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The weak-scale U(1), Abelian Higgs model (AHM) is the simplest spontaneous symmetry breaking
(SSB) gauge theory: a scalar ¢ = \L@(H +im) E%Hei"'/ (1) and a vector A*. The extended AHM

(E-AHM) adds certain heavy (Mg, My, ~ M,y > (H)* ~ m5.,) spin S =0 scalars ® and S =3
fermions . In Lorenz gauge, J,A* = 0, the SSB AHM (and E-AHM) has a global U (1), conserved
physical current, but no conserved charge. As shown by T. W. B. Kibble, the Goldstone theorem applies, so
7 is a massless derivatively coupled Nambu-Goldstone boson (NGB).

Proof of all-loop-orders renormalizability and unitarity for the SSB case is tricky because the Becchi-
Rouet-Stora-Tyutin (BRST)-invariant Lagrangian is not U(1), symmetric. Nevertheless, Slavnov-Taylor
identities guarantee that on-shell T-matrix elements of physical states A*,¢, ®@, y (but not ghosts w, 7}) are
independent of anomaly-free local U(1), gauge transformations. We observe here that they are therefore
also independent of the usual anomaly-free U(1), global/rigid transformations. It follows that the
associated global current, which is classically conserved only up to gauge-fixing terms, is exactly
conserved for amplitudes of physical states in the AHM and E-AHM. We identify corresponding
“undeformed” [i.e. with full global U(1), symmetry] Ward-Takahashi identities (WTI). The proof of
renormalizability and unitarity, which relies on BRST invariance, is undisturbed.

In Lorenz gauge, two towers of “1-soft-pion” SSB global WTI govern the ¢-sector, and represent a
new global U(1), ® BRST symmetry not of the Lagrangian but of the physics. The first gives relations
among off-shell Green’s functions, yielding powerful constraints on the all-loop-orders ¢-sector SSB
E-AHM low-energy effective Lagrangian and an additional global shift symmetry for the NGB:
7 — x+ (H)f. A second tower, governing on-shell T-matrix elements, replaces the old Adler self-
consistency conditions with those for gauge theories, further severely constrains the effective potential, and
guarantees infrared finiteness for zero NGB (7) mass. The on-shell WTT include a Lee-Stora-Symanzik
theorem, also for gauge theories. This enforces the strong condition m2 = 0 on the pseudoscalar 7 (not just
the much weaker condition mlzz = 0 on the NGB 7), and causes all relevant-operator contributions to the
effective Lagrangian to vanish exactly.

In consequence, certain heavy CP-conserving @, yw matter decouple completely in the
mfmwy /m2, . — oo limit. We prove four new low-energy heavy-particle decoupling theorems that are
more powerful than the usual Appelquist-Carazzone decoupling theorem: including all virtual ¢ and y loop
contributions, relevant operators operators vanish exactly due to the exact U(1), symmetry of 1-soft-z
Adler-self-consistency relations governing on-shell T-matrix elements.

Underlying our results is that global U(1), transformations &y;),, and nilpotent 52 =0 BRST
transformations, commute: we prove [5y(;),,s| in G. ’t Hooft’s R; gauges. With its on-shell T-matrix
constraints, SSB E-AHM physics therefore has more symmetry than does its BRST-invariant Lagrangian
LngHM: i.e. global U(1), ® BRST symmetry. o

The NGB 7 decouples from the observable particle spectrum B*,h, @, i in the usual way, when the
observable vector B, = A, + ﬁ 0,7 absorbs it, as if it were a gauge transformation, hiding both towers of

U(1)y WTI from observable particle physics.
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I. INTRODUCTION

What are the symmetries driving spontaneously broken
Abelian Higgs model (AHM) physics [1]? Although the
symmetries of the U(1), AHM Lagrangian are well known
[2], local gauge invariance is lost in the AHM Lagrangian,
broken by gauge-fixing terms, and replaced with global
Becchi-Rouet-Stora-Tyutin (BRST) invariance [3-5].

In their seminal work, Elisabeth Kraus and Klaus Sibold
[6] showed important new practicalities of the renormaliz-
ability and unitarity (to all loop orders) of the spontaneous
symmetry breaking (SSB) AHM. They did this by deriving
rigid invariance from BRST invariance. The SSB case is
tricky because the globally Becchi-Rouet-Stora-Tyutin
(BRST)-invariant Lagrangian is not U(1), symmetric.
But they identified a set of “deformed” [i.e. with no
remnant of the original U(1), group symmetry] rigid/
global AHM transformations which, after inclusion of
well-defined U(1), breaking by quantum loops (e.g. in
scalar wave-function renormalization beyond the classical
AHM), are compatible with BRST symmetry.

Kraus and Sibold then constructed deformed Ward-
Takahashi identities (WTI) for quantum AHM Green’s
functions, showing them (with appropriate normalization
conditions) to obey all-loop-orders renormalizability and
unitarity. Because their renormalization relies only on
deformed WTI, Kraus and Sibold’s results are independent
of the regularization scheme, for any acceptable scheme
(i.e. if one exists). They did not construct WTI for on-shell
T-matrix elements.

Nevertheless, Slavnov-Taylor identities [7] prove that the
on-shell S-matrix elements of “physical states” A*, ¢, @, y,
(i.e. spin S =0 scalars h, 7, ©, S :% (CP-conserving)
fermions y, and § = 1 gauge bosons A, but not fermionic
ghosts @ or antighosts 7) are independent, in the AHM,
of the usual undeformed anomaly-free U(1), local/gauge
transformations, even though these break the Lagrangian’s
BRST symmetry. We observe here that they are therefore
also independent of anomaly-free undeformed U(1),
global/rigid transformations, resulting in “new” global/
rigid currents and appropriate undeformed U(1), Ward-
Takahashi Identities.

We here distinguish carefully between off-shell Green’s
function WTI, which constrain the (unobservable) effective
Lagrangian and action, and on-shell T-matrix WTI, which
further severely constrain observable physics. We show
here that, in the SSB Abelian Higgs model, a tower of WTI
relates all relevant-operator contributions to AHM physi-
cal-scalar-sector physical observables to one another. An
on-shell T-matrix WTI i.e. the equivalent of an Adler self-
consistency relation but for this gauge theory, then causes
all such contributions to vanish. It does so through its
insistence that the scalar mass squared vanishes exactly,

m2 =0, (1)
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in spontaneously broken ((H) # 0) theories, which we
term the Lee-Stora-Symanzik (LSS)1 theorem after the
three physicists who recognized its central role in the
renormalization of global linear sigma models, and the one
who was central to our understanding of its role in the
renormalization of gauge theories.” In addition to con-
straining the parameters of the theory, the LSS theorem
permits us to employ pion-pole dominance to compute
the WTL

The crucial advance over [18], which considered the
global SU(2), x U(1)y linear sigma model, is a proof that
the WTI remain in place in a SSB gauge theory, with the
LSS theorem playing the same protective role as did the
Goldstone theorem in the global theory [18].

Our new rigid U(1),, WTI govern the scalar sector of the
AHM and of the extensions we consider in Sec. IV. They
are therefore independent of regularization scheme (assum-
ing one exists). Although not a gauge-independent pro-
cedure, it may help the reader to imagine that loop integrals
are cut off at a short-distance finite Euclidean UV scale, A,
never taking the A> — co limit. Although that cutoff can be
imagined to be near the Planck scale A = Mp,, quantum
gravitational loops are not included.

The structure of this paper is as follows:

Section II introduces U(1), ® BRST symmetry for the
AHM and extended AHM (E-AHM) in a general 't Hooft
R: gauge, and explains why physical quantities obey that
new symmetry.

lRaymond Stora would never have named anything after
himself, but we judge that, given the stature of B. W. Lee, R.
Stora and K. Symanzik (now all deceased) in the history of the
relevant physics, the community would refer to that result as the
LSS theorem anyway.

%As first noted by Kibble [8], in Lorenz gauge a relation similar
in appearance to (1), mlzz = 0, enforces the masslessness of a
Nambu Goldstone boson (NGB) 7, i.e. is a Goldstone theorem
[9-11] for this gauge theory. This is regardless of the fact that the
NGB is not a physical degree of freedom, but is absorbed
(“eaten”) by the gauge boson. However, as we describe in greater
detail below [cf. Eq. (20)], 7 is the angular degree of freedom in
the Kibble representation of the complex scalar field, while 7z is
the pseudoscalar degree of freedom in the linear representation. In
global linear sigma models (LXM), the masslessness of the NGB
and the LSS condition (Il D) are equivalent. Indeed, B. Lee [12],
K. Symanzik [13,14], A. Vassiliev [15] and classic texts [16]
advocate that the spontaneously broken (Goldstone) mode of a
U(1) global LXM is to be understood as the zero-explicit-
breaking limit (i.e. m2 — 0) of the explicit U(1)-breaking par-
tially conserved axial-vector current (PCAC) term, Lpcac =
(Hym2H, included in the U(1) version of the Gell-Mann and
Lévy LEM [17]. The existence and masslessness of the purely
derivatively coupled NGB is a result of and requires the vanishing
of the explicit-symmetry-breaking pseudoscalar mass squared.
In the U(1)y AHM gauge theory, the Goldstone theorem and the
LSS theorem are not equivalent. To see this (or to at least suspect
it) the reader should remember that one cannot incorporate
explicit PCAC breaking of the local U(1), symmetry into the
AHM gauge theory [7], without spoiling unitarity.
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Section III concerns the correct renormalization of the
spontaneously broken AHM in Lorenz gauge. We treat the
AHM in isolation, as a stand-alone flat-space weak-scale
quantum field theory, not embedded or integrated into any
higher-scale “beyond-AHM” physics.

Section IV extends our AHM results to include the all-
loop -orders virtual contributions of certain MHeavy >
mWeak heavy U(1), matter representations (which might
arise in certain beyond-AHM models).

Section V reminds the reader [19] how the NGB 7
disappears from the observable particle spectrum of the
E-AHM.

Section VI discusses the exacting mathematical rigor that
would have fully satisfied Raymond Stora.

Section VII reminds us that historically (with an impor-
tant exception) the decoupling of heavy particles is the
usual experience of physics.

Appendix A gives a complete and pedagogical derivation
of the U(1), WTI governing the ¢-sector of the AHM. Our
renormalized WTI include all contributions from virtual
transverse gauge bosons, ¢ scalars, and ghosts, A*, h and 7,
and 7 and w, respectively.

Appendix B gives a complete and pedagogical
derivation of U(1), (h,n)-sector WTI in the E-AHM,
which now include the all-loop-orders contributions of
certain additional U(1), matter representations: spin § = 0
scalars @, and S :% anomaly-canceling (CP-conserving)
fermions y. They include all contributions from virtual
transverse gauge bosons, ghosts, scalars, and fermions,
A*5 hy i, w; Oy

IL. U(1)y ® BRST symmetry in 't Hooft R, gauges

The BRST-invariant [3-5] Lagrangian of the U(1)y
AHM gauge theory may be written, in a general ’t
Hooft R: gauge, in terms of a transverse vector A,, a
complex scalar ¢, a ghost w, and an antighost 7,

3 Gauge Invariant Gauge Fix;Rg Ghost; R
- :
LAHM - LAHM + LAHM + LAHM ’ (2)

where

Gauge Invariant __ 2
LAHM - |Du¢| __A/u/A

W= Vanu(@'$)  (3)

with
D, = (8” — ieY(/,A”)(,b,
A, =0,A,—-0,A,
Vanm = Hy (') + 25 (9 9)°, (4)
and
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¢ =—(H+in), H=(H)+h and Y,=-1.

(5)

In G.’t Hooft’s R: gauges, gauge fixing and DeWitt-
Fadeev-Popov ghost terms [20,21] are written in terms of a
Nakanishi-Lautrup field b [22,23], and the SSB vector

§\~

mass my = eY,(H) = —e(H) > 0.
u, iX; ; 1
L+ Ly - = 5 €62+ b(9,A" + Emym)
2
-7 az-l—f—AH)a)
( (H)
=s|if| Fq+ 1§b
=Sn{ra 3
Fy=0,A" +Emym (6)

with global BRST transformations [3-5,22-24] s,

sA, = 0w, s = b,
sH = —enw, sb =0,
st = eHw, s =0, (7)

so that the Lagrangian (2) is BRST invariant,
R
sLyi = 0. (8)

The classical equation of motion for the ghost is

<82+§ s H)a)—O (9)

Yy(H)

Now define the properties of the various fields under the
usual anomaly-free undeformed rigid/global U(1), trans-
formation by a constant Q,

ou(1),Au = 0, Sy, i1 =0;
5u(1)yH = —67[9,

5U(l)yﬂ = eHQ, 5U<])y60 =0. (10)

We discover that the R:-gauge Lagrangian (2) is not
invariant under such U(1), transformations,

. -
5U(1)YLA§‘IM = 6U(1)y< (FA +5 5b) >

= éemy (bH + enrw)Q

- 1 -
= S<5U(1)y f](FA +§§b) )

#0. (11)

5%
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Still, the actions of the BRST transformations (7) and the
U(1)y transformation (10) commute on all fields.

[Buqry, s|A* =0: [8yq), . sl = 0;
[5U(1)y’ s|H = 0; [5U(1)y, s]i = 0;
[5U(1)Y» s]” =0; [5U(1)y, S]b =0 (12)

Thus, with the nilpotent property s> = 0 applied in (11),

[5U(1)y’S]LAHM =05 (13)

and the two separate global symmetries can therefore
coexist in AHM physics.
Now add to (2) any U(1), local/gauge invariant, and there-

Gauge Invariant

fore BRST invariant, Lagrangian Lbeyond v (A @)
involving new bosonic spin-zero fields ® and new anomaly-
canceling fermionic spin-% fields y so as to form the E-AHM.
Then

R
¢ _
SLg anm = 0.

R _
5U(1)YLEE=AHM = s(empniHQ) # 0,
R
[5U(1)yv S]LEfAHM =0. (14)

We show in this paper that, due to (7), (10), (13), and
(14), the AHM, and the E-AHM, simultaneously obey both
the usual BRST symmetry and a global U(1), symmetry
that controls Green’s functions and on-shell T-matrix
elements. We also show that our effective potential can
be made gauge independent.

We reason as follows:

(i) All aspects of the SSB AHM and E-AHM obey

BRST symmetry.

(i1) In both the special £ — 0 case of Landau gauge and

in the closely related Lorenz gauge,

Lkai_{nl(\j/?u — ngll\%[e Invariant
1 )
B ?—%2_5 (0,A* 4 Emym)? — 0% w, s
Ll/i%ﬁjllz — L(A}:;ll\g/[e Invariant ( )
1
— lim— AH 2 _ 592

global U(1), symmetry and the larger global
U(1)y ® BRST symmetry are preserved,

Suq, Liim" =0
R, $-0
5U(1)yLA§_IM:>6U(1)yLIAEIl_II]§/?u — 0»
SLERY =0,

SLg = 0. (16)

.. Lorenz Landau
similarly for Lg%y and Lg*A5iv-
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(iii) Physical states and time-ordered amplitudes of the
exact renormalized scalar ¢ == (H +iz) and
vector A, obey G. 't Hooft’s gauge condition [25]

0 = (0[71(6,A"(z))
Xh(xl)"'h(xN)”(yl)'"ﬂ(yM)]|0>connccted (17)

in Landau or Lorenz gauges. Here we have N
external renormalized scalars h = H — (H) (coor-
dinates x;), and M external (CP = —1) renormalized
pseudoscalars 7 (coordinates y;).

(iv) We prove in Appendix A for the AHM and in
Appendix B for the E-AHM that, in Lorenz gauge
d,A* =0, scalar-sector connected amputated on-
shell T-matrix elements obey (17) and the U(1),
symmetry. Such on-shell WTI are gauge indepen-
dent (i.e. true for general R; gauges) even though
(11) and (14) show that the BRST-invariant AHM
(and E-AHM) Lagrangian is not invariant under the
U(1), symmetry.

(v) We prove in Appendix A for the AHM and in
Appendix B for the E-AHM that, in Lorenz
gauge 0,A* = 0, scalar-sector connected amputated
gauge-dependent Green’s functions also obey (17)
and the U(1), symmetry.

(vi) We show that our AHM and E-AHM effective
potentials can be made physical (i.e. gauge-
independent) in Sec. V B 2, thus generalizing them
to ’t Hooft R: (and all other well-behaved) gauges.

III. THE ABELIAN HIGGS MODEL
IN LORENZ GAUGE

A. The Abelian Higgs model in Lorenz gauge
We form the AHM Lagrangian in Lorenz gauge

Lorenz __ y Gauge Invariant
LAHM - LAHM

Gauge Fix;Lorenz Ghost;Lorenz
+LAHM +LAHM (18)

with (3), by writing the gauge-fixing and ghost terms,

- 1
G Fix;Li .
LA?E\%IG ix;Lorenz __ ?ng 25 (aﬂAy)Z
LShostLorenz — _paRg, (19)

The complex scalar ¢ is manifestly renormalizable in the
linear representation (5). After SSB, mj = e*Y7(H)>.

This paper distinguishes carefully between the local
BRST-invariant U(1), Lagrangian (18) and its three
physical modes [12-16]: symmetric Wigner mode, the
classically scale-invariant (SI) point and physical
Goldstone mode.
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(1) Symmetric Wigner mode (H) =0,m?% =0, m2 =

mZBEH = Mfz/, #0:

This is QED with massless photons and massive
charged scalars. Thankfully, nature is not in Wigner
mode. Further analysis and renormalization of the
Wigner mode lies outside the scope of this paper.

(2) Classically scale-invariant point (H) =0, mi =0,

m2 = mg, = 0:

Analysis of the scale-invariant point is also out-
side the scope of this paper.

(3) Spontaneously broken Goldstone mode (H) # 0,

m; = e(H)?> # 0, m2 = 0, magy # O:

The famous Abelian Higgs model, with its NGB
eaten by the Brout-Englert-Higgs mechanism [and,
as we see, WTI governed by the (Goldstone-like)
LSS theorem] is the SSB Goldstone mode of the
BRST-invariant local Lagrangian (18), and is the
subject of this paper. We work in Lorenz gauge for
many reasons.

(a) The U(1), ghosts (7,w) decouple from the
quantum loop dynamics, and can (and will) be
benevolently ignored going forward.

(b) After a subtlety concerning their mixing, 7z and
A¥ are orthonormal species. A term ~A,0!n
arises from |DM(,1>|2 after SSB in (18); a term
~md"A,, is shown to vanish for physical states in
(A4) and (B4). The resultant surface term
0"(wA,) vanishes (for physical states) because
A, is massive.

(c) Only in the SSB Goldstone mode of the BRST-
invariant Lagrangian (18), and only after first
renomalizing in the linear ¢ representation, does
the renormalized Kibble ¢ unitary representation

1

= L —iYyr/(H
¢ ﬁ(H+zn)=%He /(H)
H = (H) + h; H=(H)+h

make sense. Here the ¢-hypercharge Y, = —1.

(d) We prove to all loop orders the AHM Lee-Stora-
Symanzik theorem (50), (A27), a gauge theory
analogue of an old theorem for global LXM [12],
which forces the 7 mass squared m2 = 0.

(e) We use pion-pole dominance (i.e. m2 = 0) argu-
ments to derive U(1), SSB WTI (49), (A22),
and (A30).

(f) We prove with U(1), WTI that, in SSB Gold-
stone mode, 7 in (20) is a NGB, and that the
resultant SSB gauge theory has a shift symmetry
7 — 7+ (H)0 for constant 6.

Analysis is done in terms of the exact renormalized
interacting fields, which asymptotically become the in/out
states, i.e. free fields for physical S-matrix elements.
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An important issue is the classification and disposal of
relevant operators, in this case the 7z, h and A, inverse
propagators (together with tadpoles). Define the exact
renormalized pseudoscalar propagator in terms of a mass-
less x, the Killén-Lehmann [12,26] spectral density p} v

and wave-function renormalization ZﬁHM. In Lorenz
gauge,

Afuu(g®) = —i(27)*(0|T[x(y)7(0)]]0) [ifimeiorm
1 Vs 2
- +/ 2 fAHM(Qm )
q- +ie q-—m~ +ie
(Zhil ™ =1+ [ dpfon(07). 1)

Define also the Brout-Englert-Higgs (BEH) scalar propa-
gator in terms of a BEH scalar pole and the (subtracted)
spectral density pggy, and the same wave-function renorm-
alization. We assume / decays weakly, and resembles a
resonance,

ARn(g?) = —i(27)* (O[T [h(x)h(0)]]0) Friinedy

Transform
1

2 2 :
q”~ — Mggy.pole T 1€

g e
q* —m? +ie

(Zhon) =1+ [ R0
[ anounatm®) = [ a3 o), (22)
The spectral density parts of the propagators are

V4 2
mSpectral ;2\ __ 2 pAHM(m )
TAVNTY (q):/dm —m+ie’
ABEH;Spectral(q2> E/dm2 pggll-\[/[(mz) )
AHM q2 —m? 1 ic

Dimensional analysis of the wave-function renormaliza-
tions (21) and (22) shows that the contribution of a state of
mass/energy  ~Mye,,, to the spectral densities

V4 2 BEH 2 1 T
PAHM (MHeavy) and PAHM (MHeavy> ~ m’ and similarly

: . . m;Spectral BEH;Spectral .
its contribution to Ay, and Ay includes only

irrelevant terms ~ le . The finite Euclidean cutoff con-
Heavy

tributes only irrelevant terms N#.
B. Rigid/global U(1);, WTI and conserved rigid/global
current, for the physical states of the SSB AHM,
in Lorenz gauge. Rigid/global U(1), charge
is not conserved

In their seminal work, E. Kraus and K. Sibold [6]
identified, in the Abelian Higgs model, “rigid and current
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Ward identity (sic) in accordance with ... BRS[T] invari-
ance.” They are called deformed because they have no
remnant of the original anomaly-free U(1), symmetry.

The SSB case is tricky because gauge-fixing terms
explicitly break both local and global U(1), symmetry
in the BRST-invariant Lagrangian. Still, Kraus and Sibold’s
construction allowed them to demonstrate (with appropriate
normalization conditions) proof of all-loop-orders renor-
malizability and unitarity for the SSB Abelian Higgs
model. Because their renormalization relies only on
deformed WTI, Kraus and Sibold’s results are independent
of a regularization scheme, for any acceptable scheme (i.e.
if one exists).3

Nevertheless, Slavnov-Taylor identities [7] prove that the
on-shell S-matrix elements of “physical particles” [i.e. spin
§ = 0 scalars h, 7, and § = 1 transverse gauge bosons A,
but not fermionic ghosts (7, w)] are independent of the
usual (undeformed) anomaly-free U(1), local/gauge trans-
formations, even though these break the Lagrangian’s
BRST symmetry.

We observe here that SSB S-matrix elements are
therefore also independent of anomaly-free undeformed
U(1), global/rigid transformations, resulting in a new
global/rigid current and appropriate undeformed U(1)y
Ward-Takahashi identities. All this is done without
reference to the unbroken Wigner mode and scale-invariant
point.

We are interested in rigid-symmetric relations among
1-(h, z)-irreducible (1-¢-I) connected amputated Green’s
functions T'y,, and among 1-(h,n)-reducible (1-¢-R)
connected amputated transition-matrix (T-matrix) elements
Ty m» with external ¢ scalars. Because these are 1-A,-R in
the AHM, and also 1-®-R in the E-AHM (i.e. reducible by
cutting an A, or @ line), it is convenient to use the powerful
old tools (e.g. canonical quantization) from vintage quan-
tum field theory (vintage QFT), a name coined by Ergin
Sezgin.

We focus on the rigid/global AHM current’ constructed
with (10),

Jg = 7OPH — HOzr — eA* (2 + H?).  (23)

3E. Kraus and K. Sibold also constructed, in terms of deformed
WTI, all-loop-orders renormalized QED, QCD, and the electro-
weak standard model [27,29], independent of regularization
scheme. From this grew the powerful technology of “algebraic
renormalization,” used by them, W. Hollik and others [30], to
renormalize supersymmetry (SUSY) QED, SUSY QCD, and the
minimal supersymmetric standard model.

This is related to the rigid/global hypercharge current
of the third-generation global Dirac neutrino standard model
(vpSMS ) explored in [18]: replace # — 73, 7° — 7°, ungauge
Ay, add a charged pion current 7,07, — 7,075, add the third
generation of SM quarks (three colors and two flavors) and
leptons (one charged flavor), add one v with SSB Dirac mass

Jy;So Modified

m,, and change the overall sign J\j;y = =Ty, sm-
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Rigid/global transformations of the fields arise, as usual,
from the equal-time commutators (A7),

SU(I)YH(I’)_;) = _i/dSZU%HM(L ). H(t,y)]eQ

. / &2t 78 (G - 5)eQ
= —n(t,y)eQ,

Sy, (1. 5) = —i / P2 P8, 7). (1. )2

_ / P2H (1,35 (E = §)eQ
_H(LF)eQ, (24)

so Jaym(t,Z) serves as a “proper” local current for
commutator purposes.

In contrast, we show below that, in Lorenz gauge, the
U(1), AHM [and therefore also the U(1), E-AHM] has no
associated proper global charge Q because %Q(t) # 0.
[See Eq. (32) below.]

The classical equations of motion reveal a crucial
fact: due to gauge-fixing terms in the BRST-invariant
Lagrangian (18), the classical current (23) is not conserved.
In Lorenz gauge

Oy l'aum = HmuF 4, (25)
with
my = e(H) (26)
and F, being the gauge-fixing condition,
Fo=0pA7. (27)

The global U(1), current (23) is, however, conserved by
the physical states, and therefore still qualifies as a “real”
current for commutator purposes (24). Strict quantum
constraints must be imposed to force the relativistically
covariant theory of gauge bosons to propagate only its true
number of quantum spin § = 1 degrees of freedom. These
constraints are implemented, in the modern literature, by
use of spin § = 0 fermionic Fadeev-Popov ghosts (77, w).
The physical states and their time-ordered products, but not
the BRST-invariant Lagrangian (18), then obey G. ’t
Hooft’s [25] Lorenz-gauge gauge-fixing condition (17).

Equations (17) and (A4) restore conservation of the
rigid/global U(1), current for the ¢-sector connected time-
ordered products

(OIT[(0uS A (2))
X h(xl)”'h(xN)ﬂ(yl)‘"”(yM)”O>connected =0. (28)
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It is in this physical connected-time-ordered-product sense
that the rigid global U(1), physical current is conserved:
the current-conservation equation (28) is obeyed only when
the divergence of the current is projected in this way on the
physical states. Current conservation is not a property of
the abstract Noether-current operator derived from the
BRST-invariant Lagrangian (18).

Appendix A derives two towers of quantum U(1), WTI
that exhaust the information content of (28), severely
constrain the dynamics (i.e. the connected time-ordered
products) of the ¢-sector physical states of the SSB AHM
and realize the new U(1), ® BRST symmetry of Sec. I

We might have hoped to also build a charge

() = / P2 (1.7) (29)

which would be conserved when similarly restricted to
physical connected time-ordered products,

orr (5 2nm0)

X h(xl)" 'h(xN)”<y1>' . '”(yM):| |O>connected

_ / POV - T (1.7))
X /’l(xl)...h(xN)ﬂ'<yl>---”(yM)]|O>connected’
:/2_ ) aazﬁz_surﬁme'<0|T[(jAHM(f7Z>)

X h(xl)" 'h(xN)ﬂ<yl)' . '”(yM)]|O>connected’ (30)

where we have used Stokes’ theorem, and %, 2-surface jg

unit vector normal to the 2-surface. The time-ordered
product constrains the 2-surface to lie on or inside the
light cone.

At a given point on the surface of a large enough
3-volume [ d*z (e.g. the volume of all space) that lies
on or inside the light cone, all fields on the z>~s"f are
asymptotic in states and out states; are properly quantized
as free fields, with each field species orthogonal to the
others; and are evaluated at equal times, so that time
ordering is unnecessary.

Nevertheless, the time derivative of this charge does not
vanish even in this restricted physical sense, because, with
the symmetry spontaneously broken, a specific term in the
surface integral of the right-hand side of (23) does not
vanish,

/ dz2leheone (0| T(~(H) V()
light cone— oo

X h(xy)...h(xy)my1)...7(yar)]|0) # 0. (31)

In the SSB AHM, = is massless (in Lorenz gauge), and so
capable of carrying (along the light cone) long-ranged
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pseudoscalar forces out to the very ends of the light
cone (Zlight cone _, OO)

Equations (30) and (31) then show that the spontane-
ously broken U(1), AHM charge is not conserved, even for
connected time-ordered products, in Lorenz gauge

(o] (&m0

X h(xy)...h(xy)m, (y1)...7,, (yM)] |0> #0,

connected

(32)

dashing, at least for the authors, all further hope of a
conserved charge.

The classic proof of the Goldstone theorem [8,10,11]
requires a conserved charge % Q = 0, so that proof fails for
spontaneously broken gauge theories. This is a very famous
result [8,19,31,32], and allows the spontaneously broken
AHM to generate a mass gap m, for the vector A# and to
avoid massless particles in its observable physical spec-
trum. This is true even in Lorenz gauge, where there is a
Goldstone theorem, and consequently 7 is a derivatively
coupled (hence massless) NGB [8,19], and where there is a
LSS theorem, so z is massless.

Massless z# (not 7) is the basis of our pion-pole-
dominance-based U(1), WTI, derived in Appendix A,
which give relations among 1-¢-1 connected amputated ¢-
sector Greens functions I'y 5, (33) and (A31); 1-soft-pion
theorems (49), (A22), and (A30); infrared (IR) finiteness
for m2 = 0 (49) and (A22); a LSS (and Goldstone) theorem
(50) and (A27); and vanishing 1-¢-R connected amputated
on-shell ¢-sector T-matrix elements 7y, (49) and (A30)
that realize the full U(1), ® BRST symmetry of Sec. II.

C. Construction of the scalar-sector effective
Lagrangian from those U(1), WTI that govern
connected amputated 1-¢p-1 Greens functions

In Appendix A we derive U(1), pion-pole-dominance
1-¢-R  connected amputated T-matrix WTI (A30)
for the SSB AHM. Their solution is a tower of recursive
U(1)y WTI (A31) that govern 1-¢-1 ¢-sector connected
amputated Greens functions I'y . For # with CP = -1,
the result

<H>FN,M+1(P1---PN§OQ1---CIM)

M
= ZFN+1,M—1(‘]mp1~-pN;CIl---@--‘QM)

m=1
N

- ZFN—I,MJrl(pl-~-ﬁ;~--pN;pnq1---QM) (33)
n=1

is valid for N, M > 0. On the left-hand side of (33) there are
N renormalized & external legs (coordinates X, momenta p),
M renormalized (CP = —1) z external legs (coordinates Yy,
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momenta q), and one renormalized soft external z(k, = 0)
(coordinates z, momenta k). “Hatted” fields with momenta
(Pns@m) are omitted.

The rigid U(1), WTI 1-soft-pion theorems (33)
relate a 1-¢-1 Green’s function with (N +M + 1) external
fields (which include a zero-momentum ) to two
1-¢-1 Green’s functions with (N + M) external fields.>
The Green’s functions Iy (p;...py5q1...qy) are not
themselves gauge independent. Furthermore, although
1-¢-1, they are 1-A¥-reducible (1-A#-R) by cutting a
transverse A, gauge boson line.

The 1-¢-1 = and h inverse propagators are

Io2(:9.—q) [An(flz)]_l,
T20(q.~q:) = [Apen(q®)] ™" (34)

We can now form the ¢-sector effective momentum-
space Lagrangian in Lorenz gauge. All perturbative quan-
tum loop corrections, to all loop orders and including all
UVQD, log-divergent and finite contributions, are included
in the ¢-sector effective Lagrangian: 1-¢-1 Green’s func-
tions I'y y(p1-..Pn: q1---qu), Wave-function renormaliza-
tions, renormalized ¢-scalar propagators (21) and (22), the
BEH vacuum expectation value (VEV) (H) (A35), and all
gauge boson and ghost propagators. This includes the full
all-loop-orders renormalization of the AHM ¢-sector,
originating in quantum loops containing transverse virtual
gauge bosons, ¢ scalars and ghosts: A*, h, z, i, @, respec-
tively. Because they arise entirely from global U(1), WTI,
our results are independent of regularization scheme [6].

>The rigid U(1), WTI (33) for the U(1), AHM gauge theory
are a generalization of the classic work of B. W. Lee [12], who
constructed two all-loop-orders renormalized towers of WTI for
the global SU(2), x SU(2); Gell-Mann Lévy (GML) model
[17] with PCACs. We replace GML’s strongly interacting linear
sigma model (LX M) with a weakly interacting BEH LY M, with
explicit PCAC breaking. Replace ¢ — H, 7 — m,m, — mggy
and f, — (H), and add local gauge group U(1),. This generates
a set of global U(1), WTI governing relations among weak-
interaction 1-¢-R T-matrix elements 7'y 5,. A solution set of those
U(1), WTI then governs relations among U(1), 1-¢-I Green’s
functions 'y .
As observed by Lee for GML, one of those on-shell T-matrix
WTI is equivalent to the Goldstone theorem. This equivalence
relies on the ability to incorporate a PCAC term into the global
theory, and then retrieve the spontaneously broken theory in the
appropriate zero-explicit-breaking limit, namely m2 — 0. In the
gauge theory, although explicit-breaking terms are allowed by
power-counting, they violate the BRST symmetry and spoil
unitarity [33]. Yet, the T-matrix WTI persists and forces m2 = 0
in Lorenz gauge, which is now the new LSS theorem. The
Goldstone theorem also persists in Lorenz gauge, and forces
m2 = 0.
Agpendix A includes, in Table I, a translation between the WTI
proofs in this paper (a gauge theory) and in B. W. Lee (a global
theory).
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We want to classify operators arising in AHM loops, and
separate the finite operators from the divergent ones. We
focus on finite relevant operators, as well as quadratic and
logarithmically divergent operators.

There are three classes of finite operators.

(i) Finite O\ vanish as m3,,, /A* — 0;

(i) OG ™™ are finite-dimension d >4 operators,
where only the light degrees of freedom A*,
h,n,7ij,w contribute to all-loop-orders renormali-
zation; A

(iii) Oiﬁﬁ\l‘m Analylic 4 re finite-dimension d < 4 operators
that are nonanalytic in momenta or in a renormal-
ization scale y’ (e.g. finite renormalization-group
logarithms).

All such operators are ignored.

Ignore
OAHM — YAHM

d<4;Non Analytic
+ O%im . (35)

1/A?;Trrelevant d>4;Light
(@) + O%im

Such finite operators appear throughout the U(1),
WTI (33), ) .

(1) N+M>5is OIA/]_/I\MIrrelevant and Oii;]l\}[hght;

(i1) the left-hand side of (33) for N + M =4 is also

OL/I_/I\I\Z/I;Irrelevant and Oi;ﬁl\;/ILight;

(i) N 4 M < 4 operators Qs A"V appear in (33).

Finally, there are N + M < 4 operators that are analytic
in momenta. We expand these in powers of momenta, count

the resulting dimension of each term in the operator Taylor

: . d>4:Light 1/ A2;lrrelevant
series, and ignore Q%€M and O 5V

series.

Suppressing gauge fields, the all-loop-orders renormal-
ized scalar-sector effective Lagrangian with operator
dimension less than or equal to 4 is then formed for (4,
7) with CP = (1,-1),

terms in that

W ‘ 1
Eff; W1 ,SI,Gold . X
Ltivigtonns o =T10(0;)h+ Erz,o(l?, —p:)h?

1 1

+§Fo,2(; q.—q)7* +§F3.0(000§ )
1 1

=+ Erlz(o, OO)hﬂ'z =+ EFALO(OOOO’ )h4

1

+ﬁrz,2(00;00)h2ﬂ2
1

+ EFQA(; 0000)71'4 + Ofgl;ll(l)\fe_ (36)

The WTI (33) for Green’s functions severely constrain
the effective Lagrangian (36).
i) N=0, M =1 WTI,
['10(0;) = (H)T(;00), (37)

since no momentum can run into the tadpoles.
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(i) N=1,M =1 WTI,

Doo(=q.45) = To2(:9.—q)
= (H)T'15(=q;40)
= (H)I';5(0;00) + OpHM

Ignore

I'0(00;) = To,(;00) + (H)I['5(0;00).  (38)

(1) N=2, M =1 WTI,
(H)T5,(00;00) = T3 4(000; ) — 2T, 5(0;00). (39)

(v) N=0, M =3 WTI
(H)T.4(;0000) = 3I'; 5(0; 00). (40)

V) N=1,M =3 WTI,
0 = 315, (00; 00) — Ty (;0000). (41

(vi) N=3, M =1 WTI,
0 = T40(0000; ) — 305, (00;00).  (42)

(vii) The quadratic and quartic coupling constants are
defined in terms of two-point and four-point 1-¢-1
Green’s function,

[2(;00) = —mg,

The all-loop-orders renormalized ¢-sector momentum-
space effective Lagrangian (36)—constrained only by those
U(1), WTI governing Green’s functions (33)—may be
written

LEff;Wigner,SI,Goldstone _ LKinetic;Eff;Wigner,SI,Goldstone
AHM;¢;Lorenz — ~AHM;¢;Lorenz

__ y/Eff:Wigner,SI,Goldstone AHM
VAHM;¢;L0renz + OIgnore ’

(44)

with

LKinetic;Eff;Wigner,SI,Goldstone
AHM;¢;Lorenz

1

=3 (To2(p.—p) = To2(;00)) 1

+ % (To2(:4.—q) = To2(:00)7*,  (45)

incorporating finite nontrivial wave-function renormaliza-
tion

Lo2(:9.—q) —T2(;00) ~ g2, (46)

and
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. h2 2
ViR — g[S
]’l2+ 2 2
+/1%¢[ " +<H>h] - (47)

The ¢-sector effective Lagrangian (44) has insufficient
boundary conditions to distinguish among the three modes
[12-15] of the BRST-invariant Lagrangian Ly in (18).
For example, the effective potential Viﬁh\z'ﬂffgrﬁf oldstone
becomes in various limits® the AHM Wigner mode
(m% =0, (H) =0,m2 = m3gy #0), the AHM SI point
(m% =0, (H) = 0,m2 = mgy = 0), or AHM Goldstone
mode (m3 # 0, (H) # 0,m2 = 0, m}gy # 0), with

S h? + 2 W2 + 212
Eff; Wi
VAHM;I(]%?forrenz = m% |: 2 + /151 2

2 272
VEff;Scale Invariant __ 12 h tr
AHM;p;Lorenz ~ — ¢ 2 ’

2, 2
yEfMGoldstone 12 h*+n
AHM;¢;Lorenz — "¢ 2

2
" <H>h] . (48)

Equation (44) has exhausted the constraints (on the
allowed terms in the ¢-sector effective Lagrangian) due to
those U(1), WTI that govern 1-¢-1 ¢-sector Green’s
functions I'y 5, (33), (A31). In order to provide boundary
conditions that distinguish among the effective potentials in
(48), we must turn to the U(1), WTI that govern ¢-sector
1-¢-R T-matrix elements T’y ;.

D. The LSS theorem: IR finiteness and automatic
tadpole renormalization

“Whether you like it or not, you have to include in the
Lagrangian all possible terms consistent with locality
and power counting, unless otherwise constrained by
Ward identities” (Kurt Symanzik, in a private letter to
Raymond Stora [36].)

In strict obedience to K. Symanzik’s edict, we now
further constrain the allowed terms in the ¢-sector effective
Lagrangian, using those U(1), Ward-Takahashi identities
that govern 1-¢-R T-matrix elements T'y y;.

In Appendix A, we extend Adler’s self-consistency
condition [originally written for the global SU(2), x
SU(2)g Gell-Mann-Lévy linear sigma model with PCAC

®The inclusive Gell-Mann Lévy [17] effective potential derived
[34] from B. W. Lee’s WTI [12] reduces to the three different
effective potentials of the global SU(2), x SU(2); Schwinger
model  [35]:  Schwinger  Wigner mode ((H) =0,
m% = szEH #0), Schwinger scale-invariant point ((H) =0,
mz = mggy = 0), or Schwinger Goldstone mode ((H) # 0,
m2 =0, mgpy # 0).
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[37,38]], but now derived for the AHM gauge theory in

Lorenz gauge (A22)

<H>TNM+1(p ...PN30qy...q )

(27)45* <Z Pn+ Z qm>

_2_.2
=p3-..=py=Myey

=0.

: :qﬁd:()

(49)

The T-matrix elements vanish as one of the pion momenta
goes to 0 provided all other physical scalar particles are on
mass shell. In other words, these are new 1-soft-pion
theorems. Equation (49) also

“asserts the absence of [IR] divergences in the scalar-
sector (of AHM) Goldstone mode (in Lorenz gauge).

"B.W. Lee [12] proves two towers of WTI for the global SU(2), x SU(2)

hypothesis. The PCAC conserves the vector current 0 J‘zfz/ﬂ‘

PHYSICAL REVIEW D 96, 065003 (2017)

Although individual Feynman diagrams are IR diver-
gent, those IR divergent parts cancel exactly in each
order of perturbation theory. Furthermore, the Gold-
stone mode amplitude must vanish in the soft-pion limit”
(B.W. Lee [12]).

It is crucial to note that the external states in Ty y; are N h’s
and M #’s, not 7’s. We are working in the soft-z, not the
soft-7z limit.
The N =0, M =1 case of (49) is the LSS theorem (A27),
(H)To(;00) = 0. (50)
This looks like the Goldstone theorem’ but, since it
involves z not 7, it is quite distinct.

We write the LSS theorem (50) as a further constraint on
the 1-¢-1 Green’s function,®

GML model [17] in the presence of the PCAC
GML =

= 0, but explicitly breaks the axial-vector current, 9, J” GML = ¥YpCACT-

Lee identifies the all-loop-orders GML WTI
Yoche = —(H)TGY(;00) (51)

as the “Goldstone theorem in the presence of PCAC.” Exact conservation of J“ o R ,i.e. yPC AC = 0, is restored for both GML’s Wigner

mode ((H) = 0,TG3™(;00) # 0) and its Goldstone mode ((H) # 0,T§¥"(;00) = 0).

The PCAC analogy for the Lorenz-gauge AHM would have been
8,,]”;AHM = yheM.z + (H) x

vecac = —(H)TGEM(:00). (52)

(a gauge-fixing term)

but the AHM is a local/gauge theory. This requires that yégfg’lc = (0 exactly. SSB current conservation can be broken only softly by gauge-

fixing terms as in (25), in order to preserve renormalizability and unitarity [7]. The Lorenz-gauge AHM LSS theorem therefore reads

recac = —(H)I™M(:00) = 0, (53)
as in (56). The crucial fact here is that, in the SSB Goldstone mode of the AHM (and SSB E-AHM, SMCB;f]:)‘:‘t‘;, vpSM and E — vp,SM
[39]) with (H) # 0,

0=TgAM(:00) = [AZ"M(0)]7 = —m. (54)

This condition that the mass squared of the pseudoscalar 7 is exactly O is distinct from, and more powerful than, the more familiar
condition m2 = 0, i.e. the masslessness of the NGB 7.

We see that (49) adds information to that contained in Green’s function WTI (33), (A31). Beyond IR finiteness [12], on-shell T-matrix
WTI (49), (A27), and (A22) provide absolutely crucial constraints on the gauge theory by insisting that yptA. = 0 as in (53) and (54),
that the U(1), current is softly broken or conserved as in (25), (17), and (28), and that unitarity and renormalizability of the AHM gauge
theory is preserved [7].

A SSB 1-¢-R T-matrix element 7'y 5, consists of a sum of many possible diagrams, T, ,,, where i indexes all the possibilities. We
can represent each such diagram as a set of 1-¢-I vertices I',, ,, (which we term beads) attached by ¢ propagators, in such a way as to
leave N external & lines and M external z lines.

Consider in particular Ty, (; g, —q). For any diagram T}, (;¢.—¢) contributing to Ty,(; ¢, —q), there is a unique “string” of ¢
propagators that threads from end to end through the diagram. Each bead on this string has two ¢ legs, with equal and opposite 4-
momenta g and —q. Since Iy = I'y; =I'; j = 0, one cannot have additional ¢ legs connecting off this main ¢ line to another “side
bead” unless they connect in groups of two or more. But in this case, the main bead and the secondary bead cannot be separated by
cutting one ¢ line, and so are part of the same bead. Since CP = (+1, —1) for (h, x), and is conserved in this paper, the 1-h-reducible
contribution vanishes, and so the beads must be connected only by 7 s, and each bead is just a I'y,(; g, —¢).

Thus the diagram correspondlng to T}, (; g. —g) would appear to consist of i + 1 copies of FO,Q(; q,—q) irreducible vertices connected

by z propagators A, (g*), and s0 T} ,(; ¢. —q) = T92(: 4, —q)[To2(: 4. —q) A, (¢*)]- To2(; ¢, —g) would then consist of the sum over all
such strings. '
However, Ty, (;¢,—q)A,(g*) = 1, and so, in fact, one should not separately count each T(’m(; 4,—q), but rather

To2(:q,=q) =To2(:q,—q) = [Ax(¢*)]™". (55)
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(H)[o2(:00) = (H)[A,(0)]" =0, (56)

or in terms of the z mass
(H)m,z, =0. (57)

Evaluating the effective potential® in (44) with (H) # 0,
and then in the Kibble representation

VEff :PreLSSGoldstone Mode
AHM;¢;Lorenz
, [h? + *
= T 2

h? + n?
2

+ <H>h} +/1§){ + <H)hr

2

= m? {M -3 <H>2] +43 [45"'4) -2 <H>2}

m% ) 2 ’135 rr2 212
= S = (H? + P [H = (H)P. (58)

As expected, the NGB 7z has disappeared from the
effective potential, has purely derivative couplings
through its kinetic term, and obeys the shift symmetry
n— 7+ (H)9 for constant 6. In other words, the
Goldstone theorem is, on the face of it, already properly
enforced.

Equation (58) appears at first sight to embrace a
disaster: the term linear in ¢'¢p — 1 (H)? [a remnant of
Wigner mode in (48)] persists, destroying the symmetry
of the famous ‘“Mexican hat,” and the AHM is not
actually in Goldstone mode. To the rescue, the LSS
theorem, (50), (56) or (57) (and not the Goldstone
theorem) forces the AHM gauge theory fully into its
true Goldstone (H) # 0 mode,"

/12
Eff;:L.SSGoldstone Mode __ "¢ 1772 212
VAHM;¢;Lorenz - Z [H - <H> ]

=2 {M = <H>2] " (60)

°In the AHM-forbidden case of (H)mZ2# 0 imagined in
(59), limkx_,osz,,(kz,m,z, #0) =0 in (Al7), so (A20), (33),
and (49) are still true for all three modes: these include
Wigner mode and the scale-invariant point where (H) =0,
and where the LSS theorem (H)T(,(;00) =0, and all the
Adler self-consistency conditions, are satisfied trivially.
Reference [53] shows that, including d > 4 operators, the
SSB AHM scalar potential may be written, from symmetry and
WTI alone, in the form

Veﬁbf;fAHM - g (2}1)! F0.2n(;0“-0) (1:12 - <H>2)n' (59>

So can the E-AHM.
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A central result of this paper is to recognize that, in
order to force Eq. (58) to Eq. (60), the LSS theorem
incorporates a new on-shell T-matrix symmetry, which is
not a full symmetry of the BRST-invariant AHM
Lagrangian. AHM physics, but not its Lagrangian, has
the U(1), ® BRST symmetry of Sec. II, a conserved
current (23) and (28), undeformed WTI governing con-
nected amputated Green’s functions (33), and unde-
formed WTI governing connected amputated on-shell
T-matrix elements (49).

A crucial effect of the LSS theorem (57), together
with the N =0, M =1 U(1), Ward-Takahashi Green’s
function identity (33), is to automatically eliminate tad-
poles in (36)

['10(0;) = (H)[(;00) =0, (61)

so that separate tadpole renormalization is unnecessary.

The proof of the Lee-Stora-Symanzik theorem for the
AHM (in Appendix A) is extended to the E-AHM
(which includes certain beyond-the-AHM scalars @ and
CP-conserving fermions ) in Appendix B. The AHM
LSS considerations in Sec. III therefore have their
direct corresponding analogs, for the E-AHM, in
Secs. IV and V. We do not needlessly repeat ourselves
there.

E. Further constraints on the ¢-sector effective
Lagrangian: mygy =247 (H)?

We rewrite the Goldstone-mode effective Lagrangian
(44) and effective potential (58), but now including
the constraint from the LSS theorem, (50), (56), and
(57),

LEff;Goldstone o LKinctic;Eff;Goldstone
AHM;¢;Lorenz — "~ AHM,;¢;Lorenz

Eff;Goldstone AHM
- VAHM;¢;Lorenz + OIgnore

h? + 72
2

Eff;Goldstone __ 92
VAHM;¢;L0renz - )“zﬁ |:

2
R
with wave-function renormalization

Lo2(:q4.—q) —T2(;00) = ¢* + O (63)

Ignore?

so the ¢-sector Goldstone-mode effective coordinate-
space Lagrangian becomes

) ) h2 +77:2 2
LR, = 10,08 = 5[5 4 (]
+ ORI, (64)
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Equation (64) is the ¢-sector effective Lagrangian of the
spontaneously broken Abelian Higgs model, in Lorenz
gauge, constrained by the LSS theorem.''

(1) It is derived from the local BRST-invariant Lagran-

gian Ly (18).

(ii) It includes all divergent O(A?), O(In A?) and finite
terms that arise to all perturbative loop orders in the
full U(1), gauge theory, due to virtual transverse
gauge bosons, ¢ scalars and ghosts (A*, h, z, 7, @,
respectively).

(iii) It obeys the LSS theorem (50) and (56) and all other
U(1)y Ward-Takahashi Green’s function and T-
matrix identities.

(iv) It obeys the Goldstone theorem in the Lorenz
gauge, having a massless derivatively coupled
NGB, 7

(v) It is minimized at (H = (H),z =0), and obeys
stationarity [16] of that true minimum.

(vi) It preserves the theory’s renormalizability and uni-
tarity, which require that wave-function renormali-
zation, (H)gue = [Z%:]/2(H) [16,18,26], forbid
UVQD, relevant, or any other dimension-2 operator
corrections to (H).

(vii) The LSS theorem (50) has caused all relevant
operators in the spontaneously broken Abelian
Higgs model to vanish.

In order to make manifest that 7 is a true NGB [7,41] in
Lorenz gauge, rewrite (64) in the Kibble representation
[2,41], with Y, = —1 being the ¢ hypercharge. In coor-
dinate space,

1 -
LRI, = 5 (0
L oqmy s hp(a,+ Lo, ’
2¢ " e(H) d
2. -
L (i + 2(H)h)* + O, (68)

11Imagine we suspected that 7 is not all-loop-orders massless
in Lorenz gauge SSB AHM, and simply/naively wrote a mass-
squared m?> into the 7z inverse propagator

7:Pole
L pa(m?)]~!
[Aﬂ(o)] '= _m121 = ﬂPole |:1 + m;z Pole / dm2 7:| .
(65)
However, the LSS theorem (56) insists instead that
(H)[A,(0)]7" = —(H)mz = (H)T,(;00) = 0. (66)

The 7 pole-mass vanishes exactly.

2\ -1
mi;Pole =m2 {1 —m2 / dm? /Ln;)} =0. (67)

m
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shows that 7z has only derivative couplings and, for constant
0, a shift symmetry

7— 7+ (H)O. (69)

The Green’s function WTI (33) for N=1, M =1,
constrained by the LSS theorem (56), relates the BEH
mass to the coefficient of the hz? vertex

I0(00;) = (H)T'; »(0;00). (70)
Therefore, the BEH mass squared in (68),
m123EH = 2/15)<H>2, (71)

arises entirely from SSB, as does (together with its AHM
decays) the resonance pole-mass squared,

BEH (,,,2\7 -1
Parm (M)
szEH;Pole = 2’135<H>2 {1 - 2/%( ) /d g /:QM_ ie }
+ Offﬁ%e;(p- (72)

IV. EXTENDED ABELIAN HIGGS MODEL:
WTI-ENFORCED DECOUPLING
OF CERTAIN HEAVY MATTER
REPRESENTATIONS

If the Euclidean cutoff A> were a true proxy for very
heavy M.,y > Moy spin S = 0 scalars @, and § =3
fermions y, we would already be in a position to comment
on their decoupling. Unfortunately, although the literature
seems to cite such a proxy, it is simply not true. “In order to
prove theorems that reveal symmetry-driven results in
gauge theories, one must keep all of the terms arising
from all Feynman graphs, not just a selection of interesting
terms from a representative subset of Feynman graphs”
(Ergin Sezgin’s dictum).

A. ¢-sector effective Lagrangian for the E-AHM

1. 1-¢p-1 connected amputated ¢h-sector
Green’s functions Ty M

In Appendix B we derive a tower of recursive U(1),
WTI (B18) that govern connected amputated 1-¢-I Green’s
functions for the E-AHM,

< >FE AHM

NM+l(p .pNn30qy...qy)

_ngff%{ 1 qul PN;611~--qu---qM)

_ZFE/AFI%H Pu---PN Pud1--qu)s  (73)

valid for N,M > 0.
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i af™ includes the all-loop-orders renormalization of
the ¢-sector SSB E-AHM, including virtual transverse
gauge bosons, ¢ scalars, ghosts, and new CP-conserving
scalars and fermions: A¥, h, x, i}, , ® and y, respectively.
In the full SSB E-AHM gauge theory, there are four
classes of finite operators that cannot spoil the decoupling
of heavy particles.
(i) Finite OIIE/ Qﬁﬁf}fvam vanish as mi., /A> — 0 or
]WIZ-IeaVy//\2 _)O
(ii) Finite Of:HLl\lf}; are dimension d > 4 operators,
where only the light degrees of freedom (A¥,
h, 7,7, and also @ and yygy) contribute to
all-loop-orders renormalization.

(iii) Oy """ are finite-dimension d <4 op-
erators that are nonanalytic in momenta or in a
renormalization scale u?, where only the light
degrees of freedom contribute to all-loop-orders

renormalization.

1/M lz{my ;Irrelevant

. 2 2
vanish as Mgy, /Mieayy = 0

(iv) OE-AHM;¢
. d<4:Non Analytic;Hez Y .
In addition Opjpny o are finite-dimension

d < 4 operators that are nonanalytic in momenta or in a
renormalization scale u?, where the heavy degrees of
freedom @yyeqyy s Wheavy contribute to all-loop-orders renor-
malization. Analysis of these operators lies outside the
scope of this paper.

All such operators are ignored,

Ignore A1/ A*Trrelevant d>4;Light
OE-AHM;(]‘) - OE-AHM;¢ + OE-AHM;¢

d<4;Non Analytic;Light
+ Ok anmg

d<4;Non Analytic;Heavy
+ Ok animg

1/M 12-1 cavy ;Irrelevant

+ Ok aumip : (74)

Such finite operators appear throughout the extended
U(1), WTI (73),

A N+M>5 is

/M, lrrelevant

OE—AIEI{M;Y(/) ’

(i) The left-hand side of (73) for N + M =4 is also

1/M fleavy JIrrelevant

. 1

Olls{ﬁﬁiﬂevam’ Oﬁ?:ﬁLﬁag;lg and Og spng

(iii) N + M <4 operators (’)gﬁgﬁ?fﬂalync;hgm
pear in (73).

Finally, there are N + M < 4 operators that are analytic

in momenta. We expand these in powers of momenta,

count the resulting dimension of each term in the operator

. . d>4;Light 1/A?;Irrelevant
Taylor series, and then ignore O \invg: Opaumyy — and

1/M?  Irelevant | .
Heavy in that series.

Ok-atM:g

Suppressing gauge fields, the all-loop-orders renormal-
ized ¢-sector effective momentum-space Lagrangian, with
operator dimensions < 4, for E-AHM is then formed for

(h, m) external particles with CP = (1,-1),

1/A?;Irrelevant d>4;Light
OE»AHM;Q& ) OE-AHM;¢’ and

also ap-

PHYSICAL REVIEW D 96, 065003 (2017)
LEff;WignerA,SLGoldstone

E-AHM;¢
= TR0+ 5 T (=i
+ %FEJ?HM(; 4. —q)7* + %F%*HM (000; )73
+ %F‘EI?HM (000) 7 + %F%HM (0000; )1*
+ ﬁ TE4HM(00; 00) 1272
+ %!FE?HM(; 0000)7* 4 OEAIM, (75)

The U(1), WTI (73) severely constrain the effective
Lagrangian of the E-AHM,
() N=0, M =1 WTL

LEM(0;) = ()G (;00)  (76)

since no momentum can run into the tadpoles.
(i) N=1,M=1WTI'x:
I5e™M(=q.q:) ~T52"™(:q.—q)
= (H)I{ 31 (=q; 40)
= (H)T'73™(0;00) + O
5™ (00;)

=T53M(;00) + (H)TF2HEM(0,00).  (79)
(i) N=2, M =1 WTL

(H)TELM (00 00) = TEAM (000; )
—2rEAHM(0:00).  (80)

“In previous papers on the SU(2), x SU(2); Gell-Mann-
Lévy LEM [17], we have written the N =1, M =1 WTIl as a
mass relation between the BEH £ scalar and the pseudo-Nambu-
Goldstone boson 7 pseudoscalar. In the Kéllén-Lehmann repre-
sentation

Mgy = Mz + 22421;<H>2

2 —
- { 21 +/dm2p”(n; )] '
m m
m;Pole .
1 -t
Mgy = {72 + / 2 P () )} (77)
MBEH;Pole m
so that
MM e =0

MEx 2/15; (H)? (78)

arises entirely from spontaneous symmetry breaking, in obedi-
ence to the U(1), on-shell T-matrix WTIL, i.e. the LSS theorem.
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(iV) N = 0’ M =73 WTI: Lgt;\gﬁlgr ,SI,Goldstone _ Lglfi{“f/[ o Vgﬂﬁ\rxls,; ,Goldstone
Ignore
<H>FE AHM( 0000) — 3FE AHM (O; 00)‘ (81) + OE—AHM;¢
1
) N=1, M =3 WIL LER g =5 (T2 6 p =) =Tz 00) 2°
5 (T, —g)
0 = 3I54HM(00; 00) — THAHM(;0000).  (82) "2
-T 2A ( 00))
(Vl) N = 3, M =1 WTL VW1gner ST, GOld&tOrlC h:|
E-AHM;¢
0 = TEAEM(0000; ) — 3T5HM(00;00).  (83) hz 2 s
2 { + <H>h] (85)

(vii) The quadratic and quartic coupling constants are
defined in terms of two-point and four-point 1-

. . with finite nontrivial wave-function renormalization
scalar-particle-irreducible ~ connected amputated

Green's functions, : i

TEAM(G g, —g) ~TEMMG00) ~ . (86)
I g,_? ™(;00) = —m3, The ¢-sector effective Lagrangian (85) for the E-AHM
TEAIM(:0000) = —6 /% ) (84)  has insufficient boundary conditions to distinguish among
' the three modes of the BRST-invariant Lagrangian
. . L 13 Th ffecti tential VWigner,SI,Goldstone

Still suppressing gauge fields, the all-loop-orders renor- E-AnM- H0E - etiechive - potentia E-AHM:;
malized ¢-sector effective Lagrangian (75), severely con- ~ becomes in various limits the E-AHM Wigner mode
strained only by the U(1), WTI governing connected  (m3 =0, (H) =0,m} = mBEH # 0), E-AHM scale-invari-
amputated Green’s functions (73), may be written ant point (m3 = 0, (H) = 0, m2 = m3gy = 0), or E-AHM

PIt is instructive, and we argue dangerous, to ignore vacuum energy and rewrite the potential in (85) as
Wigner;SI;Goldstone 2 + 1 2 mzzt 2
VEAM = /14, {fﬁ - 5 <<H> - 7)} (87)
[

using 47 4 (H)h = ¢ p — L (H)?. If one then minimizes Vy sanp " while ignoring the crucial constraint imposed by the LSS
theorem, the resultant (incorrect and unphysical) minimum (H)?

unphysical = (<
modes of (87).
At issue is renormalized

H)? — ';’—23) does not distinguish properly among the three
7

mle = /’ttzf);Bare + Cl\AZ + CBEHm%EH + 5m§;Miscellaneous + Mlz—ieavy [CHeavy + CHeavy;ln ln(M%eavy) + CHeavy;ln/\ ln(Az) + +<H + ’1(215<H>2
(88)

where the C’s are constants, 5m,r Miscellancous SWEEPS up the remaining loop corrections, and mpy = m2 + 24%(H)?. For pedagogical
clarity, we display the linearized approximation to contributions ~M ﬁeavy explicitly. It is fashionable to simply drop the UVQD term
C,A? in (88), and argue that it is somehow an artifact of dimensional regularization (DR), even though M. J. G. Veltman [42] showed
that UVQD appear at one loop in the SM and are properly handled by DR’s poles at dimension d = 2. We keep UVQD. For pedagogical
efficiency, we have included in (88) terms with M, %eavy > M3yeq SUch as might arise in Majorana neutrino or beyond-AHM physics
(cf. Sec. IVD or IV B).

In the spontaneously broken (Goldstone) mode, where (H) # 0, as in AHM, so too in the E-AHM, in obedience to the LSS theorem (93)
the bare counterterm ufb;Bm in (88) is defined by

m2 = 0. (89)
We show below that, for constant 6, the zero value in (89) is protected by the LSS theorem and a NGB shift symmetry
7 —x+ (H)b. (90)

Minimization of (87) violates stationarity of the true minimum at (H) [16] and destroys the theory’s renormalizability and unitarity,
which require that dimensionless wave-function renormalization (H)g,.. = [Z‘i’]l/ 2(H) contain no relevant operators [16,26,43]. The

crucial observation is that, in obedience to the LSS theorem, Renormalized((H)g,.) # (H)apnysical:
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Goldstone mode (m% #0,(H) #0,m% =0,
My # 0).
Wigner _ 2 2
VE—AHM;¢_mﬂ|: > }4‘/14)[ > ] )
nvarian h2 + 7[2 z
vty - 4[5
. h* + n* 2
R o)

Equation (85) has exhausted the constraints on the allowed
terms in the ¢-sector effective E-AHM Lagrangian due to
those U(1), WTI that govern 1-¢-I connected amputated
Green’s functions I’y 4™.

2. 1-¢-R connected amputated ¢-sector
T-matrix elements T} "™

In order to provide such boundary conditions [which
distinguish among the effective potentials in (91)], we turn
to the off-shell T matrix and strict obedience to the wisdom
of K. Symanzik’s edict at the top of Sec. IIl E: “[...] unless
otherwise constrained by Ward identities.” We can further
constrain the allowed terms in the ¢-sector effective
E-AHM Lagrangian with those U(1), Ward-Takahashi
identities that govern 1-¢-R T-matrix elements.

In Appendix B, we derive three such identities governing
1-¢-R connected amputated T-matrix elements T4 ™ in
the ¢-sector of the E-AHM.

(i) Adler self-consistency conditions [originally written
for the global SU(2); x SU(2)r Gell-Mann-Lévy
model with PCAC [37,38]] constrain the E-AHM
gauge theory’s effective ¢-sector Lagrangian in
Lorenz gauge (B10)

(H)TSAM (py...py: 0g)-..qy)

x (2z)*s* (ZN: Pn+ ZM:I qm>

n=1 m=

22 2.0
P1=Py--=PN="MgEn

B =43+ =43 =0

= 0. (92)

The E-AHM T matrix vanishes as one of the pion
momenta goes to 0 (i.e. 1-soft-pion theorems),
provided all other physical scalar particles are on
mass shell. Equation (92) also shows that there are
no IR divergences in the (¢-sector E-AHM) Gold-
stone mode (in Lorenz gauge) [12].

(ii) The N =0, M = 1 case of (92) comprises the LSS
theorem (B15) [12],

PHYSICAL REVIEW D 96, 065003 (2017)
{p; '"Bn oo Pyt

1

q=0 q=0 {p}

\ 1

{a} {a; - am eoe Oy}

FIG. 1. Tf,i?,,lihf;EX‘emal: Hashed circles are 1-¢-R T 4™, solid
lines z, dashed lines 4. One (zero-momentum) soft pion is
attached to an external leg in all possible ways. T 4™ is 1-A*-R
by cutting an A* line, and also 1-®-R by cutting a ® line. Figure 1
is the E-AHM analogy of B. W. Lee’s Fig. 10 [12]. The same
graph topologies, but without internal beyond-AHM @y heavy
matter, are used in the proof of (A30) for the (unextended) AHM.

(iii) Define Ty "™ as the 1-¢-R ¢-sector

T-matrix with one soft 7(g, = 0) attached to an
external leg, as in Fig. 1. Now separate

_ TE»AHM;Extemal(p1 PN Oql .. .qM)

N.M+1
+TE'AHM;Immal(pl...pN;Oql...qM). (94)

N.M+1
Appendix B (B17) proves that

<H> TE-AHM;Internal

N.M+1 (P1---Pn:0qy-..qu)

M
= TN (guP1-PN Q1 TG
m=1

N
= TEAN (1P DN Padi--Gu)-

n=1

(95)

The U(1), WTI (73), (B18) governing 1-¢-I connected
amputated Greens functions 'y 3™ are solutions to (95)
and (B17).

We rewrite the E-AHM effective ¢-sector Lagrangian
(85) but now include the constraint from the LSS
theorem (93) and (B15), in the SSB (H) #0 case,
m2 =0,

LEff;Goldstone _ LKinetic s + OE_AHM _ VEff;Goldstone

E-AHM;¢ E-AHM; Ignore E-AHM;¢
Eff;Goldst 2 W+ :
;olastone
VE-AHM;¢ = ’14; {T + (H >h} (96)

and wave-function renormalization
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T5M( g, —q) = TE3™(;00) = ¢* + O M. (97)

Ignore

A crucial effect of the LSS theorem, together with the
N =0, M = 1 Ward-Takahashi Green’s function identity
(73), is to automatically eliminate tadpoles in (96)

TP ™(0;) = (H)IG3™ (;00) = 0. (98)

so that separate tadpole renormalization is unnecessary.
We form the effective Goldstone-mode Lagrangian gov-
erning low-energy ¢-sector physics in coordinate space14

Eff;Goldstone __ 2 _ y/Eff;Goldstone Ignore
LE-AHM;zfz - ‘D /4¢| VE—AHM;¢ + OE—AHM;¢

h?> + %

Eff;Goldstone __ 42
VE»AHM;(/) - ’145 |:

2
+ <H>h] . (99)

Equation (99) is the ¢-sector effective Lagrangian of the

spontaneously broken E-AHM in Lorenz gauge.

(i) It obeys the LSS theorem (93) and (B15) and all
other U(1), WTI (73), (92), (93), (95), (B10),
(B15), (B17), and (B18).

(ii) It obeys the Goldstone theorem in the Lorenz gauge,
having a massless derivatively coupled NGB, 7.

(iii) It is minimized at (H = (H),7 =0), and obeys
stationarity [16] of that true minimum.

(iv) It preserves the theory’s renormalizability and uni-
tarity, which require that wave-function renormali-
zation, (H)p,. = [Z0 w2 (H) [16,18,26], forbid
any relevant operator corrections to (H).

(v) It includes all divergent O(A?), O(In A?) and finite
terms that arise to all perturbative loop orders in the
full U(1), theory, due to virtual transverse gauge
bosons, AHM scalars, ghosts, and new CP-conserv-
ing scalars and fermions (A*, h, z,ij, w, and @, v
respectively).

(vi) The LSS theorem (93) and (B15) has caused all
relevant operators in (99) to vanish.

3. The LSS theorem comes from exact U(1)y symmetry.
Minimization of the effective potential does not

It is important to compare the results of our LSS theorem
to those of the mainstream literature. For pedagogical
simplicity, in this subsection we suppress mention of

Ignore . .
vacuum energy and O zpp,- After renormalization, but
before application of the LSS theorem, the effective
potential (85), which is derived entirely from Green’s

function WTI, can be written

"It is not lost on the authors that, since we derived it from
connected amputated Green’s functions (where all vacuum
energy and disconnected vacuum bubbles are absorbed into an
overall phase, which cancels exactly in the S matrix [16,26]), the

vacuum energy in Vg&g;l{q;mne in (99) is exactly 0.

PHYSICAL REVIEW D 96, 065003 (2017)
ngigﬁ;rzr,slﬂoldstone _ M?,(KPT(}'?) +ﬂ§) (¢T¢>2
1
— 0+ 23 (0) (40— (10?)
2 1 2 2
i (#0-302)

h? + =2
— 0+ 23(a7) ("

+ <H>h)

h2 2 2
+/1§5< er” +<H>h>, (100)

where Vg_figﬁfgr’SI’GOIdmne, o, ,ué, /135 and (H)? in (100) are
all renormalized quantities.

The vanishing of relevant operators due to heavy @, y in
the effective E-AHM theory is therefore not itself con-
troversial. The mainstream literature minimizes (100) to
find the vacuum,

0 Eff;Wi ,S1,Gold
O yurmsioosne) (1) (3 + 7 (H)?) = 0

(101)
which, for the SSB case, gives
a ff;Goldstone
o VE-A’HM;(/;t lhro =0
w5, + A5 (H)* = 0. (102)

This is conventionally interpreted as a calculation of (H)?,

= -

103)
7 (
o

where, in renormalized /4(2/), UVQD and all other relevant
contributions, such as those due to @, y in loops, are
regarded as having canceled against a bare counter-
term S ppe-

In contrast, we have derived a tower of Adler self-
consistency conditions (92) in Lorenz gauge in
Appendix B, i.e. derived directly from the exact U(1),
symmetry obeyed by gauge-independent on-shell T-matrix
elements. One of these, the N = 0, M = 1 case, is the LSS
theorem,

(H)ymz = (H)(ug + 25(H)*) = 0, (104)
which, for the SSB case, gives
my = ug + A3(H)* =0 (105)

whose practical effect is the same as minimization of the
effective potential, as captured in (102).
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So, we agree with the mainstream literature that all
relevant operators vanish in the effective low-energy
E-AHM theory.

4. Decoupling of heavy matter representations

Adding a U(1), local/gauge invariant Lagrangian
Ly i ™ (A . .y, g to (18) forms the E-AHM.

In order to force renormalized connected amplitudes
with an odd number of 7 s to vanish, the new particles
@,y ,ywp are taken in this paper to conserve CP.

In Secs. IVA 4 through IVA 7, we take all of the new
scalars @, left-handed fermions y; and right-handed
fermions y to be very heavy,

M2

2
M YR’

2 2 2
o Mg ~M

Heavy > (|q2|’ mi’ mBEH) ~ m\zNeak

~ (100 GeV)?2, (106)

with g, being typical for a studied low-energy process.
Fermion U(1), hypercharges are chosen so that the axial
anomaly is 0. To remain perturbative, we keep the Yukawa
couplings yg,, Yo, < 1, but take the Majorana masses
squared

Majorana _ 1 Weyl Weyl - Weyl — Weyl
LbeyondAHM;l// - EMV/L (WL e 7S s )

1 Weyl Weyl | —Weyl — Weyl
_EMWR(WRW l/’Rey +WReyll/Rey)

to be heavy. We keep all Yukawas and masses real for
pedagogical simplicity.

Some comments are in order.

1/M?_,  Trrelevant

(i) We have ignored finite Op /iy that
decouple and vanish as m5y., /Mgy = 0.

(i) Among the terms included in (99) are finite relevant
operators dependent on the heavy matter represen-
tations,

O(M?

Heavy) ’ O(Mlz-lcavy ln(MIz{eavy ) ) ’
O(M?

Heavy ln(m%’\/eak))7 O(m%\/eak ln(MIZ-Ieavy))’ (107)

but they have become invisible to us because of the
LSS theorem (93) and (B15). That fact is one of the
central results of this paper.

(i) Marginal operators ~In(Mg,,,) have been ab-
sorbed in (99), i.e. in the renormalization of
gauge-independent observables (i.e. the quartic-
coupling constant /1(2/) calculated in the Kibble
representation, and the BEH VEV (H)), and in
unobservable wave-function renormalization (97).

No trace of My, -scale @, y survives in (99). All the

heavy beyond-AHM matter representations have com-
pletely decoupled.

PHYSICAL REVIEW D 96, 065003 (2017)

5. First decoupling theorem: SSB ¢-sector connected
amputated 1-¢-1 Green’s functions

We take OF/ QSI{TIE"M — 0 (to unencumber our notation)
and work in the mgy .y /My, — O limit.
In the SSB E-AHM, I'y3™ with
(i) N+ M >5 obey the Appelquist-Carazzone decou-
pling theorem [44];

(i) N+ M =3, 4 are absorbed by coupling constant
renormalization;

(iii) N 4+ M = 2 are absorbed by wave-function renorm-
alization, vanish due to the LSS theorem m2 = 0, or
contribute to SSB origination of mygy = 245 (H)?
(see below).

Therefore, including the contributions to relevant operators
from heavy CP-conserving @, y matter in virtual loops,

2 2
chak/MHeavy_)O
E-AHM AMH
| vy Dy - (108)

6. Second decoupling theorem: SSB ¢-sector connected
amputated 1-¢p-R T matrices

In the limit m,,; /My = 0

2 2
Myeak /MHeavy -0

TR Tym (109)

including heavy CP-conserving @, y matter contributions
to relevant operators.

7. Third decoupling theorem: SSB ¢-sector BEH
pole-mass squared

The N =1, M = 1 connected amputated Green’s func-
tion U(1), WTI (73), augmented by the LSS theorem (93),
reads

I3eM(00:) = (H)ITT3™(0;00)
= —273(H)?

Jim PES(00;) =0,

(110)

showing that the BEH pole-mass squared arises entirely
from SSB. Defining

1

SR -
q~ — Mgypole T 1€

+/dm2 pEFAHHM(mz)

AE—F:AHHM(qz) =

(111)

q* —m?* +ie’

2 .
Mggm.pole 1S the BEH resonance pole-mass squared. In

analogy with (23), the spectral density pEEL, (M3

1/M3¢qyy- Thus

eavy) ~
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1 /Mlz_leavy :Irrelevant

pEiatv (m?*) = papi (m*) + Ok auMip

Fg,_(?HM(OO?) = [AEEXHHM(O)]_I

=—223(H)*
BEH 2\7 -1
Panm (m°)
= _mIZBEH;Pole|:1 + mlz?oEH;Pole/dm2 m2 —ie :|
1/M3, . :lrrelevant
OE»AI-}IIM;yd) (112)

and we have

2 2 2 2 2 zpﬁglg,[(mz) -
MBEH Pole — 2/1(/;<H> {1 - 2/1(/;<H> /dm 2 — ie }

1/M? . Irrelevant

Heavy”

OE-AHM;(])

(113)

2 ¢ ; ; 2
Because /1¢, ZL endeaanm are dimensionless, /1¢ and

1

<H> = [ngrendedAHM] E <H>Bare (1 14)

absorb no relevant operators, Eq. (113) shows that the BEH
pole-mass squared mpy.p,. also absorbs no relevant
operators.

No trace of Myg,y-scale @, w, including their
contributions to relevant operators, survives in (113).
All the heavy beyond-AHM matter representations
have completely decoupled, and the BEH pole-masses
squared

2-BE-AHM m%Neak/Mlz{eavy_}()
BEH;Pole

2;AHM
BEH:Pole

(115)

become equal in the limit 73y /M, — 0. We call

(115) the “SSB BEH-mass decoupling theorem.”
By dimensional analysis, heavy @, y also decouple from
the 7z spectral functions

Azr;Spectral 2 )

m;Spectral
E-AHM = At (q?) + O/ Mgy

Heavy

(116)

B. Example: Decoupling of gauge-singlet
M? > mi, ., real scalar field S with
discrete Z, symmetry and (S)=0
We consider a U(1), gauge-singlet real scalar S, with
(S — =) Z, symmetry, M3 > m,,. and (S) =0. We
add to the renormalized theory

1
Ls =3 (0,5)° = Vys,
v —1M2S2+§S4+1/12 s ¢T¢—1<H>2
¢S _2 N 4 2 S 2 ’
1 h2 2
B (1) =T ) (117)
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Since S is a gauge singlet, it is also a rigid/global singlet. Its
U(1), hypercharge, transformation and current

Ys=0; Sy, S(t.5) =0

S _
JbeyondAHM =0

(118)
therefore satisfy all of the
Appendix B.

(1) Since it is massive, S cannot carry information to the
surface 737U — oo of the (all-space-time) 4-
volume [d*z, and so satisfies (BS).

(ii) The equal-time commutators satisfy (B6)

decoupling criteria in

(20 — y())[‘lggfondAHM(Z)’ H(y)] =

8(z0 — yO)[JggfondAHM(Z)’ n(y)] =

0,
0 (119)

(iii) The classical equation of motion

S
9 (Joeyonaarv + Tain) = Oulamm = maHOpA?
(120)

restores conservation of the rigid/global U(1)y
extended current for ¢-sector physical states, and
satisfies (B5)

<0|T[8ﬂ(‘]g;e§0ndAHM + Janm) (2)
X h(xl)"'h(xN)ﬂ(yl)"'”(yM)]|0>connected =0.
(121)

(iv) The zero VEV (S) = 0 satisfies (B7).

The U(1), WTI governing the extended ¢-sector tran-
sition matrix TE'&HM;S are therefore true: namely, the
extended Adler self-consistency conditions (92) and
(B10), together with their proof of infrared finiteness in
the presence of massless NGB, and the extended 1-soft-z
theorems (95) and (B17); the extended U(1),, WTI (73) and
(B18) governing connected amputated ¢-sector Green’s
functions I“E,'leM;S are also true. The U(1), ® BRST
symmetry of Sec. II is faithfully represented by these,
and the tower of on-shell T-matrix extended WTI (92) and
(B10) Ty 3™ |onshen = 0, and its extended LSS theorem
(93) and (B15).

The three decoupling theorems (109), (108), and (115)
therefore follow, so that no trace of the M5 ~ M, scalar
S survives the m3 ., /M%{eavy — 0 limit: i.e. it has com-
pletely decoupled. The ¢-sector connected amputated T
matrices and Green’s functions, and the BEH pole masses
squared
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_ . In%Veak/M?S_)O
TE-AHM:S T
N.M N.M
2 2
~ . M/ M50
[E-AHM:S r
N.M N.M
2 2
2:E-AHM;S M/ Miteary >0 2:AHM
BEH;Pole;p MBEH;Pole:h (122)

become equal in the limit 75y, /My, = 0, including all

contributions to relevant operators from heavy S in vir-
tual loops.

C. One generation of standard-model quarks and
leptons, augmented by a right-handed neutrino vz with
Dirac mass, gauged hypercharge and global colors

We consider the addition of one standard model gen-
1

eration of spin § = 5 fermions, 7;, by, tg, bg, 7€y, Uy, , TR,
augmented by one right-handed neutrino v, , with global
SU(3) colors ¢ =red, white, blue, and gauged U(1),
hypercharge. These are regarded here as E-AHM matter
representations.

Baryon-number and lepton-number-conserving Dirac
masses squared arise entirely from SSB and are light, in
the sense that mg .4, M eyon S Miyey- The so-extended
U(1), AHM gauge theory has zero axial anomaly because
quark/lepton AHM quantum numbers are chosen to be their
SM hypercharges (including Y, = 0). This addition also
retains the CP conservation of the AHM. We choose the
third generation mostly for definiteness, but also slightly to
emphasize that we are not relying in any way on the
smallness of quark Yukawas.

Adding beyond-AHM Dirac quarks augments L59%1% of

(18) with

obal Invariant __ j Kinetic Yukawa
LG] bal i L ineti + L k:
beyondAHM;q ~— “~beyondAHM;q beyondAHM;q°
rw,b b
Kinetic _ —C ol c =C ol c
Lt g = 1 Y > (@57"Dyds + 350" Dudy),
color flavor
rw,b tb
Yukawa _ E E e c —c 4% ,C
LbeyondAHM;q - yq (qL¢qR + qR¢ qL) (123)

color flavor

The U(1), quark current and transformation properties
are

rw,b tb
u;Dirac __2:2: =C o C =C o H4C
JbeyondAHM;q - (YqLQLy qr + YqRQR}/ QR)’
color flavor

Su(n),qi (t. %) = —i¥,, q (1. %)0,
Su(), 95 (. %) = —i¥,, q5 (1. %),

1 1 4 2
Ythg; Ybng; YtRzg; YbR:_g' (124)
Adding beyond-AHM Dirac leptons further adds to
LIGRY
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Global Invariant __ 7y Kinetic Yukawa
LbeyondAHM;l - LbeyondAHM;l + LbeyondAHM;l ’

Uyl T

Lo Ay = Z (ILy"D, Iy, + Igy" D, lg),

flavor

Lyt = — Z Yi(lylg + Irp™ly).

flavor

(125)

The lepton U(1), current and transformation properties
are

v,e
:Di 7 3
Jgey;ngHM;l == Z(YILILV”IL + Y, Igy* ),

flavor
Su(n), L (1.X) = =iY;, 1, (1. X)0,
Sy, I (1, X) = =iY, Ig(1, X)6,
Y, ==L Y, =-1 Y, =0

VeL 7L

Y, =-2;

R

(126)

ViR

with these standard-model quark and lepton hypercharges
Y;, our U(1), WTI have zero axial anomaly.

We now prove applicability of our U(1), WTI for
connected amputated ¢-sector Green’s functions I'f;4HM
and for on-shell T-matrix elements 75 4™M.

(i) The equal-time quantum commutators satisfy (B6)

8(z0 = yO)Ng;e?(iJTSAHM;q(Z)’ H(y)]
8(z0 = Yo) [JSQBSSSAHM;W n(y)]
(20 = Yo) [Jg;egci)rr?cciAHM;l(Z)’ H(y)]

()]

8(z0 — yO)[Jgg;ti)rr?(ciAHM;l’ Yy . (127)

(i1) The classical equation of motion

u;Dirac u;Dirac " _ Y
8/4 (‘]beyondAHM;l + JbeyondAHM;q + ‘]AHM) - mAH aﬂA

(128)

restores conservation of the rigid/global U(1),
extended current for ¢-sector physical states, and
satisfies (B5S)

:Dirac :Dirac
<0|T[6ﬂ(‘] geyondAHM;l +J ﬁeyondAHM;q +J IXHM)(Z)
X h(-xl ) .. ‘h(xN)”t] (yl ) .. 'ﬂtM (yM)] |0>connected
=0. (129)

(iii) Dirac-mass-quark surface terms vanish. Since the
quarks ¢ and b are taken to have Dirac masses, m; =
%y,l(H} and m;, = %yd(H% and since we need

only connected graphs, the quarks cannot carry
information to the 3-surface at timelike infinity of
the 4-volume of space-time, and so do not spoil
Eq. (B8). In contrast, massless quarks could carry
U(1)y information on the light cone to this surface;
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they would therefore violate (B8), and so destroy the
spirit, results and essence of our U(1),-WTI-based
heavy particle decoupling results here in Sec. I'V.
(iv) Charged-lepton surface terms also vanish. Since 7 is
massive, m, = \/iiye<H ), and we need only con-

nected graphs; the charged lepton 7 also cannot carry
information to the 3-surface at timelike infinity of
the 4-volume of spacetime, and so satisfies (BS).
(v) Dirac-neutrino surface terms: Since v, is taken to be
massive in deference to observed SM neutrino
mixing, mDire :%y,xH), v, also satisfies (BS).
In contrast, a massless neutrino could carry U(1),
information on the light cone to the 3-surface at
infinity and would violate (B8),15 and so destroy the
spirit, results and essence of our U(1),-WTI-based
heavy particle decoupling results here in Sec. IV.
Having satisfied all of the criteria in Appendix B, the
U(1), WTI governing the extended ¢-sector transition
matrix TE,:’,AWHM;']'Z are therefore true: namely, the extended
Adler self-consistency conditions (92) and (B10), together
with their proof of infrared finiteness in the presence of
massless NGB; the extended 1-soft-z theorems (95) and

(B17); and the extended U(1), WTI (73), (B18) governing
connected amputated ¢-sector Green’s functions FE'./;,IHM;‘]’Z.
The U(1), ® BRST symmetry of Sec. II is faithfully
represented by these, and the tower of on-shell T-matrix
extended WTI (92) and (B10) Ty, ™' =0, and its

extended LSS theorem (93) and (B15).

| on-shell

Our proof of axial-vector WTI in Appendix B requires that
neutrinos be incapable of carrying information to the 3-surface at
timeline infinity of the 4-volume of spacetime. We have worked
here within SSB E-AHM, with its explicit Dirac neutrino mass,
for this purely mathematical reason.

Imagine, however, that we are able to extend this work to the CP-
conserving standard electroweak model with two generations of
quarks, charged leptons, and v, , vg, with neutrino Dirac masses,
but zero Majorana masses. [Reference [39] analyzes local
SU(2) ® U(1), with one such generation and nonzero Majorana
vg mass.] With its gauge group SU(2), x U(1)y, we would build
two sets of rigid/global WTI: unbroken electromagnetic
U(1)qgp, and spontaneously broken SU(2), . It is then amusing
to elevate such rigid/global WTI to a principle of nature, so as to
give them predictive power for actual experiments and observa-
tions. The U(1)qep, WTI would be unbroken vector-current
identities. Focus instead on the spontaneously broken SU(2), .
Start with Yukawa couplings which generate, after SSB, masses
and mixings among weak-eigenstate neutrinos. The observable
2 x 2 Pontecorvo-Maki-Nakagawa-Sakata matrix would then
rotate those to mass eigenstates m,?li“‘“, m,‘?z""“.

The axial-vector current WTI from the spontaneously broken
SU(2), require and demand a neutrino Dirac mass for each and
every one of the mass eigenstates mD>™, mDi™ # 0. Would we
then claim that SSB SU(2), WTI predict neutrino oscillations?
To make a possible connection with nature, although current
experimental neutrino-mixing data cannot rule out an exactly
zero mass for the lightest neutrino [45], the mathematical self-
consistency of SU(2), WTI would.

PHYSICAL REVIEW D 96, 065003 (2017)

D. (Practical) decoupling of a gauge-singlet
right-handed type-I-seesaw Majorana neutrino
with M2, > m}py ~ MYy, (as in the YAHM)

We consider here the addition to the AHM of a heavy
U(1), gauge-singlet right-handed Majorana neutrino v,
with M7, > mi,. involved in a type-1 seesaw with a
left-handed neutrino v;, through a Yukawa coupling y,,
with resulting Dirac mass m>™° =y (H)/v/2.

We add to the renormalized theory in Sec. IVC a
Majorana mass

Majorana
Ly,

1
= =M, (g ™+ BT (130)

Since vy is a gauge singlet, it is also a rigid/global singlet.
Its hypercharge U(1), transformation and current

Y, =0 Sy, vr(t,y) =0
;Majoran
]};ey:rjl(()i:HaM;yR =0 (131)
therefore satisfy all of the decoupling criteria in
Appendix B.

(i) Since it has a Dirac mass, the neutrino v cannot carry
information to the surface 7>~ _ o of the (all-
space-time) 4-volume f d*z, and so satisfies (BS).

(ii) The equal-time quantum commutators satisfy (B6)

0;Majorana
6(Z0 - yO) [JbeyorJldAHM;yR (Z)’ H(y)] =0,
0.

8(20 = ¥0) U eyondntivta (2): 7()] = (132)

(iii) The classical equation of motion

4;Majorana 4;Dirac
814 (‘]beyondAHM;vR + JbeyondAHM;I

u;Dirac y
+ JbeyondAHM;q + JAHM)
o u;Dirac y;Dirac "
- 8}4 (‘IbeyondAHM;l + JbeyondAHM;q + ‘IAHM)

restores conservation of the extended rigid/global
U(1)y current for ¢-sector physical states, and
satisfies (B5),

:Maj ;Di
<O|T[aﬂ(]ﬁey;iginH14;uR + Jgey(l)l:gAHM;l
;Dire
+J geyg:gAHM;q +J iHM)(Z)
X h(xl ) . ‘h(xN)”t] (yl ) .. 'ﬂtM (yM)] |0>connected
=0. (134)

Having satisfied all of the criteria in Appendix B, the
U(1), WTI governing the extended ¢-sector transition

. —AHM;q,l,M,,R
matrix Ti i

are therefore true: namely, the
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extended Adler self-consistency conditions (92) and (B10),
together with their proof of infrared finiteness in the
presence of massless NGB, and the extended 1-soft-z
theorems (95) and (B17); the extended U(1), WTI (73)
and (B18) governing connected amputated ¢-sector

Green’s functions FEZ?WHM;(]'Z'M”R are also true. The U(1), ®
BRST symmetry of Sec. II is faithfully represented by

these, and the tower of on-shell T-matrix extended WTI
(92) and (B10) Ty e
LSS theorem (93) and (B15).

The three decoupling theorems (108), (109), and (115)
follow, but there is a ‘“nondecoupling subtlety.” The
vanishing of the v; surface terms requires a nonzero
neutrino Dirac mass

onshenl = 0, and its extended

1
My.Dirac = 7§yu<H> # 0. (135)
The light and heavy type-I-seesaw v masses are
My Light ~ mg;Dirac/MuR ) My Heavy ~ MI/R’ (136)

but, in obedience to our proof of U(1)y WTIL, my o must
not vanish. Therefore type-I-seesaw v’s do not allow the
M,, — oo limit. For the decoupling theorems, we instead
imagine huge, but finite, M,, with

1> m?

u;Dirac/Mlz/R ?é 0. (137)
No practical trace of the M ~ M,
neutrino vy survives.
Still, our U(1), WTI insist that, in principle, a very
heavy Majorana mass M, cannot completely decouple. It
may still have some measurable or observational effect that

we have not identified.

right-handed

V. SSB E-AHM’S PHYSICAL PARTICLE
SPECTRUM EXCLUDES THE NGB 7

G. S. Guralnik, C.R. Hagan and T. W. B. Kibble [19]
first showed in the spontaneously broken Abelian Higgs
model that, although there are no massless particles in the
(A =0,V A= 0) “radiation gauge,” there is a Goldstone
theorem, and a true massless NGB, in the covariant OﬂA" =
0 Lorenz gauge. T. W. B. Kibble then showed [8] that the
results of experimental measurements are nevertheless the
same in radiation and Lorenz gauges, and that the spectrum
and dynamics of the observable particle states are gauge
independent.

A. SSB E-AHM’s physical particle spectrum excludes
the NGB 7, whose S-matrix elements all vanish

The BRST-invariant Lagrangian for the E-AHM in
Lorenz gauge is

PHYSICAL REVIEW D 96, 065003 (2017)

(138)

Lorenz __  Lorenz Gauge Invariant .
LE—AHM - LAHM + LbeyondAHM (A/u ¢’ o, l//)
with LLoren in (18).

1. Lagrangian governing dynamics of
observable particles
We now identify the observable particle spectrum of

Lorenz gauge E-AHM by rewriting (138) in terms of a new
gauge field

1
B, =A,+——0,7 1
4 ”+e<H)a”” (139)
and transforming to the Kibble representation [2]:
(1) Gauge field
A,=0,A,-0,A,
=9d,B,-90,B,=B,, (140)

(ii)) AHM scalar

7= (H)Y
1 ~ . - -
= 7He_’Y'/J’9; H=h+{H
¢ 7 (H)
1 ; I —i T
Dﬂ¢ = ﬁ [3ﬂ - leY(/,A”]He Y{/‘9
1 7 : % 1 —iY,9
= ﬁ 0,H —ieY,H| A, +;a,,,9 e 'ty
1 . ~ »
:ﬁ[aﬂH—lquﬁHBﬂ]e Yd"g (141)
(iii) Beyond-AHM scalar
D — De-i¥od
(®) =0

D,® = [0, —ieYoA,| e Yo?

~ ~ 1 .
= |:8M(D —_ iqu,CI) (A;l + _8ﬂ19>:| e—qu,x()
e

= [0, — ieYo®B,|e~o? (142)
(iv) Beyond-AHM fermion(s)
W= lile—iY,/,x()
Dy =10, —ieY, A Jye v’
Jos o+ o)
= 0, = eV, 7B, e, 15

The E-AHM Lagrangian, which governs the spectrum
and dynamics of particle physics, is
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Lt (B,; H; @)
__ 7 Lorenz T
- LAHM;I:].Bﬂ (B;u H’ n, CO)

+L

Gauge Invariant Gauge Invariant

beyond AHM;® + beyond AHM;yr (144)

where the spin § =1 field B,

Lorenz CIT. = _ 7 Gauge Invariant
L (Bys H i, 0) = LAHM;;I_B”

Gauge Fix;Lorenz Ghost;Lorenz

+ Lanm:s, + Lanmia,
LGauge Invariant —lB BHv +162Y2 <H>2B B*
AHM:H.B, 4 M 27 ¢ H
1 ~
+ 3 (0,H)*
1
=+ 5621/5)(}12 - <H>2)Bu3” = Vanm
- 1
Gauge Fix;L
LS = lim 2 0,5
A
1 -
Vaam = Z/%(Hz - <H>2)- (145)
For the beyond-AHM scalar(s)
LGauge Invariant _ ’D (i)|2 —Vie—V--
beyondAHM;ti) H @ »®
D,® = [0, - ieYoB,|®
Vg = M3 (O'®) + 22,(0'd)>
1 e~
Vo = 5 4o (H)(0'®) (146)

while, for beyond-AHM fermions, we take a standard
model generation of fermions with anomaly-canceling
hypercharges

G: I i .= ~ .= ~
Lbe?ffd:ﬁ?\r/;i;m =iy Dy + iyrD,wr

Yukawa Majorana
+ LbeyondAHM;y? + LbeyondAHM;f/R

D”IIN/L = [8# - ieYl/lLBﬂ]li/L
Dygr = [a}t —ieY, B g

wrPu
LYukawa — _ L ~ = o~ I:I
beyond AHMjr ﬁyqsy/(‘//Lll/R +WrWL)

- ycbl,/(lI:/L&)l]/R + l/:/R&)TIINIL)

Majorana o 1 ~Weyl~Weyl ~Weyl=Weyl
L M, (b Tl R )

beyondAHM:Zz — ~ o R VR (147)

For yg, # 0, the heavy scalar hypercharge Yo = —1.
The B, mass squared in (145) arises entirely from SSB,

m% =m3 = e*(H)>. (148)
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Dimensional analysis shows that the contribution of a state
of mass/energy ~M e,y to the spectral function ARSpectal

gives terms ~1/Mf,,,, so that

A%!-E;—AHM(qz) = AﬁHM(qz) + O(I/Mlz—leavy)’

1 PRam(m*)
AB 2y _ /d 2 _PAEM ,
anm(97) P m%%le n i€+ m @ —m? +ie
ZE aum = Zium + O(I/Mlz-leavy)' (149)
Therefore the B, pole-mass squared is
(AL Aum (0)] 7! = —mf = —*(H)?
with
B 2y7-1
2 :2H21—2H2/d 2 Panm(m?)
Wyae = 2 1 = () [ ane A0
+ O(1/ Miieqyy)- (150)

2. Decoupling of NGB r, particle spectrum
and dynamics

The Lagrangian (144) is guaranteed to generate all of the
results in Secs. III and IV, and Appendixes A and B. In
practice, this is done via the manifestly renormalizeable
E-AHM Lagrangian (138).

G. Guralnik et al. [19], and T. W. B. Kibble [8], showed
that, in the Kibble representation in Lorenz gauge, the
U(1), AHM quantum states factorize. In the analogous
U(1)y E-AHM, and in the mgy,, /M, — O limit the
analogous U(1), E-AHM also factorizes,

(A" 377, 03 Diy)) — WPl (B4 H))
X |‘PGhOSt(}7], a))>|\PGoldstone(ﬁ.>>|1PB—AHM(&);V~/)>' (151)

With 8?0 = 0; 8% = 0, the ghost @ and antighost 77 are
free and massless and decouple in Lorenz gauge.

It is crucial for SSB gauge theories [8,19] to remember
the additional gauge-fixing term inside (138). The E-AHM
Lorenz gauge condition is rewritten as

Gauge Fix;Lorenz . 1 2
L = —lim— (0,A*
E-AHM 50 25 ( H )

1 1 1
= —lim— (9,B*)* — lim — n
513325( uB") 028 <e<H> ﬂ)
1
X Pr— 20,B" ).
e(H)
Besides enforcing the new Lorenz gauge-fixing constraint

0,B" =0 in (145), the auxiliary solution to the gauge-
fixing condition (152) is 8’7 = 0, which forces 7 to be a

(152)
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free massless particle. The NGB 7 therefore completely
decouples from, and disappears from, the observable
particle spectrum and its dynamics [8,19], whose states
factorize as in (151).

In the m3yy /My, — O limit, all physical measure-
ments and observations are then entirely predicted by the
AHM Lagrangian (145) and its states in (151),

Ligiene, (H: B, o);
‘\I;Panicle Physics (B”; I:I; 1, a’))

N |\PParticles (By; I:I)>|‘I‘Gh°“(7_7, a))> (153)
What has become of our SSB U(1), Ward-Takahashi
identities? Although the NGB 7z has decoupled, it still
governs the SSB dynamics and particle spectrum of (153);
it is simply hidden from explicit view. Still, that decoupling
NGB causes powerful hidden constraints on (153) to arise
from its hidden shift symmetry
z— 7+ (H)0 (154)
for constant 6.

Our SSB U(1), WTI, and all of the results of Secs. III
and IV and Appendixes A and B are also hidden but still in
force: connected amputated Green’s functions I'y , (73)
and (B18); connected amputated T-matrix elements 7'y 3
(95) and (B17); Adler self-consistency conditions (92) and
(B10) together with their proof of IR finiteness; LSS
theorem (93) and (B15); 1-soft-z theorems (95), (B10),
and (B17); decoupling theorems for Green’s functions and
T-matrix elements (109) and (108); and the decoupling
theorem for the BEH pole-mass squared mgpy.pye (113).
These still govern the SSB dynamics and particle spectrum
of (153): they are simply hidden from explicit view. We
call this “the hidden U(1), ® BRST symmetry of the
SSB AHM.”

B. SSB causes decoupling of heavy My, > My,
particles. This fact is hidden, from the observable
particle spectrum of the U(1);, E-AHM and its
dynamics, by the decoupling of the NGB 7

We now take all of the new scalars ® and fermions W in
the E-AHM to be very heavy, and are only interested in
low-energy processes,

2 2 2 2
M&)’Mx]/ ~ MHeavy > Miyeax

2 2
|q | 5 Myyeak> (155)
where g, is a typical momentum transfer. In the limit
Mo/ M%_Ieavy — 0 the effective Lagrangian of the sponta-

neously broken E-AHM gauge theory obeys the
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Appelquist-Carazzone decoupling theorem [44]

Ly (ks B H; @:37)

= Litive (ks Bys H) + O/ Mijeayy)- - (156)

1. Fourth decoupling theorem: SSB Abelian
Higgs model

The ¢-sector of the extended theory is subject to all of
the results of Secs. III and IV and Appendixes A and B.
Therefore we know that the BEH pole-mass squared (113)
arises entirely from SSB and (unextended) AHM decays.
We also know that

1 2 Ignore
VEam = 45 <¢T¢ 3 <H>2) + OF arm

2.
=i e+ ol

PEa ]
= Z¢ (h* + 2(H)h)> + O (157)
2 5 v
(i) In (113) and (157) finite Op pre ™™™ decouple

. 2 2
and vanish as mgye, /Miesyy — 0.

(i1)) Among the terms included in (157) are finite
relevant operators dependent on the heavy matter
representations,

2 2 2
MHeavy ’ MHeavy ln(]MHeavy ) ’

MIZ-Ieavy ln(m%\/eak)’ m%\’eak In (MIZ-Ieavy)’ (158)
but the LSS theorem (93) has made them vanish.
That fact is a central point of this paper.

(iii) Marginal operators ~ln(M12{eavy) have been ab-
sorbed in (157): i.e. in the renormalization of
gauge-independent observables (i.e. the quartic-
coupling constant /13) calculated in the Kibble rep-
resentation, and the BEH VEV (H)), and in the
unobservable ~ wave-function  renormalization
Z0 i 97).

Therefore, no trace of My,,,-scale @, y, including their
virtual loop-contributions to relevant operators, survives in
(113) and (157). All the heavy beyond-AHM matter
representations have completely decoupled, and the two
SSB gauge theories

m%\/cak/MIz{eavy =0
E-AHM AHM (159)
become equivalent in the limit miy., /M, = 0, a

central result of this paper.
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2. Gauge independence of our results

S.-H. Henry Tye and Y. Vtorov-Karevsky [46] show that,
calculated in the Kibble representation of Lorenz gauge
(i.e. their “polar gauge” [46]), the effective potential is
gauge independent. Nielsen [47] went on to prove that any
gauge dependence of the effective potential can be reab-
sorbed by a field redefinition. (For more details see [48].)
With /Ié calculated in the Kibble representation, e.g. taken
from experiment, the dimension-4 AHM effective potential

2 -

Vil = (17 + 2(H)h)? (160)
is therefore all-loop-orders gauge independent. The renor-
malized experimentally measured gauge-coupling-constant
squared at zero momentum e’ = ¢?(0) is also gauge
independent. With our four decoupling theorems (109),
(108), (113), and (159), so are /1{2/), (H)* and VE = in
(157), and the B,, pole-mass squared (150), when calculated
in the polar gauge. These all appear in the decoupled
particle physics (153) of E-AHM.

After the 7 NGB decouples, the all-loop-orders effective
(dimension < 4 operator) Lagrangian that governs low-
energy scalar-sector E-AHM physics becomes, in the
M3yeak/ Miicayy — O decoupling limit,

1 . ~

LI;:;;fle-AHM - B |(8/4 + ’EBu>H|2 - VS/)f;fE—AHM
2

VZsf;fE-AHM =2 (H2 - <H>2)2

v~ B0 L -y

H=h+(H); (h)=0. (161)
Equation (161) is proved gauge independent by extension
of the work of Tye and Vtorov-Karevsky [46] and of
Nielsen [47] to the E-AHM.

VI. BWL AND GDS: THIS RESEARCH, VIEWED
THROUGH THE PRISM OF MATHEMATICAL
RIGOR DEMANDED BY RAYMOND STORA

Raymond Stora regarded vintage QFT as incomplete,
fuzzy in its definitions, and primitive in technology. For
example, he worried about whether the off-shell T matrix
could be mathematically rigorously defined to exist in
Lorenz gauge: e.g. without running into some IR subtlety.
The Adler self-consistency conditions proved here guar-
antee the IR finiteness of the ¢-sector on-shell T matrix.

Although he agreed on the correctness of the results
presented here, Raymond might complain that we fall short
of a strict mathematically rigorous proof (according to his
exacting mathematical standards). He reminded us that
much has been learned about quantum field theory, via
modern path integrals, in the recent ~45 years. In the time
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up to his passing, he was intent on improving this work by
focusing on the following three issues:
(i) properly defining and proving the Lorenz-gauge
results presented here with modern path integrals;
(ii) tracking our central results directly to SSB, via
BRST methods, in an arbitrary manifestly IR finite
"t Hooft R, gauge, i.e. proving to his satisfaction that
they are not an artifact of Lorenz gauge;

(iii) tracking our central results directly to those Slavnov-
Taylor identities governing the SSB Goldstone mode
of the BRST-invariant E-AHM Lagrangian.

Any errors, wrong-headedness, misunderstanding, or mis-
representation appearing in this paper are solely our fault.

VII. CONCLUSION

AHM and E-AHM physics (e.g. on-shell T-matrix
elements) have more symmetry than their BRST-invariant
Lagrangians. We introduced global U(1), ® BRST sym-
metry in Sec. II, and showed in Secs. IV and V and
Appendix B that the low-energy weak-scale effective SSB
E-AHM Lagrangian is protected (i.e. against loop contri-
butions from certain heavy Mgy, > M3y beyond-AHM
particles @, y) by the following hidden 1-soft-z theorems
for gauge theories:

(i) A tower of rigid SSB U(l), WTI governing

relations among Green’s functions.

(ii) A new tower of rigid SSB U(1), WTI which force
on-shell T-matrix elements to vanish, and represent
the new on-shell behavior of the U(1), ® BRST
symmetry.

(iii) A new Lee-Stora-Symanzik theorem.

(iv) Four new decoupling theorems (109), (108), (113)
and (159).

What is remarkable is that heavy-particle decoupling is
obscured/hidden from the physical particle spectrum (153)
and its dynamics Once in a while you get shown the light,
in the strangest of places, if you look at it right. [52]. The
decoupling of the NGB 7 has famously spared the AHM an
observable massless particle [19,31,32]. It has also hidden
from that physical particle spectrum and dynamics our
U(1), WTI (73), (92), (93), (95), (B10), (B15), (B17) and
(B18) and their severe constraints on the effective low-
energy E-AHM Lagrangian. In particular, the weak-scale
E-AHM SSB gauge theory has a hidden U(1), shift
symmetry, for constant 6

7 -+ (H)0 (162)
which, together with the LSS theorem, has caused the
complete'® decoupling of certain heavy M3.,., > My
U(1), matter particles.

*Modulo special cases: e.g. heavy Majorana v in Sec. IV D,

and possibly Oéﬁfﬁ;malyﬁc;ﬂ“vy in (74).
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Such heavy-particle decoupling is historically (i.e. except
for high-precision electroweak S,T and U [2,49,50]) the
usual physics experience, at each energy scale, as experi-
ments probed smaller and smaller distances. After all, Willis
Lamb did not need to know the top-quark or BEH mass in
order to interpret theoretically the experimentally observed
O(m,a® Ina) 2S-2P splitting in the spectrum of hydrogen.

Such heavy-particle decoupling may be the reason why
the standard model [39], viewed as an effective low-energy
weak-scale theory, is the most experimentally and obser-
vationally successful and accurate theory of nature known
to humans (when augmented by classical general relativity
and neutrino mixing). That ‘“core theory” [51] has no
known experimental or observational counterexamples.
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APPENDIX A: U(1), WARD-TAKAHASHI
IDENTITIES IN THE SSB ABELIAN
HIGGS MODEL

We present here the full self-contained and detailed
derivation of our U(1), WTI for the SSB AHM. We begin
by focusing on the rigid/global current J’ ;;,; of the Abelian
Higgs model, the spontaneously broken gauge theory of a
complex scalar ¢ = % (H +in) = %I:Ie’ﬁ/(m, and a mas-
sive U(1)y gauge field A,,.
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Construct the rigid/global U(1), current with (10)

Sy = 7O"H — HO ' — eA*(z? + H?). (A1)
The classical equations of motion reveal the following
crucial fact: due to gauge-fixing terms in the BRST-
invariant Lagrangian, the classical axial-vector current
(A1) is not conserved. Lorenz gauge

3”J’AHM = HmAFA
my = eY¢(H>

F,= 8/,A/” (A2)
with F', being the gauge-fixing function. Still, the physical
states Ay, h,n of the theory (but not the BRST-invariant
Lagrangian) obey F, = 0. In Lorenz gauge, A, is trans-
verse and 7 is a massless NGB.

The purpose of Appendix A is to derive a tower of
quantum U(1), Ward-Takahashi identities that exhausts the
information content of (A2) and severely constrains the
dynamics (i.e. the connected time-ordered products) of
the physical states of the spontaneously broken Abelian
Higgs model.

(1) We study a total differential of a certain connected

time-ordered product

aﬂ<O|T[J//iHM(Z)

X h(xl ) . 'h(xN)ﬂ(yl ) . ”(yM)] |O>connected (A3)
written in terms of the physical states of the complex
scalar ¢. Here we have N external renormalized
scalars h = H — (H) (coordinates x, momenta p),
and M external (CP = —1) renormalized pseudo-
scalars 7 (coordinates y, momenta q).

(2) Conservation of the global U(1), current for the
physical states: Strict quantum constraints are im-
posed that force the relativistically covariant theory
of gauge bosons to propagate only its true number of
quantum spin S =1 degrees of freedom. These
constraints are implemented by use of spin S =0
fermionic Fadeev-Popov ghosts (77, ) and, in
Lorenz gauge, S =0 massless z. Physical states
and their connected time-ordered products, but not
the BRST-invariant Lagrangian, obey [25] the
gauge-fixing condition F, = 8/,Aﬂ =0 in Lorenz
gauge,

(0IT[(9p47(2))
X h(xl)' . 'h<xN)ﬂ(yl)- : '”(yM)] |0>c0rmected

- 0. (A4)

This restores conservation of the rigid/global U(1),
current for physical states
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3

)

<O|T[(a/4J/./4\HM(Z>) (AS)
X h(xl)' . 'h(xN)ﬂ(yl)' . ﬂ(yM)] |O>connected
= 0. (A6)

It is in this time-ordered-product sense that the
physical rigid global U(1), current J';,, is con-
served, and it is this conserved current that generates
two towers of quantum U(1), WTIL These WTI
severely constrain the dynamics of the ¢-sector.
Vintage QFT and canonical quantization: Equal-time
commutators are imposed on the exact renormalized
fields, yielding equal-time quantum commutators at
space-time points y, z

8(z0 = yo) [ Aum(2)- H(y)] = —m( )5 (z = ¥),
8(z0 = o)V Aum(2). 2(y)] = iH (y)8*(z = y).
8(z0 — yO)[JOAHM( ), A*(y)] =0,
8(z0 = YO)[JAHM(Z) w(y)] =0,
8(z0 — yO)UAHM(Z)’ ()] =0. (A7)
Nontrivial commutators include
8(z0 = ¥0)[0°H(2). H(y)] = =i&*(z = y).
8(z0 =y0)[0"n(2). 2(y)] = =id*(z = y).  (A8)

Certain surface integrals vanish: As appropriate to
our study of the massless z, we use pion-pole
dominance to derive 1-soft-pion theorems, and form
the surface integral

lim [ 260, (O[T (Vs + (H) 7))

X h(xl)" 'h(xN ”(yM)} |O>connected
- / 420, (0/T[(J g + (H)D"7) (2)

X h(xy)...h(x

)ﬂ(yl)...

ﬂ(yM)} |0>connecled

— / d3Z2 3—surface
3—surface— oo .
X (OIT (S + (H)97)(2)

X h(x1>" 'h(xN)ﬂ(yl)‘ "”(yM)} |O>connected
=0,

N)”(Y1)---

(A9)

where we have used Stokes’ theorem, and 2,3 ~surface
is a unit vector normal to the 3-surface. The time-
ordered product constrains the 3-surface to lie on, or
inside, the light cone.

At a given point on the surface of a large enough
4-volume f d*z (i.e. the volume of all space-time),
all fields are asymptotic in states and out states,
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properly quantized as free fields, with each field
species orthogonal to the others, and they are
evaluated at equal times, making time ordering
unnecessary at (z>75U — oo). Input the global
AHM current (Al) to (A9), using 0,(H) =0

/ d3Z2”3—surface <O|T[
3—surface— oo

X (O*h — ho# — eA*(n* + H?))(z)

X h(xl)"'h<xN ”(yM)”O)connected =0.
(AIO)

)AY). -

The surface integral (A10) vanishes because both
(h,A") are massive in the spontaneously broken
U(1)y AHM, with (m3gy # 0,m} = e*(H)?) re-
spectively. Propagators connecting (4, A*), from
points on 737U _ o6 to the localized interaction
points (xy...xy;yy...¥y), must stay inside the light
cone, die off exponentially with mass, and are
incapable of carrying information that far.

It is very important for pion-pole dominance and
this paper that this argument fails for the remaining
term in J;p in (Al),

[ T~ ()04a()
3—Surface— oo

X h(xl)"'h(xN)ﬂ(yl)'"”(yM)]|O>connected ?é 0.
(Al1)

7 is massless in the SSB AHM, capable of carrying
(along the light cone) long-ranged pseudoscalar
forces out to the 3-surface (72754 — oo): i.e.
the very ends of the light cone (but not inside it).
That masslessness is the basis of our pion-pole-
dominance-based U(1), WTIL, which give 1-soft-
pion theorems (A18), infrared finiteness for m2 = 0
(A22), and the LSS theorem (A27).

Master equation: Using (AS5) and (A8) in (A3) to
form the right-hand side, and (A10) in (A3) to form
the left-hand side, we write the master equation
lim

lim d*ze** x {—<H>8;(0|T[(8ﬂn(z))
X h(x])"'h(xN)”(yl)'"ﬂ(yM)]|O>connected

=3 8% (2 = v OITTR() (). h(xy)

m

—

X 2(91)- (V).
ZNja“z—x (0|T[h(xy)..

(yM)] ‘O> connected

—

Ji(xy). . h(xy)

X ”(Z)ﬂ(yl)"'”(yM)]|0>c0nnected} =0 (A]Z)
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(6)

(N

®)

—_—

where the hatted fields &(x,) and z(y,,) are to be
removed. We have also thrown away a sum of M
terms, proportional to (H), that corresponds entirely
to disconnected graphs.

¢-sector connected amplitudes: Connected momen-
tum-space amplitudes, with N external BEHs and M
external zs, are defined in terms of ¢-sector con-
nected time-ordered products

N M
iGy g (P1---PN: 41 -G (27) 6 (Z Pat Y qm>

=1 m=1

n
N M
— H/d4xneipnxn H/d4ymeiqmym
n=1 m=1

X <0|T[h(xl> 'h(xN)ﬂ<yl)' "”(yM)]|O>connected‘

(A13)

The master equation (A12) can then be rewritten
as

klin}){i<H>k2GN,M+1 (P1---Pskqy---qu)
1—)

N
= Gt (Pr--Pao-Pwi (k4 Pa)q1--qu)
n=1

M
+ZGN+1,M—1((k+Qm)pl---pN;CIl“-é;'--qM)}

m=1
=0 (A14)

with the hatted momenta (p,,, g,,) removed in (A14),
and an overall momentum conservation factor

of (27[)454(k + ZnNzl Pn + Z%:l qm)-
¢-propagators: Special cases of (A13) are the BEH
and 7z propagators

. . d4p2
iGyo(p1,—p13) = i WGZ,O(M,I%;)

:/d“xﬂ”’"“ (0[T[h(x,)h(0)]]0)

= iABEH(P%)
. [ d*q
iGor(5q1,—q1) =i ﬁGOQ(;QIvQZ)
— [ diyienn QITian)a(0)]0)

= in (). (AlS)
¢-sector connected amputated 1-(h, z)-reducible
(1-¢-R) transition matrix (T matrix): With an
overall momentum conservation factor (27z)*s*x
N P+ g,), the ¢-sector connected am-
plitudes are related to ¢-sector connected amputated
T-matrix elements
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GN,M(pl---pN;QI"'QM)

n=1 m=1

X TN,M(Pl---PNQ%---QM) (Al6)

so that the master equation (A12) can be written

khmo{i<H>k2[iAn(k2)]TN,M+1 (P1---Pnskq1---qum)
1—)

= Tworss1(Pro--Pa--pni (K + pa)di-..qu)
x [iA((k + pu)*)|[iApen(pn)]™

M
+ Z Tyerm—1((k+gu)P1---PN3 Q1 Gn--u)

m=1

N N— qm>2>nmﬂ<q%n>]-l} —0 (A7)

with the hatted momenta (p,,, g,,) removed in (A17),
and an overall momentum conservation factor
of (2”)454(k + Zﬁ’l\,:l Pnt Z%zl Qm)'

(9) Pion-pole dominance and 1-soft-z theorems for the
T matrix: Consider the 1-soft-pion limit

lim k%A, (k) = 1
k;—0

(A18)

where the 7 is hypothesized to be all-loop-orders
massless, and written in the Kéllén-Lehmann rep-
resentation [26] with spectral density p%

1
A (k) = e / dm

The master equation (A12) then becomes

2 pZHM(mZ)
K —m? +ie’

(A19)

- <H>TN,M+1(P1'-'pN;OQI-'-QM)
N
= Tnetaa1 (D1 DD Pudt--dn)
n=1
X [i8(p7)][iApen(pi)]™

M
Z Txn1m=1(@mP1---PN3 Q1 G- Gu1)

m=1

x [iApen(gm)[iA-(gm)] ™ (A20)
in the 1-soft-pion limit. As usual the hatted momenta
(Pn» @) and associated fields are removed in (A20),
and an overall momentum conservation factor
(27)*6%( 2/:1 Pn+ 2 m—1 4m) applied.

The set of 1-soft-pion theorems (A20) has
the form
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(10)

(1D

(12)

<H>TN,M+1 ~ Tyt = Tnvrm-s (AZI)
relating, by the addition of a zero-momentum
pion, an N + M + 1-point function to N + M-point
functions.

The Adler self-consistency relations [but now for a
gauge theory rather than global SU(2), x SU(2)g
[37,38]] are obtained by putting the remainder of the
(A20) particles on mass shell

<H>TN,M+1(pl---pN;OQ]---qM)
N M pr=p2..=p*=m>
< e (Yot Yoan)|
n—1 m=1 1=43...=q3,=0
=0, (A22)

which guarantees the IR finiteness of the ¢-sector
on-shell T matrix in the SSB AHM gauge theory in
Lorenz gauge, with massless z in the 1-soft-pion
limit. These 1-soft-pion theorems [37,38] force the T
matrix to vanish as one of the pion momenta goes to
0, provided all other physical scalar particles are on
mass shell. Equation (A22) asserts the absence of
infrared divergences in the physical-scalar sector in
Goldstone mode. “Although individual Feynman
diagrams may be IR divergent, those IR divergent
parts cancel exactly in each order of perturbation
theory. Furthermore, the Goldstone mode amplitude
must vanish in the soft-pion limit [12].”
1-(h, ) reducibility (1-¢-R) and 1-(h, x) irreduc-
ibility (1-¢-I): With some exceptions, a ¢-sector
connected amputated transition-matrix element
Ty .y can be cut apart by cutting an internal A or
x line, and is designated 1-¢-R. In contrast, a ¢-
sector connected amputated Green’s function I'y
is defined to be 1-¢-I: i.e. it cannot be cut apart by
cutting an internal % or z line.
Tvy =Tyu+ (1-9-R). (A23)

Both Ty, and Ty, are 1-(A,)-reducible
(1-A#-R): i.e. they can be cut apart by cutting an
internal transverse-vector A, gauge-particle line.
¢-sector two-point functions, propagators and a
three-point vertex: The special two-point functions
To2(;9.—q) and T,4(p,—p;), and the three-point
vertex T1,(q;0,—q), are 1-¢-I (i.e. they are not
1-¢-R), and are therefore equal to the corresponding
1-¢-1 connected amputated Green’s functions. The
two-point functions

[ABEH( 2)]
()]

-pi) =Dao(p.—p:) =
q, _q) = FO’Q(;Q, _q) = [

T50(p,

Toa(; (A24)

(13)

(14)
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are related to the (1h,2x) three-point hz? vertex

T\2(psq.—p—q) =Tia2(pig.—p—q) (A25)

by a 1-soft-pion theorem (A20)

(H)T15(9:0,~q) = T20(q.—q;) + To2(:4.—9q)
= (H)T,, 2(61»0 —q) = [Bpeu(q?)) ™" + [AL (7)™
= (H)T'12(4:0,—q) —T20(q.—¢;) + To2(: 4. —q)
= (H)T12(¢:0,~q) = [Apeu(¢?)] ™" + [Az(¢7)]™
—0. (A26)

The LSS theorem, in the spontaneously broken
AHM in Lorenz gauge, is a special case of that
SSB gauge theory’s Adler self-consistency relations
(A22)

(H)To(;00) =
(H)To2(;00) =

(H)[A(0)]" =0, (A27)
proving that 7 is massless m2 = 0 (i.e. not just the
much weaker theorem that the Nambu-Goldstone
boson 7 is massless). That all-loop-orders renormal-
ized masslessness is protected/guaranteed by the
global U(1), symmetry of the physical states of the
gauge theory after spontaneous symmetry breaking.
TR ¢-sector T matrix with one soft (g, = 0)
attached to an external leg: Figure 1 shows that

<H>T%X1I§T}1(P N3 0qy...qy)
= Z H)T15(p; 0, =pa)][iA(p3)]
X Tn-tm1(Pre--Pa---PN> Pudi1--9um)
M
+ z:l{i<H>F1.2(qm; 0,~q,)[iAgen(gn)]
o
X Tyt m-1(qmPr---PN> 41 Gm---G1)

A (pi)]™)

=3 (1= [iAL(p

n=

—_

-QM)

- Z(l — [iApen(gn)][iAx(g2)]™")

m=1

X Ty_1 1 (D1 PPN Pudi -

-CIM)
(A28)

X TN+1,M—1(qu1-~PN;(]1.-‘5/1;1'-

where we used (A26). Now separate
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Tym1(P1---Pn:0G,-.qur)

=T (py...py:0q...qu)

+ Themal (py .. pn30qy...qy)  (A29)

so that
(H)TWemal (p, ... px; 0q,...qu)

M
= Z Tn1m-1(GmP1--PN3 91 G- Gu1)

m=1
N
= Tt (Pr--Pae-PN: Padi---qu)-
n=l1

(A30)

(15) Recursive U(1), WTI for 1-¢-I connected ampu-
tated Green’s functions I'y j;: Removing the 1-¢-R
graphs from both sides of (A30) yields the recursive
identity

<H>FN,M+1(P1--~I7N;OQI---QM)

M
= ZFN-H,M—I(Qmpl---pN;QI---ZI;---‘IM)

m=1
N
- ZFN—I,M+1(p1 - Du---PN} Pud---Am)-
n=1
(A31)

B. W. Lee [12] gave an inductive proof for the
corresponding recursive SU(2), x SU(2)gz WTI in
the global Gell-Mann Lévy model with PCAC [17].
Specifically, he proved that, given the global
SU(2), x SU(2)x analogy of (A30), the global
SU(2), x SU(2)g analogy of (A31) follows. This
he did by examination of the explicit reducibility/
irreducibility of the various Feynman graphs
involved.

That proof also works for the U(1), SSB AHM,
thus establishing our tower of 1-¢-1 connected
amputated Green’s functions’ recursive U(1),
WTI (A31) for a local/gauge theory.

Rather than including the lengthy proof here, we
paraphrase [12] as follows: (A26) shows that (A31)
is true for (N = 1, M = 1). Assume it is true for all
(n,m) such that n +m < N + M. Consider (A30)
for n =N, m =M. The two classes of graphs
contributing to TS (p;...py;0q;...qy) are dis-
played in Fig. 2.

The top graphs in Fig. 2 are 1-¢-R. For (n, m;n +
m < N+ M) we may use (A31), for those 1-¢-1
Green’s functions I',, ,, that contribute to (A30), to
show that the contribution of 1-¢-R graphs to both
sides of (A30) is identical.
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efelelpelele

q=0

5@553

FIG. 2. Circles are 1--1 TE-AHM solid lines 7, and dashed lines
h, with n4+m <N+ M. One (zero-momentum) soft pion
emerges in all possible ways from the connected amputated
Green’s functions. TEAMM js [-A#-R by cutting an A* line, and
also 1-®-R by cutting a @ line. Figure 2 is the E-AHM analogy of
B. W. Lee’s Fig. 11 [12]. The same graph topologies, but without
internal beyond-AHM @, y heavy matter, are used in the proof of

(A31) for the (unextended) AHM.

The bottom graphs in Fig. 2 are 1-¢-1 and so
already obey (A31).
(16) The LSS theorem makes tadpoles vanish,

<O|h(x = 0)|O>connected

= i[iAggu(0)]T1 0(0;), (A32)
but the N =0, M = 1 case of (A31) reads
['10(0;) = (H)T2(;00)
=0, (A33)

where we used (A27), so that tadpoles all vanish
automatically, and separate tadpole renormalization
is unnecessary. Since we can choose the origin of
coordinates anywhere we like

<O|h(x) |0>connected =0. (A34)

(17) Renormalized gauge-independent observable (H).

<O|H(x)|0>connected = <O|h(x)|0>connected + <H>
(H)
0. (A35)

9, (H)

(18) Benjamin W. Lee’s 1970 Cargese summer school
lectures’ [12] proof of ¢-sector WTI focuses on the
global SU(2); x SU(2); Gell-Mann Lévy theory
and PCAC, but gives a detailed pedagogical account
of the appearance of the Goldstone theorem and its
true massless Nambu-Goldstone bosons, especially
of the emergence of the LSS theorem, in global
theories, and is recommended reading. We include a
translation guide in Table 1.
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TABLE 1. Derivation of Ward-Takahashi identities.
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Property This paper B. W. Lee [12]

Lagrangian invariant BRST Global group

Structure group U(l)y, SU(2), x SU(2)p

Local/gauge group U(l)y

Rigid/global group U(l)y SU2), x SU(2)g

Global currents Janm VH: AF

PCAC no Yes

Current divergence Hmy0AP 0; f,m2z

LGauge Fixing Lorenz

Gauge Lorenz

Ghosts 7, @ Decouple

Conserved current Physical states Lagrangian

Physical states Ay h o, @y S, T

Interaction Weak Strong

Fields AL H m i, 0,0,y o,

BEH scalar h=H-(H) s=o0— (o)

VEV (H) (6) =v =[x

Particles in loops Physicalandghosts s,

Renormalization All loop orders All loop orders

Amplitudes G

Connected amplitudes Gy H

No pion-pole singularity H

1-¢-1 or R h, n S,

Connected I'y y, Amputated Amputated

Connected Ty 3 Amputated Amputated

NGB after SSB 7 F:

LSS theorem (H)T3(:00) =0 T3 (:00)
=ed2 =0

Explicit breaking €= f,m:

¢-sector Ty p 1-¢-R 1-¢-R

1-A,-R, 1-®-R
¢-sector I'y 1-¢-1 1-¢p-1
1-A,-R, 1-®-R

T-matrix Tywm T

¢-sector Green’s F’s I'ywm I'ywm

External z(g, = 0) TR T,

Internal 7(g, = 0) Thyiemal T,

BEH propagator Aggy A,

Transverse propagator Al

Pion propagator A, S'A,

SSB
Goldstone theorem
LSS theorem

Goldstone mode
Physical states
One-dimensional line

Goldstone mode
Goldstone mode

One-dimensional boundary of

Two-dimensional quarter-plane

APPENDIX B: U(1)y ¢-SECTOR WTI WHICH of the extended Abelian Higgs model, the spontaneously
INCLUDE THE ALL-LOOP-ORDERS broken gauge theory of a complex spin S =0 scalar
CONTRIBUTIONS OF CERTAIN ADDITIONAL ¢ = L (H + ix), a massive U(1), § = | transverse gauge
VIRTUAL U(1)y CP-CONSERVING
MATTER REPRESENTATIONS @, y
IN THE E-AHM

field A,, and certain S =0 scalars ® and anomaly-
canceling S :% fermions y originating in beyond-AHM
models.

In order to force renormalized connected amplitudes
with an odd number of 7 s to vanish, the new particles @, y
Jeamm = Janm(A*. @) +J {;eyondAHM(q)’ ¥) (Bl)  are taken in this paper to conserve CP.

We focus on the rigid/global extended-AHM current
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The classical equations of motion reveal that, due to
gauge-fixing terms in the BRST-invariant Lagrangian, the
classical current (B1) is not conserved. In Lorenz gauge

(9”]%_AHM = HmAFA,
my = eY,(H),
Fp = 0pA7, (B2)

with F, being the gauge-fixing function.

The purpose of this appendix is to derive a tower of
U(1)y extended WTI that exhausts the information content
of (B2), and severely constrains the dynamics (i.e. the
connected time-ordered products) of the physical states of
the SSB extended AHM. We make use here of all of the
results in Appendix A concerning J -

(1) We study a certain total differential of a connected

time-ordered product,

9, (OIT[Jgamm (2)
X h(xl)‘ . 'h(xN)ﬂ(yl)' . T[(yM)] |0>connected’ (B3)

written in terms of the physical states of the complex
scalar ¢. Here we have N external renormalized
scalars h = H — (H) (coordinates x, momenta p),
and M external (CP = —1) renormalized pseudo-
scalars 7 (coordinates y, momenta q).

(2) Conservation of the global U(1), current for the
physical states: Strict quantum constraints are im-
posed that force the relativistically covariant theory
of a massive transverse gauge boson to propagate
only its true number of quantum spin § = 1 degrees
of freedom. Physical states and their time-ordered
products, but not the BRST-invariant Lagrangian,
obey the gauge-fixing condition F, = 8/3A/’ =01in
Lorenz gauge [25],

(0IT((9p47(2))
X h<x1)' "h(xN>”(y1)-' '”(yM)] |0>c0nnected

=0, (B4)

which restores conservation of the rigid/global
U(1), extended current for physical states

OIT[(9TE A ()
X h<x1)"'h(xN)7T(y1)"'”(yM)]|0>c0nnected

=0. (B5)
It is in this time-ordered-product sense that the rigid
global extended U(1)y current Ji; 5,y 18 conserved,
and it is this conserved current that generates our
tower of U(1), extended WTL These extended WTI
severely constrain the dynamics of ¢.
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Vintage QFT and canonical quantization: Equal-time
commutators are imposed on the exact renormalized
beyond-AHM fields, yielding equal-time quantum
commutators at space-time points y, z.

8(20 = ¥0) [/ peyondanm (2): H()]

0.
5(Z0 - yO)[JgeyondAHM(Z)’ ﬂ(.y)} 0.

(B6)

Only certain U(1), matter particles ®@, y obey this

condition.

(a) Renormalized (H) is defined to match the
(unextended) AHM. Our extended U(1), WTI
therefore require that all of the new spin § = 0
fields in Ji opaamv have zero VEV:

<¢)beyondAHM> =0. (B7)
Only certain U(1), matter particles @ obey this
condition.

Certain connected surface integrals must vanish: As

appropriate to our study of massless 7z, we again use

pion-pole dominance to derive 1-soft-pion theorems,

and require that the connected surface integral

/}:Lr}] d4zeikz 8/4 <O| T[(Jll;eyondAHM (Z) )

X h(xl)"'h(xN)”(yl)"'”(yM)]|0>connected
:/d4zaﬂ<O|T[(Jgey0ndAHM(Z))

X h(xl)‘ "h(xN)ﬂ(yl>" ”(yM)] |0>c0nnected

— / d3z2 3—surface
3—Surface—co .
X <0|T[(Jgey0ndAHM(Z))

X h(xl)' "h(xN)”(yl)" 'ﬂ(yMﬂ |0>connected

=0, (B8)
where we have used Stokes’ theorem, and 2, 3~suface
is a unit vector normal to the 3-surface. The time-
ordered product constrains the 3-surface to lie on or
inside the light cone.

At a given point on the surface of a large enough
4-volume f d*z (i.e. the volume of all space-time),
all fields are asymptotic in states and out states, are
properly quantized as free fields, with each field
species orthogonal to the others, and are evaluated at
equal times, making time ordering unnecessary at
(Z3—surface - oo)

Only certain U(1), massive matter particles @, y
obey this condition.

Extended master equation: Using (B5) and (B6) in
(B3) to form the right-hand side, and (B8) in (B3) to
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form the left-hand side, we write the extended master
equation, which relates connected time-ordered
products,

gjz})/d4zeikz X {—<H>6;<O|T[(8”ﬂ(z))

2 h<x1)‘"h(xN)”(yl)"'”(yM)]|0>c0nnected
=D 6"z = yu)(OIT[A(2)h(x))...h(xy)

m=1

—

X ”(yl)' "ﬂ(ym)' "”(yM)]|O>connected

N —_—
+ Y i6*(z = x,)(OT[h(xy)...h(x,)...h(xy)

n=1

x n(z)n(yl>...n<yM>1|0>cmed} —0.  (BY)

—_—

where the hatted fields &(x,) and z(y,,) are to be

removed. We have also thrown away a sum of M

terms, proportional to (H), that corresponds entirely

to disconnected graphs.

(a) U(1), Ward-Takahashi identities for the ¢-sector
of the E-AHM: The extended master equation (B9)
governing the ¢-sector of the E-AHM is idential to
the master equation (A12) governing the ¢-sector
of the (unextended) AHM. This proves that, for
each U(1), WTI that is true in the AHM, an
analogous U(1), WTI is true for the E-AHM.
Appendix A proved U(1), WTI relations among
1-¢-R ¢p-sector T-matrix elements Ty ;;, as well as
U(1)y, WTI relations among 1-¢-1 ¢-sector
Green’s functions I'y,, in the spontaneously
broken AHM. Analogous U(1), WTI relations
among 1-¢-R ¢-sector T-matrix elements Ty 3™,
as well as analogous U(1), WTI relations among
1-¢-1 ¢-sector Green’s functions I'y4™, are
therefore here proved true for the spontaneously
broken extended AHM.

But there is one huge difference. The renorm-
alization of our U(1), WTI, governing ¢-sector
Tia™ and ¢-sector T 4™, now includes the
all-loop-orders contributions of virtual gauge
bosons, ¢ scalars, ghosts, new beyond-AHM
scalars and new beyond-AHM fermions: i.e. A¥,
h, 7,7, w, @,y respectively.

(10) Adler self-consistency relations, but now for the E-

AHM gauge theory,
<H>T5_,/1?/11N1[<Pl .PN30qy-..qy)

a5t ZN ZM P=r ==y
X (2”) o Pn Tt qm =G =, =0
n=1 m=1

= 0. (B10)

(11)

(12)

(13)

(14)
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These prove the IR finiteness of the ¢-sector on-
shell connected T matrix in the E-AHM gauge
theory, with massless z, in Lorenz gauge, in the
1-soft-pion limit.
1-(h, z) reducibility (1-¢-R) and 1-(h,x) irreduc-
ibility (1-¢-1): With some exceptions, the extended
¢-sector connected amputated T-matrix elements
T4 can be cut apart by cutting an internal s
or z line: they are designated 1-¢-R. In contrast, the
extended ¢-sector Green’s functions '™ are
defined to be 1-¢-I: i.e. they cannot be cut apart
by cutting an internal 4 or x line.
TEAM = TENM 4 (1g-R).  (BI1)
As usual, both TR4™ and I'3™ are 1-(A¥)-
reducible (1-A#-R), i.e. they can be cut apart by
cutting an internal transverse-vector A* gauge-
particle line. They are also 1-®-reducible (1-®-R),
i.e. they can be cut apart by cutting an internal
®-scalar line.
¢-sector two-point functions, propagators and a
three-point vertex: The two-point functions

leif(?HM(Pv —p;) =I5 (p —pi) = [Agpu(p?)] ™,
T63"™(:q.—q) =T63™(g.—q) = [A(¢?)] ™,

(B12)

are related to the (1h,2x) three-point hz? vertex

TN ( =TEpM (g —p — q)

(B13)

P:q.—p—q)

by a 1-soft-pion theorem (B18)

(H)TEM(g:0, —q) = [Apen(g?)] ™" — [AL(¢H)] 7"
(B14)

The LSS theorem in Lorenz-gauge E-AHM is the
N =0, M =1 case of (B10),

(;00) =0,
(H)TEA™M(;00) =0,
1 O,

(H)[A,(0)]" = (B15)
proving that 7z is still massless in the E-AHM, whose
all-loop-orders renormalized masslessness is pro-
tected/guaranteed by the global U(1), symmetry of
the physical states of the E-AHM gauge theory
after SSB.

ThA ™! are the 1-¢-R  ¢b-sector connec-
ted amputated T-matrix elements, with one soft



GLOBAL U(1), ® BRST SYMMETRY AND THE ...

n(gq, = 0) attached to an external leg, as shown in
Fig. 1. With the separation

Tglz?/f}ﬂ\f(l?l-npzv?oclp-ﬂM)

= TE‘;}j_Nll Extemal 4y pn30Gy ... qy)
+T%?/[I—i}\;{lntemal(pli"pN;Oql,,,qM) (B16)

we have the recursive U(1), T-matrix WTI

<H> TE AHM;Internal

N.M+1 (P1---Pn:0qy...qum)

Z TN V-1 (@mP1 PN Q1T qu1)

N
=Y TR (P PPN Padi - -Gu)-

n=1

(B17)

(15) Recursive U(1), WTI for 1-¢-1 ¢-sector connected
amputated extended Green’s functions Iy A are a
solution to (B17),

(H)TEAM () py;0q;...qy)

= Zrﬁﬂ{% 1(@uP1--PN Q1 G- -G1)
m=1
N

- > TR (p

n=1

|oo-Dn---PN> Pnd1---Ay1)-

(B18)

PHYSICAL REVIEW D 96, 065003 (2017)
(16) The LSS theorem (B15) makes tadpoles vanish,
(0[A(x = i[iAgen(0)| T3 ™ (0; ),
(B19)

O) | 0> connected —

but the N =0, M =1 case of (B18) reads

F%*HM(O;) = <H>F§:?HM(;OO) =0, (B20)

where we have used (B15), so that tadpoles all
vanish automatically, and separate tadpole renorm-
alization is unnecessary. Since we can choose the
origin of coordinates anywhere we like

<0|h(x>|0>connected =0. (BZI)

(17) Renormalized gauge-independent observable (H).

< | ( )|0>c0nnected+ <H>

= (H)
9,(H) = 0.

<0|H( ) ‘O>connectcd

(B22)
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