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One of the central goals of the newborn field of gravitational wave astronomy is to test gravity in the highly
nonlinear, strong field regime characterizing the spacetime of black holes. In particular, “black hole
spectroscopy” (the observation and identification of black hole quasinormal mode frequencies in the
gravitational wave signal) is expected to become one of themain tools for probing the structure and dynamics
of Kerr black holes. In this paper we take a significant step toward that goal by constructing a “post-Kerr”
quasinormal mode formalism. The formalism incorporates a parametrized but general perturbative deviation
from the Kerr metric and exploits the well-established connection between the properties of the spacetime’s
circular null geodesics and the fundamental quasinormalmode to provide approximate, eikonal limit formulas
for the modes’ complex frequencies. The resulting algebraic toolkit can be used in waveform templates for
ringing black holes with the purpose of measuring deviations from the Kerr metric. As a first illustrative
application of our framework, we consider the Johannsen-Psaltis deformed Kerr metric and compute the
resulting deviation in the quasinormal mode frequency relative to the known Kerr result.
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I. INTRODUCTION

The direct observation of merging black hole binaries
during the first observation run (O1) of Advanced LIGO
marked a milestone in the history of astronomy and
fundamental physics. The three detections (GW150914
[1], GW151226 [2] and GW170104 [3]), plus a fourth
candidate LVT151012 that is likely of astrophysical origin
[4], provide a formidable laboratory to test general rela-
tivity (GR) in the strong-gravity regime [5–7]. More
detections are expected in the near future.
The first event, GW150914, was particularly striking for

its high signal-to-noise ratio (SNR), and because it allowed
a direct observation of the strong-field merger and ring-
down of the binary. Similar observations in the future may
allow us to do “black hole spectroscopy”: as first proposed
by Detweiler [8], the measurement of multiple oscillation
frequencies and damping times of the merger remnant may
identify Kerr black holes, just like atomic lines allow us to
identify atomic elements [9,10]. However, given our
current understanding of astrophysical black hole forma-
tion, the detection of several modes will require either more
advanced detectors on Earth and in space [11–13] or better
data analysis techniques [14].
Vishveshwara discovered quasinormal modes (QNMs)

via time evolutions in the Schwarzschild spacetime [15].

Soon afterwards, Press computed QNM frequencies in a
short-wavelength (eikonal) approximation [16], and
Goebel (inspired by Ames and Thorne’s study of collapsing
stars [17]) understood that there is an intimate relation
between QNM frequencies and unstable null geodesics [18]
(see e.g., [19,20] for reviews). The imaginary part of the
modes is similarly related to the Lyapunov exponent, (the
inverse of) the instability timescale associated with null
geodesic motion [21].
This connection between null geodesics and QNMs has

been explored in depth for Kerr black holes [22–26]. Our
goal here is to extend this connection beyond the Kerr
spacetime, and to turn it into a practical scheme to test
experimentally whether a set of QNM frequencies (such as
those potentially observable by LIGO) is consistent with
the dynamics of the Kerr spacetime. Similar ideas were
recently proposed in the context of a specific modified
gravity theory (Einstein-Maxwell-dilaton gravity) [27].
The remainder of the paper is structured as follows. In

Sec. I Awe briefly discuss the inherent difficulty in comput-
ingQNMs innon-GR theories of gravity andmotivate the use
of the eikonal limit approximation. Section I B provides a
practical summaryof the post-Kerr toolkit and themain result
of the paper, namely, the eikonal QNM formulas. In Sec. II
we study circular null geodesics (“light rings”) in a general
stationary axisymmetric spacetime. In Sec. III we specialize
these results to the case of a general post-Kerr metric and
calculate the associated light ring frequency and Lyapunov
exponent. In Sec. IV we consider the Johannsen-Psaltis
(JP) deformed Kerr metric and compute eikonal QNM
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frequencies for both small and generic deviations from Kerr.
Our concluding remarks can be found in Sec. V. Some
technical material and lengthy equations are collected in the
Appendices.

A. The eikonal post-Kerr parametrization scheme

The post-Kerr scheme of this paper is based on the use of
eikonal limit formulas for a QNM’s real and imaginary parts.
This approach is dictated more by necessity than by choice.
Computing QNMs in generic non-GR theories is unrealistic,
because black hole perturbation theory should be developed
(in principle) for any given choice of the field equations.
There have been attempts to build such a formalism for
specific classes of theories, such as Horndeski gravity.
However these attempts are usually limited to spherical
symmetry, and they often lead to the conclusion that large
classes of black hole solutions are unstable [28,29]. As far as
we know, QNM frequencies in modified gravity were
computed only in a handful of cases, specifically in
Einstein-dilaton-Gauss-Bonnet [30–32] and dynamical
Chern-Simons [33,34] theories, and even then only for
spherically symmetric black hole solutions. These calcula-
tions are therefore of limited utility in data analysis
applications, both because they must be developed on a
case-by-case basis, and because the remnant of a binaryblack
hole merger is almost inevitably a rotating black hole.1

Relying on the eikonal limit/QNM link is a reasonable
alternative strategy, reinforced by the fact that it is known to
perform surprisinglywell in the case of theKerr spacetime as
long as one is interested in approximating the fundamental
QNM for a given ðl; mÞmultipole [23–26]. This is the mode
associated with the spacetime’s circular null geodesics and
with the peak of the radial potential that determines the
properties of wave scattering after separating angular vari-
ables in the perturbation equations (see e.g., [37]).
The light ring/QNM correspondence should be broadly

valid in modified theories of gravity that can be used as
tests of GR provided that (i) gravitational waves propagate
with the speed of light (e.g., Lorentz-violating theories
likely fall short of this requirement [6]) and (ii) deviations
from the Einstein field equations (and deviations of the
corresponding black hole solutions from Kerr) can be
parametrized by some small perturbative parameter [38].
Our post-Kerr formalism implicitly assumes a “Kerr-

like” situation, in the sense that the non-Kerr spacetime
should admit a single geodesic light ring structure that can
be physically connected to the observed QNM signal. In
fact, these fundamental QNMs are known to dominate the
spacetime’s perturbative dynamics as it happens, for
example, in the case of general relativistic Kerr black holes
and ultracompact stars [19,20].

This restriction aside, the post-Kerr scheme can handle
equally well “bumpy Kerr metrics” (i.e., makeshift
deformed Kerr metrics that are not consistent solutions
of any gravitational field equations, see e.g., [38,39] for
reviews) and known black hole spacetime solutions pro-
duced by modified theories of gravity (but for which the
QNM perturbation calculation is often very complicated or
impractical) [6,38].
As an illustrative application, in this paper we study the

JP “bumpy Kerr” metric [40] (see Sec. IV below). There is
an abundance of “bumpy” black hole metrics that could be
considered for data analysis applications, such as those
proposed in Refs. [41–43].
Besides focusing on the fundamental QNMs, in this

paper we exclusively study the l ¼ jmj angular multipoles.
There is good reason for this choice, since these modes are
considered to be the most powerful emitters of gravitational
waves, and as a consequence the most easily detectable by
gravitational wave observatories [10–12,14,44–52]. At the
same time they are the easiest to model with the eikonal
approximation, since they are associated with equatorial
photon orbits (more specifically, a positive/negative m
corresponds to prograde/retrograde orbital motion).
In order to facilitate the comparison between Kerr and

non-Kerr QNMs we need to express the former in an
eikonal form. To this end we introduce the “offset” function
βKðaÞ defined by

ωK ¼ σK þ βK; ð1Þ
where ωK is the exact Kerr QNM frequency and σK is the
analytically known, eikonal-limit formula [22,53]. The
offset function βKðaÞ can be obtained via numerical fits
to tabulated Kerr QNM data [10,20]. These fits and their
accuracy are discussed in Appendix A.
An eikonal QNM frequency σ can be obtained from the

properties of the equatorial light ring of a given non-Kerr
spacetime. Then, an observed QNM frequency ωobs,
gleaned from gravitational wave data, is match-filtered
by the complex-valued “template,”

ωobs ¼ σ þ βK: ð2Þ
A genuine Kerr QNM signal obviously implies σ ¼ σK. On
the other hand, the combination of a non-Kerr spacetime
and a non-Kerr light ring structure is bound to lead to a
mismatch

ωobs − ωK ¼ σ − σK ≠ 0: ð3Þ
In practice (and taking into account the recent gravitational
wave observations of merging black holes) we would
expect to face situations where the deviation from Kerr
is small. This means that it makes sense to employ a simpler
post-Kerr form σ ¼ σK þ δσ and get

δσ ¼ ωobs − ωK; ð4Þ

1Producing a Schwarzschild remnant requires an astrophysi-
cally unrealistic fine-tuning of the parameters of the merging
binary, such that the individual black hole spins exactly cancel the
orbital angular momentum at merger [35,36].
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with δσ encoding the deviation from the Kerr metric. A
large portion of this paper is devoted to the explicit
calculation of this parameter; the final outcome will be a
fully algebraic expression in terms of M, a and leading-
order metric deviations from Kerr evaluated at the Kerr
light ring. The derivation of a similar algebraic result for a
general non-Kerr spacetime is not possible, for the simple
reason that the radial location of the light ring comes as a
solution of a transcendental equation.
The proposed parametrization is a simple null test:

δσ ¼ 0 if and only if the spacetime is exactly described
by the Kerr metric. This scheme fails in the special (and
presumably highly unlikely) case of a non-Kerr metric with
a Kerr light ring. It is also obvious that, if present, the
measured deviation from Kerr will carry some amount of
inaccuracy due to the use of the Kerr offset βK.

B. The post-Kerr QNM toolkit summarized

This section collects the key elements of the post-Kerr
formalism in the form of a “toolkit” that can be used in the
construction of parametrized QNM templates. The detailed
calculations leading to these results are presented in
subsequent sections. A remark about notation: the label
“ph” identifies Kerr parameters evaluated at the Kerr
circular photon orbit rph while Kerr functions at an arbitrary
radius are labelled by a “K.” Non-Kerr parameters are
identified by a subscript “0.”
The main idea is to work with a simple, perturbative

post-Kerr metric correction hμν, such that a general axi-
symmetric-stationary metric is expressed in the form

gμν ¼ gKμνðrÞ þ ϵhμνðrÞ þOðϵ2Þ; ð5Þ

where gKμν is the Kerr metric and we only keep leading-
order terms in the perturbative parameter ϵ. Also, the
θ-dependence has been suppressed, as we are considering
equatorial orbits.
This expansion can be used to find modifications to the

Kerr light ring radius (the upper/lower sign corresponds to
prograde/retrograde motion)

rph ¼ 2M

�
1þ cos

�
2

3
cos−1

�
∓ a

M

���
; ð6Þ

and to the Kerr light ring angular frequency

Ωph ¼ � M1=2

r3=2ph � aM1=2
: ð7Þ

The result is

r0 ¼ rph þ ϵδr0 þOðϵ2Þ; ð8Þ

Ω0 ¼ Ωph þ ϵδΩ0 þOðϵ2Þ; ð9Þ

where the shifts δr0 and δΩ0 can be computed by
expanding the light ring equation. The explicit forms of
these post-Kerr modifications are

δr0 ¼ −
1

6
h0φφ þ

ðrph −MÞ−1
6rph

�
Ctth0tt � 4ðCtφh0tφþDtφhtφÞ

þ 4M½ð3r2ph þ a2Þhtt þ hφφ�
�

ð10Þ

and

δΩ0 ¼∓
�
M
rph

�
1=2

�
hφφ �

�
rph
M

�
1=2

ðrph þ 3MÞhtφ

þ ð3r2ph þ a2Þhtt
�
=½ðrph −MÞð3r2ph þ a2Þ�; ð11Þ

where

Dtφ ¼ ðMrphÞ1=2ðrph þ 3MÞ; ð12Þ

Ctt ¼ −ða2 þ 63M2Þr2ph þ ð135M2 − 11a2ÞMrph

− 60M2a2; ð13Þ

Ctφ ¼ ðMrphÞ1=2ð3Mrph − 2r2ph − a2Þ: ð14Þ

In these expressions a prime stands for d=dr and hμν and its
derivatives are to be evaluated at rph.
Apart from the light ring frequency shift, the formalism

makes contact with the local divergence rate of photon
orbits grazing the light ring. These orbits can be approxi-
mated near the light ring as,

rðtÞ ≈ r0ð1þ Ce�γ0tÞ; ð15Þ

where C is a constant. The divergence rate of photon orbits
grazing the light ring γ0 (which is essentially the Lyapunov
exponent for these orbits) is also modified with respect to
its Kerr value:

γ0 ¼ γph þ ϵδγ0 þOðϵ2Þ: ð16Þ

The Kerr expression for this parameter is [22,53]

γph ¼ 2
ffiffiffiffiffiffiffi
3M

p ΔphΩph

r3=2ph ðrph −MÞ
; ð17Þ

where Δph ¼ r2ph − 2Mrph þ a2.
For the post-Kerr shift we find the rather complicated

result
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δγ0 ¼∓ 4M2ffiffiffi
3

p fðrph þ 3MÞ½Gtth00tt þ Gφφh00φφ þ 2Ztth0tt

þ2Zφφh0φφ � ðM=rphÞ1=2ðGtφh00tφ þ 4Ztφh0tφÞ
þ6Errhrr� þ 2MðStthtt þ Sφφhφφ

�StφhtφÞg=½Δphr5phðrph þ 3MÞ2ðrph −MÞ3�; ð18Þ

where the various coefficients are listed in Appendix C.
The eikonal-limit formulas for the QNM frequency σ ¼

σR þ iσI associated with the light ring are

σR ¼ mΩ0; σI ¼ −
1

2
jγ0j: ð19Þ

Their post-Kerr approximation is the principal result of this
paper:

σR ¼ mðΩph þ ϵδΩ0Þ; ð20Þ

σI ¼ −
1

2
jγph þ ϵδγ0j: ð21Þ

Both quantities are functions of the Kerr parameters M, a
and of the post-Kerr metric correction hμν evaluated at the
Kerr light ring rph. The imaginary part σI in addition
depends on the first and second derivatives of hμν.

II. LIGHT RING IN A GENERAL STATIONARY
AXISYMMETRIC SPACETIME

In this section we consider circular photon orbits in a
spacetime that is stationary and axisymmetric, but other-
wise arbitrary. The special case of the Kerr metric is
textbook material that we review (mostly to establish
notation) in Appendix B.

A. Equatorial photon orbits

As pointed out earlier, we are interested in equatorial null
geodesics. The four-velocity normalization gives,

gttðutÞ2 þ 2gtφutuφ þ grrðurÞ2 þ gφφðuφÞ2 ¼ 0: ð22Þ

Given the imposed symmetries, any geodesic has a con-
served energy E ¼ −ut and angular momentum L ¼ uφ
(both per unit mass). These relations can be inverted:

ut ¼ 1

D
ðgφφEþ gtφLÞ; ð23Þ

uφ ¼ −
1

D
ðgttLþ gtφEÞ; ð24Þ

where D≡ g2tφ − gttgφφ. From these we can immediately
obtain the (coordinate) azimuthal angular frequency,

Ω ¼ dφ
dt

¼ uφ

ut
¼ −

gttLþ gtφE

gtφLþ gφφE
: ð25Þ

After eliminating the two velocities in (22) we obtain an
effective potential equation for the radial motion:

DgrrðurÞ2 ¼ gφφE2 þ 2gtφELþ gttL2 ≡ Veff : ð26Þ

If the orbit has a turning point (ur ¼ 0) at rp, then

gφφðrpÞ þ 2gtφðrpÞbþ gttðrpÞb2 ¼ 0; ð27Þ

where we introduced the impact parameter:

b≡ L
E
: ð28Þ

At the same time, Eq. (22) can be written as

gttðrpÞ þ 2gtφðrpÞΩp þ gφφðrpÞΩ2
p ¼ 0; ð29Þ

where Ωp ≡ΩðrpÞ. Thus, at any turning point

Ωp ¼ 1

b
⇔ E ¼ ΩpL: ð30Þ

Obviously, this simple relation will hold for a circular
photon orbit as well.

B. Light ring

Circular motion at a radius r ¼ r0 must meet the
following two conditions:

Veffðr0Þ ¼ 0; V 0
effðr0Þ ¼ 0: ð31Þ

Both equations lead to quadratics of b:

gttb2 þ 2gtφbþ gφφ ¼ 0; ð32Þ

g0ttb2 þ 2g0tφbþ g0φφ ¼ 0: ð33Þ

In solving these we follow the same steps as in the
corresponding analysis of Kerr orbits (see Appendix B).
From Eq. (33) we get

b ¼ 1

g0tt
ð−g0tφ ∓ W1=2Þ; W ¼ ðg0tφÞ2 − g0ttg0φφ; ð34Þ

where the upper (lower) sign corresponds to prograde
(retrograde) motion. Inserting this in Eq. (32) we obtain
the light ring equation:

gφφðg0ttÞ2 þ 2gttðg0tφÞ2 − g0ttðgttg0φφ þ 2gtφg0tφÞ
∓ 2W1=2ðgtφg0tt − gttg0tφÞ ¼ 0: ð35Þ

GLAMPEDAKIS, PAPPAS, SILVA, and BERTI PHYSICAL REVIEW D 96, 064054 (2017)

064054-4



The angular frequency Ω0 at the light ring
2 is obtained with

the help of Eq. (30),

Ω0 ¼
g0tt

−g0tφ ∓ W1=2 : ð36Þ

In the Kerr metric limit, gμν → gKμν, Eqs. (34)–(36) reduce to
well known expressions [cf. Eqs. (B7), (B8), and (B11) in
Appendix B].

C. Orbiting near the light ring

The association between the light ring structure and the
spacetime’s fundamental QNM frequency requires, apart
from the properties of the circular photon orbits themselves,
the study of orbits that approach the light ring from far
away and asymptotically tend to become circular. In other
words these are parabolic-like orbits with their periapsis
located at r0. The rate with which these orbits “zoom-
whirl” toward the light ring is the key parameter connected
to the imaginary part of the eikonal QNM (in the Kerr
spacetime there is also a direct link between this parameter
and the curvature of the wave potential at the location of its
maximum).
Considering noncircular equatorial photon orbits, we

follow the textbook approach and use the auxiliary radial
variable U ¼ 1=r. Then,

dU
dφ

¼ −U2
ur

uφ
: ð37Þ

After eliminating uφ and ur with the help of (24) and (26),
we arrive at a Binet-type equation describing the shape rðφÞ
of the orbit:

�
dU
dφ

�
2

¼ U4D
grr

ðgttb2 þ 2gtφbþ gφφÞ
ðgttbþ gtφÞ2

≡ fðUÞ: ð38Þ

Given that U0 ¼ 1=r0 is a turning point, we should have

fðU0Þ ¼ f0ðU0Þ ¼ 0 ¼ df
dU

ðU0Þ: ð39Þ

The portion of the orbit near the light ring can be studied
via an expansion

U ¼ U0 þ εU1 þOðε2Þ; ε ≪ 1: ð40Þ

The leading order perturbative term solves

dU1

dφ
¼ �κ0U1; ð41Þ

where we have defined

κ20 ¼
1

2

d2f
dU2

ðU0Þ ¼
f00ðU0Þ
2U4

0

: ð42Þ

For the second r-derivative of f at U0 we find

f00ðU0Þ ¼ U4
0

D
grr

ðg00ttb2 þ 2g00tφbþ g00φφÞ
ðgttbþ gtφÞ2

; ð43Þ

and this leads to

κ20 ¼
Dðg00ttb2 þ 2g00tφbþ g00φφÞ

2grrðgttbþ gtφÞ2
: ð44Þ

Equation (41) admits the exponential solutions

U1 ¼ Ce�κ0φ ðC ¼ constÞ: ð45Þ

This can be written as a time domain expression with the
simple substitution φ ¼ Ω0tþ const. The resulting equa-
tion describes the convergence/divergence of our light ring-
grazing orbits as a function of time:

UðtÞ ≈ U0 þ εCe�γ0t; ð46Þ

where C has been rescaled and

γ0 ≡ jκ0Ω0j: ð47Þ

This UðtÞ expression illustrates the role of the parameter γ0
as a measure of the local divergence rate of null geodesics
at r0. In other words, γ0 is the Lyapunov exponent of these
orbits.

III. POST-KERR LIGHT RING FORMALISM
AND EIKONAL QNM

So far our analysis has been based on the use of a general
stationary-axisymmetric metric. As we have seen in the
preceding sections, we can derive the light ring’s angular
frequency Ω0 [Eq. (36)] and Lyapunov exponent γ0
[Eq. (47)] as functions of the metric gμν and its derivatives
evaluated at the light ring’s radius r0. Once these param-
eters have been calculated, the eikonal QNM frequency can
be obtained immediately via Eq. (19). The main drawback
of this general approach is that r0 is not known beforehand,
but must be computed by solving Eq. (35) which, in
general, is a transcendental expression.

2It should be pointed out that the two angular frequency
expressions (30) and (36) hold for orbits of massive particles as
well. Interestingly, the latter expression has a hidden “symmetry”
that allows it to take the equivalent “inverted” form
Ω0 ¼ ð−g0tφ �W1=2Þ=g0φφ. This is of course a consequence of
the high symmetry of the underlying spacetime.
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A. Post-Kerr light ring

A more practical approach, closer to the spirit of
producing QNM templates that could be used as a
measuring device of the “Kerrness” of black holes seen
by gravitational wave detectors, is that of adopting a
simpler post-Kerr metric of the form

gμν ¼ gKμνðrÞ þ ϵhμνðrÞ þOðϵ2Þ; ð48Þ
and working to first order with respect to the metric
deviation hμν. Note that we use an index K to label Kerr
spacetime parameters and we only consider the equatorial
hypersurface.
According to this recipe, the orbital frequency (25) as a

function of r can be approximated as

ΩðrÞ ¼ ΩKðrÞ þ ϵδΩðrÞ þOðϵ2Þ; ð49Þ
where

ΩKðrÞ ¼ � M1=2

r3=2 � aM1=2 ; ð50Þ

δΩðrÞ ¼∓ 1

4
ΩK

�
r
M

�
1=2

�
2h0tφ þ ΩKh0φφ

þΩK

M
ðr3 � 2aM1=2r3=2 þMa2Þh0tt

�
: ð51Þ

These expressions need to be combined with the modified
light ring radius

r0 ¼ rph þ ϵδr0 þOðϵ2Þ; ð52Þ
where rph is the Kerr light ring [see Eq. (6)]. The shift δr0
can be computed by expanding the light ring equation (35).
After some algebra and repeated use of the Kerr light ring
equation (B8) we find:

δr0 ¼ −
1

6
h0φφ þ

ðrph −MÞ−1
6rph

fCtth0tt � 4ðCtφh0tφ

þ4DtφhtφÞ þ 4M½ð3r2ph þ a2Þhtt þ hφφ�g; ð53Þ

where from now on it is understood that hμν and its
derivatives are to be evaluated at rph. The coefficients
Ctt; Dtφ; Ctφ have already been given in Sec. I B.
The angular frequency at the light ring is given by the

expansion,

Ω0 ¼ Ωph þ ϵ½δΩph þ Bphδr0� þOðϵ2Þ
≡Ωph þ ϵδΩ0; ð54Þ

where Ωph ¼ ΩKðrphÞ is the Kerr light ring frequency, and
δΩph ¼ δΩðrphÞ. The net frequency shift δΩ0 receives
contributions from both δΩ and δr0. For these partial
contributions we find

δΩph ¼∓ ðM=rphÞ1=2
ðrph þ 3MÞ2

�
h0φφ þ ð3r2ph þ a2Þh0tt

�
�
rph
M

�
1=2

ðrph þ 3MÞh0tφ
�
; ð55Þ

Bph ¼∓ 6
ðM=rphÞ1=2
ðrph þ 3MÞ2 : ð56Þ

After assembling the two pieces we obtain the total post-
Kerr frequency shift,

δΩ0 ¼∓
�
M
rph

�
1=2

�
hφφ �

�
rph
M

�
1=2

ðrph þ 3MÞhtφ

þ ð3r2ph þ a2Þhtt
�
=½ðrph −MÞð3r2ph þ a2Þ�: ð57Þ

Interestingly, this expression turns out to be independent of
the metric derivatives h0tt; h0tφ; h0φφ.
Having obtained the post-Kerr light ring radius and

frequency results (53) and (57) [these are identical, respec-
tively, to Sec. I B expressions (10) and (11)], we next turn
our attention to photon ring-grazing orbits and the asso-
ciated Lyapunov exponent.

B. Post-Kerr Lyapunov exponent

In this section we derive a post-Kerr formula for the
Lyapunov exponent γ0 ¼ jκ0Ω0j, see Eq. (47). To this end,
and given that we already have a post-Kerr expression for
Ω0, we only need to expand the κ0 parameter. From (44) we
find

κ20 ¼ κ2ph þ ϵðκ2δr þ κ2hÞ þOðϵ2Þ: ð58Þ
The first term is the Kerr κ2KðrÞ evaluated at r ¼ rph:

κ2ph ¼
12MΔ2

ph

r3phðrph −MÞ2 : ð59Þ

The term κδr originates from κKðrÞ when evaluated at the
post-Kerr light ring r0 ¼ rph þ ϵδr0. We find,

κ2δr ¼ −
24MRphδr0
r4phðrph −MÞ3

�
M
rph

�
3=2

; ð60Þ

where

Rph ¼ ð19M2 þ 26a2ÞMr2ph þ 3Ma2ð8M2 þ 7a2Þ
− ð54M4 þ 40M2a2 − 4a4Þrph: ð61Þ

Finally, the term κ2h is produced by the hμν perturbation:

κ2h ¼ −
4ΔphHph

r4phðrph −MÞ3
�
M
rph

�
3=2

: ð62Þ

The quantityHph is an algebraic function of hμν and its first
and second order derivatives:
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Hph ¼
1

2

�
rph
M

�
1=2

ðrph −MÞ½6Δ2
phhrr − r2phΔphh00φφ

−6rphðrph − 2MÞhφφ� � rphΔphWtφh0tφ
∓ 2rphMtφ½rphΔphh00tφ þ 6ðrph − 2MÞhtφ�

þ
�
rph
M

�
1=2

rph½3Ktthtt − ΔphðQtth0tt þ rphJtth00ttÞ�

þ rphΔph

�
rph
M

�
1=2

ð2rph − 5MÞh0φφ; ð63Þ

where the coefficients Qtt; Jtt; Ktt;Wtφ;Mtφ are binomials
in rph, see Appendix C. The total post-Kerr κ0 is

κ0 ¼ κph þ ϵ
κ2δr þ κ2h
2κph

≡ κph þ ϵδκ0: ð64Þ

With the help of our previous results this leads to

δκ0 ¼ −
2Mffiffiffi
3

p Nph

r5phΔph
ðrph −MÞ−3; ð65Þ

where Nph takes the symbolic form

Nph ¼ ðMrphÞ1=2ðGφφh00φφ þ Gtth00tt þ 2Ztth0tt þ 2Zφφh0φφ
þ2Etthtt þ 2Eφφhφφ þ 6ErrhrrÞ
�MðGtφh00tφ þ 4Ztφh0tφ þ 8EtφhtφÞ: ð66Þ

All of the coefficients appearing in this expression are
binomials with respect to rph and are listed in Appendix C.
The post-Kerr expanded γ0 takes the form,

γ0 ¼ κphΩph þ ϵðΩphδκ0 þ κphδΩ0Þ≡ γph þ ϵδγ0: ð67Þ

After assembling the previous results we obtain

δγ0 ¼∓ 4M2ffiffiffi
3

p
Δphr5ph

ðrph þ 3MÞ−2ðrph −MÞ−3

×

�
ðrph þ 3MÞðGtth00tt þ Gφφh00φφ þ 2Ztth0tt

þ 2Zφφh0φφ þ 6ErrhrrÞ

� ðrph þ 3MÞ
�
M
rph

�
1=2

ðGtφh00tφ þ 4Ztφh0tφÞ

þ 2MðStthtt þ Sφφhφφ � StφhtφÞ
�
; ð68Þ

where Stt; Stφ; Sφφ can also be found in Appendix C. This
expression is identical to Eq. (18) of Sec. I B.
Having at hand the post-Kerr deviations δΩ0 [Eq. (57)]

and δγ0 [Eq. (68)] for the light ring orbital frequency and
Lyapunov exponent, it is straightforward to proceed to our

ultimate goal: the construction of the post-Kerr QNM
eikonal formulas. These final results have already been
presented in Sec. I B [Eqs. (20) and (21)].

IV. A POST-KERR APPLICATION:
THE JOHANNSEN-PSALTIS METRIC

As an example of a non-Kerr spacetime we now consider
the JP “bumpy Kerr” metric. In the JP model [40], the
“bumps” are introduced by the function:

hðr; θÞ ¼
X∞
k¼0

�
ε2k þ ε2kþ1

Mr
Σ

��
M2

Σ

�
k

; ð69Þ

where Σ ¼ r2 þ a2 cos2 θ and εk are freely adjustable
parameters. Johannsen and Psaltis showed that the first
two parameters ε0 and ε1 must be zero if we require
asymptotic flatness, and that experimental constraints
imply that ε2 must be small: jε2j < 4.6 × 10−4 [40]. For
these reasons we can parametrize perturbations of the Kerr
metric using a single function

hðr; θÞ ¼ ε3
M3r
Σ2

ð70Þ

that is proportional to the first presently unconstrained
parameter, ε3 (cf. [54] and references therein). The modi-
fied metric components read

gJPtt ¼ ð1þ hÞgKtt ; gJPtφ ¼ ð1þ hÞgKtφ; ð71Þ

gJPrr ¼ gKrrð1þ hÞ
�
1þ h

a2 sin2 θ
Δ

�−1
; ð72Þ

gJPφφ ¼ gKφφ þ ha2
�
1þ 2Mr

Σ

�
sin4θ; gJPθθ ¼ gKθθ; ð73Þ

where Δ ¼ r2 − 2Mrþ a2. When viewed as a truncated
equatorial post-Kerr metric, gJPμν ¼ gKμν þ ϵhJPμν þOðϵ2Þ, the
relevant JP metric components are

hJPtt ¼ −
�
1 −

2M
r

��
M
r

�
3

; ð74Þ

hJPtφ ¼ −
2Ma
r

�
M
r

�
3

; ð75Þ

hJPrr ¼
r4

Δ2

�
1 −

2M
r

��
M
r

�
3

; ð76Þ

hJPφφ ¼ a2
�
M
r

�
3
�
1þ 2M

r

�
; ð77Þ

hJPθθ ¼ 0: ð78Þ
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The deformation parameter ε3 is generally assumed to take
values up to Oð10Þ [54], and from the asymptotic structure
of the metric it would correspond to a GR quadrupole
deformation of the form

QJP ¼ ½−ða=MÞ2 þ ε3�M3 ¼ QKerr þ ε3M3: ð79Þ

Strictly speaking, the JP metric is not a vacuum spacetime,
therefore the moments do not enter as simple coefficients in
the metric, as one would have in the vacuum exterior of an
object in GR. Therefore the statement above should be
taken with a grain of salt.

A. Numerical calculation of the light ring

To determine the circular photon orbit we need to solve
Eq. (31). For the JP metric, these reduce to the system

0 ¼ ðε3M3 þ 4r3Þða2 − b2Þ þ 6Mr2ða − bÞ2 þ 6r5; ð80Þ

0 ¼ ðε3M3 þ r3Þ½2Mða − bÞ2 þ rða2 − b2Þ� þ r6: ð81Þ

Unfortunately this system does not admit a simple analytic
solution, but we can find the radius r0 and impact parameter
b0 of the circular photon orbit numerically. In Fig. 1 we
compare the radius of the Kerr light ring against the
corresponding radius r0 for the JP metric with selected
values of the parameter ε3 that correspond to either oblate
(ε3 < 0) or prolate (ε3 > 0) deformations. For concreteness
we set jε3j ¼ 0.1 (curves that barely deviate from the Kerr
curve), jε3j ¼ 1 and jε3j ¼ 10 (curves for which the
deviation from Kerr is the largest).
In the left panel of Fig. 2 we plot the QNM frequency

2MΩ0 obtained using the JP light ring frequency Ω0 ¼
1=b0 for selected values of the parameter ε3, and we
compare it to the corresponding frequency computed using
the Kerr light ring frequency Ωph.
The Lyapunov exponent (47) for the JP non-Kerr

spacetime, after some algebra, takes the form

γ0 ¼ γKðr0; b0Þ
�
1þ ε3

�
M
r0

�
3

f1 þ ε23

�
M
r0

�
6

f2

�
1=2

; ð82Þ

where

FIG. 1. Radius r0 of the JP light ring. The solid black line
corresponds to the Kerr light ring. Dashed (dotted) curves show
the deviation from the Kerr spacetime (solid line) for ε3 > 0
(ε3 < 0) when we set jε3j ¼ 0.1, 1, 10 in Eq. (70) (10 being when
the deviations are the largest). The lower panel shows the relative
difference (≡100 × jðyK − yJPÞ=yKj) between the radius of the JP
and Kerr light rings.

FIG. 2. Top-left: real part of the fundamental JP QNM frequency for l ¼ jmj ¼ 2. Top-right: imaginary part of the fundamental JP
QNM frequency l ¼ jmj ¼ 2. The solid curve corresponds to the Kerr QNM frequency while the deviations induced by ε3 ≠ 0 are
shown for ε3 ¼ �0.1 (curves closest to the Kerr result), �1 and �10 (curves that deviate the most from the Kerr result). QNM
frequencies corresponding to positive (negative) values of ε3 are shown in dashed (dotted) lines. Lower-left and lower-right: the relative
difference (≡100 × jðyK − yJPÞ=yKj) on 2MΩ0 and −γ0=2 for the JP metric with respect to the Kerr metric. The (yellow) shaded band
marks GW150914’s measured spin value a ¼ 0.67þ0.05

−0.07M [1].
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f1 ¼
r0ðb20 − a2Þ þ 2Mða − b0Þ2 − 4r30

4Mða − b0Þ2 þ r0ða2 − b20Þ
; ð83Þ

f2 ¼
4ab0M − 2a2ðM þ r0Þ þ 2b20ðr0 −MÞ þ 5r30

4Mða − b0Þ2 þ r0ða2 − b20Þ
; ð84Þ

and

γKðr; bÞ ¼ −
ffiffiffi
3

p

b
r−13=2½4Mða − bÞ2 þ rða2 − b2Þ�1=2

× ½2Mða − bÞ2 þ rða2 − b2Þ�
× ½2aM þ bðr − 2MÞ� ð85Þ

is a function that formally gives the Kerr Lyapunov
exponent as γph ¼ γKðrph; bphÞ, where ðrph; bph ¼ 1=ΩphÞ
are given by Eqs. (6) and (7). In the right panel of Fig. 2 we
show the imaginary part of the fundamental l ¼ m ¼ 2
QNM obtained from the Lyapunov exponent of the JP
metric with different values of the parameter ε3.

B. Approximate solution for the light ring

Instead of solving the system of Eqs. (80) and (81)
numerically, we can look for approximate solutions assum-
ing small perturbations around the Kerr metric, and con-
sidering ε3 as the expansion parameter. Then we can write a
series expansion for the light ring radius and for the impact
parameter:

r0 ¼ rph þ δr1ε3 þ δr2ε23 þ δr3ε33 þ � � � ; ð86Þ

b0 ¼ bph þ δb1ε3 þ δb2ε23 þ δb3ε33 þ � � � : ð87Þ

Assuming this ansatz, the system can be solved order by
order in ε3. The first few coefficients obtained in this way
(δri and δbi with i ¼ 1, 2, 3) are listed in Appendix D.
The photon ring frequency and Lyapunov exponent can

be expanded in a similar way with respect to ε3:

Ω0 ¼
1

bph
−
2δb1
b2ph

ε3 −
2

b3ph
ðbphδb2 − δb21Þε23 þOðε33Þ; ð88Þ

γ0 ¼ γph þ δγ1ε3 þ δγ2ε
2
3 þOðε33Þ: ð89Þ

The leading-order coefficient δγ1 is listed in Appendix D.
We omit higher-order coefficients because they are lengthy
and unenlightening. As a sanity check, we have verified
that for hμν ¼ hJPμν the general post-Kerr results, Eqs. (11)
and (18), exactly match the Oðε3Þ precision JP expressions
(88) and (89).
In Figs. 3 and 4, we show the accuracy of this

perturbative scheme when used to calculate the real
(associated with b0) and the imaginary (associated with
γ0) parts of the l ¼ jmj ¼ 2 QNM frequency for ε3 ¼ �1.
We see that the convergence is rather slow for a=M ≳ 0.8,
although the errors with respect to the exact calculation are
typically small otherwise. This shows that even forOðε3Þ ∼
1 (large in a perturbative expansion sense) the eikonal limit
calculation works well for a wide range of a=M.

FIG. 3. Comparison of the approximate real part of the QNM frequencies Ω0 ¼ 1=b0, where b0 is given by Eq. (86) and reexpanded
to the relevant order in ε3, against the exact JP result for ε3 ¼ �1. In all panels the solid lines correspond to the exact results, the dashed
lines to the first-order approximation, the dot-dashed to the second-order approximation and the dotted to the third-order approximation.
The blue (red) lines corresponds to ε3 ¼ þ1 (−1). Left: Comparison between the exact results against the perturbative calculation.
Observe that the convergence of the perturbative expansion is slow for a=M ≳ 0.7. Top-right: the percent error ð≡100 × jðyapprox −
yexactÞ=yexactjÞ for ϵ3 ¼ þ1. Bottom-right: the percent error for ϵ3 ¼ −1. As in Fig. 2, the (yellow) shaded band marks GW150914’s
measured spin value a ¼ 0.67þ0.05

−0.07M [1].
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V. CONCLUDING REMARKS

Asdescribed in the preceding sections, the construction of
eikonal limit formulas for the fundamental l ¼ jmj QNMs
of a general post-Kerr spacetime is a straightforward
procedure, although the final expressions unavoidably
involve some algebraic complexity. The main results of
the paper, Eqs. (20) and (21), can be used to produce QNM
spectra for any stationary axisymmetric metric that can be
written as a perturbation of Kerr. Our illustrative case study
of the JP spacetime and the comparison against the “exact”
results one can obtainwith thatmetric has helped us to gauge
the accuracy of the linear approximation (on top of that
related to the use of the eikonal/geodesic approximation).
The validity of our strategy to establish a null test

according to the recipe laid out in Sec. I A is also confirmed
by numerical simulations, which show that fundamental
QNMs with l ¼ m ¼ 2, 3, 4 should dominate the ringdown
signal in comparable mass black hole mergers
[44,45,50,55]. However, in its complete form, the black
hole spectroscopy program will require the inclusion of
nonequatorial modes (i.e., jmj < l), enabling it to handle
spinningmergers, where at least thel ¼ 2,m ¼ 1multipole
is known to be excited to a significant level.3 Within our
framework, this extension calls for the study of nonequa-
torial circular photon orbits in non-Kerr spacetimes, and it is
an important goal earmarked for follow-up work. In that

respect, a great deal of progress in relating nonequatorial
photon orbitswith jmj < lQNMshas already been achieved
in the context of Kerr black holes [23,24].
Another key topic that ought to be addressed by future

work is the actual detectability and data analysis of QNM
signals. Black hole spectroscopy, as a probe for testing the
Kerr metric, relies on the extraction of more than one QNM
frequency/multipole from the observed gravitational wave
signal. This exciting prospect would require a much louder
QNM signal (typically a factor ∼10 boost in the SNR) than
those thus far detected by LIGO [11–13]. Moreover, very
recent work [56] suggests that the intrinsic precision of
spectroscopy could be affected by the uncertainty in the
transition from the merger’s nonlinear dynamics to the
linear QNM ringdown regime.
Apart from the high SNR/precision requirement, QNM

data analysis may also have to face a “confusion problem”
when searching for deviations from Kerr. This issue,
already familiar from the modeling of extreme mass ratio
inspirals in non-Kerr spacetimes [57], has to do with the
possibility of misidentifying a true non-Kerr QNM signal
with a Kerr one but with a different set of mass and spin
parameters. This degeneracy should be broken by the
simultaneous observation of the QNM frequency and
damping rate and/or the identification of more than one
multipole (see e.g., [9,10]).
As already emphasized, the backbone of our post-Kerr

formalism is the eikonal limit association between the
spacetime’s light ring and the fundamental QNM. In the
case of GR’s garden-variety black holes this connection is
intuitively well established, and performs surprisingly
well in approximating the rigorously computed QNMs.
Moreover, the fundamental mode is the one dominating the
hole’s dynamical response in the time domain.

FIG. 4. Comparison of the approximate imaginary part of QNMs (89) against the exact non-Kerr result (82) for ε3 ¼ �1. In all panels
the solid lines correspond to the exact results, the dashed lines to the first-order approximation, the dot-dashed to the second-order
approximation and the dotted to the third-order approximation. The blue (red) lines corresponds to ε3 ¼ þ1 (−1). Left: Comparison
between the exact results against the perturbative calculation. Observe that the convergence of the perturbative expansion is slow for
a=M ≳ 0.7. Top-right: the percent error ð≡100 × jðyapprox − yexactÞ=yexactjÞ for ϵ3 ¼ þ1. Bottom-right: the percent error for ϵ3 ¼ −1. As
in Fig. 2, the (yellow) shaded region marks GW150914’s measured spin value a ¼ 0.67þ0.05

−0.07M [1].

3The relative contribution of the asymmetric ðl; mÞ ¼ ð2; 1Þ
multipole with respect to the first few l ¼ m modes is a function
of the spins of the merging black holes [46,48]. For small (or
exactly zero) spins this multipole is comparable to the (4,4) mode
and much below the (3,3) mode. This arrangement can be
drastically altered in rapidly spinning systems and for certain
spin orientations, with the (2,1) multipole even becoming
comparable to the dominant quadrupole (2,2).

GLAMPEDAKIS, PAPPAS, SILVA, and BERTI PHYSICAL REVIEW D 96, 064054 (2017)

064054-10



Since the GW150914 event, however, the light-ring/
QNM connection has been the subject of some debate. It
has been shown, for instance, that the connection is not as
solid as one might think, since it is in principle possible to
construct spacetimes where the properties of the wave
potential are qualitatively different from those of the
geodesic potential for photons [58]. Indeed, a spacetime
may have no light rings and still exhibit a QNM ringdown
signal. Nevertheless, it should be pointed out that no such
counterexample has been constructed for black hole space-
times resulting from the field equations of a physically
sensible modified gravity theory.
The light-ring/QNM connection has also been shown to

fail in the context of higher-dimensional Einstein-Lovelock
black holes, as a result of the perturbation equations having
distinct eikonal limits for different classes of gravitational
perturbations [59] (in contrast, the connection has long
been known to work for solutions of the higher-dimen-
sional Einstein equations, including Schwarzschild-
Tangherlini and Myers-Perry black holes [21]). However,
higher-dimensional modifications of gravity are well con-
strained, and unlikely to give measurable modifications in
the context of testing the Kerr solution in astrophysics
[6,60]. Furthermore, the black hole counterexample con-
structed in [59] is known to exhibit instabilities at large
values of the coupling constant of the theory.
The upshot of this discussion is that, although both of the

aforementioned counterexamples on the light-ring/QNM
connection are interesting and instructive, they have little
bearing on our post-Kerr model, since they are not products
of consistent modified gravity theories. In the few cases
where QNM calculations in such theories do exist (see e.g.,
[31]), the connection with the circular photon orbit stands
as firm as in GR.
Coming from the exactly opposite direction, a series of

recent papers [61–64] uses the light-ring/QNM link to claim
indistinguishability between black holes and other horizon-
less compact objects. Although these two classes of systems
are known to support markedly different QNM spectra, they
may indeed share the sameQNM-like ringdown signal.4 This
agreement, however, cannot persist for long, since horizon-
less objects are expected to support a family of slowly
dampedw-modes in the “cavity” formed between the peak of
the wave potential and the body’s center (or reflecting
surface) [67–69]. These modes should show up at a later
stage of the signal, hence ending any transient similarity with
black hole dynamics [70]. It should be noted that the
degeneracy in the dynamical response of these objects is

partially due to the common exterior Schwarzschild space-
time enforced byBirkhoff’s theorem, so it is conceivable that
Kerr black holes may not always share the same ringing
signal with horizonless rotating bodies, simply because their
light rings are different. The so-called ergoregion instability
[71–73] (which sets in via the same trapped w-modes
mentioned earlier [74]) may provide another way of lifting
the degeneracy between these two types of systems.
As a final remark, it is worthmentioning that the notion of

non/post-Kerr light rings (albeit without their connection to
QNMs) has already been employed in the context of photon
astronomy and themodels that are being developed as part of
the ongoing effort to produce direct images of our Galactic
center supermassive black hole (see e.g., [75]). Although the
basic methodology is very different to that of gravitational
wave astronomy, the two efforts share the same ultimate goal
of probing the physics of the Kerr spacetime.

ACKNOWLEDGMENTS

E. B. was supported by NSF Grants No. PHY-1607130
and No. AST-1716715, and by FCT Contract IF/00797/
2014/CP1214/CT0012 under the IF2014 Programme.
H. O. S. was supported by NSF Grant No. PHY-1607130.
He also thanks Thomas Sotiriou and the University of
Nottingham for the hospitality in the final stages of this
work. This work was supported by the H2020-MSCA-RISE-
2015 Grant No. StronGrHEP-690904.

APPENDIX A: FITS OF THE OFFSET FUNCTION

In this appendix we present accurate fits for the offset
function βK. In Fig. 5 we show the behavior of βK as
computed from Eq. (1) for modes with l ¼ m ¼ 2, 3, 4.
We fitted βK using the following function, inspired by the
classic interatomic Buckingham potential [76]:

FIG. 5. The real part (top panel) and imaginary part (bottom
panel) of the offset function βK for l ¼ m ¼ 2, 3, 4. The behavior
is similar for higher values of l ¼ m. The fitting coefficients ai
for the real and imaginary parts of βK are listed in Table I.

4To our knowledge, this counterintuitive property was first
noted by Nollert [65], who replaced the standard Regge-Wheeler
potential of Schwarzschild black holes with a potential made of a
series of step functions. It had also been seen in the scattering of
waves off the potential of compact relativistic stars (see e.g.,
[19,66], but until recently this observation was largely over-
looked.
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fðxÞ ¼ a1 þ a2e−a3ð1−xÞ
a4 −

1

a5 þ ð1 − xÞa6 : ðA1Þ

The coefficients ai (i ¼ 1…6) for the real and imaginary
parts of the leading l ¼ m offset functions (up to
l ¼ m ¼ 7) are listed in Table I.
As shown in Table I, the absolute error (defined as

jyfit − ydataj) remains below 0.13 in the interval a=M ∈
½0; 0.9999�. Our results may not be reliable in the near
extremal limit (a=M ≈ 1), where the computation of QNMs
in computationally challenging and multipole QNM
branches exist [24,26,77–79]. The QNM data tables (calcu-
lated using Leaver’s continued fraction method) used to
obtain βK are reliable below the theoretical upper bound on
the dimensionless spin of astrophysical BHs (the so-called
Thorne limit, a=M ≈ 0.998 [80], so our βK fits should be
adequate for astrophysical applications of the present
formalism.

APPENDIX B: CIRCULAR PHOTON
ORBITS IN KERR

This appendix provides a self-contained discussion of
the properties of the equatorial Kerr circular photon orbit.
Although this is well-known textbook material, we repro-
duce the calculation as a useful comparison for the more
general post-Kerr light ring analysis.
The equatorial Kerr metric in Boyer-Lindquist coordi-

nates reads

gKtt ¼ −
�
1 −

2M
r

�
; gKtφ ¼ −

2Ma
r

; ðB1Þ

gKφφ ¼ r2 þ a2 þ 2Ma2

r
; gKrr ¼

r2

Δ
: ðB2Þ

Circular motion at the light ring radius rph simultaneously
solves VeffðrphÞ ¼ 0 and V 0

effðrphÞ ¼ 0. We have,

r3ph þ ða2 − b2Þrph þ 2Mða − bÞ2 ¼ 0; ðB3Þ

r3ph −Mða − bÞ2 ¼ 0: ðB4Þ

Elimination of r3ph leads to

rph ¼ 3M

�
b − a
bþ a

�
⇔ b ¼ −a

�
rph þ 3M

rph − 3M

�
: ðB5Þ

These predict the correct radius rph ¼ 3M for a ¼ 0, and
also that prograde (retrograde) orbits should have rph < 3M
(rph > 3M), but the bðrphÞ formula returns an undeter-
mined 0=0 Schwarzschild limit.
Inserting rphðbÞ back into V0

effðrphÞ ¼ 0 allows us to
derive a cubic equation for the impact parameter:

ða − bÞ2½27M2ða − bÞ þ ðaþ bÞ3� ¼ 0: ðB6Þ

The two real roots of this equation correspond to prograde
and retrograde motion.
A different (but completely equivalent) result bðrphÞwith

a well-defined a ¼ 0 limit is given by the solution of
Eq. (B4). This is

b ¼ a� r3=2ph

M1=2 ≡ bph; ðB7Þ

where the upper (lower) sign corresponds to prograde
(retrograde) motion. Then, Eq. (B3) becomes

r3=2ph − 3Mr1=2ph � 2aM1=2 ¼ 0; ðB8Þ

which is the textbook formula solved by Eq. (6).
The azimuthal orbital frequency at the light ring is given

by the turning point formula (30),

Ωph ¼
1

b
: ðB9Þ

We can produce two equivalent expressions using either
(B5) or (B7). The former choice leads to the result

Ωph ¼
3M − rph

aðrph þ 3MÞ ; ðB10Þ

TABLE I. The coefficients ai (i ¼ 1…6) of the fit (A1) for the offset function βK [as defined in Eq. (1)] for Kerr QNMs with
l ¼ m ¼ 2…7. Numbers outside (inside) parentheses correspond to the real (imaginary) part of βK, respectively. We also tabulate the
largest absolute error (≡jyfit − ydataj). The fits lose accuracy as we approach the near extremal Kerr limit: we found that for all l ¼ m
pairs the largest fitting error typically happens at a=M ≈ 0.9999.

l ¼ m a1 a2 a3 a4 a5 a6 max err. ½10−2�
2 0.1282(0.1381) 0.4178(0.3131) 0.6711(0.5531) 0.5037(0.8492) 1.8331(2.2159) 0.7596(0.8544) 0.023(0.004)
3 0.1801(0.1590) 0.5007(0.3706) 0.7064(0.6643) 0.5704(0.6460) 1.4690(1.8889) 0.7302(0.6676) 0.005(0.008)
4 0.1974(0.1575) 0.4982(0.3478) 0.6808(0.6577) 0.5958(0.5840) 1.4380(1.9799) 0.7102(0.6032) 0.011(0.009)
5 0.2083(0.1225) 0.4762(0.1993) 0.6524(0.4855) 0.6167(0.6313) 1.4615(3.1018) 0.6937(0.6150) 0.016(1.335)
6 0.2167(0.1280) 0.4458(0.1947) 0.6235(0.5081) 0.6373(0.6556) 1.5103(3.0960) 0.6791(0.6434) 0.021(0.665)
7 0.2234ð−15.333Þ 0.4116(15.482) 0.5933(0.0011) 0.6576(0.3347) 1.5762(6.6258) 0.6638(0.2974) 0.025(0.874)
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with the inherited (and unattractive) property of a 0=0
Schwarzschild limit. On the other hand, (B7) leads to the
textbook formula5:

Ωph ¼ � M1=2

r3=2ph � aM1=2
: ðB11Þ

Due to its well defined a ¼ 0 limit and its “Keplerian”
form, this is the preferred formula for Ωph.

APPENDIX C: POST-KERR PARAMETERS

In this appendix we list the various coefficients appear-
ing in the post-Kerr analysis of the Lyapunov exponent.
Beginning with those appearing in Hph [see Eq. (63)], we
have

Mtφ ¼ 2r2ph − 3Mrph þ a2;

Wtφ ¼ 13r2ph − 33Mrph þ 8a2;

Ktt ¼ −ð33M2 þ a2Þr2ph þ 9ð9M2 − a2ÞMrph

− 38M2a2;

Qtt ¼ −21Mr2ph þ 2ð27M2 − a2Þrph − 19Ma2;

Jtt ¼
1

2
½15Mr2ph þ ða2 − 27M2Þrph þ 11Ma2�: ðC1Þ

Next, we list the coefficients of the h00μν; h0μν; hμν terms
appearing in the expression for Nph [Eq. (66)]. For the
G-coefficients we have:

Gφφ ¼ −ð351M6 þ a6 þ 787M4a2 þ 157M2a4Þr2ph
þ 12Mð133M4a2 þ 81M6 þ 3a4M2 − a6Þrph
− 48M2a2ð2a4 þ 16M2a2 þ 9M4Þ; ðC2Þ

Gtt ¼ −ð10935M8 þ 36666M6a2 þ a8 þ 15160M4a4

þ742M2a6Þr2ph þ 6Mð2769M4a4 − 227M2a6

þ5103M8 þ 13527M6a2 − 4a8Þrph
− 24M2a2ð485M2a4 þ 567M6 þ 13a6

þ1581M4a2Þ; ðC3Þ

Gtφ ¼ −3Mða2 þ 27M2Þð83a4 þ 262M2a2 þ 87M4Þr2ph
þ ð19683M8 − 727M2a6 þ 46683M6a2

þ6941M4a4 − 4a8Þrph
− 12Ma2ð7a6 þ 459M2a4 þ 729M6 þ 1829M4a2Þ:

ðC4Þ

For the Z-coefficients the expressions are

Ztt ¼ −Mð131a6 þ 6345M4a2 þ 3379a4M2

þ729M6Þr2ph þ ð2187M8 − 2a8 − 361M2a6

þ15309M6a2 þ 4035M4a4Þrph
− 4Ma2ð11a6 þ 1737M4a2 þ 243M6 þ 655a4M2Þ;

ðC5Þ

Zφφ ¼ −Mð154M2a2 þ 35a4 þ 27M4Þr2ph
þ ð81M6 þ 348M4a2 þ 5a4M2 − 2a6Þrph
− 4Ma2ð5a4 þ 9M4 þ 40M2a2Þ; ðC6Þ

Ztφ ¼ −ð1917M4a2 þ 845a4M2 þ 19a6 þ 243M6Þr2ph
þMð847a4M2 − 91a6 þ 729M6 þ 4563M4a2Þrph
− 4a2ða6 þ 81M6 þ 519M4a2 þ 155a4M2Þ; ðC7Þ

The E-coefficients are given by:

Err ¼ ð4a6 þ 154M2a4 þ 135M6 þ 436M4a2Þr2ph
− 2Mð189M6 − 8a6 þ 70M2a4 þ 478M4a2Þrph
þ a2ð112M2a4 þ 448M4a2 þ a6 þ 168M6Þ; ðC8Þ

Ett ¼ −ð549M4a2 − a6 þ 1377M6 − 161a4M2Þr2ph
þ 3Mð15M2 − a2Þð8M2a2 þ 81M4 − 5a4Þrph
− 4M2a2ð405M4 − 29a4 þ 65M2a2Þ; ðC9Þ

Eφφ ¼ −ð39M4 − a4 − 2M2a2Þr2ph
þ 3Mð33M4 þ a4 − 10M2a2Þrph
− 4M2a2ð11M2 − 2a2Þ; ðC10Þ

Etφ ¼ −4Mð54M4 þ 14M2a2 − 5a4Þr2ph
þ ð567M6 − 45M4a2 − 19a4M2 þ a6Þrph
− 12Ma2ð21M4 þM2a2 − a4Þ: ðC11Þ

Finally, the S-coefficients are

5The textbook approach is that of Ref. [81]: derive E, L
for circular equatorial motion of a test particle; divide
these to obtain the impact parameter b ¼ �M1=2ðr2 ∓
2aM1=2r1=2 þ a2Þ=ðr3=2 − 2Mr1=2 � aM1=2Þ; use this in Ω ¼
−ðgKttbþ gKtφÞ=ðgKtφbþ gKφφÞ to arrive at Eq. (7). Note that
Ref. [81] skips the details of the complicated calculation of E
and L, which is presented in Chandrasekhar’s book [82].
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Stt ¼ 9ð3673M4a2 þ 1053M6 þ 947a4M2 þ 11a6Þr2ph
−Mð4151a4M2 þ 71901M4a2 þ 26973M6

−713a6Þrph þ 4a2ð8409M4a2 þ 2997M6

þ1379a4M2 þ 4a6Þ; ðC12Þ
Sφφ ¼ 3ð226M2a2 þ 105M4 þ 17a4Þr2ph

−Mð1298M2a2 þ 891M4 − 101a4Þrph
þ 4a2ð158M2a2 þ 99M4 þ 4a4Þ; ðC13Þ

Stφ ¼ ðrph þ 3MÞðMrphÞ−1=2
× ½Mð2770M2a2 þ 999M4 þ 407a4Þr2ph
−ð2835M6 þ 5706M4a2 − 173a4M2 − 16a6Þrph
þ12Ma2ð226M2a2 þ 105M4 þ 17a4Þ�: ðC14Þ

APPENDIX D: THE JOHANNSEN-PSALTIS
EXPANSION COEFFICIENTS

Herewe list the coefficients appearing in the expansions in
terms of ε3 of the radius of the photon orbit, the impact
parameter, and the Lyapunov exponent for the JP spacetime.
First we define the auxiliary coefficients, ðaþ bphÞ≡

Cþ and ða − bphÞ≡ C−, which scale as the mass and the
auxiliary coefficient ð27M2C−ð4aþ bphÞ þ 2C4þÞ≡ C0,
which scales as the mass to the fourth power.
Taking these definitions into account, the various coef-

ficients have the form

δr1 ¼ −
bphMC5þ
18C2

−C0

; ðD1Þ

δr2 ¼
MC8þ

972C5
−C3

0

½2916M4C2
−ð15a3 − 14a2bph − ab2ph þ b3phÞ þ 27M2C−ð60a3 − 16a2bph − 33ab2ph þ b3phÞC3þ

þð15a3 þ 6a2bph − 11ab2ph − 5b3phÞC6þ�; ðD2Þ

δr3 ¼
MC11þ

52488C8
−C5

0

½4251528M8C4
−ð545a5 − 636a4bph − 140a3b2ph þ 80a2b3ph þ 9ab4ph − 2b5phÞ þ 19683M6ðCþC−Þ3

× ð9020a5 − 6992a4bph − 6614a3b2ph þ 416a2b3ph þ 526ab4ph þ 31b5phÞ þ 729M4C2
−ð6990a5 − 2296a4bph

− 8075a3b2ph − 1628a2b3ph þ 599ab4ph þ 132b5phÞC6þ þ 27M2C−ð2405a5 þ 404a4bph − 3412a3b2ph − 1836a2b3ph

þ 101ab4ph þ 106b5phÞC9þ þ 2ð155a5 þ 110a4bph − 222a3b2ph − 236a2b3ph − 37ab4ph þ 13b5phÞC12þ �; ðD3Þ

δb1 ¼
54M2C−Cþ4 þ Cþ7

54C−
2C0

; ðD4Þ

δb2 ¼
C7þ

1944C5
−C3

0

½78732M6C3
−ð29a2 þ 4abph − b2phÞ þ 729M4C2

−ð204a2 þ 88abph þ b2phÞC3þ

þ 27M2C−ð117a2 þ 96abph þ 13b2phÞC6þþ2ð11a2 þ 14abph þ 4b2phÞC9þ�; ðD5Þ

δb3 ¼
C10þ

314928C8
−C5

0

½114791256M10C5
−ð3737a4 þ 938a3bph − 258a2b2ph − 46ab3ph þ 5b4phÞ þ 1062882M8C4

−ð43430a4

þ 22268a3bph − 195a2b2ph − 1150ab3ph − 85b4phÞC3þ þ 19683M6C3
−ð99430a4 þ 81868a3bph þ 11013a2b2ph

− 3450ab3ph − 675b4phÞC6þ þ 729M4C2
−ð56225a4 þ 66218a3bph þ 17502a2b2ph − 2002ab3ph − 805b4phÞC9þ

þ 54M2C−ð7870a4 þ 12370a3bph þ 5043a2b2ph − 182ab3ph − 251b4phÞC12þ

þ 4ð437a4 þ 875a3bph þ 501a2b2ph þ 15ab3ph − 39b4phÞC15þ �; ðD6Þ

δγ1 ¼ γ3ph
M4ð27M2C2

− þ aða − 2bphÞC2þÞ
2C5þC0ð3M2ð5a − bphÞC− þ a2C2þÞ3

½a3ð4a2 − abph − 6b2phÞC10þ

þ 729M6C3
−ð364a4 − 227a3bph − 201a2b2ph − 29ab3ph þ 13b4phÞC2þ

þ 27M4C2
−ð2aþ bphÞð319a4 − 174a3bph − 216a2b2ph − 38ab3ph þ 9b4phÞC4þ

þaM2C−ð454a4 − 133a3bph − 366a2b2ph − 182ab3ph þ 2b4phÞC7þ þ 78732M8C5
−ð5a − bphÞð4aþ bphÞ�: ðD7Þ
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