, M ¼ 1 WTI,

Γ2;0ð−q; q; Þ − Γ0;2ð; q;−qÞ
¼ hHiΓ1;2ð−q;q0Þ
¼ hHiΓ1;2ð0; 00Þ þOAHM

Ignore

Γ2;0ð00; Þ ¼ Γ0;2ð; 00Þ þ hHiΓ1;2ð0; 00Þ: ð38Þ

(iii) N ¼ 2, M ¼ 1 WTI,

hHiΓ2;2ð00; 00Þ ¼ Γ3;0ð000; Þ − 2Γ1;2ð0; 00Þ: ð39Þ

(iv) N ¼ 0, M ¼ 3 WTI,

hHiΓ0;4ð; 0000Þ ¼ 3Γ1;2ð0; 00Þ: ð40Þ

(v) N ¼ 1, M ¼ 3 WTI,

0 ¼ 3Γ2;2ð00; 00Þ − Γ0;4ð; 0000Þ: ð41Þ

(vi) N ¼ 3, M ¼ 1 WTI,

0 ¼ Γ4;0ð0000; Þ − 3Γ2;2ð00; 00Þ: ð42Þ

(vii) The quadratic and quartic coupling constants are
defined in terms of two-point and four-point 1-ϕ-I
Green’s function,

Γ0;2ð; 00Þ≡ −m2
π;

Γ0;4ð; 0000Þ≡ −6λ2ϕ: ð43Þ

The all-loop-orders renormalized ϕ-sector momentum-
space effective Lagrangian (36)—constrained only by those
Uð1ÞY WTI governing Green’s functions (33)—may be
written

LEff;Wigner;SI;Goldstone
AHM;ϕ;Lorenz ¼ LKinetic;Eff;Wigner;SI;Goldstone

AHM;ϕ;Lorenz

− VEff;Wigner;SI;Goldstone
AHM;ϕ;Lorenz þOAHM

Ignore;

ð44Þ

with

LKinetic;Eff;Wigner;SI;Goldstone
AHM;ϕ;Lorenz

¼ 1

2
ðΓ0;2ð;p;−pÞ − Γ0;2ð; 00ÞÞh2

þ 1

2
ðΓ0;2ð; q;−qÞ − Γ0;2ð; 00ÞÞπ2; ð45Þ

incorporating finite nontrivial wave-function renormaliza-
tion

Γ0;2ð; q;−qÞ − Γ0;2ð; 00Þ ∼ q2; ð46Þ

and

VEff;Wigner;SI;Goldstone
AHM;ϕ;Lorenz ¼ m2

π

�
h2 þ π2

2
þ hHih

�

þ λ2ϕ

�
h2 þ π2

2
þ hHih

�
2

: ð47Þ

The ϕ-sector effective Lagrangian (44) has insufficient
boundary conditions to distinguish among the three modes
[12–15] of the BRST-invariant Lagrangian LAHM in (18).
For example, the effective potential VEff;Wigner;SI;Goldstone

AHM;ϕ;Lorenz

becomes in various limits6 the AHM Wigner mode
ðm2

A ¼ 0; hHi ¼ 0; m2
π ¼ m2

BEH ≠ 0Þ, the AHM SI point
ðm2

A ¼ 0; hHi ¼ 0; m2
π ¼ m2

BEH ¼ 0Þ, or AHM Goldstone
mode ðm2

A ≠ 0; hHi ≠ 0; m2
π ¼ 0; m2

BEH ≠ 0Þ, with

VEff;Wigner
AHM;ϕ;Lorenz ¼ m2

π

�
h2 þ π2

2

�
þ λ2ϕ

�
h2 þ π2

2

�
2

VEff;Scale Invariant
AHM;ϕ;Lorenz ¼ λ2ϕ

�
h2 þ π2

2

�
2

;

VEff;Goldstone
AHM;ϕ;Lorenz ¼ λ2ϕ

�
h2 þ π2

2
þ hHih

�
2

: ð48Þ

Equation (44) has exhausted the constraints (on the
allowed terms in the ϕ-sector effective Lagrangian) due to
those Uð1ÞY WTI that govern 1-ϕ-I ϕ-sector Green’s
functions ΓN;M (33), (A31). In order to provide boundary
conditions that distinguish among the effective potentials in
(48), we must turn to the Uð1ÞY WTI that govern ϕ-sector
1-ϕ-R T-matrix elements TN;M.

D. The LSS theorem: IR finiteness and automatic
tadpole renormalization

“Whether you like it or not, you have to include in the
Lagrangian all possible terms consistent with locality
and power counting, unless otherwise constrained by
Ward identities” (Kurt Symanzik, in a private letter to
Raymond Stora [36].)

In strict obedience to K. Symanzik’s edict, we now
further constrain the allowed terms in the ϕ-sector effective
Lagrangian, using those Uð1ÞY Ward-Takahashi identities
that govern 1-ϕ-R T-matrix elements TN;M.
In Appendix A, we extend Adler’s self-consistency

condition [originally written for the global SUð2ÞL ×
SUð2ÞR Gell-Mann-Lévy linear sigma model with PCAC

6The inclusive Gell-Mann Lévy [17] effective potential derived
[34] from B.W. Lee’s WTI [12] reduces to the three different
effective potentials of the global SUð2ÞL × SUð2ÞR Schwinger
model [35]: Schwinger Wigner mode ðhHi ¼ 0;
m2

π ¼ m2
BEH ≠ 0Þ, Schwinger scale-invariant point ðhHi ¼ 0;

m2
π ¼ m2

BEH ¼ 0Þ, or Schwinger Goldstone mode ðhHi ≠ 0;
m2

π ¼ 0; m2
BEH ≠ 0Þ.
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[37,38]], but now derived for the AHM gauge theory in
Lorenz gauge (A22)

hHiTN;Mþ1ðp1…pN ; 0q1…qMÞ

× ð2πÞ4δ4
�XN

n¼1

pn þ
XM
m¼1

qm

�				p2
1
¼p2

2
…¼p2

N¼m2
BEH

q2
1
¼q2

2
…¼q2M¼0

¼ 0:

ð49Þ

The T-matrix elements vanish as one of the pion momenta
goes to 0 provided all other physical scalar particles are on
mass shell. In other words, these are new 1-soft-pion
theorems. Equation (49) also

“asserts the absence of [IR] divergences in the scalar-
sector (of AHM) Goldstone mode (in Lorenz gauge).

Although individual Feynman diagrams are IR diver-
gent, those IR divergent parts cancel exactly in each
order of perturbation theory. Furthermore, the Gold-
stone mode amplitude must vanish in the soft-pion limit”
(B. W. Lee [12]).

It is crucial to note that the external states in TN;M are N h’s
and M π’s, not ~π’s. We are working in the soft-π, not the
soft- ~π limit.
TheN¼ 0,M¼ 1 case of (49) is the LSS theorem (A27),

hHiT0;2ð; 00Þ ¼ 0: ð50Þ

This looks like the Goldstone theorem7 but, since it
involves π not ~π, it is quite distinct.
We write the LSS theorem (50) as a further constraint on

the 1-ϕ-I Green’s function,8

7B. W. Lee [12] proves two towers of WTI for the global SUð2ÞL × SUð2ÞR GML model [17] in the presence of the PCAC
hypothesis. The PCAC conserves the vector current ∂μJ⃗

μ;GML
LþR ¼ 0, but explicitly breaks the axial-vector current, ∂μJ⃗

μ;GML
L−R ¼ γGML

PCACπ⃗.
Lee identifies the all-loop-orders GML WTI

γGML
PCAC ¼ −hHiΓGML

0;2 ð; 00Þ ð51Þ
as the “Goldstone theorem in the presence of PCAC.” Exact conservation of J⃗μ;GML

L−R , i.e. γGML
PCAC ¼ 0, is restored for both GML’s Wigner

mode ðhHi≡ 0;ΓGML
0;2 ð; 00Þ ≠ 0Þ and its Goldstone mode ðhHi ≠ 0;ΓGML

0;2 ð; 00Þ≡ 0Þ.
The PCAC analogy for the Lorenz-gauge AHM would have been

∂μJ
μ;AHM
L ¼ γAHMPCACπ þ hHi × ða gauge-fixing termÞ
γAHMPCAC ¼ −hHiΓAHM

0;2 ð; 00Þ; ð52Þ
but the AHM is a local/gauge theory. This requires that γAHMPCAC ≡ 0 exactly. SSB current conservation can be broken only softly by gauge-
fixing terms as in (25), in order to preserve renormalizability and unitarity [7]. The Lorenz-gauge AHM LSS theorem therefore reads

γAHM
PCAC ¼ −hHiΓAHM

0;2 ð; 00Þ≡ 0; ð53Þ
as in (56). The crucial fact here is that, in the SSB Goldstone mode of the AHM (and SSB E-AHM, SMBosons

Ghosts , νDSM and E − νDSM
[39]) with hHi ≠ 0,

0≡ ΓAHM
0;2 ð; 00Þ ¼ ½ΔAHM

π ð0Þ�−1 ¼ −m2
π: ð54Þ

This condition that the mass squared of the pseudoscalar π is exactly 0 is distinct from, and more powerful than, the more familiar
condition m2

~π ¼ 0, i.e. the masslessness of the NGB ~π.
We see that (49) adds information to that contained in Green’s function WTI (33), (A31). Beyond IR finiteness [12], on-shell T-matrix
WTI (49), (A27), and (A22) provide absolutely crucial constraints on the gauge theory by insisting that γAHMPCAC ≡ 0 as in (53) and (54),
that theUð1ÞY current is softly broken or conserved as in (25), (17), and (28), and that unitarity and renormalizability of the AHM gauge
theory is preserved [7].

8A SSB 1-ϕ-R T-matrix element TN;M consists of a sum of many possible diagrams, Ti
N;M , where i indexes all the possibilities. We

can represent each such diagram as a set of 1-ϕ-I vertices Γn;m (which we term beads) attached by ϕ propagators, in such a way as to
leave N external h lines and M external π lines.
Consider in particular T0;2ð; q;−qÞ. For any diagram Ti

0;2ð; q;−qÞ contributing to T0;2ð; q;−qÞ, there is a unique “string” of ϕ
propagators that threads from end to end through the diagram. Each bead on this string has two ϕ legs, with equal and opposite 4-
momenta q and −q. Since Γ0;0 ¼ Γ0;1 ¼ Γ1;0 ¼ 0, one cannot have additional ϕ legs connecting off this main ϕ line to another “side
bead” unless they connect in groups of two or more. But in this case, the main bead and the secondary bead cannot be separated by
cutting one ϕ line, and so are part of the same bead. Since CP ¼ ðþ1;−1Þ for ðh; πÞ, and is conserved in this paper, the 1-h-reducible
contribution vanishes, and so the beads must be connected only by π s, and each bead is just a Γ0;2ð; q;−qÞ.
Thus the diagram corresponding to Ti

0;2ð; q;−qÞ would appear to consist of iþ 1 copies of Γ0;2ð; q;−qÞ irreducible vertices connected
by π propagators Δπðq2Þ, and so Ti

0;2ð; q;−qÞ ¼ Γ0;2ð; q;−qÞ½Γ0;2ð; q;−qÞΔπðq2Þ�i. T0;2ð; q;−qÞ would then consist of the sum over all
such strings.
However, Γ0;2ð; q;−qÞΔπðq2Þ ¼ 1, and so, in fact, one should not separately count each Ti

0;2ð; q;−qÞ, but rather
T0;2ð; q;−qÞ ¼ Γ0;2ð; q;−qÞ ¼ ½Δπðq2Þ�−1: ð55Þ
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hHiΓ0;2ð; 00Þ ¼ hHi½Δπð0Þ�−1 ¼ 0; ð56Þ

or in terms of the π mass

hHim2
π ¼ 0: ð57Þ

Evaluating the effective potential9 in (44) with hHi ≠ 0,
and then in the Kibble representation

VEff;PreLSSGoldstone Mode
AHM;ϕ;Lorenz

¼ m2
π

�
h2 þ π2

2
þ hHih

�
þ λ2ϕ

�
h2 þ π2

2
þ hHih

�
2

¼ m2
π

�
ϕ†ϕ −

1

2
hHi2

�
þ λ2ϕ

�
ϕ†ϕ −

1

2
hHi2

�
2

¼ m2
π

2
½ ~H2 − hHi2� þ λ2ϕ

4
½ ~H2 − hHi2�2: ð58Þ

As expected, the NGB ~π has disappeared from the
effective potential, has purely derivative couplings
through its kinetic term, and obeys the shift symmetry
~π → ~π þ hHiθ for constant θ. In other words, the
Goldstone theorem is, on the face of it, already properly
enforced.
Equation (58) appears at first sight to embrace a

disaster: the term linear in ϕ†ϕ − 1
2
hHi2 [a remnant of

Wigner mode in (48)] persists, destroying the symmetry
of the famous “Mexican hat,” and the AHM is not
actually in Goldstone mode. To the rescue, the LSS
theorem, (50), (56) or (57) (and not the Goldstone
theorem) forces the AHM gauge theory fully into its
true Goldstone hHi ≠ 0 mode,10

VEff;LSSGoldstone Mode
AHM;ϕ;Lorenz ¼ λ2ϕ

4
½ ~H2 − hHi2�2

¼ λ2ϕ

�
ϕ†ϕ −

1

2
hHi2

�
2

: ð60Þ

A central result of this paper is to recognize that, in
order to force Eq. (58) to Eq. (60), the LSS theorem
incorporates a new on-shell T-matrix symmetry, which is
not a full symmetry of the BRST-invariant AHM
Lagrangian. AHM physics, but not its Lagrangian, has
the Uð1ÞY ⊗ BRST symmetry of Sec. II, a conserved
current (23) and (28), undeformed WTI governing con-
nected amputated Green’s functions (33), and unde-
formed WTI governing connected amputated on-shell
T-matrix elements (49).
A crucial effect of the LSS theorem (57), together

with the N ¼ 0, M ¼ 1 Uð1ÞY Ward-Takahashi Green’s
function identity (33), is to automatically eliminate tad-
poles in (36)

Γ1;0ð0; Þ ¼ hHiΓ0;2ð; 00Þ ¼ 0; ð61Þ

so that separate tadpole renormalization is unnecessary.
The proof of the Lee-Stora-Symanzik theorem for the

AHM (in Appendix A) is extended to the E-AHM
(which includes certain beyond-the-AHM scalars Φ and
CP-conserving fermions ψ) in Appendix B. The AHM
LSS considerations in Sec. III therefore have their
direct corresponding analogs, for the E-AHM, in
Secs. IV and V. We do not needlessly repeat ourselves
there.

E. Further constraints on the ϕ-sector effective
Lagrangian: m2

BEH = 2λ2ϕhHi2
We rewrite the Goldstone-mode effective Lagrangian

(44) and effective potential (58), but now including
the constraint from the LSS theorem, (50), (56), and
(57),

LEff;Goldstone
AHM;ϕ;Lorenz ¼ LKinetic;Eff;Goldstone

AHM;ϕ;Lorenz

− VEff;Goldstone
AHM;ϕ;Lorenz þOAHM

Ignore

VEff;Goldstone
AHM;ϕ;Lorenz ¼ λ2ϕ

�
h2 þ π2

2
þ hHih

�
2

; ð62Þ

with wave-function renormalization

Γ0;2ð; q;−qÞ − Γ0;2ð; 00Þ ¼ q2 þOAHM
Ignore; ð63Þ

so the ϕ-sector Goldstone-mode effective coordinate-
space Lagrangian becomes

LEff;Goldstone
AHM;ϕ;Lorenz ¼ jDμϕj2 − λ2ϕ

�
h2 þ π2

2
þ hHih

�
2

þOAHM
Ignore: ð64Þ

9In the AHM-forbidden case of hHim2
π ≠ 0 imagined in

(58), limkλ→0k2Δπðk2; m2
π ≠ 0Þ ¼ 0 in (A17), so (A20), (33),

and (49) are still true for all three modes: these include
Wigner mode and the scale-invariant point where hHi ¼ 0,
and where the LSS theorem hHiT0;2ð; 00Þ ¼ 0, and all the
Adler self-consistency conditions, are satisfied trivially.

10Reference [53] shows that, including d > 4 operators, the
SSB AHM scalar potential may be written, from symmetry and
WTI alone, in the form

Veff
ϕ;AHM ¼ −

X∞
n¼2

1

ð2nÞ!Γ0;2nð; 0.::0Þð ~H2 − hHi2Þn: ð59Þ

So can the E-AHM.
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Equation (64) is the ϕ-sector effective Lagrangian of the
spontaneously broken Abelian Higgs model, in Lorenz
gauge, constrained by the LSS theorem.11

(i) It is derived from the local BRST-invariant Lagran-
gian LAHM (18).

(ii) It includes all divergent OðΛ2Þ;OðlnΛ2Þ and finite
terms that arise to all perturbative loop orders in the
full Uð1ÞY gauge theory, due to virtual transverse
gauge bosons, ϕ scalars and ghosts (Aμ, h; π; η̄;ω,
respectively).

(iii) It obeys the LSS theorem (50) and (56) and all other
Uð1ÞY Ward-Takahashi Green’s function and T-
matrix identities.

(iv) It obeys the Goldstone theorem in the Lorenz
gauge, having a massless derivatively coupled
NGB, ~π.

(v) It is minimized at ðH ¼ hHi; π ¼ 0Þ, and obeys
stationarity [16] of that true minimum.

(vi) It preserves the theory’s renormalizability and uni-
tarity, which require that wave-function renormali-
zation, hHiBare ¼ ½Zϕ

AHM�1=2hHi [16,18,26], forbid
UVQD, relevant, or any other dimension-2 operator
corrections to hHi.

(vii) The LSS theorem (50) has caused all relevant
operators in the spontaneously broken Abelian
Higgs model to vanish.

In order to make manifest that ~π is a true NGB [7,41] in
Lorenz gauge, rewrite (64) in the Kibble representation
[2,41], with Yϕ ¼ −1 being the ϕ hypercharge. In coor-
dinate space,

LEff;Goldstone
AHM;ϕ;Lorenz ¼

1

2
ð∂μ

~hÞ2

þ 1

2
e2ðhHi þ ~hÞ2

�
Aμ þ

1

ehHi ∂μ ~π

�
2

−
λ2ϕ
4
ð ~h2 þ 2hHi ~hÞ2 þOAHM

Ignore ð68Þ

shows that ~π has only derivative couplings and, for constant
θ, a shift symmetry

~π → ~π þ hHiθ: ð69Þ
The Green’s function WTI (33) for N ¼ 1, M ¼ 1,

constrained by the LSS theorem (56), relates the BEH
mass to the coefficient of the hπ2 vertex

Γ2;0ð00; Þ ¼ hHiΓ1;2ð0; 00Þ: ð70Þ
Therefore, the BEH mass squared in (68),

m2
BEH ¼ 2λ2ϕhHi2; ð71Þ

arises entirely from SSB, as does (together with its AHM
decays) the resonance pole-mass squared,

m2
BEH;Pole ¼ 2λ2ϕhHi2

�
1 − 2λ2ϕhHi2

Z
dm2

ρBEHAHMðm2Þ
m2 − iϵ

�
−1

þOIgnore
AHM;ϕ: ð72Þ

IV. EXTENDED ABELIAN HIGGS MODEL:
WTI-ENFORCED DECOUPLING
OF CERTAIN HEAVY MATTER

REPRESENTATIONS

If the Euclidean cutoff Λ2 were a true proxy for very
heavy M2

Heavy ≫ m2
Weak spin S ¼ 0 scalars Φ, and S ¼ 1

2

fermions ψ , we would already be in a position to comment
on their decoupling. Unfortunately, although the literature
seems to cite such a proxy, it is simply not true. “In order to
prove theorems that reveal symmetry-driven results in
gauge theories, one must keep all of the terms arising
from all Feynman graphs, not just a selection of interesting
terms from a representative subset of Feynman graphs”
(Ergin Sezgin’s dictum).

A. ϕ-sector effective Lagrangian for the E-AHM

1. 1-ϕ-I connected amputated ϕ-sector
Green’s functions ΓE-AHM

N;M

In Appendix B we derive a tower of recursive Uð1ÞY
WTI (B18) that govern connected amputated 1-ϕ-I Green’s
functions for the E-AHM,

hHiΓE-AHM
N;Mþ1ðp1…pN ; 0q1…qMÞ

¼
XM
m¼1

ΓE-AHM
Nþ1;M−1ðqmp1…pN ; q1…cqm…qMÞ

−
XN
n¼1

ΓE-AHM
N−1;Mþ1ðp1…cpn…pN ;pnq1…qMÞ; ð73Þ

valid for N;M ≥ 0.

11Imagine we suspected that π is not all-loop-orders massless
in Lorenz gauge SSB AHM, and simply/naively wrote a mass-
squared m2

π∶Pole into the π inverse propagator

½Δπð0Þ�−1 ≡ −m2
π ¼ −m2

π;Pole

�
1þm2

π;Pole

Z
dm2

ρπðm2Þ
m2

�
−1
:

ð65Þ
However, the LSS theorem (56) insists instead that

hHi½Δπð0Þ�−1 ≡ −hHim2
π ¼ hHiΓ0;2ð; 00Þ ¼ 0. ð66Þ

The π pole-mass vanishes exactly.

m2
π;Pole ¼ m2

π

�
1 −m2

π

Z
dm2

ρπðm2Þ
m2

�
−1

¼ 0. ð67Þ
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ΓE-AHM
N;M includes the all-loop-orders renormalization of

the ϕ-sector SSB E-AHM, including virtual transverse
gauge bosons, ϕ scalars, ghosts, and new CP-conserving
scalars and fermions: Aμ, h, π, η̄, ω, Φ and ψ , respectively.
In the full SSB E-AHM gauge theory, there are four

classes of finite operators that cannot spoil the decoupling
of heavy particles.

(i) Finite O1=Λ2;Irrelevant
E-AHM;ϕ vanish as m2

Weak=Λ2 → 0 or
M2

Heavy=Λ2 → 0.
(ii) Finite Od>4;Light

E-AHM;ϕ are dimension d > 4 operators,
where only the light degrees of freedom (Aμ,
h; π; η̄;ω and also ΦLight and ψLight) contribute to
all-loop-orders renormalization.

(iii) Od≤4;Non Analytic;Light
E-AHM;ϕ are finite-dimension d ≤ 4 op-

erators that are nonanalytic in momenta or in a
renormalization scale μ2, where only the light
degrees of freedom contribute to all-loop-orders
renormalization.

(iv) O
1=M2

Heavy;Irrelevant
E-AHM;ϕ vanish as m2

Weak=M
2
Heavy → 0.

In addition Od≤4;Non Analytic;Heavy
E-AHM;ϕ are finite-dimension

d ≤ 4 operators that are nonanalytic in momenta or in a
renormalization scale μ2, where the heavy degrees of
freedom ΦHeavy;ψHeavy contribute to all-loop-orders renor-
malization. Analysis of these operators lies outside the
scope of this paper.
All such operators are ignored,

OIgnore
E-AHM;ϕ ¼ O1=Λ2;Irrelevant

E-AHM;ϕ þOd>4;Light
E-AHM;ϕ

þOd≤4;Non Analytic;Light
E-AHMϕ

þOd≤4;Non Analytic;Heavy
E-AHMϕ

þO
1=M2

Heavy;Irrelevant
E-AHM;ϕ : ð74Þ

Such finite operators appear throughout the extended
Uð1ÞY WTI (73),

(i) N þM ≥ 5 is O1=Λ2;Irrelevant
E-AHM;ϕ , Od>4;Light

E-AHM;ϕ , and

O
1=M2

Heavy;Irrelevant
E-AHM;ϕ ;

(ii) The left-hand side of (73) for N þM ¼ 4 is also

O1=Λ2;Irrelevant
E-AHM;ϕ , Od>4;Light

E-AHM;ϕ and O
1=M2

Heavy;Irrelevant
E-AHM;ϕ .

(iii) N þM ≤ 4 operators Od≤4;Non Analytic;Light
E-AHM;ϕ also ap-

pear in (73).
Finally, there are N þM ≤ 4 operators that are analytic

in momenta. We expand these in powers of momenta,
count the resulting dimension of each term in the operator

Taylor series, and then ignore Od>4;Light
E-AHM;ϕ , O

1=Λ2;Irrelevant
E-AHM;ϕ and

O
1=M2

Heavy;Irrelevant
E-AHM;ϕ in that series.
Suppressing gauge fields, the all-loop-orders renormal-

ized ϕ-sector effective momentum-space Lagrangian, with
operator dimensions ≤ 4, for E-AHM is then formed for
(h, π) external particles with CP ¼ ð1;−1Þ,

LEff;Wigner;SI;Goldstone
E-AHM;ϕ

¼ ΓE-AHM
1;0 ð0; Þhþ 1

2!
ΓE-AHM
2;0 ðp;−p; Þh2

þ 1

2!
ΓE-AHM
0;2 ð; q;−qÞπ2 þ 1

3!
ΓE-AHM
3;0 ð000; Þh3

þ 1

2!
ΓE-AHM
1;2 ð0; 00Þhπ2 þ 1

4!
ΓE-AHM
4;0 ð0000; Þh4

þ 1

2!2!
ΓE-AHM
2;2 ð00; 00Þh2π2

þ 1

4!
ΓE-AHM
0;4 ð; 0000Þπ4 þOE-AHM

Ignore : ð75Þ

The Uð1ÞY WTI (73) severely constrain the effective
Lagrangian of the E-AHM,

(i) N ¼ 0, M ¼ 1 WTI:

ΓE-AHM
1;0 ð0; Þ ¼ hHiΓE-AHM

0;2 ð; 00Þ ð76Þ

since no momentum can run into the tadpoles.
(ii) N ¼ 1, M ¼ 1 WTI12:

ΓE-AHM
2;0 ð−q; q; Þ − ΓE-AHM

0;2 ð; q;−qÞ
¼ hHiΓE-AHM

1;2 ð−q;q0Þ
¼ hHiΓE-AHM

1;2 ð0; 00Þ þOE-AHM
Ignore

ΓE-AHM
2;0 ð00; Þ
¼ ΓE-AHM

0;2 ð; 00Þ þ hHiΓE-AHM
1;2 ð0; 00Þ: ð79Þ

(iii) N ¼ 2, M ¼ 1 WTI:

hHiΓE-AHM
2;2 ð00; 00Þ ¼ ΓE-AHM

3;0 ð000; Þ
− 2ΓE-AHM

1;2 ð0; 00Þ: ð80Þ

12In previous papers on the SUð2ÞL × SUð2ÞR Gell-Mann-
Lévy LΣM [17], we have written the N ¼ 1, M ¼ 1 WTI as a
mass relation between the BEH h scalar and the pseudo-Nambu-
Goldstone boson π pseudoscalar. In the Källén-Lehmann repre-
sentation

m2
BEH ¼ m2

π þ 2λ2ϕhHi2

m2
π ¼

�
1

m2
π;Pole

þ
Z

dm2
ρπðm2Þ
m2

�
−1

m2
BEH ¼

�
1

m2
BEH;Pole

þ
Z

dm2
ρBEHðm2Þ

m2

�
−1

ð77Þ

so that

m2
BEH⇒

m2
π ;m2

π;Pole→0

2λ2ϕhHi2 ð78Þ

arises entirely from spontaneous symmetry breaking, in obedi-
ence to the Uð1ÞY on-shell T-matrix WTI, i.e. the LSS theorem.
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(iv) N ¼ 0, M ¼ 3 WTI:

hHiΓE-AHM
0;4 ð; 0000Þ ¼ 3ΓE-AHM

1;2 ð0; 00Þ: ð81Þ

(v) N ¼ 1, M ¼ 3 WTI:

0 ¼ 3ΓE-AHM
2;2 ð00; 00Þ − ΓE-AHM

0;4 ð; 0000Þ: ð82Þ

(vi) N ¼ 3, M ¼ 1 WTI:

0 ¼ ΓE-AHM
4;0 ð0000; Þ − 3ΓE-AHM

2;2 ð00; 00Þ: ð83Þ

(vii) The quadratic and quartic coupling constants are
defined in terms of two-point and four-point 1-
scalar-particle-irreducible connected amputated
Green's functions,

ΓE-AHM
0;2 ð; 00Þ≡ −m2

π;

ΓE-AHM
0;4 ð; 0000Þ≡ −6λ2ϕ: ð84Þ

Still suppressing gauge fields, the all-loop-orders renor-
malized ϕ-sector effective Lagrangian (75), severely con-
strained only by the Uð1ÞY WTI governing connected
amputated Green’s functions (73), may be written

LEff;Wigner;SI;Goldstone
E-AHM;ϕ ¼LKinetic

E-AHM;ϕ−VWigner;SI;Goldstone
E-AHM;ϕ

þOIgnore
E-AHM;ϕ

LKinetic
E-AHM;ϕ ¼

1

2
ðΓE-AHM

0;2 ð;p;−pÞ−ΓE-AHM
0;2 ð;00ÞÞh2

þ1

2
ðΓE-AHM

0;2 ð;q;−qÞ
−ΓE-AHM

0;2 ð;00ÞÞπ2

VWigner;SI;Goldstone
E-AHM;ϕ ¼m2

π

�
h2þπ2

2
þhHih

�

þλ2ϕ

�
h2þπ2

2
þhHih

�
2

ð85Þ

with finite nontrivial wave-function renormalization

ΓE-AHM
0;2 ð;q;−qÞ − ΓE-AHM

0;2 ð; 00Þ ∼ q2: ð86Þ

The ϕ-sector effective Lagrangian (85) for the E-AHM
has insufficient boundary conditions to distinguish among
the three modes of the BRST-invariant Lagrangian
LE-AHM.

13 The effective potential VWigner;SI;Goldstone
E-AHM;ϕ

becomes in various limits the E-AHM Wigner mode
ðm2

A ¼ 0; hHi ¼ 0; m2
π ¼ m2

BEH ≠ 0Þ, E-AHM scale-invari-
ant point ðm2

A ¼ 0; hHi ¼ 0; m2
π ¼ m2

BEH ¼ 0Þ, or E-AHM

13It is instructive, and we argue dangerous, to ignore vacuum energy and rewrite the potential in (85) as

VWigner;SI;Goldstone
E-AHM ¼ λ2ϕ

�
ϕ†ϕ −

1

2

�
hHi2 −m2

π

λ2ϕ

��
2

ð87Þ

using h2þπ2

2
þ hHih ¼ ϕ†ϕ − 1

2
hHi2. If one then minimizes VWigner;SI;Goldstone

E-AHM while ignoring the crucial constraint imposed by the LSS
theorem, the resultant (incorrect and unphysical) minimum hHi2unphysical ≡ ðhHi2 − m2

π

λ2ϕ
Þ does not distinguish properly among the three

modes of (87).
At issue is renormalized

m2
π ¼ μ2ϕ;Bare þ CΛΛ2 þ CBEHm2

BEH þ δm2
π;Miscellaneous þM2

Heavy½CHeavy þ CHeavy;ln lnðM2
HeavyÞ þ CHeavy;lnΛ lnðΛ2Þ þ þþ� þ λ2ϕhHi2

ð88Þ
where the C’s are constants, δm2

π;Miscellaneous sweeps up the remaining loop corrections, and m2
BEH ¼ m2

π þ 2λ2hHi2. For pedagogical
clarity, we display the linearized approximation to contributions ∼M2

Heavy explicitly. It is fashionable to simply drop the UVQD term
CΛΛ2 in (88), and argue that it is somehow an artifact of dimensional regularization (DR), even though M. J. G. Veltman [42] showed
that UVQD appear at one loop in the SM and are properly handled by DR’s poles at dimension d ¼ 2. We keep UVQD. For pedagogical
efficiency, we have included in (88) terms with M2

Heavy ≫ m2
Weak, such as might arise in Majorana neutrino or beyond-AHM physics

(cf. Sec. IV D or IV B).
In the spontaneously broken (Goldstone) mode, where hHi ≠ 0, as in AHM, so too in the E-AHM, in obedience to the LSS theorem (93)
the bare counterterm μ2ϕ;Bare in (88) is defined by

m2
π ≡ 0: ð89Þ

We show below that, for constant θ, the zero value in (89) is protected by the LSS theorem and a NGB shift symmetry

~π → ~π þ hHiθ: ð90Þ
Minimization of (87) violates stationarity of the true minimum at hHi [16] and destroys the theory’s renormalizability and unitarity,
which require that dimensionless wave-function renormalization hHiBare ¼ ½Zϕ�1=2hHi contain no relevant operators [16,26,43]. The
crucial observation is that, in obedience to the LSS theorem, RenormalizedðhHi2BareÞ ≠ hHi2unphysical.
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Goldstone mode ðm2
A ≠ 0; hHi ≠ 0; m2

π ¼ 0;
m2

BEH ≠ 0Þ.

VWigner
E-AHM;ϕ ¼ m2

π

�
h2 þ π2

2

�
þ λ2ϕ

�
h2 þ π2

2

�
2

;

VScale Invariant
E-AHM;ϕ ¼ λ2ϕ

�
h2 þ π2

2

�
2

;

VGoldstone
E-AHM;ϕ ¼ λ2ϕ

�
h2 þ π2

2
þ hHih

�
2

: ð91Þ

Equation (85)has exhausted the constraints on the allowed
terms in the ϕ-sector effective E-AHM Lagrangian due to
those Uð1ÞY WTI that govern 1-ϕ-I connected amputated
Green’s functions ΓE-AHM

N;M .

2. 1-ϕ-R connected amputated ϕ-sector
T-matrix elements TE-AHM

N;M

In order to provide such boundary conditions [which
distinguish among the effective potentials in (91)], we turn
to the off-shell T matrix and strict obedience to the wisdom
of K. Symanzik’s edict at the top of Sec. III E: “[…] unless
otherwise constrained by Ward identities.” We can further
constrain the allowed terms in the ϕ-sector effective
E-AHM Lagrangian with those Uð1ÞY Ward-Takahashi
identities that govern 1-ϕ-R T-matrix elements.
In Appendix B, we derive three such identities governing

1-ϕ-R connected amputated T-matrix elements TE-AHM
N;M in

the ϕ-sector of the E-AHM.
(i) Adler self-consistency conditions [originally written

for the global SUð2ÞL × SUð2ÞR Gell-Mann-Lévy
model with PCAC [37,38]] constrain the E-AHM
gauge theory’s effective ϕ-sector Lagrangian in
Lorenz gauge (B10)

hHiTE-AHM
N;Mþ1ðp1…pN ; 0q1…qMÞ

× ð2πÞ4δ4
�XN

n¼1

pn þ
XM
m¼1

qm

�				p2
1
¼p2

2
…¼p2

N¼m2
BEH

q2
1
¼q2

2
…¼q2M¼0

¼ 0: ð92Þ

The E-AHM T matrix vanishes as one of the pion
momenta goes to 0 (i.e. 1-soft-pion theorems),
provided all other physical scalar particles are on
mass shell. Equation (92) also shows that there are
no IR divergences in the (ϕ-sector E-AHM) Gold-
stone mode (in Lorenz gauge) [12].

(ii) The N ¼ 0, M ¼ 1 case of (92) comprises the LSS
theorem (B15) [12],

hHiTE-AHM
0;2 ð; 00Þ ¼ 0;

hHiΓE-AHM
0;2 ð; 00Þ≡ −hHim2

π ¼ 0: ð93Þ

(iii) Define TE-AHM;External
N;Mþ1 as the 1-ϕ-R ϕ-sector

T-matrix with one soft πðqμ ¼ 0Þ attached to an
external leg, as in Fig. 1. Now separate

TE-AHM
N;Mþ1ðp1…pN ; 0q1…qMÞ
¼ TE-AHM;External

N;Mþ1 ðp1…pN ; 0q1…qMÞ
þ TE-AHM;Internal

N;Mþ1 ðp1…pN ; 0q1…qMÞ: ð94Þ

Appendix B (B17) proves that

hHiTE-AHM;Internal
N;Mþ1 ðp1…pN ; 0q1…qMÞ

¼
XM
m¼1

TE-AHM
Nþ1;M−1ðqmp1…pN ; q1…cqm…qMÞ

−
XN
n¼1

TE-AHM
N−1;Mþ1ðp1…cpn…pN ;pnq1…qMÞ:

ð95Þ

The Uð1ÞY WTI (73), (B18) governing 1-ϕ-I connected
amputated Greens functions ΓE-AHM

N;M are solutions to (95)
and (B17).
We rewrite the E-AHM effective ϕ-sector Lagrangian

(85) but now include the constraint from the LSS
theorem (93) and (B15), in the SSB hHi ≠ 0 case,
m2

π ¼ 0,

LEff;Goldstone
E-AHM;ϕ ¼ LKinetic

E-AHM;ϕ þOE-AHM
Ignore − VEff;Goldstone

E-AHM;ϕ

VEff;Goldstone
E-AHM;ϕ ¼ λ2ϕ

�
h2 þ π2

2
þ hHih

�
2

ð96Þ

and wave-function renormalization

FIG. 1. TE-AHM;External
N;Mþ1 : Hashed circles are 1-ϕ-R TE-AHM

N;M , solid
lines π, dashed lines h. One (zero-momentum) soft pion is
attached to an external leg in all possible ways. TE-AHM

N;M is 1-Aμ-R
by cutting an Aμ line, and also 1-Φ-R by cutting aΦ line. Figure 1
is the E-AHM analogy of B. W. Lee’s Fig. 10 [12]. The same
graph topologies, but without internal beyond-AHM Φψ heavy
matter, are used in the proof of (A30) for the (unextended) AHM.
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ΓE-AHM
0;2 ð; q;−qÞ − ΓE-AHM

0;2 ð; 00Þ ¼ q2 þOE-AHM
Ignore : ð97Þ

A crucial effect of the LSS theorem, together with the
N ¼ 0, M ¼ 1 Ward-Takahashi Green’s function identity
(73), is to automatically eliminate tadpoles in (96)

ΓE-AHM
1;0 ð0; Þ ¼ hHiΓE-AHM

0;2 ð; 00Þ ¼ 0; ð98Þ

so that separate tadpole renormalization is unnecessary.
We form the effective Goldstone-mode Lagrangian gov-

erning low-energy ϕ-sector physics in coordinate space14

LEff;Goldstone
E-AHM;ϕ ¼ jDμϕj2 − VEff;Goldstone

E-AHM;ϕ þOIgnore
E-AHM;ϕ

VEff;Goldstone
E-AHM;ϕ ¼ λ2ϕ

�
h2 þ π2

2
þ hHih

�
2

: ð99Þ

Equation (99) is the ϕ-sector effective Lagrangian of the
spontaneously broken E-AHM in Lorenz gauge.

(i) It obeys the LSS theorem (93) and (B15) and all
other Uð1ÞY WTI (73), (92), (93), (95), (B10),
(B15), (B17), and (B18).

(ii) It obeys the Goldstone theorem in the Lorenz gauge,
having a massless derivatively coupled NGB, ~π.

(iii) It is minimized at ðH ¼ hHi; π ¼ 0Þ, and obeys
stationarity [16] of that true minimum.

(iv) It preserves the theory’s renormalizability and uni-
tarity, which require that wave-function renormali-
zation, hHiBare ¼ ½Zϕ

E-AHM�1=2hHi [16,18,26], forbid
any relevant operator corrections to hHi.

(v) It includes all divergent OðΛ2Þ;OðlnΛ2Þ and finite
terms that arise to all perturbative loop orders in the
full Uð1ÞY theory, due to virtual transverse gauge
bosons, AHM scalars, ghosts, and new CP-conserv-
ing scalars and fermions (Aμ, h, π,η̄;ω, and Φ, ψ
respectively).

(vi) The LSS theorem (93) and (B15) has caused all
relevant operators in (99) to vanish.

3. The LSS theorem comes from exact Uð1ÞY symmetry.
Minimization of the effective potential does not

It is important to compare the results of our LSS theorem
to those of the mainstream literature. For pedagogical
simplicity, in this subsection we suppress mention of
vacuum energy and OIgnore

E-AHM;ϕ. After renormalization, but
before application of the LSS theorem, the effective
potential (85), which is derived entirely from Green’s
function WTI, can be written

VEff;Wigner;SI;Goldstone
E-AHM;ϕ ¼ μ2ϕðϕ†ϕÞ þ λ2ϕðϕ†ϕÞ2

¼ ðμ2ϕ þ λ2ϕhHi2Þ
�
ϕ†ϕ −

1

2
hHi2

�

þ λ2ϕ

�
ϕ†ϕ −

1

2
hHi2

�
2

¼ ðμ2ϕ þ λ2ϕhHi2Þ
�
h2 þ π2

2
þ hHih

�

þ λ2ϕ

�
h2 þ π2

2
þ hHih

�
2

; ð100Þ

where VEff;Wigner;SI;Goldstone
E-AHM;ϕ , ϕ, μ2ϕ, λ

2
ϕ and hHi2 in (100) are

all renormalized quantities.
The vanishing of relevant operators due to heavy Φ, ψ in

the effective E-AHM theory is therefore not itself con-
troversial. The mainstream literature minimizes (100) to
find the vacuum,

∂
∂hV

Eff;Wigner;SI;Goldstone
E-AHM;ϕ jh¼π¼0 ¼ hHiðμ2ϕ þ λ2ϕhHi2Þ ¼ 0

ð101Þ

which, for the SSB case, gives

∂
∂hV

Eff;Goldstone
E-AHM;ϕ jh¼π¼0 ¼ 0

μ2ϕ þ λ2ϕhHi2 ¼ 0: ð102Þ

This is conventionally interpreted as a calculation of hHi2,

hHi2 ¼ −
μ2ϕ
λ2ϕ

; ð103Þ

where, in renormalized μ2ϕ, UVQD and all other relevant
contributions, such as those due to Φ, ψ in loops, are
regarded as having canceled against a bare counter-
term δμ2ϕ;Bare.
In contrast, we have derived a tower of Adler self-

consistency conditions (92) in Lorenz gauge in
Appendix B, i.e. derived directly from the exact Uð1ÞY
symmetry obeyed by gauge-independent on-shell T-matrix
elements. One of these, the N ¼ 0, M ¼ 1 case, is the LSS
theorem,

hHim2
π ¼ hHiðμ2ϕ þ λ2ϕhHi2Þ ¼ 0; ð104Þ

which, for the SSB case, gives

m2
π ¼ μ2ϕ þ λ2ϕhHi2 ¼ 0 ð105Þ

whose practical effect is the same as minimization of the
effective potential, as captured in (102).

14It is not lost on the authors that, since we derived it from
connected amputated Green’s functions (where all vacuum
energy and disconnected vacuum bubbles are absorbed into an
overall phase, which cancels exactly in the S matrix [16,26]), the
vacuum energy in VEff;Goldstone

E-AHM;ϕ in (99) is exactly 0.
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So, we agree with the mainstream literature that all
relevant operators vanish in the effective low-energy
E-AHM theory.

4. Decoupling of heavy matter representations

Adding a Uð1ÞY local/gauge invariant Lagrangian
LGauge Invariant
beyondAHM ðAμ;ϕ;Φ;ψL;ψRÞ to (18) forms the E-AHM.
In order to force renormalized connected amplitudes

with an odd number of π s to vanish, the new particles
Φ;ψL;ψR are taken in this paper to conserve CP.
In Secs. IVA 4 through IVA 7, we take all of the new

scalars Φ, left-handed fermions ψL and right-handed
fermions ψR to be very heavy,

M2
ψL
;M2

ψR
;M2

Φ ∼M2
Heavy ≫ ðjq2j; m2

A;m
2
BEHÞ ∼m2

Weak

∼ ð100 GeVÞ2; ð106Þ

with qμ being typical for a studied low-energy process.
Fermion Uð1ÞY hypercharges are chosen so that the axial
anomaly is 0. To remain perturbative, we keep the Yukawa
couplings yϕψ ; yΦψ ≲ 1, but take the Majorana masses
squared

LMajorana
beyondAHM;ψ ¼ −

1

2
MψL

ðψWeyl
L ψWeyl

L þ ψ̄Weyl
L ψ̄Weyl

L Þ

−
1

2
MψR

ðψWeyl
R ψWeyl

R þ ψ̄Weyl
R ψ̄Weyl

R Þ

to be heavy. We keep all Yukawas and masses real for
pedagogical simplicity.
Some comments are in order.
(i) We have ignored finite O

1=M2
Heavy;Irrelevant

E-AHM;ϕ that
decouple and vanish as m2

Weak=M
2
Heavy → 0.

(ii) Among the terms included in (99) are finite relevant
operators dependent on the heavy matter represen-
tations,

OðM2
HeavyÞ;OðM2

Heavy lnðM2
HeavyÞÞ;

OðM2
Heavy lnðm2

WeakÞÞ;Oðm2
Weak lnðM2

HeavyÞÞ; ð107Þ

but they have become invisible to us because of the
LSS theorem (93) and (B15). That fact is one of the
central results of this paper.

(iii) Marginal operators ∼ lnðM2
HeavyÞ have been ab-

sorbed in (99), i.e. in the renormalization of
gauge-independent observables (i.e. the quartic-
coupling constant λ2ϕ calculated in the Kibble
representation, and the BEH VEV hHi), and in
unobservable wave-function renormalization (97).

No trace of MHeavy-scale Φ, ψ survives in (99). All the
heavy beyond-AHM matter representations have com-
pletely decoupled.

5. First decoupling theorem: SSB ϕ-sector connected
amputated 1-ϕ-I Green’s functions

We takeO1=Λ2;Irrelevant
E-AHM;ϕ → 0 (to unencumber our notation)

and work in the m2
Weak=M

2
Heavy → 0 limit.

In the SSB E-AHM, ΓE-AHM
N;M with

(i) N þM ≥ 5 obey the Appelquist-Carazzone decou-
pling theorem [44];

(ii) N þM ¼ 3, 4 are absorbed by coupling constant
renormalization;

(iii) N þM ¼ 2 are absorbed by wave-function renorm-
alization, vanish due to the LSS theorem m2

π ¼ 0, or
contribute to SSB origination of m2

BEH ¼ 2λ2ϕhHi2
(see below).

Therefore, including the contributions to relevant operators
from heavy CP-conserving Φ, ψ matter in virtual loops,

ΓE-AHM
N;M ⇒

m2
Weak=M

2
Heavy→0

ΓAMH
N;M : ð108Þ

6. Second decoupling theorem: SSB ϕ-sector connected
amputated 1-ϕ-R T matrices

In the limit m2
Weak=M

2
Heavy → 0

TExtended
N;M ⇒

m2
Weak=M

2
Heavy→0

TN;M; ð109Þ

including heavy CP-conserving Φ, ψ matter contributions
to relevant operators.

7. Third decoupling theorem: SSB ϕ-sector BEH
pole-mass squared

The N ¼ 1, M ¼ 1 connected amputated Green’s func-
tion Uð1ÞY WTI (73), augmented by the LSS theorem (93),
reads

ΓE-AHM
2;0 ð00; Þ ¼ hHiΓE-AHM

1;2 ð0; 00Þ
¼ −2λ2ϕhHi2

lim
hHi→0

ΓE-AHM
2;0 ð00; Þ ¼ 0; ð110Þ

showing that the BEH pole-mass squared arises entirely
from SSB. Defining

ΔBEH
E-AHMðq2Þ ¼

1

q2 −m2
BEH;Pole þ iϵ

þ
Z

dm2
ρBEHE-AHMðm2Þ
q2 −m2 þ iϵ

; ð111Þ

m2
BEH;Pole is the BEH resonance pole-mass squared. In

analogy with (23), the spectral density ρBEHE-AHMðM2
HeavyÞ∼

1=M2
Heavy. Thus

GLOBAL Uð1ÞY ⊗ BRST SYMMETRY AND THE … PHYSICAL REVIEW D 96, 065003 (2017)

065003-17



ρBEHE-AHMðm2Þ¼ ρBEHAHMðm2ÞþO
1=M2

Heavy;Irrelevant
E-AHM;ϕ

ΓE-AHM
2;0 ð00;Þ≡ ½ΔBEH

E-AHMð0Þ�−1
¼−2λ2ϕhHi2

¼−m2
BEH;Pole

�
1þm2

BEH;Pole

Z
dm2

ρBEHAHMðm2Þ
m2− iϵ

�
−1

þO
1=M2

Heavy;Irrelevant
E-AHM;ϕ ð112Þ

and we have

m2
BEH;Pole ¼ 2λ2ϕhHi2

�
1 − 2λ2ϕhHi2

Z
dm2

ρBEHAHMðm2Þ
m2 − iϵ

�
−1

þO
1=M2

Heavy;Irrelevant
E-AHM;ϕ : ð113Þ

Because λ2ϕ; Z
ϕ
ExrendedAHM are dimensionless, λ2ϕ and

hHi ¼ ½Zϕ
ExrendedAHM�−

1
2hHiBare ð114Þ

absorb no relevant operators, Eq. (113) shows that the BEH
pole-mass squared m2

BEH;Pole also absorbs no relevant
operators.
No trace of MHeavy-scale Φ, ψ , including their

contributions to relevant operators, survives in (113).
All the heavy beyond-AHM matter representations
have completely decoupled, and the BEH pole-masses
squared

m2;E-AHM
BEH;Pole⇒

m2
Weak=M

2
Heavy→0

m2;AHM
BEH;Pole ð115Þ

become equal in the limit m2
Weak=M

2
Heavy → 0. We call

(115) the “SSB BEH-mass decoupling theorem.”
By dimensional analysis, heavy Φ, ψ also decouple from

the π spectral functions

Δπ;Spectral
E-AHM ðq2Þ ¼ Δπ;Spectral

AHM ðq2Þ þOð1=M2
HeavyÞ: ð116Þ

B. Example: Decoupling of gauge-singlet
M2

S ≫ m2
Weak real scalar field S with

discrete Z2 symmetry and hSi= 0
We consider a Uð1ÞY gauge-singlet real scalar S, with

(S → −S) Z2 symmetry, M2
S ≫ m2

Weak, and hSi ¼ 0. We
add to the renormalized theory

LS ¼
1

2
ð∂μSÞ2 − VϕS;

VϕS ¼
1

2
M2

SS
2 þ λ2S

4
S4 þ 1

2
λ2ϕSS

2

�
ϕ†ϕ −

1

2
hHi2

�
;

ϕ†ϕ −
1

2
hHi2 ¼ h2 þ π2

2
þ hHih: ð117Þ

Since S is a gauge singlet, it is also a rigid/global singlet. Its
Uð1ÞY hypercharge, transformation and current

YS ¼ 0; δUð1ÞY Sðt; y⃗Þ ¼ 0

Jμ;SbeyondAHM ¼ 0 ð118Þ

therefore satisfy all of the decoupling criteria in
Appendix B.

(i) Since it is massive, S cannot carry information to the
surface z3−surface → ∞ of the (all-space-time) 4-
volume

R
d4z, and so satisfies (B8).

(ii) The equal-time commutators satisfy (B6)

δðz0 − y0Þ½J0;SbeyondAHMðzÞ; HðyÞ� ¼ 0;

δðz0 − y0Þ½J0;SbeyondAHMðzÞ; πðyÞ� ¼ 0: ð119Þ

(iii) The classical equation of motion

∂μðJμ;SbeyondAHM þ JμAHMÞ ¼ ∂μJ
μ
AHM ¼ mAH∂βAβ

ð120Þ

restores conservation of the rigid/global Uð1ÞY
extended current for ϕ-sector physical states, and
satisfies (B5)

h0jT½∂μðJμ;SbeyondAHM þ JμAHMÞðzÞ
× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected ¼ 0:

ð121Þ

(iv) The zero VEV hSi ¼ 0 satisfies (B7).
The Uð1ÞY WTI governing the extended ϕ-sector tran-

sition matrix TE-AHM;S
N;M are therefore true: namely, the

extended Adler self-consistency conditions (92) and
(B10), together with their proof of infrared finiteness in
the presence of massless NGB, and the extended 1-soft-π
theorems (95) and (B17); the extendedUð1ÞY WTI (73) and
(B18) governing connected amputated ϕ-sector Green’s
functions ΓE-AHM;S

N;M are also true. The Uð1ÞY ⊗ BRST
symmetry of Sec. II is faithfully represented by these,
and the tower of on-shell T-matrix extended WTI (92) and
(B10) TE-AHM;S

N;M jon-shell ¼ 0, and its extended LSS theorem
(93) and (B15).
The three decoupling theorems (109), (108), and (115)

therefore follow, so that no trace of the M2
S ∼M2

Heavy scalar
S survives the m2

Weak=M
2
Heavy → 0 limit: i.e. it has com-

pletely decoupled. The ϕ-sector connected amputated T
matrices and Green’s functions, and the BEH pole masses
squared
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TE-AHM;S
N;M ⇒

m2
Weak=M

2
S→0

TN;M

ΓE-AHM;S
N;M ⇒

m2
Weak=M

2
S→0

ΓN;M

m2;E-AHM;S
BEH;Pole;ϕ⇒

m2
Weak=M

2
Heavy→0

m2;AHM
BEH;Pole;ϕ ð122Þ

become equal in the limit m2
Weak=M

2
Heavy → 0, including all

contributions to relevant operators from heavy S in vir-
tual loops.

C. One generation of standard-model quarks and
leptons, augmented by a right-handed neutrino νR with
Dirac mass, gauged hypercharge and global colors

We consider the addition of one standard model gen-
eration of spin S ¼ 1

2
fermions, tL, bL, tR, bR, τeL, ντL , τR,

augmented by one right-handed neutrino ντR , with global
SUð3Þ colors c ¼ red, white, blue, and gauged Uð1ÞY
hypercharge. These are regarded here as E-AHM matter
representations.
Baryon-number and lepton-number-conserving Dirac

masses squared arise entirely from SSB and are light, in
the sense that m2

Quark; m
2
Lepton ≲m2

Weak. The so-extended
Uð1ÞY AHM gauge theory has zero axial anomaly because
quark/lepton AHM quantum numbers are chosen to be their
SM hypercharges (including YνR ¼ 0). This addition also
retains the CP conservation of the AHM. We choose the
third generation mostly for definiteness, but also slightly to
emphasize that we are not relying in any way on the
smallness of quark Yukawas.
Adding beyond-AHM Dirac quarks augments LLorenz

AHM of
(18) with

LGlobal Invariant
beyondAHM;q ¼ LKinetic

beyondAHM;q þ LYukawa
beyondAHM;q;

LKinetic
beyondAHM;q ¼ i

Xr;w;b
color

Xt;b
flavor

ðq̄cLγμDμqcL þ q̄cRγ
μDμqcRÞ;

LYukawa
beyondAHM;q ¼ −

Xr;w;b
color

Xt;b
flavor

yqðq̄cLϕqcR þ q̄cRϕ
†qcLÞ: ð123Þ

The Uð1ÞY quark current and transformation properties
are

Jμ;DiracbeyondAHM;q ¼ −
Xr;w;b
color

Xt;b
flavor

ðYqLq̄
c
Lγ

μqcL þ YqRq̄
c
Rγ

μqcRÞ;

δUð1ÞY q
c
Lðt; x⃗Þ ¼ −iYqLq

c
Lðt; x⃗Þθ;

δUð1ÞY q
c
Rðt; x⃗Þ ¼ −iYqRq

c
Rðt; x⃗Þθ;

YtL ¼ 1

3
; YbL ¼ 1

3
; YtR ¼ 4

3
; YbR ¼ −

2

3
: ð124Þ

Adding beyond-AHM Dirac leptons further adds to
LLorenz
AHM ,

LGlobal Invariant
beyondAHM;l ¼ LKinetic

beyondAHM;l þ LYukawa
beyondAHM;l;

LKinetic
beyondAHM;l ¼ i

Xντ;τ
flavor

ðl̄LγμDμlL þ l̄RγμDμlRÞ;

LYukawa
beyondAHM;l ¼ −

Xντ;τ
flavor

ylðl̄LϕlR þ l̄Rϕ†lLÞ: ð125Þ

The lepton Uð1ÞY current and transformation properties
are

Jμ;DiracbeyondAHM;l ¼ −
Xν;e
flavor

ðYlL l̄Lγ
μlL þ YlR l̄Rγ

μlRÞ;

δUð1ÞY lLðt; x⃗Þ ¼ −iYlLlLðt; x⃗Þθ;
δUð1ÞY lRðt; x⃗Þ ¼ −iYlRlRðt; x⃗Þθ;

Yντ;L ¼ −1; YτL ¼ −1; Yντ;R ¼ 0; YeR ¼ −2; ð126Þ
with these standard-model quark and lepton hypercharges
Yi, our Uð1ÞY WTI have zero axial anomaly.
We now prove applicability of our Uð1ÞY WTI for

connected amputated ϕ-sector Green’s functions ΓE-AHM
N;M

and for on-shell T-matrix elements TE-AHM
N;M .

(i) The equal-time quantum commutators satisfy (B6)

δðz0 − y0Þ½J0;DiracbeyondAHM;qðzÞ; HðyÞ� ¼ 0;

δðz0 − y0Þ½J0;DiracbeyondAHM;q; πðyÞ� ¼ 0;

δðz0 − y0Þ½J0;DiracbeyondAHM;lðzÞ; HðyÞ� ¼ 0;

δðz0 − y0Þ½J0;DiracbeyondAHM;l; πðyÞ� ¼ 0: ð127Þ

(ii) The classical equation of motion

∂μðJμ;DiracbeyondAHM;lþJμ;DiracbeyondAHM;qþJμAHMÞ¼mAH∂βAβ

ð128Þ

restores conservation of the rigid/global Uð1ÞY
extended current for ϕ-sector physical states, and
satisfies (B5)

h0jT½∂μðJμ;DiracbeyondAHM;l þ Jμ;DiracbeyondAHM;q þ JμAHMÞðzÞ
× hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0iconnected
¼ 0: ð129Þ

(iii) Dirac-mass-quark surface terms vanish. Since the
quarks t and b are taken to have Dirac masses, mt ¼
1ffiffi
2

p yuhHi and mb ¼ 1ffiffi
2

p ydhHi, and since we need

only connected graphs, the quarks cannot carry
information to the 3-surface at timelike infinity of
the 4-volume of space-time, and so do not spoil
Eq. (B8). In contrast, massless quarks could carry
Uð1ÞY information on the light cone to this surface;
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they would therefore violate (B8), and so destroy the
spirit, results and essence of our Uð1ÞY-WTI-based
heavy particle decoupling results here in Sec. IV.

(iv) Charged-lepton surface terms also vanish. Since τ is
massive, mτ ¼ 1ffiffi

2
p yehHi, and we need only con-

nected graphs; the charged lepton τ also cannot carry
information to the 3-surface at timelike infinity of
the 4-volume of spacetime, and so satisfies (B8).

(v) Dirac-neutrino surface terms: Since ντ is taken to be
massive in deference to observed SM neutrino
mixing, mDirac

ν ¼ 1ffiffi
2

p yνhHi, ντ also satisfies (B8).

In contrast, a massless neutrino could carry Uð1ÞY
information on the light cone to the 3-surface at
infinity and would violate (B8),15 and so destroy the
spirit, results and essence of our Uð1ÞY-WTI-based
heavy particle decoupling results here in Sec. IV.

Having satisfied all of the criteria in Appendix B, the
Uð1ÞY WTI governing the extended ϕ-sector transition
matrix TE-AHM;q;l

N;M are therefore true: namely, the extended
Adler self-consistency conditions (92) and (B10), together
with their proof of infrared finiteness in the presence of
massless NGB; the extended 1-soft-π theorems (95) and
(B17); and the extended Uð1ÞY WTI (73), (B18) governing
connected amputated ϕ-sector Green’s functions ΓE-AHM;q;l

N;M .
The Uð1ÞY ⊗ BRST symmetry of Sec. II is faithfully
represented by these, and the tower of on-shell T-matrix
extended WTI (92) and (B10) TE-AHM;q;l

N;M jon-shell ¼ 0, and its
extended LSS theorem (93) and (B15).

D. (Practical) decoupling of a gauge-singlet
right-handed type-I-seesaw Majorana neutrino
with M2

νR ≫ m2
BEH ∼m2

Weak (as in the νAHM)

We consider here the addition to the AHM of a heavy
Uð1ÞY gauge-singlet right-handed Majorana neutrino νR,
with M2

νR ≫ m2
Weak, involved in a type-1 seesaw with a

left-handed neutrino νL, through a Yukawa coupling yν,
with resulting Dirac mass mDirac

ν ¼ yνhHi= ffiffiffi
2

p
.

We add to the renormalized theory in Sec. IV C a
Majorana mass

LMajorana
νR ¼ −

1

2
MνRðνWeyl

R νWeyl
R þ ν̄Weyl

R ν̄Weyl
R Þ: ð130Þ

Since νR is a gauge singlet, it is also a rigid/global singlet.
Its hypercharge Uð1ÞY transformation and current

YνR ¼ 0; δUð1ÞYνRðt; y⃗Þ ¼ 0

Jμ;Majorana
beyondAHM;νR

¼ 0 ð131Þ

therefore satisfy all of the decoupling criteria in
Appendix B.

(i) Since it has a Dirac mass, the neutrino ν cannot carry
information to the surface z3−surface → ∞ of the (all-
space-time) 4-volume

R
d4z, and so satisfies (B8).

(ii) The equal-time quantum commutators satisfy (B6)

δðz0 − y0Þ½J0;Majorana
beyondAHM;νR

ðzÞ; HðyÞ� ¼ 0;

δðz0 − y0Þ½J0;Majorana
beyondAHM;νR

ðzÞ; πðyÞ� ¼ 0: ð132Þ

(iii) The classical equation of motion

∂μðJμ;Majorana
beyondAHM;νR

þ Jμ;DiracbeyondAHM;l

þ Jμ;DiracbeyondAHM;q þ JμAHMÞ
¼ ∂μðJμ;DiracbeyondAHM;l þ Jμ;DiracbeyondAHM;q þ JμAHMÞ
¼ mAH∂βAβ ð133Þ

restores conservation of the extended rigid/global
Uð1ÞY current for ϕ-sector physical states, and
satisfies (B5),

h0jT½∂μðJμ;Majorana
beyondAHM;νR

þ Jμ;DiracbeyondAHM;l

þ Jμ;DiracbeyondAHM;q þ JμAHMÞðzÞ
× hðx1Þ…hðxNÞπt1ðy1Þ…πtMðyMÞ�j0iconnected

¼ 0: ð134Þ

Having satisfied all of the criteria in Appendix B, the
Uð1ÞY WTI governing the extended ϕ-sector transition

matrix T
E-AHM;q;l;MνR
N;M are therefore true: namely, the

15Our proof of axial-vector WTI in Appendix B requires that
neutrinos be incapable of carrying information to the 3-surface at
timeline infinity of the 4-volume of spacetime. We have worked
here within SSB E-AHM, with its explicit Dirac neutrino mass,
for this purely mathematical reason.
Imagine, however, that we are able to extend this work to the CP-
conserving standard electroweak model with two generations of
quarks, charged leptons, and νL, νR, with neutrino Dirac masses,
but zero Majorana masses. [Reference [39] analyzes local
SUð2Þ ⊗ Uð1ÞY with one such generation and nonzero Majorana
νR mass.] With its gauge group SUð2ÞL × Uð1ÞY , we would build
two sets of rigid/global WTI: unbroken electromagnetic
Uð1ÞQED, and spontaneously broken SUð2ÞL. It is then amusing
to elevate such rigid/global WTI to a principle of nature, so as to
give them predictive power for actual experiments and observa-
tions. The Uð1ÞQED WTI would be unbroken vector-current
identities. Focus instead on the spontaneously broken SUð2ÞL.
Start with Yukawa couplings which generate, after SSB, masses
and mixings among weak-eigenstate neutrinos. The observable
2 × 2 Pontecorvo-Maki-Nakagawa-Sakata matrix would then
rotate those to mass eigenstates mDirac

ν1 ; mDirac
ν2 .

The axial-vector current WTI from the spontaneously broken
SUð2ÞL require and demand a neutrino Dirac mass for each and
every one of the mass eigenstates mDirac

ν1 ; mDirac
ν2 ≠ 0. Would we

then claim that SSB SUð2ÞL WTI predict neutrino oscillations?
To make a possible connection with nature, although current
experimental neutrino-mixing data cannot rule out an exactly
zero mass for the lightest neutrino [45], the mathematical self-
consistency of SUð2ÞL WTI would.
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extended Adler self-consistency conditions (92) and (B10),
together with their proof of infrared finiteness in the
presence of massless NGB, and the extended 1-soft-π
theorems (95) and (B17); the extended Uð1ÞY WTI (73)
and (B18) governing connected amputated ϕ-sector

Green’s functions ΓE-AHM;q;l;MνR
N;M are also true. TheUð1ÞY ⊗

BRST symmetry of Sec. II is faithfully represented by
these, and the tower of on-shell T-matrix extended WTI

(92) and (B10) T
E-AHM;q;l;MνR
N;M jon-shell ¼ 0, and its extended

LSS theorem (93) and (B15).
The three decoupling theorems (108), (109), and (115)

follow, but there is a “nondecoupling subtlety.” The
vanishing of the νL surface terms requires a nonzero
neutrino Dirac mass

mν;Dirac ¼
1ffiffiffi
2

p yνhHi ≠ 0: ð135Þ

The light and heavy type-I-seesaw ν masses are

mν;Light ∼m2
ν;Dirac=MνR ; mν;Heavy ∼MνR ; ð136Þ

but, in obedience to our proof of Uð1ÞY WTI, mLight must
not vanish. Therefore type-I-seesaw ν’s do not allow the
MνR → ∞ limit. For the decoupling theorems, we instead
imagine huge, but finite, MνR with

1 ≫ m2
ν;Dirac=M

2
νR ≠ 0: ð137Þ

No practical trace of the M2
νR ∼M2

Heavy right-handed
neutrino νR survives.
Still, our Uð1ÞY WTI insist that, in principle, a very

heavy Majorana mass MνR cannot completely decouple. It
may still have some measurable or observational effect that
we have not identified.

V. SSB E-AHM’S PHYSICAL PARTICLE
SPECTRUM EXCLUDES THE NGB ~π

G. S. Guralnik, C. R. Hagan and T.W. B. Kibble [19]
first showed in the spontaneously broken Abelian Higgs
model that, although there are no massless particles in the

ðA0 ¼ 0; ∇⃗ · A⃗ ¼ 0Þ “radiation gauge,” there is a Goldstone
theorem, and a true massless NGB, in the covariant ∂μAμ ¼
0 Lorenz gauge. T. W. B. Kibble then showed [8] that the
results of experimental measurements are nevertheless the
same in radiation and Lorenz gauges, and that the spectrum
and dynamics of the observable particle states are gauge
independent.

A. SSB E-AHM’s physical particle spectrum excludes
the NGB ~π, whose S-matrix elements all vanish

The BRST-invariant Lagrangian for the E-AHM in
Lorenz gauge is

LLorenz
E-AHM ¼ LLorenz

AHM þ LGauge Invariant
beyondAHM ðAμ;ϕ;Φ;ψÞ ð138Þ

with LLorenz
AHM in (18).

1. Lagrangian governing dynamics of
observable particles

We now identify the observable particle spectrum of
Lorenz gauge E-AHM by rewriting (138) in terms of a new
gauge field

Bμ ≡ Aμ þ
1

ehHi ∂μ ~π ð139Þ

and transforming to the Kibble representation [2]:
(i) Gauge field

Aμν ≡ ∂μAν − ∂νAμ

¼ ∂μBν − ∂νBμ ≡ Bμν ð140Þ

(ii) AHM scalar

~π ¼ hHiϑ

ϕ ¼ 1ffiffiffi
2

p ~He−iYϕϑ; ~H ¼ ~hþ hHi

Dμϕ ¼ 1ffiffiffi
2

p ½∂μ − ieYϕAμ� ~He−iYϕϑ

¼ 1ffiffiffi
2

p
�
∂μ

~H − ieYϕ
~H
�
Aμ þ

1

e
∂μϑ

��
e−iYϕϑ

¼ 1ffiffiffi
2

p ½∂μ
~H − ieYϕ

~HBμ�e−iYϕϑ ð141Þ

(iii) Beyond-AHM scalar

Φ ¼ ~Φe−iYΦϑ

h ~Φi ¼ 0

DμΦ ¼ ½∂μ − ieYΦAμ� ~Φe−iYΦϑ

¼
�
∂μ

~Φ − ieYΦ ~Φ
�
Aμ þ

1

e
∂μϑ

��
e−iYΦϑ

¼ ½∂μ
~Φ − ieYΦ ~ΦBμ�e−iYΦϑ ð142Þ

(iv) Beyond-AHM fermion(s)

ψ ¼ ~ψe−iYψϑ

Dμψ ¼ ½∂μ − ieYψAμ� ~ψe−iYψϑ

¼
�
∂μ ~ψ − ieYψ ~ψ

�
Aμ þ

1

e
∂μϑ

��
e−iYΦϑ

¼ ½∂μ ~ψ − ieYψ ~ψBμ�e−iYΦϑ: ð143Þ
The E-AHM Lagrangian, which governs the spectrum

and dynamics of particle physics, is

GLOBAL Uð1ÞY ⊗ BRST SYMMETRY AND THE … PHYSICAL REVIEW D 96, 065003 (2017)

065003-21



LParticle Physics
E-AHM ðBμ; ~H; ~Φ; ~ψÞ
¼ LLorenz

AHM; ~H;Bμ
ðBμ; ~H; η̄;ωÞ

þ LGauge Invariant
beyondAHM; ~Φ

þ LGauge Invariant
beyondAHM; ~ψ ð144Þ

where the spin S ¼ 1 field Bμ

LLorenz
AHM ðBμ; ~H; η̄;ωÞ ¼ LGauge Invariant

AHM; ~H;Bμ

þ LGauge Fix;Lorenz
AHM;Bμ

þ LGhost;Lorenz
AHM;Bμ

LGauge Invariant
AHM; ~H;Bμ

¼ −
1

4
BμνBμν þ 1

2
e2Y2

ϕhHi2BμBμ

þ 1

2
ð∂μ

~HÞ2

þ 1

2
e2Y2

ϕð ~H2 − hHi2ÞBμBμ − VAHM

LGauge Fix;Lorenz
AHM;Bμ

¼ −lim
ξ→0

1

2ξ
ð∂μBμÞ2

LGhost;Lorenz
AHM;Bμ

¼ −η̄∂2ω

VAHM ¼ 1

4
λ2ϕð ~H2 − hHi2Þ: ð145Þ

For the beyond-AHM scalar(s)

LGauge Invariant
beyondAHM; ~Φ

¼ jDμ
~Φj2 − V ~Φ − V ~ϕ ~Φ

Dμ
~Φ ¼ ½∂μ − ieYΦBμ� ~Φ

V ~Φ ¼ M2
Φð ~Φ† ~ΦÞ þ λ2Φð ~Φ† ~ΦÞ2

V ~ϕ ~Φ ¼ 1

2
λ2ϕΦð ~H2Þð ~Φ† ~ΦÞ ð146Þ

while, for beyond-AHM fermions, we take a standard
model generation of fermions with anomaly-canceling
hypercharges

LGauge Invariant
beyondAHM; ~ψ ¼ i ~̄ψLDμ ~ψL þ i ~̄ψRDμ ~ψR

þ LYukawa
beyondAHM; ~ψ þ LMajorana

beyondAHM;~νR

Dμ ~ψL ¼ ½∂μ − ieYψL
Bμ� ~ψL

Dμ ~ψR ¼ ½∂μ − ieYψR
Bμ� ~ψR

LYukawa
beyondAHM; ~ψ ¼ −

1ffiffiffi
2

p yϕψð ~̄ψL ~ψR þ ~̄ψR ~ψLÞ ~H

− yΦψð ~̄ψL
~Φ ~ψR þ ~̄ψR

~Φ† ~ψLÞ

LMajorana
beyondAHM;~νR

¼ −
1

2
MνRð~νWeyl

R ~νWeyl
R þ ~̄νWeyl

R ~̄νWeyl
R Þ: ð147Þ

For yΦψ ≠ 0, the heavy scalar hypercharge YΦ ¼ −1.
The Bμ mass squared in (145) arises entirely from SSB,

m2
B ¼ m2

A ¼ e2hHi2: ð148Þ

Dimensional analysis shows that the contribution of a state
of mass/energy ∼MHeavy to the spectral function ΔB;Spectral

E-AHM

gives terms ∼1=M2
Heavy, so that

ΔB
E-AHMðq2Þ ¼ ΔB

AHMðq2Þ þOð1=M2
HeavyÞ;

ΔB
AHMðq2Þ ¼

1

q2 −m2
B;Pole þ iϵ

þ
Z

dm2
ρBAHMðm2Þ

q2 −m2 þ iϵ
;

ZB
E-AHM ¼ ZB

AHM þOð1=M2
HeavyÞ: ð149Þ

Therefore the Bμ pole-mass squared is

½ΔB
E-AHMð0Þ�−1 ¼ −m2

B ¼ −e2hHi2

with

m2
B;Pole ¼ e2hHi2

�
1 − e2hHi2

Z
dm2

ρBAHMðm2Þ
m2 − iϵ

�
−1

þOð1=M2
HeavyÞ: ð150Þ

2. Decoupling of NGB ~π, particle spectrum
and dynamics

The Lagrangian (144) is guaranteed to generate all of the
results in Secs. III and IV, and Appendixes A and B. In
practice, this is done via the manifestly renormalizeable
E-AHM Lagrangian (138).
G. Guralnik et al. [19], and T.W. B. Kibble [8], showed

that, in the Kibble representation in Lorenz gauge, the
Uð1ÞY AHM quantum states factorize. In the analogous
Uð1ÞY E-AHM, and in the m2

Weak=M
2
Heavy → 0 limit the

analogous Uð1ÞY E-AHM also factorizes,

jΨðAμ;ϕ; η̄;ω;Φ;ψÞi → jΨParticlesðBμ; ~HÞi
× jΨGhostðη̄;ωÞijΨGoldstoneð ~πÞijΨB−AHMð ~Φ; ~ψÞi: ð151Þ

With ∂2ω ¼ 0; ∂2η̄ ¼ 0, the ghost ω and antighost η̄ are
free and massless and decouple in Lorenz gauge.
It is crucial for SSB gauge theories [8,19] to remember

the additional gauge-fixing term inside (138). The E-AHM
Lorenz gauge condition is rewritten as

LGauge Fix;Lorenz
E-AHM ¼ −lim

ξ→0

1

2ξ
ð∂μAμÞ2

¼ −lim
ξ→0

1

2ξ
ð∂μBμÞ2 − lim

ξ→0

1

2ξ

�
1

ehHi ∂
2 ~π

�

×

�
1

ehHi ∂
2 ~π − 2∂μBμ

�
: ð152Þ

Besides enforcing the new Lorenz gauge-fixing constraint
∂μBμ ¼ 0 in (145), the auxiliary solution to the gauge-
fixing condition (152) is ∂2 ~π ¼ 0, which forces ~π to be a
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free massless particle. The NGB ~π therefore completely
decouples from, and disappears from, the observable
particle spectrum and its dynamics [8,19], whose states
factorize as in (151).
In the m2

Weak=M
2
Heavy → 0 limit, all physical measure-

ments and observations are then entirely predicted by the
AHM Lagrangian (145) and its states in (151),

LLorenz
AHM;Bμ

ð ~H;Bμ; η̄;ωÞ;
jΨParticle PhysicsðBμ; ~H; η̄;ωÞi
→ jΨParticlesðBμ; ~HÞijΨGhostðη̄;ωÞi: ð153Þ

What has become of our SSB Uð1ÞY Ward-Takahashi
identities? Although the NGB ~π has decoupled, it still
governs the SSB dynamics and particle spectrum of (153);
it is simply hidden from explicit view. Still, that decoupling
NGB causes powerful hidden constraints on (153) to arise
from its hidden shift symmetry

~π → ~π þ hHiθ ð154Þ

for constant θ.
Our SSB Uð1ÞY WTI, and all of the results of Secs. III

and IVand Appendixes A and B are also hidden but still in
force: connected amputated Green’s functions ΓN;M (73)
and (B18); connected amputated T-matrix elements TN;M

(95) and (B17); Adler self-consistency conditions (92) and
(B10) together with their proof of IR finiteness; LSS
theorem (93) and (B15); 1-soft-π theorems (95), (B10),
and (B17); decoupling theorems for Green’s functions and
T-matrix elements (109) and (108); and the decoupling
theorem for the BEH pole-mass squared m2

BEH;Pole (113).
These still govern the SSB dynamics and particle spectrum
of (153): they are simply hidden from explicit view. We
call this “the hidden Uð1ÞY ⊗BRST symmetry of the
SSB AHM.”

B. SSB causes decoupling of heavy M2
Heavy ≫ m2

Weak
particles. This fact is hidden, from the observable
particle spectrum of the Uð1ÞY E-AHM and its
dynamics, by the decoupling of the NGB ~π

We now take all of the new scalars ~Φ and fermions ~ψ in
the E-AHM to be very heavy, and are only interested in
low-energy processes,

M2
~Φ
;M2

~ψ ∼M2
Heavy ≫ m2

Weak

jq2j≲m2
Weak; ð155Þ

where qμ is a typical momentum transfer. In the limit
m2

Weak=M
2
Heavy → 0 the effective Lagrangian of the sponta-

neously broken E-AHM gauge theory obeys the

Appelquist-Carazzone decoupling theorem [44]

LEff;SSB
E-AHM ðkμ;Bν; ~H; ~Φ; ~ψÞ
→ LEff;SSB

AHM ðkμ;Bν; ~HÞ þOðm2
Weak=M

2
HeavyÞ: ð156Þ

1. Fourth decoupling theorem: SSB Abelian
Higgs model

The ϕ-sector of the extended theory is subject to all of
the results of Secs. III and IV and Appendixes A and B.
Therefore we know that the BEH pole-mass squared (113)
arises entirely from SSB and (unextended) AHM decays.
We also know that

VEff
E-AHM ¼ λ2ϕ

�
ϕ†ϕ −

1

2
hHi2

�
2

þOIgnore
E-AHM

¼ λ2ϕ
4
ð ~H2 − hHi2Þ2 þOIgnore

E-AHM

¼ λ2ϕ
4
ð ~h2 þ 2hHi ~hÞ2 þOIgnore

E-AHM: ð157Þ

(i) In (113) and (157) finite O
1=M2

Heavy;Irrelevant
E-AHM;ϕ decouple

and vanish as m2
Weak=M

2
Heavy → 0.

(ii) Among the terms included in (157) are finite
relevant operators dependent on the heavy matter
representations,

M2
Heavy; M2

Heavy lnðM2
HeavyÞ;

M2
Heavy lnðm2

WeakÞ; m2
Weak ln ðM2

HeavyÞ; ð158Þ

but the LSS theorem (93) has made them vanish.
That fact is a central point of this paper.

(iii) Marginal operators ∼ lnðM2
HeavyÞ have been ab-

sorbed in (157): i.e. in the renormalization of
gauge-independent observables (i.e. the quartic-
coupling constant λ2ϕ calculated in the Kibble rep-
resentation, and the BEH VEV hHi), and in the
unobservable wave-function renormalization
Zϕ
E-AHM (97).

Therefore, no trace ofMHeavy-scale Φ, ψ , including their
virtual loop-contributions to relevant operators, survives in
(113) and (157). All the heavy beyond-AHM matter
representations have completely decoupled, and the two
SSB gauge theories

E-AHM⇒
m2

Weak=M
2
Heavy→0

AHM ð159Þ

become equivalent in the limit m2
Weak=M

2
Heavy → 0, a

central result of this paper.
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2. Gauge independence of our results

S.-H. Henry Tye and Y. Vtorov-Karevsky [46] show that,
calculated in the Kibble representation of Lorenz gauge
(i.e. their “polar gauge” [46]), the effective potential is
gauge independent. Nielsen [47] went on to prove that any
gauge dependence of the effective potential can be reab-
sorbed by a field redefinition. (For more details see [48].)
With λ2ϕ calculated in the Kibble representation, e.g. taken
from experiment, the dimension-4 AHM effective potential

VEff
AHM ¼ λ2ϕ

4
ð ~h2 þ 2hHi ~hÞ2 ð160Þ

is therefore all-loop-orders gauge independent. The renor-
malized experimentally measured gauge-coupling-constant
squared at zero momentum e2 ≡ e2ð0Þ is also gauge
independent. With our four decoupling theorems (109),
(108), (113), and (159), so are λ2ϕ; hHi2 and VEff

E-AHM in
(157), and the Bμ pole-mass squared (150), when calculated
in the polar gauge. These all appear in the decoupled
particle physics (153) of E-AHM.
After the ~π NGB decouples, the all-loop-orders effective

(dimension ≤ 4 operator) Lagrangian that governs low-
energy scalar-sector E-AHM physics becomes, in the
m2

Weak=M
2
Heavy → 0 decoupling limit,

LEff
ϕ;E-AHM →

1

2
jð∂μ þ ieBμÞ ~Hj2 − Veff

ϕ;E-AHM

Veff
ϕ;E-AHM ¼ λ2ϕ

4
ð ~H2 − hHi2Þ2

ϕ†ϕ −
hHi2
2

¼ 1

2
ð ~H2 − hHi2Þ

~H ¼ ~hþ hHi; h ~hi ¼ 0: ð161Þ

Equation (161) is proved gauge independent by extension
of the work of Tye and Vtorov-Karevsky [46] and of
Nielsen [47] to the E-AHM.

VI. BWL AND GDS: THIS RESEARCH, VIEWED
THROUGH THE PRISM OF MATHEMATICAL
RIGOR DEMANDED BY RAYMOND STORA

Raymond Stora regarded vintage QFT as incomplete,
fuzzy in its definitions, and primitive in technology. For
example, he worried about whether the off-shell T matrix
could be mathematically rigorously defined to exist in
Lorenz gauge: e.g. without running into some IR subtlety.
The Adler self-consistency conditions proved here guar-
antee the IR finiteness of the ϕ-sector on-shell T matrix.
Although he agreed on the correctness of the results

presented here, Raymond might complain that we fall short
of a strict mathematically rigorous proof (according to his
exacting mathematical standards). He reminded us that
much has been learned about quantum field theory, via
modern path integrals, in the recent ∼45 years. In the time

up to his passing, he was intent on improving this work by
focusing on the following three issues:

(i) properly defining and proving the Lorenz-gauge
results presented here with modern path integrals;

(ii) tracking our central results directly to SSB, via
BRST methods, in an arbitrary manifestly IR finite
’t Hooft Rξ gauge, i.e. proving to his satisfaction that
they are not an artifact of Lorenz gauge;

(iii) tracking our central results directly to those Slavnov-
Taylor identities governing the SSB Goldstone mode
of the BRST-invariant E-AHM Lagrangian.

Any errors, wrong-headedness, misunderstanding, or mis-
representation appearing in this paper are solely our fault.

VII. CONCLUSION

AHM and E-AHM physics (e.g. on-shell T-matrix
elements) have more symmetry than their BRST-invariant
Lagrangians. We introduced global Uð1ÞY ⊗ BRST sym-
metry in Sec. II, and showed in Secs. IV and V and
Appendix B that the low-energy weak-scale effective SSB
E-AHM Lagrangian is protected (i.e. against loop contri-
butions from certain heavyM2

Heavy ≫ m2
Weak beyond-AHM

particles Φ, ψ) by the following hidden 1-soft-π theorems
for gauge theories:

(i) A tower of rigid SSB Uð1ÞY WTI governing
relations among Green’s functions.

(ii) A new tower of rigid SSB Uð1ÞY WTI which force
on-shell T-matrix elements to vanish, and represent
the new on-shell behavior of the Uð1ÞY ⊗ BRST
symmetry.

(iii) A new Lee-Stora-Symanzik theorem.
(iv) Four new decoupling theorems (109), (108), (113)

and (159).
What is remarkable is that heavy-particle decoupling is

obscured/hidden from the physical particle spectrum (153)
and its dynamics Once in a while you get shown the light,
in the strangest of places, if you look at it right. [52]. The
decoupling of the NGB ~π has famously spared the AHM an
observable massless particle [19,31,32]. It has also hidden
from that physical particle spectrum and dynamics our
Uð1ÞY WTI (73), (92), (93), (95), (B10), (B15), (B17) and
(B18) and their severe constraints on the effective low-
energy E-AHM Lagrangian. In particular, the weak-scale
E-AHM SSB gauge theory has a hidden Uð1ÞY shift
symmetry, for constant θ

~π → ~π þ hHiθ ð162Þ

which, together with the LSS theorem, has caused the
complete16 decoupling of certain heavy M2

Heavy ≫ m2
Weak

Uð1ÞY matter particles.

16Modulo special cases: e.g. heavy Majorana νR in Sec. IV D,
and possibly Od≤4;Non Analytic;Heavy

E-AHMϕ in (74).

BRYAN W. LYNN and GLENN D. STARKMAN PHYSICAL REVIEW D 96, 065003 (2017)

065003-24



Such heavy-particle decoupling is historically (i.e. except
for high-precision electroweak S,T and U [2,49,50]) the
usual physics experience, at each energy scale, as experi-
ments probed smaller and smaller distances. After all, Willis
Lamb did not need to know the top-quark or BEH mass in
order to interpret theoretically the experimentally observed
Oðmeα

5 lnαÞ 2S-2P splitting in the spectrum of hydrogen.
Such heavy-particle decoupling may be the reason why

the standard model [39], viewed as an effective low-energy
weak-scale theory, is the most experimentally and obser-
vationally successful and accurate theory of nature known
to humans (when augmented by classical general relativity
and neutrino mixing). That “core theory” [51] has no
known experimental or observational counterexamples.
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APPENDIX A: Uð1ÞY WARD-TAKAHASHI
IDENTITIES IN THE SSB ABELIAN

HIGGS MODEL

We present here the full self-contained and detailed
derivation of our Uð1ÞY WTI for the SSB AHM. We begin
by focusing on the rigid/global current JμAHM of the Abelian
Higgs model, the spontaneously broken gauge theory of a
complex scalar ϕ ¼ 1ffiffi

2
p ðH þ iπÞ ¼ 1ffiffi

2
p ~Hei ~π=hHi, and a mas-

sive Uð1ÞY gauge field Aμ.

Construct the rigid/global Uð1ÞY current with (10)

JμAHM ¼ π∂μH −H∂μπ − eAμðπ2 þH2Þ: ðA1Þ

The classical equations of motion reveal the following
crucial fact: due to gauge-fixing terms in the BRST-
invariant Lagrangian, the classical axial-vector current
(A1) is not conserved. Lorenz gauge

∂μJ
μ
AHM ¼ HmAFA

mA ¼ eYϕhHi
FA ¼ ∂βAβ ðA2Þ

with FA being the gauge-fixing function. Still, the physical
states Aμ, h; π of the theory (but not the BRST-invariant
Lagrangian) obey FA ¼ 0. In Lorenz gauge, Aμ is trans-
verse and ~π is a massless NGB.
The purpose of Appendix A is to derive a tower of

quantumUð1ÞY Ward-Takahashi identities that exhausts the
information content of (A2) and severely constrains the
dynamics (i.e. the connected time-ordered products) of
the physical states of the spontaneously broken Abelian
Higgs model.
(1) We study a total differential of a certain connected

time-ordered product

∂μh0jT½JμAHMðzÞ
× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected ðA3Þ

written in terms of the physical states of the complex
scalar ϕ. Here we have N external renormalized
scalars h ¼ H − hHi (coordinates x, momenta p),
and M external (CP ¼ −1) renormalized pseudo-
scalars π (coordinates y, momenta q).

(2) Conservation of the global Uð1ÞY current for the
physical states: Strict quantum constraints are im-
posed that force the relativistically covariant theory
of gauge bosons to propagate only its true number of
quantum spin S ¼ 1 degrees of freedom. These
constraints are implemented by use of spin S ¼ 0
fermionic Fadeev-Popov ghosts ðη̄;ωÞ and, in
Lorenz gauge, S ¼ 0 massless π. Physical states
and their connected time-ordered products, but not
the BRST-invariant Lagrangian, obey [25] the
gauge-fixing condition FA ¼ ∂βAβ ¼ 0 in Lorenz
gauge,

h0jT½ð∂βAβðzÞÞ
× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected
¼ 0: ðA4Þ

This restores conservation of the rigid/global Uð1ÞY
current for physical states
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h0jT½ð∂μJ
μ
AHMðzÞÞ ðA5Þ

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected
¼ 0: ðA6Þ

It is in this time-ordered-product sense that the
physical rigid global Uð1ÞY current JμAHM is con-
served, and it is this conserved current that generates
two towers of quantum Uð1ÞY WTI. These WTI
severely constrain the dynamics of the ϕ-sector.

(3) Vintage QFTand canonical quantization: Equal-time
commutators are imposed on the exact renormalized
fields, yielding equal-time quantum commutators at
space-time points y, z.

δðz0 − y0Þ½J0AHMðzÞ; HðyÞ� ¼ −iπðyÞδ4ðz − yÞ;
δðz0 − y0Þ½J0AHMðzÞ; πðyÞ� ¼ iHðyÞδ4ðz − yÞ;

δðz0 − y0Þ½J0AHMðzÞ; AμðyÞ� ¼ 0;

δðz0 − y0Þ½J0AHMðzÞ;ωðyÞ� ¼ 0;

δðz0 − y0Þ½J0AHMðzÞ; η̄ðyÞ� ¼ 0: ðA7Þ

Nontrivial commutators include

δðz0 − y0Þ½∂0HðzÞ; HðyÞ� ¼ −iδ4ðz − yÞ;
δðz0 − y0Þ½∂0πðzÞ; πðyÞ� ¼ −iδ4ðz − yÞ: ðA8Þ

(4) Certain surface integrals vanish: As appropriate to
our study of the massless π, we use pion-pole
dominance to derive 1-soft-pion theorems, and form
the surface integral

lim
kλ→0

Z
d4zeikz∂μh0jT½ðJμAHM þ hHi∂μπÞðzÞ

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected
¼

Z
d4z∂μh0jT½ðJμAHM þ hHi∂μπÞðzÞ

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected
¼

Z
3−surface→∞

d3zẑμ3−surface

× h0jT½ðJμAHM þ hHi∂μπÞðzÞ
× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected

¼ 0; ðA9Þ

where we have used Stokes’ theorem, and ẑμ3−surface

is a unit vector normal to the 3-surface. The time-
ordered product constrains the 3-surface to lie on, or
inside, the light cone.
At a given point on the surface of a large enough

4-volume
R
d4z (i.e. the volume of all space-time),

all fields are asymptotic in states and out states,

properly quantized as free fields, with each field
species orthogonal to the others, and they are
evaluated at equal times, making time ordering
unnecessary at ðz3−surface → ∞Þ. Input the global
AHM current (A1) to (A9), using ∂μhHi ¼ 0Z

3−surface→∞
d3zẑμ3−surfaceh0jT½

× ðπ∂μh − h∂μπ − eAμðπ2 þH2ÞÞðzÞ
× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected ¼ 0:

ðA10Þ
The surface integral (A10) vanishes because both

ðh; AμÞ are massive in the spontaneously broken
Uð1ÞY AHM, with ðm2

BEH ≠ 0; m2
A ¼ e2hHi2Þ re-

spectively. Propagators connecting ðh; AμÞ, from
points on z3−surface → ∞ to the localized interaction
points ðx1…xN ; y1…yMÞ, must stay inside the light
cone, die off exponentially with mass, and are
incapable of carrying information that far.
It is very important for pion-pole dominance and

this paper that this argument fails for the remaining
term in JμAHM in (A1),Z

3−Surface→∞
d3zẑμ3−surface × h0jT½ð−hHi∂μπðzÞÞ

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected ≠ 0:

ðA11Þ
π is massless in the SSB AHM, capable of carrying
(along the light cone) long-ranged pseudoscalar
forces out to the 3-surface ðz2−surface → ∞Þ: i.e.
the very ends of the light cone (but not inside it).
That masslessness is the basis of our pion-pole-
dominance-based Uð1ÞY WTI, which give 1-soft-
pion theorems (A18), infrared finiteness for m2

π ¼ 0
(A22), and the LSS theorem (A27).

(5) Master equation: Using (A5) and (A8) in (A3) to
form the right-hand side, and (A10) in (A3) to form
the left-hand side, we write the master equation

lim
kλ→0

Z
d4zeikz ×



−hHi∂z

μh0jT½ð∂μπðzÞÞ

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected

−
XM
m¼1

iδ4ðz − ymÞh0jT½hðzÞhðx1Þ…hðxNÞ

× πðy1Þ… dπðymÞ…πðyMÞ�j0iconnected

þ
XN
n¼1

iδ4ðz − xnÞh0jT½hðx1Þ… dhðxnÞ…hðxNÞ

× πðzÞπðy1Þ…πðyMÞ�j0iconnected
�

¼ 0 ðA12Þ
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where the hatted fields dhðxnÞ and dπðymÞ are to be
removed. We have also thrown away a sum of M
terms, proportional to hHi, that corresponds entirely
to disconnected graphs.

(6) ϕ-sector connected amplitudes: Connected momen-
tum-space amplitudes, with N external BEHs andM
external πs, are defined in terms of ϕ-sector con-
nected time-ordered products

iGN;Mðp1…pN ; q1…qMÞð2πÞ4δ4
�XN

n¼1

pn þ
XM
m¼1

qm

�

¼
YN
n¼1

Z
d4xneipnxn

YM
m¼1

Z
d4ymeiqmym

× h0jT½hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected:
ðA13Þ

The master equation (A12) can then be rewritten
as

lim
kλ→0

fihHik2GN;Mþ1ðp1…pN ;kq1…qMÞ

−
XN
n¼1

GN−1;Mþ1ðp1…cpn…pN ;ðkþpnÞq1…qMÞ

þ
XM
m¼1

GNþ1;M−1ððkþqmÞp1…pN ;q1…cqm…qMÞg

¼ 0 ðA14Þ
with the hatted momenta ðcpn;cqmÞ removed in (A14),
and an overall momentum conservation factor
of ð2πÞ4δ4ðkþP

N
n¼1 pn þ

P
M
m¼1 qmÞ.

(7) ϕ-propagators: Special cases of (A13) are the BEH
and π propagators

iG2;0ðp1;−p1; Þ ¼ i
Z

d4p2

ð2πÞ4G2;0ðp1; p2; Þ

¼
Z

d4x1eip1x1h0jT½hðx1Þhð0Þ�j0i

≡ iΔBEHðp2
1Þ

iG0;2ð; q1;−q1Þ ¼ i
Z

d4q2
ð2πÞ4G0;2ð; q1; q2Þ

¼
Z

d4y1eiq1y1h0jT½πðy1Þπð0Þ�j0i

≡ iΔπðq21Þ: ðA15Þ

(8) ϕ-sector connected amputated 1-ðh; πÞ-reducible
(1-ϕ-R) transition matrix (T matrix): With an
overall momentum conservation factor ð2πÞ4δ4×
ðPN

n¼1 pn þ
P

M
m¼1 qmÞ, the ϕ-sector connected am-

plitudes are related to ϕ-sector connected amputated
T-matrix elements

GN;Mðp1…pN ; q1…qMÞ

≡YN
n¼1

½iΔBEHðp2
nÞ�

YM
m¼1

½iΔπðq2mÞ�

× TN;Mðp1…pN ; q1…qMÞ ðA16Þ

so that the master equation (A12) can be written

lim
kλ→0



ihHik2½iΔπðk2Þ�TN;Mþ1ðp1…pN ; kq1…qMÞ

−
XN
n¼1

TN−1;Mþ1ðp1…cpn…pN ; ðkþ pnÞq1…qMÞ

× ½iΔπððkþ pnÞ2Þ�½iΔBEHðp2
nÞ�−1

þ
XM
m¼1

TNþ1;M−1ððkþ qmÞp1…pN ; q1…cqm…qMÞ

× ½iΔBEHððkþ qmÞ2Þ�½iΔπðq2mÞ�−1
�

¼ 0 ðA17Þ

with the hatted momenta ðcpn;cqmÞ removed in (A17),
and an overall momentum conservation factor
of ð2πÞ4δ4ðkþP

N
n¼1 pn þ

P
M
m¼1 qmÞ.

(9) Pion-pole dominance and 1-soft-π theorems for the
T matrix: Consider the 1-soft-pion limit

lim
kλ→0

k2Δπðk2Þ ¼ 1 ðA18Þ

where the π is hypothesized to be all-loop-orders
massless, and written in the Källén-Lehmann rep-
resentation [26] with spectral density ρπAHM,

Δπðk2Þ ¼
1

k2 þ iϵ
þ
Z

dm2
ρπAHMðm2Þ

k2 −m2 þ iϵ
: ðA19Þ

The master equation (A12) then becomes

− hHiTN;Mþ1ðp1…pN ; 0q1…qMÞ

¼
XN
n¼1

TN−1;Mþ1ðp1…cpn…pN ;pnq1…qMÞ

× ½iΔπðp2
nÞ�½iΔBEHðp2

nÞ�−1

−
XM
m¼1

TNþ1;M−1ðqmp1…pN ; q1…cqm…qMÞ

× ½iΔBEHðq2mÞ�½iΔπðq2mÞ�−1 ðA20Þ

in the 1-soft-pion limit. As usual the hatted momenta
ðcpn;cqmÞ and associated fields are removed in (A20),
and an overall momentum conservation factor
ð2πÞ4δ4ðPN

n¼1 pn þ
P

M
m¼1 qmÞ applied.

The set of 1-soft-pion theorems (A20) has
the form
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hHiTN;Mþ1 ∼ TN−1;Mþ1 − TNþ1;M−1; ðA21Þ

relating, by the addition of a zero-momentum
pion, an N þM þ 1-point function to N þM-point
functions.

(10) The Adler self-consistency relations [but now for a
gauge theory rather than global SUð2ÞL × SUð2ÞR
[37,38]] are obtained by putting the remainder of the
(A20) particles on mass shell

hHiTN;Mþ1ðp1…pN ; 0q1…qMÞ

× ð2πÞ4δ4
�XN

n¼1

pn þ
XM
m¼1

qm

�				p2
1
¼p2

2
…¼p2

N¼m2
BEH

q2
1
¼q2

2
…¼q2M¼0

¼ 0; ðA22Þ

which guarantees the IR finiteness of the ϕ-sector
on-shell T matrix in the SSB AHM gauge theory in
Lorenz gauge, with massless π in the 1-soft-pion
limit. These 1-soft-pion theorems [37,38] force the T
matrix to vanish as one of the pion momenta goes to
0, provided all other physical scalar particles are on
mass shell. Equation (A22) asserts the absence of
infrared divergences in the physical-scalar sector in
Goldstone mode. “Although individual Feynman
diagrams may be IR divergent, those IR divergent
parts cancel exactly in each order of perturbation
theory. Furthermore, the Goldstone mode amplitude
must vanish in the soft-pion limit [12].”

(11) 1-ðh; πÞ reducibility (1-ϕ-R) and 1-ðh; πÞ irreduc-
ibility (1-ϕ-I): With some exceptions, a ϕ-sector
connected amputated transition-matrix element
TN;M can be cut apart by cutting an internal h or
π line, and is designated 1-ϕ-R. In contrast, a ϕ-
sector connected amputated Green’s function ΓN;M

is defined to be 1-ϕ-I: i.e. it cannot be cut apart by
cutting an internal h or π line.

TN;M ¼ ΓN;M þ ð1-ϕ-RÞ: ðA23Þ

Both TN;M and ΓN;M are 1-ðAμÞ-reducible
(1-Aμ-R): i.e. they can be cut apart by cutting an
internal transverse-vector Aμ gauge-particle line.

(12) ϕ-sector two-point functions, propagators and a
three-point vertex: The special two-point functions
T0;2ð;q;−qÞ and T2;0ðp;−p; Þ, and the three-point
vertex T1;2ðq; 0;−qÞ, are 1-ϕ-I (i.e. they are not
1-ϕ-R), and are therefore equal to the corresponding
1-ϕ-I connected amputated Green’s functions. The
two-point functions

T2;0ðp;−p; Þ ¼ Γ2;0ðp;−p; Þ ¼ ½ΔBEHðp2Þ�−1
T0;2ð; q;−qÞ ¼ Γ0;2ð; q;−qÞ ¼ ½Δπðq2Þ�−1 ðA24Þ

are related to the ð1h; 2πÞ three-point hπ2 vertex

T1;2ðp; q;−p − qÞ ¼ Γ1;2ðp; q;−p − qÞ ðA25Þ

by a 1-soft-pion theorem (A20)

hHiT1;2ðq; 0;−qÞ− T2;0ðq;−q; Þ þ T0;2ð;q;−qÞ
¼ hHiT1;2ðq; 0;−qÞ− ½ΔBEHðq2Þ�−1 þ ½Δπðq2Þ�−1
¼ hHiΓ1;2ðq; 0;−qÞ− Γ2;0ðq;−q; Þ þΓ0;2ð;q;−qÞ
¼ hHiΓ1;2ðq; 0;−qÞ− ½ΔBEHðq2Þ�−1 þ ½Δπðq2Þ�−1
¼ 0: ðA26Þ

(13) The LSS theorem, in the spontaneously broken
AHM in Lorenz gauge, is a special case of that
SSB gauge theory’s Adler self-consistency relations
(A22)

hHiT0;2ð; 00Þ ¼ 0;

hHiΓ0;2ð; 00Þ ¼ 0;

hHi½Δπð0Þ�−1 ¼ 0; ðA27Þ

proving that π is massless m2
π ¼ 0 (i.e. not just the

much weaker theorem that the Nambu-Goldstone
boson ~π is massless). That all-loop-orders renormal-
ized masslessness is protected/guaranteed by the
global Uð1ÞY symmetry of the physical states of the
gauge theory after spontaneous symmetry breaking.

(14) TExternal
N;Mþ1 ϕ-sector T matrix with one soft πðqμ ¼ 0Þ

attached to an external leg: Figure 1 shows that

hHiTExternal
N;Mþ1 ðp1…pN ; 0q1…qMÞ

¼
XN
n¼1

½ihHiΓ1;2ðpn; 0;−pnÞ�½iΔπðp2
nÞ�

× TN−1;Mþ1ðp1…cpn…pN ;pnq1…qMÞ

þ
XM
m¼1

½ihHiΓ1;2ðqm; 0;−qmÞ�½iΔBEHðq2mÞ�

× TNþ1;M−1ðqmp1…pN ; q1…cqm…qMÞ

¼
XN
n¼1

ð1 − ½iΔπðp2
nÞ�½iΔBEHðp2

nÞ�−1Þ

× TN−1;Mþ1ðp1…cpn…pN ;pnq1…qMÞ

−
XM
m¼1

ð1 − ½iΔBEHðq2mÞ�½iΔπðq2mÞ�−1Þ

× TNþ1;M−1ðqmp1…pN ; q1…cqm…qMÞ
ðA28Þ

where we used (A26). Now separate
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TN;Mþ1ðp1…pN ; 0q1…qMÞ
¼ TExternal

N;Mþ1 ðp1…pN ; 0q1…qMÞ
þ TInternal

N;Mþ1ðp1…pN ; 0q1…qMÞ ðA29Þ

so that

hHiTInternal
N;Mþ1ðp1…pN ; 0q1…qMÞ

¼
XM
m¼1

TNþ1;M−1ðqmp1…pN ;q1…cqm…qMÞ

−
XN
n¼1

TN−1;Mþ1ðp1…cpn…pN ;pnq1…qMÞ:

ðA30Þ
(15) Recursive Uð1ÞY WTI for 1-ϕ-I connected ampu-

tated Green’s functions ΓN;M: Removing the 1-ϕ-R
graphs from both sides of (A30) yields the recursive
identity

hHiΓN;Mþ1ðp1…pN ; 0q1…qMÞ

¼
XM
m¼1

ΓNþ1;M−1ðqmp1…pN ; q1…cqm…qMÞ

−
XN
n¼1

ΓN−1;Mþ1ðp1…cpn…pN ;pnq1…qMÞ:

ðA31Þ

B.W. Lee [12] gave an inductive proof for the
corresponding recursive SUð2ÞL × SUð2ÞR WTI in
the global Gell-Mann Lévy model with PCAC [17].
Specifically, he proved that, given the global
SUð2ÞL × SUð2ÞR analogy of (A30), the global
SUð2ÞL × SUð2ÞR analogy of (A31) follows. This
he did by examination of the explicit reducibility/
irreducibility of the various Feynman graphs
involved.
That proof also works for the Uð1ÞY SSB AHM,

thus establishing our tower of 1-ϕ-I connected
amputated Green’s functions’ recursive Uð1ÞY
WTI (A31) for a local/gauge theory.
Rather than including the lengthy proof here, we

paraphrase [12] as follows: (A26) shows that (A31)
is true for ðN ¼ 1;M ¼ 1Þ. Assume it is true for all
ðn;mÞ such that nþm < N þM. Consider (A30)
for n ¼ N, m ¼ M. The two classes of graphs
contributing to TInternal

N;Mþ1ðp1…pN ; 0q1…qMÞ are dis-
played in Fig. 2.
The top graphs in Fig. 2 are 1-ϕ-R. For ðn;m; nþ

m < N þMÞ we may use (A31), for those 1-ϕ-I
Green’s functions Γn;m that contribute to (A30), to
show that the contribution of 1-ϕ-R graphs to both
sides of (A30) is identical.

The bottom graphs in Fig. 2 are 1-ϕ-I and so
already obey (A31).

(16) The LSS theorem makes tadpoles vanish,

h0jhðx ¼ 0Þj0iconnected
¼ i½iΔBEHð0Þ�Γ1;0ð0; Þ; ðA32Þ

but the N ¼ 0, M ¼ 1 case of (A31) reads

Γ1;0ð0; Þ ¼ hHiΓ0;2ð; 00Þ
¼ 0; ðA33Þ

where we used (A27), so that tadpoles all vanish
automatically, and separate tadpole renormalization
is unnecessary. Since we can choose the origin of
coordinates anywhere we like

h0jhðxÞj0iconnected ¼ 0: ðA34Þ

(17) Renormalized gauge-independent observable hHi.

h0jHðxÞj0iconnected ¼ h0jhðxÞj0iconnected þ hHi
¼ hHi

∂μhHi ¼ 0: ðA35Þ

(18) Benjamin W. Lee’s 1970 Cargese summer school
lectures’ [12] proof of ϕ-sector WTI focuses on the
global SUð2ÞL × SUð2ÞR Gell-Mann Lévy theory
and PCAC, but gives a detailed pedagogical account
of the appearance of the Goldstone theorem and its
true massless Nambu-Goldstone bosons, especially
of the emergence of the LSS theorem, in global
theories, and is recommended reading. We include a
translation guide in Table I.

FIG. 2. Circles are 1-ϕ-I ΓE-AHM
n;m , solid lines π, and dashed lines

h, with nþm < N þM. One (zero-momentum) soft pion
emerges in all possible ways from the connected amputated
Green’s functions. ΓE-AHM

n;m is 1-Aμ-R by cutting an Aμ line, and
also 1-Φ-R by cutting aΦ line. Figure 2 is the E-AHM analogy of
B. W. Lee’s Fig. 11 [12]. The same graph topologies, but without
internal beyond-AHMΦ, ψ heavy matter, are used in the proof of
(A31) for the (unextended) AHM.
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APPENDIX B: Uð1ÞY ϕ-SECTOR WTI WHICH
INCLUDE THE ALL-LOOP-ORDERS

CONTRIBUTIONS OF CERTAIN ADDITIONAL
VIRTUAL Uð1ÞY CP-CONSERVING
MATTER REPRESENTATIONS Φ, ψ

IN THE E-AHM

We focus on the rigid/global extended-AHM current

JμE-AHM ¼ JμAHMðAμ;ϕÞ þ JμbeyondAHMðΦ;ΨÞ ðB1Þ

of the extended Abelian Higgs model, the spontaneously
broken gauge theory of a complex spin S ¼ 0 scalar
ϕ ¼ 1ffiffi

2
p ðH þ iπÞ, a massive Uð1ÞY S ¼ 1 transverse gauge

field Aμ, and certain S ¼ 0 scalars Φ and anomaly-
canceling S ¼ 1

2
fermions ψ originating in beyond-AHM

models.
In order to force renormalized connected amplitudes

with an odd number of π s to vanish, the new particlesΦ, ψ
are taken in this paper to conserve CP.

TABLE I. Derivation of Ward-Takahashi identities.

Property This paper B. W. Lee [12]

Lagrangian invariant BRST Global group
Structure group Uð1ÞY SUð2ÞL × SUð2ÞR
Local/gauge group Uð1ÞY
Rigid/global group Uð1ÞY SUð2ÞL × SUð2ÞR
Global currents JμAHM V⃗μ

; A⃗μ

PCAC no Yes
Current divergence HmA∂βAβ 0; fπm2

ππ⃗
LGauge Fixing Lorenz
Gauge Lorenz
Ghosts η̄;ω Decouple
Conserved current Physical states Lagrangian
Physical states Aμ; h; π;Φ;ψ s; π⃗
Interaction Weak Strong
Fields Aμ; H; π; η̄;ω;Φ;ψ σ; π⃗
BEH scalar h ¼ H − hHi s ¼ σ − hσi
VEV hHi hσi ¼ v ¼ fπ
Particles in loops Physicalandghosts s; π⃗
Renormalization All loop orders All loop orders
Amplitudes G
Connected amplitudes GN;M H
No pion-pole singularity H̄
1-ϕ-I or R h, π s; π⃗
Connected ΓN;M Amputated Amputated
Connected TN;M Amputated Amputated
NGB after SSB ~π ~π⃗
LSS theorem hHiΓt1t2

0;2 ð; 00Þ ¼ 0 fπΓ
t1t2
0;2 ð; 00Þ

¼ ϵδt1t2 ¼ 0
Explicit breaking ϵ ¼ fπm2

π

ϕ-sector TN;M 1-ϕ-R 1-ϕ-R
1-Aμ-R, 1-Φ-R

ϕ-sector ΓN;M 1-ϕ-I 1-ϕ-I
1-Aμ-R, 1-Φ-R

T-matrix TN;M T
ϕ-sector Green’s F’s ΓN;M ΓN;M

External πðqμ ¼ 0Þ TExternal
N;Mþ1

T1

Internal πðqμ ¼ 0Þ TInternal
N;Mþ1

T2

BEH propagator ΔBEH Δσ

Transverse propagator Δμν
A

Pion propagator Δπ δtitjΔπ

SSB Goldstone mode Goldstone mode
Goldstone theorem Physical states Goldstone mode
LSS theorem One-dimensional line One-dimensional boundary of

Two-dimensional quarter-plane
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The classical equations of motion reveal that, due to
gauge-fixing terms in the BRST-invariant Lagrangian, the
classical current (B1) is not conserved. In Lorenz gauge

∂μJ
μ
E-AHM ¼ HmAFA;

mA ¼ eYϕhHi;
FA ¼ ∂βAβ; ðB2Þ

with FA being the gauge-fixing function.
The purpose of this appendix is to derive a tower of

Uð1ÞY extended WTI that exhausts the information content
of (B2), and severely constrains the dynamics (i.e. the
connected time-ordered products) of the physical states of
the SSB extended AHM. We make use here of all of the
results in Appendix A concerning JμAHM.
(1) We study a certain total differential of a connected

time-ordered product,

∂μh0jT½JμE-AHMðzÞ
× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected; ðB3Þ

written in terms of the physical states of the complex
scalar ϕ. Here we have N external renormalized
scalars h ¼ H − hHi (coordinates x, momenta p),
and M external (CP ¼ −1) renormalized pseudo-
scalars π (coordinates y, momenta q).

(2) Conservation of the global Uð1ÞY current for the
physical states: Strict quantum constraints are im-
posed that force the relativistically covariant theory
of a massive transverse gauge boson to propagate
only its true number of quantum spin S ¼ 1 degrees
of freedom. Physical states and their time-ordered
products, but not the BRST-invariant Lagrangian,
obey the gauge-fixing condition FA ¼ ∂βAβ ¼ 0 in
Lorenz gauge [25],

h0jT½ð∂βAβðzÞÞ
× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected

¼ 0; ðB4Þ

which restores conservation of the rigid/global
Uð1ÞY extended current for physical states

h0jT½ð∂μJ
μ
E-AHMðzÞÞ

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected
¼ 0: ðB5Þ

It is in this time-ordered-product sense that the rigid
global extended Uð1ÞY current JμE-AHM is conserved,
and it is this conserved current that generates our
tower of Uð1ÞY extended WTI. These extended WTI
severely constrain the dynamics of ϕ.

(3) Vintage QFTand canonical quantization: Equal-time
commutators are imposed on the exact renormalized
beyond-AHM fields, yielding equal-time quantum
commutators at space-time points y, z.

δðz0 − y0Þ½J0beyondAHMðzÞ; HðyÞ� ¼ 0;

δðz0 − y0Þ½J0beyondAHMðzÞ; πðyÞ� ¼ 0: ðB6Þ

Only certain Uð1ÞY matter particles Φ, ψ obey this
condition.
(a) Renormalized hHi is defined to match the

(unextended) AHM. Our extended Uð1ÞY WTI
therefore require that all of the new spin S ¼ 0

fields in JμbeyondAHM have zero VEV:

hΦbeyondAHMi ¼ 0: ðB7Þ

Only certain Uð1ÞY matter particles Φ obey this
condition.

(4) Certain connected surface integrals must vanish: As
appropriate to our study of massless π, we again use
pion-pole dominance to derive 1-soft-pion theorems,
and require that the connected surface integral

lim
kλ→0

Z
d4zeikz∂μh0jT½ðJμbeyondAHMðzÞÞ

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected
¼

Z
d4z∂μh0jT½ðJμbeyondAHMðzÞÞ

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected
¼

Z
3−Surface→∞

d3zẑμ3−surface

× h0jT½ðJμbeyondAHMðzÞÞ
× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected

¼ 0; ðB8Þ

where we have used Stokes’ theorem, and ẑμ3−surface

is a unit vector normal to the 3-surface. The time-
ordered product constrains the 3-surface to lie on or
inside the light cone.

At a given point on the surface of a large enough
4-volume

R
d4z (i.e. the volume of all space-time),

all fields are asymptotic in states and out states, are
properly quantized as free fields, with each field
species orthogonal to the others, and are evaluated at
equal times, making time ordering unnecessary at
ðz3−surface → ∞Þ.

Only certain Uð1ÞY massive matter particles Φ, ψ
obey this condition.

(5) Extended master equation: Using (B5) and (B6) in
(B3) to form the right-hand side, and (B8) in (B3) to
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form the left-hand side, we write the extendedmaster
equation, which relates connected time-ordered
products,

lim
kλ→0

Z
d4zeikz ×



−hHi∂z

μh0jT½ð∂μπðzÞÞ

× hðx1Þ…hðxNÞπðy1Þ…πðyMÞ�j0iconnected

−
XM
m¼1

iδ4ðz − ymÞh0jT½hðzÞhðx1Þ…hðxNÞ

× πðy1Þ… dπðymÞ…πðyMÞ�j0iconnected

þ
XN
n¼1

iδ4ðz − xnÞh0jT½hðx1Þ… dhðxnÞ…hðxNÞ

× πðzÞπðy1Þ…πðyMÞ�j0iconnected
�

¼ 0; ðB9Þ

where the hatted fields dhðxnÞ and dπðymÞ are to be
removed. We have also thrown away a sum of M
terms, proportional to hHi, that corresponds entirely
to disconnected graphs.
(a) Uð1ÞY Ward-Takahashi identities for the ϕ-sector

of theE-AHM:The extendedmaster equation (B9)
governing theϕ-sector of theE-AHM is idential to
the master equation (A12) governing the ϕ-sector
of the (unextended) AHM. This proves that, for
each Uð1ÞY WTI that is true in the AHM, an
analogous Uð1ÞY WTI is true for the E-AHM.
Appendix A proved Uð1ÞY WTI relations among
1-ϕ-Rϕ-sector T-matrix elementsTN;M, aswell as
Uð1ÞY WTI relations among 1-ϕ-I ϕ-sector
Green’s functions ΓN;M, in the spontaneously
broken AHM. Analogous Uð1ÞY WTI relations
among 1-ϕ-Rϕ-sector T-matrix elementsTE-AHM

N;M ,
as well as analogousUð1ÞY WTI relations among
1-ϕ-I ϕ-sector Green’s functions ΓE-AHM

N;M , are
therefore here proved true for the spontaneously
broken extended AHM.
But there is one huge difference. The renorm-

alization of our Uð1ÞY WTI, governing ϕ-sector
TE-AHM
N;M and ϕ-sector ΓE-AHM

N;M , now includes the
all-loop-orders contributions of virtual gauge
bosons, ϕ scalars, ghosts, new beyond-AHM
scalars and new beyond-AHM fermions: i.e. Aμ,
h; π; η̄;ω;Φ;ψ respectively.

(10) Adler self-consistency relations, but now for the E-
AHM gauge theory,

hHiTE-AHM
N;Mþ1ðp1…pN ; 0q1…qMÞ

× ð2πÞ4δ4
�XN

n¼1

pn þ
XM
m¼1

qm

�
jp2

1
¼p2

2
…¼p2

N¼m2
BEH

q2
1
¼q2

2
…¼q2M¼0

¼ 0: ðB10Þ

These prove the IR finiteness of the ϕ-sector on-
shell connected T matrix in the E-AHM gauge
theory, with massless π, in Lorenz gauge, in the
1-soft-pion limit.

(11) 1-ðh; πÞ reducibility (1-ϕ-R) and 1-ðh; πÞ irreduc-
ibility (1-ϕ-I): With some exceptions, the extended
ϕ-sector connected amputated T-matrix elements
TE-AHM
N;M can be cut apart by cutting an internal h

or π line: they are designated 1-ϕ-R. In contrast, the
extended ϕ-sector Green’s functions ΓE-AHM

N;M are
defined to be 1-ϕ-I: i.e. they cannot be cut apart
by cutting an internal h or π line.

TE-AHM
N;M ¼ ΓE-AHM

N;M þ ð1-ϕ-RÞ: ðB11Þ

As usual, both TE-AHM
N;M and ΓE-AHM

N;M are 1-ðAμÞ-
reducible (1-Aμ-R), i.e. they can be cut apart by
cutting an internal transverse-vector Aμ gauge-
particle line. They are also 1-Φ-reducible (1-Φ-R),
i.e. they can be cut apart by cutting an internal
Φ-scalar line.

(12) ϕ-sector two-point functions, propagators and a
three-point vertex: The two-point functions

TE-AHM
2;0 ðp;−p;Þ¼ΓE-AHM

2;0 ðp;−p;Þ¼ ½ΔBEHðp2Þ�−1;
TE-AHM
0;2 ð;q;−qÞ¼ΓE-AHM

0;2 ð;q;−qÞ¼ ½Δπðq2Þ�−1;
ðB12Þ

are related to the ð1h; 2πÞ three-point hπ2 vertex

TE-AHM
1;2 ðp; q;−p − qÞ ¼ ΓE-AHM

1;2 ðp; q;−p − qÞ
ðB13Þ

by a 1-soft-pion theorem (B18)

hHiTE-AHM
1;2 ðq; 0;−qÞ ¼ ½ΔBEHðq2Þ�−1 − ½Δπðq2Þ�−1:

ðB14Þ

(13) The LSS theorem in Lorenz-gauge E-AHM is the
N ¼ 0, M ¼ 1 case of (B10),

hHiTE-AHM
0;2 ð; 00Þ ¼ 0;

hHiΓE-AHM
0;2 ð; 00Þ ¼ 0;

hHi½Δπð0Þ�−1 ¼ 0; ðB15Þ

proving that π is still massless in the E-AHM, whose
all-loop-orders renormalized masslessness is pro-
tected/guaranteed by the global Uð1ÞY symmetry of
the physical states of the E-AHM gauge theory
after SSB.

(14) TE-AHM;External
N;Mþ1 are the 1-ϕ-R ϕ-sector connec-

ted amputated T-matrix elements, with one soft
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πðqμ ¼ 0Þ attached to an external leg, as shown in
Fig. 1. With the separation

TE-AHM
N;Mþ1ðp1…pN ; 0q1…qMÞ
¼ TE-AHM;External

N;Mþ1 ðp1…pN ; 0q1…qMÞ
þ TE-AHM;Internal

N;Mþ1 ðp1…pN ; 0q1…qMÞ ðB16Þ

we have the recursive Uð1ÞY T-matrix WTI

hHiTE-AHM;Internal
N;Mþ1 ðp1…pN ; 0q1…qMÞ

¼
XM
m¼1

TE-AHM
Nþ1;M−1ðqmp1…pN ; q1…cqm…qMÞ

−
XN
n¼1

TE-AHM
N−1;Mþ1ðp1…cpn…pN ;pnq1…qMÞ:

ðB17Þ

(15) Recursive Uð1ÞY WTI for 1-ϕ-I ϕ-sector connected
amputated extended Green’s functions ΓE-AHM

N;M are a
solution to (B17),

hHiΓE-AHM
N;Mþ1ðp1…pN ; 0q1…qMÞ

¼
XM
m¼1

ΓE-AHM
Nþ1;M−1ðqmp1…pN ; q1…cqm…qMÞ

−
XN
n¼1

ΓE-AHM
N−1;Mþ1ðp1…cpn…pN ;pnq1…qMÞ:

ðB18Þ

(16) The LSS theorem (B15) makes tadpoles vanish,

h0jhðx ¼ 0Þj0iconnected ¼ i½iΔBEHð0Þ�ΓE-AHM
1;0 ð0; Þ;

ðB19Þ

but the N ¼ 0, M ¼ 1 case of (B18) reads

ΓE-AHM
1;0 ð0; Þ ¼ hHiΓE-AHM

0;2 ð; 00Þ ¼ 0; ðB20Þ

where we have used (B15), so that tadpoles all
vanish automatically, and separate tadpole renorm-
alization is unnecessary. Since we can choose the
origin of coordinates anywhere we like

h0jhðxÞj0iconnected ¼ 0: ðB21Þ

(17) Renormalized gauge-independent observable hHi.

h0jHðxÞj0iconnected ¼ h0jhðxÞj0iconnected þ hHi
¼ hHi

∂μhHi ¼ 0: ðB22Þ

[1] This paper replaces part of B. W. Lynn, G. D. Starkman,
and R. Stora, arXiv:1509.06471 [Phys. Rev. D (to be
published)]. The strategy, mathematical methods, exposi-
tion, results, and conclusions here are unchanged. To better
emphasize Uð1ÞY ⊗ BRST symmetry, we have supple-
mented vintage QFT with BRST explanation.

[2] P. Ramond, Journeys Beyond the Standard Model
(Westview/Perseus Press, Cambridge, MA, 2004).

[3] C. Becchi, A. Rouet, and R. Stora, Ann. Phys. (N.Y.) 98,
287 (1976).

[4] I. V. Tyutin, Lebedev Report, 1975 (to be published).
[5] M. Z. Iofa and I. V. Tyutin, Theor. Math. Phys. 27, 316

(1976).
[6] E. Kraus and K. Sibold, Z. Phys. C 68, 331 (1995).
[7] J. C. Taylor, Gauge Theories of Weak Interactions

(Cambridge University Press, Cambridge, 1976).
[8] T. W. B. Kibble, Phys. Rev. 155, 1554 (1967).
[9] Y. Nambu, Phys. Rev. 117, 648 (1960).

[10] J. Goldstone, Nuovo Cimento 19, 154 (1961).
[11] J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127,

965 (1962).
[12] B. W. Lee, Chiral Dynamics (Gordon and Breach, NY,

London, Paris, 1972).
[13] K. Symanzik, Commun. Math. Phys. 16, 48 (1970).
[14] K. Symanzik, in July 1970 Cargese Summer Institute.
[15] A. Vassiliev, in July 1970 Cargese Summer Institute.
[16] C. Itzykson and J.-B. Zuber, Quantum Field Theory

(McGraw Hill, New York, 1980).
[17] M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705

(1960).
[18] B. W. Lynn and G. D. Starkman, arXiv:1509.06199 [Phys.

Rev. D (to be published)].
[19] G. S. Guralnik, C. R. Hagen, and T.W. B. Kibble, Phys.

Rev. Lett. 13, 585 (1964).
[20] I. V. Tyutin, arXiv:0812.0580.
[21] B. S. De Witt, Phys. Rev. 162, 1195 (1967).

GLOBAL Uð1ÞY ⊗ BRST SYMMETRY AND THE … PHYSICAL REVIEW D 96, 065003 (2017)

065003-33

http://arXiv.org/abs/1509.06471
http://arXiv.org/abs/1509.06471
https://doi.org/10.1016/0003-4916(76)90156-1
https://doi.org/10.1016/0003-4916(76)90156-1
https://doi.org/10.1007/BF01036547
https://doi.org/10.1007/BF01036547
https://doi.org/10.1007/BF01566680
https://doi.org/10.1103/PhysRev.155.1554
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1007/BF02812722
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1007/BF01645494
https://doi.org/10.1007/BF02859738
https://doi.org/10.1007/BF02859738
http://arXiv.org/abs/1509.06199
http://arXiv.org/abs/1509.06199
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRevLett.13.585
http://arXiv.org/abs/0812.0580
https://doi.org/10.1103/PhysRev.162.1195


[22] N. Nakanishi, Prog. Theor. Phys. 35, 1111 (1966).
[23] B. Lautrup, Mat. Fys. Medd. Kon. Dan. Vid.-Sel. Medd. 35,

29 (1967).
[24] S. Weinberg, Quantum Theory of Fields (Cambridge Uni-

versity Press, Cambridge, 1995), Vol. 2.
[25] G. ’t Hooft, Nucl. Phys. B33, 173 (1971).
[26] J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields

(McGraw-Hill, New York, 1965).
[27] E. Kraus and K. Sibold, Nucl. Phys. B, Proc. Suppl. 51C, 81

(1996).
[29] E. Kraus, Ann. Phys. (N.Y.) 262, 155 (1998).
[30] W. Hollik, E. Kraus, M. Roth, C. Rupp, K. Sibold, and

D. Stockinger, Nucl. Phys. B639, 3 (2002); algebraic
renormalization of SUSY QED, SUSY QCD, the electro-
weak SM, etc. are referenced there.

[31] P. W. Higgs, Phys. Lett. 12, 132 (1964); Phys. Rev. Lett. 13,
508 (1964).

[32] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321
(1964).

[33] R. Stora (private communication).
[34] B. W. Lynn, G. D. Starkman, K. Freese, and D. I. Podolsky,

arXiv:1112.2150 [Phys. Rev. D (to be published)].
[35] J. Schwinger, Ann. Phys. (N.Y.) 2, 407 (1957).
[36] K. Symanzik (private communication).
[37] S. Adler, Phys. Rev. B 139, 1638 (1965).
[38] S. L. Adler and R. F. Dashen, Current Algebras and

Applications to Particle Physics (W.A. Benjamin, New
York, 1968).

[39] Ö. Güngör, B. W. Lynn, G. D. Starkman, and R. Stora (to be
published).

[53] Ö. Güngör, B. W. Lynn, and G. D. Starkman,
arXiv:1701.05949.

[41] H. Georgi, Weak Interactions and Modern Particle Theory
(Dover, New York, 2009); Weak Interactions and Modern
Particle Theory (Benjamin/Cummings, Menlo Park, CA,
1984).

[42] M. J. G. Veltman, Acta Phys. Pol. B 12, 437 (1981).
[43] B. W. Lynn, arXiv:1106.6354.
[44] T. Appelquist and J. Carazzone, Phys. Rev. D 11, 2856

(1975).
[45] K. Lang (private communication).
[46] S.-H. Henry Tye and Y. Vtorov-Karevsky, Int. J. Mod. Phys.

A 13, 95 (1998).
[47] N. K. Nielsen, Phys. Rev. D 90, 036008 (2014).
[48] J. R. Espinosa, G. F. Giudice, E. Morgante, A. Riotto, L.

Senatore, A. Strumia, and N. Tetradis, J. High Energy Phys.
09 (2015) 174.

[52] J. Garcia and R. Hunter, Once in a while you get shown the
light, in the strangest of places, if you look at it right (Alfred
Music, Van Nuys, CA, 1977), p. 153.

[49] D. C. Kennedy and B.W. Lynn, Report No. SLAC-PUB-
4039, 1988; Nucl. Phys. B322, 1 (1989).

[50] M. E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964
(1990).

[51] F. Wilczek, arXiv:1507.05505.

BRYAN W. LYNN and GLENN D. STARKMAN PHYSICAL REVIEW D 96, 065003 (2017)

065003-34

https://doi.org/10.1143/PTP.35.1111
https://doi.org/10.1016/0550-3213(71)90395-6
https://doi.org/10.1016/S0920-5632(96)90010-9
https://doi.org/10.1016/S0920-5632(96)90010-9
https://doi.org/10.1006/aphy.1997.5746
https://doi.org/10.1016/S0550-3213(02)00538-2
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.321
http://arXiv.org/abs/1112.2150
https://doi.org/10.1016/0003-4916(57)90015-5
https://doi.org/10.1103/PhysRev.139.B1638
http://arXiv.org/abs/1701.05949
http://arXiv.org/abs/1106.6354
https://doi.org/10.1103/PhysRevD.11.2856
https://doi.org/10.1103/PhysRevD.11.2856
https://doi.org/10.1142/S0217751X98000032
https://doi.org/10.1142/S0217751X98000032
https://doi.org/10.1103/PhysRevD.90.036008
https://doi.org/10.1007/JHEP09(2015)174
https://doi.org/10.1007/JHEP09(2015)174
https://doi.org/10.1016/0550-3213(89)90483-5
https://doi.org/10.1103/PhysRevLett.65.964
https://doi.org/10.1103/PhysRevLett.65.964
http://arXiv.org/abs/1507.05505

