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We study spherically symmetric geometries made of anisotropic perfect fluid based on general relativity.
The purpose of this work is to find and classify black hole solutions in closed spacetime. In a general
setting, we find that a static and closed space exists only when the radial pressure is negative but its size is
smaller than the density. The Einstein equation is eventually cast into a first-order autonomous equation on
a two-dimensional plane of scale-invariant variables, which are equivalent to the Tolman-Oppenheimer-
Volkoff equation in general relativity. Then, we display various solution curves numerically. An exact
solution describing a black hole solution in a closed spacetime was known in [I. Cho and H. C. Kim,
Phys. Rev. D 95, 084052 (2017)], which bears a naked singularity and negative-energy era. We find that
these two deficits can be remedied when ρþ 3p1 > 0 and ρþ p1 þ 2p2 < 0, where the second violates the
strong energy condition.
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I. INTRODUCTION

Even with long observations, the spatial geometry of the
Universe is an unresolved issue. One reason is the (accel-
erating) expansion of the Universe, which restricts our
observational boundary to a finite range inside a cosmo-
logical event horizon. Even if one measures the average
curvature of the observable Universe, its topology cannot
be established definitely. Philosophically, a closed space is
favored because the total energy of an open Universe will
have difficulty by definition. A closed space is usually
studied in a cosmological sense; therefore, time-dependent
metrics are mainly used. However, the study of a static,
closed space may play important roles in the study of an
early Universe and the dynamics of the Universe itself. As
shown in Ref. [1], a static, homogeneous S3 space is
achieved only when p ¼ −ρ=3, where p and ρ represent
the pressure and the energy density, respectively. For a
constant ρ, a time-dependent or space-dependent solution
does not exist.
A space-dependent solution can be obtained when the

density is allowed to be dependent on r. For example, a
black hole solution inside a sphere is given by using the
χ ≡ arcsinðr=R0Þ coordinate,

ds2 ¼ −ð1 − K cot χÞdt2 þ R2
0

1 − K cot χ
dχ2

þ R2
0sin

2χdΩ2
2; ð1Þ

where K and R0 are integrating constants. The energy
density of the fluid is given by ρðχÞ¼3=8πR2

0×ð1−KcotχÞ.
One may easily find two deficits of these solutions. First,
there is a naked singularity on the opposite pole of the black
hole. Second, the energy density ρðχÞ may not be positive

definite behind the event horizon. Because of these, Eq. (1)
cannot be used as a conceivable solution. In the present
work, we show that these two deficits can be cured when an
anisotropic fluid is introduced and the equation of state is
restricted appropriately.
A collection of static, spherically symmetric solutions of

Einstein’s field equation can be found in Stephani et al. [2],
Delgaty and Lake [3], and Semiz [4]. Most of them focus
on the isotropic fluids because astrophysical observations
support isotropy. Although the perfect Pascalian (isotropic)
fluid assumption is supported by solid observational and
theoretical grounds, an increasing amount of theoretical
evidence strongly suggests that, for certain density ranges,
a variety of very interesting physical phenomena may take
place, giving rise to local anisotropy (see Ref. [5] and
references therein). As investigated by Ruderman [6],
highly compact astrophysical objects having core density
beyond the nuclear density (∼1015 g=cm3) can have
pressure anisotropy; i.e., the pressure inside these compact
objects can be decomposed into two parts: radial pressure
p1 and transverse pressure p2 in a direction perpendicular
to p1. There are various reasons behind this anisotropic
nature—e.g., the existence of a solid core in the presence of
type-3A superfluid [7]. Local anisotropy in self-gravitating
systems are studied in Refs. [5,8–10]. The pressure
anisotropy affects the physical properties, stability and
structure of stellar matter [11]. Recently, Bhar [12,13]
studied a new model of an anisotropic superdense star
which admits conformal motions in the presence of a
quintessence field which is characterized by a parameter
wq, with −1 < wq < −1=3. Charged anisotropic matter
with a linear equation of state [14,15] and a self-gravitating,
charged and anisotropic fluid sphere [16,17] were also
considered. A way to generate anisotropic solutions for a
self-gravitating system from perfect fluid solutions was
also found in Ref. [18].*hckim@ut.ac.kr
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For simplicity, we consider the static, spherically sym-
metric configurations. The stress tensor for an anisotropic
fluid compatible with the spherical symmetry is

Tμν ¼ ðρþ p2Þuμuν þ ðp1 − p2Þxμxν þ p2gμν; ð2Þ

where ρ is the energy density measured by a comoving
observer with the fluid, and uμ and xν are its four-velocity
and a spacelike unit vector orthogonal to uμ and angular
directions, respectively. The radial and angular pressures
are assumed to be proportional to the density:

p1 ¼ w1ρ; p2 ¼ w2ρ: ð3Þ

We are interested in a static, spherically symmetric line
element given by

ds2 ¼ −fðrÞdt2 þ gðrÞdr2 þ r2dθ2 þ r2sin2θdϕ2: ð4Þ

We assume that the metric describes a spacetime having a
black hole horizon and an outer (event) horizon or outer
maximal radius surface. For the metric to have a correct
signature, we need fðrÞgðrÞ > 0. We first assume that there
is an apparent singularity of the metric at r ¼ a. Then, we
assume the metric function around r ¼ a with the form

fðrÞ ¼ ðr − aÞα gðrÞ ¼ ðr − aÞ−β; ð5Þ

where α and β are real numbers. Then, the first two
diagonal components of the Einstein tensor

G0
0 ¼ r−2ð1þ ½−aþ ð1þ βÞr�ðr − aÞβ−1Þ;

G1
1 ¼ r−2ð1þ ½−aþ ð1þ αÞr�ðr − aÞβ−1Þ

are nonsingular only if β ¼ 0 ¼ α or β ≥ 1. The remaining
nonvanishing component of the Einstein tensor,

G2
2 ¼

ðr − aÞβ−1
4r

�
2β þ αðαþ βÞ r − 2a=ðαþ βÞ

r − a

�
;

may not be singular when β ≥ 2 or β ≥ 1 and αþ β ¼ 2.
Unless β is an integer, some components of higher
derivatives of curvature will be singular. Therefore, for
the geometry to be nonsingular at r ¼ a, there are three
possibilities:

ðiÞ β ¼ 1 ¼ α; ðiiÞ β ¼ 1;α ¼ 0; ðiiiÞ β ¼ 2;3;4…:

ð6Þ

For case (iii), the geometry represents a cylindrical space-
time with maximum (or minimum) radius a. For case (i),
the surface r ¼ a forms an event horizon. For case (ii), the
surface r ¼ a forms a (locally) maximal or minimal radius
surface of Sð3Þ geometry. To have a blackhole spacetime in

a closed spacetime, we require that there be an inner
boundary and a maximal radius surface of types (i) and (ii),
respectively.
In Sec. II, we reduce the Einstein equation into a first-

order autonomous equation on a two-dimensional plane of
dimensionless constants plus a first-order differential equa-
tion with respect to r. In Sec. III, the Einstein equation is
solved around a point of coordinate singularity, and we find
the conditions for the surface to be an event horizon and a
maximal radius surface of a closed space. In Sec. IV, the
autonomous equation is classified with respect to the values
of equation-of-state parameters wi. The behaviors of the
solutions are analyzed also. In Sec. V, we describe the exact
solutions by means of the terminology of the present work
to help the understanding of the readers. In Sec. VI, we
present various numerical solutions based on the classi-
fication of the solutions. We summarize and discuss the
results in Sec. VII.

II. EINSTEIN EQUATION

The Einstein equation for the anisotropic fluid (2) with
the spherically symmetric metric in Eq. (4) becomes

G0
0 ¼ −

1

r2
þ 1

r2g

�
1 −

rg0

g

�
¼ −8πρðrÞ; ð7Þ

G1
1 ¼ −

1

r2
þ 1

r2g

�
1þ rf0

f

�
¼ 8πp1ðrÞ; ð8Þ

G2
2 ¼

1

4g

�
2ðf0=f − g0=gÞ

r
−
f0g0

fg
−
f02

f2
þ 2f00

f

�
¼ 8πp2ðrÞ;

ð9Þ

where the prime denotes a derivative with respect to r.
Equation (7) can be simplified by defining a mass

function mðrÞ as

gðrÞ¼ 1

1−2mðrÞ=r; mðrÞ¼4π

Z
r
r02ρðr0Þdr0; ð10Þ

where an integration constant is absorbed into the
definition of MðrÞ. The Bianchi identity ∇μTμν ¼ 0,
combined with Eqs. (10) and (8), presents the ordinary
Tolman-Oppenheimer-Volkoff (TOV) equation,

p0
1 ¼ −ðρþ p1Þ

mþ 4πr3p1

rðr − 2mÞ þ 2ðp2 − p1Þ
r

: ð11Þ

With respect to mðrÞ, using dm=dr ¼ 4πr2ρðrÞ and
Eq. (3), the TOV equation becomes

m00

m0 ¼ −
1þ w1

w1

1=2þm0

r − 2m
þ 1þ w1 þ 4w2

2w1r
; ð12Þ
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where we use ρ0=ρ ¼ m00=m0 − 2=r. Combining Eq. (7)
with Eq. (8) and using the Bianchi identity, the gtt part of
the metric can be integrated to give fðrÞ from the density:

f ∝ r4ðw1−w2Þ=ð1þw1Þρ−2w1=ð1þw1Þ: ð13Þ

Equation (8) can also be directly integrated to give

fðrÞ¼f0
r

�
gðrÞ
r

�
w1

exp

�
ð1þw1Þ

Z
gðrÞ
r

dr

�

¼f0ðr−2mÞ−w1

r
exp

�
ð1þw1Þ

Z
1

r−2mðrÞdr
�
: ð14Þ

Note that the Einstein equation does not determine the sign
of fðrÞ. Therefore, the value of f0 will be chosen for
convenience so that the signature of the metric will be
Lorentzian. The remaining task is to find the explicit
functional dependence of mðrÞ by solving the TOV
equation. When w1 ¼ −1 and w1 ¼ −1=3 ¼ w2, the
TOV equation allows exact solutions as in Refs. [1,19].
For other cases, it is not easy to find an analytic solution.

However, numerical solutions are still available. Let us
simplify the equation after introducing scale-invariant
variables

u≡ 2mðrÞ
r

; v≡ dmðrÞ
dr

¼ 4πr2ρ; ð15Þ

and the logarithmic change of radius ξ as

ξ ¼ log
r
rþ

; ð16Þ

where rþ is a to-be-determined scale of radius. Now, the
radius change can be written by using u and v as

dξ ¼ du
2v − u

; v≡ dmðrÞ
dr

¼ 4πr2ρ ¼ uþ u0

2
; ð17Þ

where, from now on in this work, the prime represents a
derivative with respect to ξ. Notice that as u increases, the
radius increases/decreases when u ≶ 2v. In terms of the
scale-invariant variables, the TOV equation (12) can be
rewritten as an autonomous equation of the form

du
dv

¼ −1
1þ w1

ð1 − uÞð2v − uÞ
v½v − vM þ sð1 − uÞ� ; ð18Þ

where vM and s represent

vM ≡ −
1

2w1

; s≡ 1þ w1 þ 4w2

−2w1ð1þ w1Þ
: ð19Þ

We call the integral curve of Eq. (18) a solution curve C.
When w2¼−ð1þw1Þ=2 (i.e., s ¼ 1=2w1), Eq. (18) allows
a linear solution curve

v ¼ vMu: ð20Þ

The linear solution plays an important role in analyzing
the solution space of Eq. (18). Note that the condition w2 ¼
−ð1þ w1Þ=2 is the boundary of the strong energy con-
dition ρþP

ipi ≥ 0.
Given u and v as functions of r, the metric functions are

given by, from Eqs. (10) and (13),

fðrÞ ¼ f0r4ð2w1−w2Þ=ð1þw1Þjvj−2w1=ð1þw1Þ; gðrÞ ¼ 1

1− u
;

ð21Þ

where the signature of f0 should be determined so that the
metric is Lorentzian. Note that the signatures of gðrÞ
change across the line u ¼ 1. Therefore, r plays the role
of a space/time coordinate for u ≶ 1. Let us assume a
solution curveC crosses the line u ¼ 1 through a point P. If
this happens, the signature of fðrÞ also changes across this
line to keep the Lorentzian signature, which implies the
appearance of a discontinuity of the metric function fðrÞ.
To avoid the discontinuity, the value fðrÞ should go to
zero when C crosses u ¼ 1, which implies v → 0 there.
Therefore, any (physically relevant) solution curve crosses
u ¼ 1 only through the point ðu; vÞ ¼ ð1; 0Þ.
Interesting works generating general static spherically

symmetric solutions of Einstein’s equations were given in
Refs. [20,21]. The mechanism in those references is based
on the identification of two generating functions zðrÞ and
ΠðrÞ at the expense of specifying equations of state for
matter. Then, the metric functions and the equations of state
are determined as functionals of the generating functions.
In relation with the present work, the two generating
functions are given by

r2ΠðrÞ ¼ 2ðw1 − w2Þv; rzðrÞ ¼ 1 − v − 3u=2
1 − u

:

Note that the anisotropy effect enters only to the generating
function ΠðrÞ. It is not possible to identify the functional
form of the generating functions explicitly as functions of r.
The TOVequation for the given equation of state in Eq. (3)
can be regarded as the n → ∞ limit of the polytropic index
n of the Lane-Emden equation in Ref. [22]. In the
reference, the Lane-Emden equation was written as a
second-order differential equation for the variable ψn ≡
ρ=ρc with respect to r. In the present work, the TOV
equation is written as a first-order differential equation
for the variable v ∝ r2ρ with respect to the variable
u ¼ 2mðrÞ=r. To get the r dependences of ðu; vÞ, we need
to solve the equation 2v ¼ uþ u0 given in Eq. (17) addi-
tionally. This is the merit of the present work, because
many important properties of the solution can be deter-
mined by solving a first-order differential equation for u
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and v. However, to find a comprehensive solution of the
Einstein equation, we need to solve Eq. (17).

III. INNER HORIZON AND MAXIMAL
RADIUS SURFACE

Let r ¼ r− form an inner boundary of a static region of a
spherically symmetric spacetime described by the metric
(18). The boundary will form an event horizon. Because
there is a coordinate singularity, we first write gðrÞ ≈
g−ð1 − r−=rÞ−1 and find fðrÞ from Eq. (14), getting

fðrÞ ∝ gw1−

r
ðr − r−Þð1þw1Þg−−w1 :

Because r ¼ r− is an event horizon, fðrÞ ∝ 1 − r−=r and
limr→r−fðrÞgðrÞ > 0 should be satisfied. Therefore, r−
forms an event horizon only when

w1 ¼ −1 or g− ¼ 1: ð22Þ

Behind the horizon, r plays the role of time. Therefore, −p1

and −ρ play the role of energy density and spatial pressure
for r < r−, respectively. At the horizon, in the absence of a
singular surface density, the energy density and pressure
must be continuous. This requires limr→r−þ0ρðrÞ ¼
−limr→r−−0p1ðrÞ. There are two ways of satisfying this:
(i) w1 ¼ −1, (ii) ρðr−Þ ¼ 0. As will be shown soon, the
value of w1 cannot satisfy w1 ¼ −1 if there is a maximal
radius surface so that the space is static and closed.
Disregarding this case (i), the density must vanish at the
horizon to form an event horizon, which gives v → 0
once more.
Let r ¼ rþ be a surface of (locally) maximal radius of a

S3 geometry described by the metric (4). Let us write
gðrÞ ≈ gþðrþ=r − 1Þ−1 with gþ > 0 and calculate Eq. (14)
around rþ to get

fðrÞ ≈ f0
r

�
gðrÞ
r

�
w1

exp

�
−ð1þ w1Þgþ

Z
r 1

r − rþ
dr

�

∝
gw1þ
r

ðrþ − rÞ−w1−ð1þw1Þgþ : ð23Þ

Because rþ is a maximum of the radius in a S3 geometry,
the metric function fðrÞ should approach a nondivergent
positive number at r ¼ rþ. This determines

gþ ¼ −
w1

1þ w1

: ð24Þ

Note that w1 should satisfy −1 < w1 < 0, because gþ is a
positive number. When w1 ¼ −1, the outer boundary
cannot form a surface of maximal radius. Around the
maximal value of r, mðrÞ behaves as

mðrÞ≃ 1þ gþ
gþ

r −
rþ
gþ

:

This gives

v ¼ dm
dr

≃ 1þ gþ
2gþ

¼ vM; ð25Þ

where we use the explicit value of gþ in Eq. (24) at the last
equality. Note that the size of the maximal value of the
radius is determined by the value of the radial pressure and
is independent of the angular pressure.

IV. ANALYSIS FOR GENERAL SOLUTION

An integral curve C to the autonomous equation (18) can
be plotted on a two-dimensional surface ðu; vÞ. In the
present work, we restrict our interest to the case
−1 < w1 < 0, because we are interested in solutions whose
spatial topology is S3.
There are four interesting lines which determine proper-

ties of C. On the first two lines

R1∶ v ¼ 0; R2∶ v ¼ suþ 2w2

w1ð1þ w1Þ
; ð26Þ

only the value u changes, i.e. δv ¼ 0. On the first line, R1,
the energy density ρ goes to zero. On the other two lines

B1∶ u ¼ 1; B2∶ u ¼ 2v; ð27Þ

only the value of v changes, i.e. δu ¼ 0. The line B1
represents a static boundary given by r ¼ 2mðrÞ. Because
the line B1 is parallel to the v axis, C cannot cross the line.
Similarly, R1 is parallel to the u axis. Therefore, C cannot
cross the line either. In fact, the crossing can occur only
through the points where the R lines meet the B lines,
which are

P1∶ ðu;vÞ ¼ ð1;0Þ; P2∶ ðu;vÞ ¼ ð1; vMÞ;

P3∶ ðu;vÞ ¼ ð2v3; v3Þ; v3 ≡ 2w2

ð1þw1Þ2 þ 4w2

: ð28Þ

In particular, C can pass through the line B1 only through
the points P1 and P2.
By means of the slope s, we divide the deployment of the

points and the lines into three different types as in Fig. 1:

I∶ s <
1

2

�
w2 < −

ðw1 þ 1Þ2
4

�
; II∶ s ≥ vMðw2 ≥ 0Þ;

III∶
1

2
≤ s < vM

�
−
ðw1 þ 1Þ2

4
≤ w2 < 0

�
: ð29Þ

For types I, II, and III, the point P3 is located in the regions
ðu > 1; v > 0Þ, ð0 < u < 1; v > 0Þ, and ðu < 0; v < 0Þ,
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respectively. The point P2 in Eq. (28), which represents a
maximal radius surface, is located above the line B2
because jw1j < 1. C crosses the B and the R lines vertically
and horizontally, respectively. One can catch various
asymptotic properties from Fig. 1. For example, for the
case of type I, the limit ðu → ∞; vÞ corresponds to a
beginning of spacetime, because the coordinate r is time-
like and the r coordinate increases as u decreases in the
region below B2. The limit ðu → −∞; vÞ corresponds to a
naked singularity with r ¼ 0, because r is a space coor-
dinate and its size will monotonically decrease as u
decreases. The limit ðu → ∞; v > u=2Þ corresponds to a
future infinity, because the time r increases as u increases in
the region.

A. Behavior of a solution around the point O

Let us first search for the behavior of C around the point
O, given by ðu; vÞ ¼ ð0; 0Þ. We apply the trial function
u ¼ κvβ with jvj ≪ 1 and β > 0 to Eq. (18) and find that
there are two possibilities:

ðiÞ∶ u ¼ 2w1

w1 þ 2w2

v; ð30Þ

ðiiÞ∶ u ¼ κv−w1=2w2 ; w2 >
−w1

2
> 0; ð31Þ

where the first shows a linear behavior and the second
shows a polynomial behavior. The polynomial behavior
happens only for the type-II case in Eq. (29) because
w2 > −w1=2. For both of the possibilities, the radius
behaves as

r ¼ r0vw1=2w2 :

Therefore, O represents the center of the star (r ¼ 0) when
w1 and w2 are of the same signature. On the other hand,
r → ∞ when w1 has the opposite signature to w2. The
density takes the form

ρ ¼ v
4πr2

¼ 1

4πr2w2=w1

0

1

r2þ2w2=ð−w1Þ : ð32Þ

When w2 > −w1=2, the density decreases faster than r−3 as
r → ∞. When 0 < w2 < −w1=2, the density decreases to
zero as r → ∞; however, its integration over the space
diverges. When − w1 < w2 < 0, the density diverges at the
origin as r → 0. When w2 < w1 < 0, the density goes to
zero as r → 0.
Summarizing, there are four different behaviors around

the point (0,0):

O1∶ r ¼ r0vw1=2w2 ≈ 0; w2 ≤ w1;

u ¼ 2w1

w1 þ 2w2

v; ρ → ρ0;

O2∶ r ¼ r0vw1=2w2 ≈ 0; w1 < w2 < 0;

u ¼ 2w1

w1 þ 2w2

v; ρ → ∞;

A1∶ r ¼ r0vw1=2w2 → ∞; w2 > 0;

u ¼ 2w1

w1 þ 2w2

v; ρ → 0;

A2∶ r ¼ r0vw1=2w2 → ∞; w2 >
−w1

2
;

u ¼ κv−w1=2w2 ; ρ → 0; ð33Þ

where in the first line, ρ0 ¼ 0 when w2 < w1. The char-
acters “O” and “A” represent that the behavior happens at
the center of the star and in the asymptotic region,
respectively. Note that both asymptotic behaviors can
happen at O when w2 > −w1=2.

B. Behavior of a solution around P1:
The event horizon

Let us search for the behavior of C around P1 (1,0). We
apply the trial function 1 − u ¼ κjvjβ with β > 0 to
Eq. (18). Then, we get

FIG. 1. Classification of the autonomous equation. The cyan arrows represent the increasing direction of radial coordinate r. The
direction changes based on the line B2. The red line R2 changes depending on the values of wi. In this figure, we choose w1 ¼ −1=2 and
w2 ¼ −0.3, 0.2, and −0.015 for cases I, II, and III, respectively. The character O represents the point ðu; vÞ ¼ ð0; 0Þ. The dotted gray
line denoted by the character “ĀS” is the asymptotic line in Eq. (48).
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β ¼ −2w1

1þ w1

⇒ 1 − u ¼ κjvj−2w1=ð1þw1Þ: ð34Þ

The radius can be obtained by integrating dξ ¼
du=ð2v − uÞ ≈ −du to get

r ¼ r−eξ ≈ r−e1−u: ð35Þ

Therefore, the radius smoothly changes with respect to u.
The density around r− is ρ ∼ v=ð4πr2Þ ≈ 0.
For β > 1 (−1 < w1 < −1=3), a differentiable solution

curve passes P1 vertically, parallel to the v axis. For
0 < β < 1 (−1=3 < w1 < 0), C passes P1 horizontally,
parallel to the u axis. For β ¼ 1 (w1 ¼ −1=3), C passes
the point P1 with a nonzero finite slope. Only for the case
with −1=3 < w1 < 0 does there exist a differentiable
solution curve which passes P1 and has a non-negative
energy density (v ≥ 0) at both sides of P1.

C. Behavior of a solution around P2: The
maximal/minimal radius surface

Let us search for the behavior of C around P2ð1; vMÞ. By
using the trial function 1 − u ¼ κjv − vMjβ, we find that
Eq. (18) allows the quadratic and linear behaviors for C:

ðiÞ β ¼ 2; u ¼ 1þ κðv − vMÞ2; ð36Þ

ðiiÞ β ¼ 1; u ¼ 1 − s−1ðv − vMÞ; ð37Þ

where κ represents an arbitrary real number and s is given
in Eq. (19).
For case (i), the radius takes the form

r ≈ r0

�
1þ −w1κ

1þ w1

ðv − vMÞ2
�
: ð38Þ

Therefore, r takes its minimum/maximum value at v ¼ vM
when κ ≷ 0. For u ≤ 1, r0 plays the role of a maximum
value of the radius. For u ≥ 1, the time-dependent scaleffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffigttgθθgϕϕ
p bounces at P2 and has a minimum value at r0.
Therefore, P2 presents an extremum of the radial coor-
dinate r.
For case (ii), the radius becomes linear in v as ξ≈

ξ0 þ ξ00v with ξ00 ¼ −2w2
1=ð1þ w1 þ 4w2Þ. The metric

component grr ¼ gðrÞ ¼ ð1 − uÞ−1 changes signature at
u ¼ 1. On the other hand, gtt goes to a finite value as
ðu; vÞ → P2. To keep the Lorentzian signature without a
singularity at P2, a solution curve of type (ii) is not allowed
to pass P2. In this sense, as will be seen in Figs. 5–7, case
(ii) can be understood as a large-κ limit of case (i).

D. Behavior of a solution around P3:
The bouncing point

Around the point P3, after setting u ¼ u3 þ x and
v ¼ v3 þ y, the differential equations (17) and (18) can
be written as to the linear order in x and y,

d
dξ

�
x

y

�
¼
�−1 2

c −cs−1

��
x

y

�
; c≡w2ð1þw1þ4w2Þ

−w1ð1þw1Þ2
:

ð39Þ

Defining new variables X� as

Xþ ¼ −
s − cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8cs2 þ ðs − cÞ2

p
2sc

xþ y;

X− ¼ −
s − c −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8cs2 þ ðs − cÞ2

p
2sc

xþ y;

Eq. (39) becomes

dX�
dξ

¼ ϵ�X�; ϵ�¼−
ðcþsÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8cs2þðs−cÞ2

p
2s

: ð40Þ

The solution is X� ¼ X�;0eϵ�ξ. Note that the size of the
square-root term is larger than jcþ sj for types I and II,
because

8cs2 þ ðs − cÞ2 − ðcþ sÞ2
¼ 4csð2s − 1Þ

¼ 8s2

−w1ð1þ w1Þ2
w2½4w2 þ ðw1 þ 1Þ2� > 0:

This implies that one of the eigenvalues is positive and the
other is negative. Therefore, every solution curve will
follow in along one of the X�’s and follow out along
the X∓. For type III, the two eigenvalues have the same
signature. However, we are not interested in this case,
because P3 is located in the negative-energy region.
The behaviors of a solution curve around the points O,

P1 and P2 are summarized in Table I, and various important
values are compared in Fig. 2 on a straight line. The value
w2 ¼ −ð1þ w1Þ=2, which presents an exact solution curve
in Eq. (20), is also shown. The values of s and s̄ for each
point are displayed too, where s̄will be defined in Eq. (41).
The characters “O,” “A,” “H,” and “M” represent that the
position plays the roles of an origin (r ¼ 0), an asymptotic
region (r → ∞), an event horizon, and a maximal (min-
imal) r surface, respectively. ρ0 and ρ1 represent a given
value of zero or not and a given nonvanishing value,
respectively. κ ¼ 2w1=ðw1 þ 2w2Þ. r0 and κ0 are the maxi-
mal (minimal) value of the radius and an appropriate
constant representing how to approach the extremum,
respectively.
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E. Behavior of a solution in the
large limit j1 −uj and/or jvj

Introducing gðvÞ≡ ½1 − uðvÞ�=v after ignoring constants
compared to u and v, the equation of motion (18) becomes

1þ sg
1þ s̄g

dg
g

¼ 1 − w1

1þ w1

dv
v
; s̄≡ 1þ 3w1 þ 4w2

2w1ð1 − w1Þ
: ð41Þ

The solution to this is

log jgj −
�
1 −

s
s̄

�
log j1þ s̄gj ¼ 1 − w1

1þ w1

log

���� vv0
����; ð42Þ

where v0 is an integration constant. Because jv=v0j ≫ 1 or
juj ≫ 1, Eq. (42) presents three distinct limits:

A∶ jgj ≪ 1 ⇒
v
v0

¼ jgjð1þw1Þ=ð1−w1Þ;

jgj ¼
���� 1 − u

v

���� ≈
�
v
v0

�ð1−w1Þ=ð1þw1Þ
; ð43Þ

B∶ jgj ≫ 1 ⇒ jgj ¼
���� 1 − u

v

���� ≈
���� vv0

����
−ð1þ3w1þ4w2Þ=ð1þw1þ4w2Þ

;

ð44Þ

C∶ g→−s̄−1⇒ g¼ 1−u
v

≈−s̄−1
�
1�

�
v
v0

�
−ð1−w1Þð1þ3w1þ4w2Þ

2½ð1þw1Þ2þ4w2 �
�
:

ð45Þ

The limit A is achieved in the region v ≫ juj when
jw1j > 1. This case is outside the interests of the present

work. The limit B (the large-g limit) is achieved in the
regions juj ≫ 1 and jv=v0j ≷ 1 when ½−ð1þw1Þ=4<w2<
−ð1þ3w1Þ=4�=½w2>−ð1þ3w1Þ=4 or w2 < −ð1þ w1Þ=4],
respectively. The solution curve satisfies

v ≈ v0

���� 1 − u
v0

����
ð1þw1þ4w2Þ=ð−2w1Þ

: ð46Þ

Integrating Eq. (17) by using juj ≫ jvj, the radius and the
density behave as

r≈
r0
juj→ 0; ρ≈

v30
4πr20

�
v0r
r0

�
−ð1−3w1þ4w2Þ=ð−2w1Þ

: ð47Þ

Therefore, this limit describes behaviors around the
origin. The density diverges/vanishes at the origin when
w2 ≷ ð3w1 − 1Þ=4. The explicit behaviors are denoted as
O3–O6 in Table II. The limit C is achieved when a solution
curve is located around an asymptotic line of slope s̄
given by

v ¼ s̄ðu − 1Þ; ð48Þ

which is plotted as a gray dotted line in Fig. 1. Along the
line, the sizes of u and v increase indefinitely. For this
behavior to happen, the correction term in the square
bracket on the right-hand side of Eq. (45) should go to
zero in the limit. Because the size of v is large, the exponent
of the correction term should be negative. This determines
if the limit exists only for types I [s̄ > 1=2 and s < 1=2]
and II [s̄ ≤ 0 and s ≥ vM]. For type I, the slope s̄ is positive
definite. On the other hand, for type II, s̄ is negative
definite. The radius and the density behave as

r ≈ r0

�
u0
u

�
1=ð1−2s̄Þ

; ρ ≈
u0s̄
4πr20

�
r0
r

�
2s̄þ1

: ð49Þ

Therefore, the limit juj → ∞ describes the infinite/zero-
radius limit for types I/II. For type I, the radius goes to
infinity and the density goes to zero, which is denoted as
A3 in Table II. For type II, the radius goes to zero as

TABLE I. The behavior of a solution curve around O, P1, and P2.

Role Position in ðu; vÞ Condition r=r0 u − v ρ

O1 O w2 ≤ w1 < 0 vw1=2w2 u ¼ κv r−2þ2w2=w1 → ρ0
O2 O w1 < w2 < 0 vw1=2w2 u ¼ κv r−2þ2w2=w1 → ∞
A1 O w2 > 0 vw1=2w2 u ¼ κv r−2þ2w2=w1 → 0
A2 O w2 > −w1=2 vw1=2w2 u ∝ v−w1=2w2 r−2þ2w2=w1 → 0
H1 P1, vertical −1 < w1 < −1=3 rHe1−u 1 − u ∝ jvj−2w1=ð1þw1Þ v=4πr2 ≈ 0

H2 P1, linear w1 ¼ −1=3 rHe1−u 1 − u ∝ v v=4πr2 ≈ 0
H3 P1, horizontal −1=3 < w1 < 0 rHe1−u 1 − u ∝ jvj−2w1=ð1þw1Þ v=4πr2 ≈ 0

M1 P2 ð1; vMÞ r0 � κ0ðv − vMÞ2 j1 − uj ∝ jv − vMj2 ρ1 þOðδv2Þ
M2 P2 ð1; vMÞ r0 þ κ0ðv − vMÞ 1 − u ¼ s−1ðv − vMÞ ρ1 þOðδvÞ

FIG. 2. Important values of w2, s and s̄ for the classification of
the behaviors around O, P1, and P2.
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u → ∞. When −1=2 < s̄ ≤ 0 [i.e., −ð1þ3w1Þ=4≤w2<
−ð1þw1Þ2=4−w1=2], the density at the origin diverges.
On the other hand, the density converges to zero or to a
finite value when s̄≤−1=2 [i.e., w2≥−ð1þw1Þ2=4−w1=2].
These behaviors are denoted as O7 and O8 in Table II,
respectively.
Let us consider a few specific cases. For w2 ¼

−ð1þ w1Þ=4 [i.e., s ¼ 0 and s̄ ¼ ð1 − w1Þ−1], Eq. (42)
can be reduced to

g ¼ 1 − u
v

¼ 1

−s̄þ jv=v0j−ð1−w1Þ=ð1þw1Þ : ð50Þ

As v → ∞, this gives the asymptotic form 1 − u ¼
−ð1 − w1Þv, where we use the explicit form for s̄ in
Eq. (41). The radius behaves as

r ¼ r0jujð1−w1Þ=ð1þw1Þ → ∞;

where r0 is an integration constant which represents a scale.
This case will be included in the limit C. When w2 ¼
−ð1þ w1Þ2=4 [i.e., s ¼ 1=2 ¼ s̄], Eq. (42) is reduced to

jgj ¼
����1− u

v

����¼
�
v
v0

�ð1−w1Þ=ð1þw1Þ
⇒ v¼ v0

����1− u
v0

����
ð1þw1Þ=2

:

ð51Þ

When juj ≫ jvj ≫ 1, the radius behaves as d log r ¼
du=ð2v − uÞ≃ −d logu. This gives r ¼ ju0=uj ≪ 1.
Therefore, this case presents the small-r region. This case
will be included in the limit B.
Various important values in the classification of the

asymptotic properties are compared in Fig. 3. For given

specific values of w1 and w2, the behaviors of a specific
solution in the asymptotic limit can be found in Table II.

V. EXACTLY SOLVABLE CASE

To understand the situation better, we present solution
curves for the case with w1 ¼ −1=3 ¼ w2, because this
case allows exact solutions, given in Ref. [1]. This case
belongs to type I and allows a linear solution curve in
Eq. (20). The values of s and s̄ are given by −3=2 and 3=2,
respectively. The solutions were shown to be divided into
four different types. The S3-I–type solution is given in
Eq. (1). The solution contains two independent parameters,
K and R0. The corresponding solution curve is a blue one in
Fig. 4. At the south pole, the geometry begins with an initial
singularity at u → ∞ (O3), where the abbreviation inside
the bracket represents the behaviors of the solution curve
around the region in Tables I and II. As r increases, the
geometry becomes static when the curve passes the point
P1. Then, the radius takes its maximal value at P3. The

FIG. 3. Important values of w2, s and s̄ for the classification of
the asymptotic behaviors. The red dot represents the position of
w2 ¼ 0 when −1=3 < w1 < 0.

FIG. 4. Solution curves for type I with w1 ¼ −1=3 ¼ w2 (i.e.,
s ¼ −3=2). Each curve of a given color represents a specific kind
of solution curve. The characteristic lines R1, R2, B1, B2 are
plotted as dashed lines. The black dotted line denotes the
characteristic line (CL) given in Eq. (48). The gray regions
denote the unphysical region where the energy density is negative
definite. However, in the right upper corner with u > 1 and
v > 0, r plays the role of time and −pr ¼ ρ=3 is positive definite.
The cyan arrows represent the increasing direction of r, which is
divided by the line B2. The gray dotted lines around P3 represent
the line X� in Eq. (40).

TABLE II. The behavior of a solution curve for large juj.
Role Position Condition r=r0 u − v ρ

O3 juj ≫ 1; v ∼ 0 w2 ≤
3w1−1

4
juj−1 v ∝ jujð1þw1þ4w2Þ=ð−2w1Þ

r−
1−3w1þ4w2

−2w1 → ρ0
O4 juj ≫ 1; v ∼ 0 3w1−1

4
< w2 <

−1−w1

4
juj−1 v ∝ jujð1þw1þ4w2Þ=ð−2w1Þ

r−
1−3w1þ4w2

−2w1 → ∞
O5 juj ≫ 1 − 1þw1

4
< w2 < − 1þ3w1

4
juj−1 v ∝ jujð1þw1þ4w2Þ=ð−2w1Þ

r−
1−3w1þ4w2

−2w1 → ∞
O6 juj ≫ 1; v ∼ 0 w2 > − 1þ3w1

4
juj−1 v ∝ jujð1þw1þ4w2Þ=ð−2w1Þ

r−
1−3w1þ4w2

−2w1 → ∞
O7 Asymptotic line −1=2 < s̄ ≤ 0 ðu0=uÞ1=ð1−2s̄Þ g → −s̄−1 > 0 r−2s̄−1 → ∞
O8 Asymptotic line s̄ ≤ −1=2 ðu0=uÞ1=ð1−2s̄Þ g → −s̄−1 > 0 r−2s̄−1 → ρ0
A3 Asymptotic line s̄ > 1=2 ðu0=uÞ1=ð1−2s̄Þ g → −s̄ < 0 r−2s̄−1 → 0
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radius bounces back to decrease as u → −∞, where a
timelike naked singularity appears at the north pole (O3).
By changing the values of K and R0, indefinitely many
different solution curves can be plotted which show
qualitatively similar behavior to the blue one. One of the
two independent degrees of freedom in the parameters will
be fixed by the choice of the solution curve. The other
degree of freedom, which usually determines the scale of
the solution, is determined when one integrates Eq. (17).
The S3-II solutions are given by ρðχÞ ¼

3
8πR2

0

ð1 ∓ K tanh χÞ, where r ¼ R0 cosh χ. The metric

becomes

ds2 ¼ ð1 ∓ K tanh χÞdt2 þ R2
0

−ð1 ∓ K tanh χÞ dχ
2

þ R2
0cosh

2χdΩ2
2:

The − solution corresponds to a black-hole-like solution
given by the black curve in Fig. 4. In the timelike region
with u > 1 and v > 0, the solution curve begins with the
A3 asymptotic form around the line ĀS. r decreases as
the curve approaches P2. At P2, the value of r bounces back
to increase until the curve goes to the limit u → −∞ and
v → −∞ (A3). Meanwhile, the curve passes P1, which
plays the role of a horizon. Theþ solution corresponds to a
cosmological solution, which is given by the brown curve.
Each end follows the ĀS limit (A3). The value of r bounces
at P2.
The H3 solutions are given by ρðχÞ¼− 3

8πR2
0

ð1∓K tanhχÞ,
where r ¼ R0 sinh χ. The metric becomes

ds2 ¼ −ð1 ∓ K coth χÞdt2 þ R2
0

1 ∓ K coth χ
dχ2

þ R2
0sinh

2χdΩ2
2:

The − solution with K < 1 corresponds to a black hole
solution, which is given by an orange curve in Fig. 4. The
curve begins at u → ∞ with r ¼ 0 (O3). As r increases, it
passes P1 and then follows the ĀS line (A3). The− solution
with K > 1 corresponds to a nonstatic cosmological
solution, which is given by the purple curve. The curve
also begins at u → ∞ (O3) with r ¼ 0. The value of r
monotonically increases as the curve increases the ĀS line
(A3). The þ solution corresponds to a singular static
solution, which is given by the cyan curve. The energy
density for the solution is negative definite. The curve
begins at u → −∞ (O3) with r ¼ 0. As r increases, the
curve follows the ĀS line (A3).
A linear solution curve (the gray line) in Eq. (20) passes

both the origin O and P2 linearly. Because solution curves
never cross each other at points other than O, P1, and P2,
the gray line can be used to characterize the behavior of
other solution curves. For example, a blue-like curve may
not pass the gray line at points other than P2. This implies

that a black hole solution is absent in a closed spacetime
which does not have a naked singularity. The brown curve
will always be located on both sides of the gray line.

VI. NUMERICAL SOLUTIONS

In this section, we display various solution curves of the
equation (18) on the ðu; vÞ plane after dividing the equation
into types I, II, and III. Characteristic forms of C are
displayed for each case by choosing appropriate parameters
for ðw1; w2Þ. Because we are mainly interested in black hole
solutions in a closed space, the main properties of which are
determined at points P1, P2 and O, the solution curves are
classified based on Table I.
The behaviors of a differentiable solution curveC around

P1 are described by Eq. (34). For w1 ¼ −1=3, C passes P1
linearly. Therefore, C in the region ðu > 1; v > 0Þ will go
into the region ðu < 1; v < 0Þ through P1. For w1 ≷ −1=3,
C passes P1 horizontally/vertically. Therefore, for
−1=3 < w1 < 0, C in the region ðu < 1; v > 0Þ goes into
the region u > 1 through P1. However, the curve cannot go
into the region ðu < 1; v < 0Þ through P1.
The behavior of a solution curve around P2 should be

interpreted in connection with the linear solution curve
given in Eq. (20), which connects P2 and O. In a general
case other than w2 ¼ −ð1þ w1Þ=2, the linear solution at O
in Eq. (30) does not match with the linear solution at P2 in
Eq. (37). The linear solution (30) atO will be bent as ðu; vÞ
departs from O and then will pass the point P2 vertically
from above, or from the bottom, or may not pass P2
depending on the value of w2. The regularity of the pointO,
which plays the role of an origin r ¼ 0, is determined by
the size of w2 relative to w1. Therefore, O is singular/
regular when w2 ≷ w1, respectively.

A. Type I: w2 ≤ − ðw1 + 1Þ2=4
Let us consider type I in Eq. (29). The values of s and s̄

satisfy s ≤ 1=2 and s̄ ≥ 1=2, respectively. As in Fig. 2,
the type-I system can be divided into three different
classes: (i) w2 ≤ w1, (ii) w1 < w2 < −ð1þ w1Þ=2, and
(iii) −ð1þ w1Þ=2 ≤ w2 ≤ −ð1þ w1Þ2=4. The behaviors
of a solution curve belonging to a specific class can be
consulted in Table I. The system may be further classified
by means of the asymptotic behaviors given in Table II,
which we do not pursue in this work.
When w2 < 0, the behavior of C on the ðu; vÞ plane is

qualitatively similar whether the density is singular or not at
O. Because the cases (i) and (ii) are distinguished by the
behaviors of the density at O, their solution curves will be
similar. Therefore, we present two different sets of solution
curves corresponding to (A) ðw1>−1=3;w2<−ð1þw1Þ=2Þ
and (B) ðw1 < −1=3; w2 ≥ −ð1þ w1Þ=2Þ for the classes (i)
and (ii), respectively. As a specific example for each case,
we choose ðw1; w2Þ ¼ ð−1=4;−1=2Þ and ¼ ð−1=2;−0.2Þ
for the cases (A) and (B), respectively. Examples of
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solution curves are given in Fig. 5. In each figure, except for
the gray and the green curves, a given color curve is a
representative of many different solution curves having
similar characteristics. On the other hand, the gray and the
green curves are unique for a given ðw1; w2Þ. Along a
solution curve C, from Eq. (17), the radius increases/
decreases with u at the parts above/below B2 in the ðu; vÞ
plane, which are denoted by the cyan arrows.
For the case (A), the gray solution curve which departsO

linearly passes P2 vertically from above as in the left panel
of Fig. 5. Then, the curve passes P1 with zero gradient. On
the curve, the radius is maximized at P2, and the coordinate
r becomes timelike for u > 1. On the whole, this gray curve
corresponds to a black hole solution, where a spacelike
singularity at the south pole is surrounded by a horizon at
P1 and the north pole is regular. This solution curve
complements the two deficits mentioned at the introduction
just below Eq. (1). There is no naked singularity, and a
negative-energy density-region is absent. The green curve
corresponds to the linear solution (37) around P2. As
mentioned previously, the green curve appears as a limit of
the quadratic solution (36), the blue one.
The two (gray and green) curves can be used as a guide

which characterizes the behaviors of other solution curves.
For example, there is a blue solution curve which passes
both points P1 and P2. Because the linear behavior at P2 is
unique, any other solution curve which passes P2 should
encompass the green curve around P2. Therefore, if the
gray curve crosses P2 vertically from above as in this case,
there exist solution curves which pass the horizon P1 twice.
One such solution is plotted as the blue curve. Because the
radius is maximized at P2, the blue curve represents a two-
black-hole solution having two event horizons at both
poles.
The dotted blue solution curve also has a horizon; i.e., it

passes P1. Inside the horizon, a cosmological solution
appears where the time (r coordinate) will be minimized at
P2. Outside the horizon, a naked singularity appears at the
north pole, whose behavior is similar to that of the blue

curve in Fig. 4. There are other solution curves describing
cosmological solutions. The brown curve describes a
cosmological solution bouncing at P2, and the purple
curve describes an expanding universe which begins at
ðu; vÞ → ð∞; 0Þ and ends around the asymptotic line given
by the symbol ĀS. The orange curve also describes a black
hole. However, the solution is physically irrelevant,
because the energy density for the solution is negative
definite.
The class (B) solution curves are plotted in the right

panel of Fig. 5. The gray solution curve which departs O
linearly passes P2 vertically from the bottom and then goes
to u → −∞, which describes a naked singularity. This
solution describes a static closed spacetimewhere a star and
a naked singularity are located at the south and the north
poles, respectively. The green curve is located inside the
gray one. Now, every solution curve describing a static
solution which passes P2 can be divided into two types:
(i) Solution curves inside the gray curve, an example of
which is not shown in this figure. A corresponding solution
will have naked singularities at both poles. (ii) Solution
curves located outside of the gray curve; an example is the
blue one. Every solution curve of this type passes P1; i.e., it
has a event horizon. Behind the point P1, the solution curve
goes into a negative-energy region because w1 < −1=3.
The other end of the blue curve goes to u → −∞, which
describes a naked singularity, because it should be located
outside of the gray one. There are other cosmological
solution curves like the brown, purple, and the orange
curves. The behaviors of a solution curve in the asymptotic
region follows the results in Table II.

B. Type II: w2 ≥ 0

As shown in the previous subsection, a solution curve
passes P1 vertically when −1 < w1 < −1=3. This implies
that a negative-energy-density region appears inevitably,
which is unfavored due to the energy condition. However,
the geometry still can be used as a description of the outer

FIG. 5. Typical forms of solution curves for type I. Here, ðw1; w2Þ ¼ ð−1=4;−1=2Þ (i.e., s ¼ −10=3 and s̄ ¼ 14=5) (left) and
ðw1; w2Þ ¼ ð−1=2;−0.2Þ (i.e., s ¼ −3=5 and s̄ ¼ 13=15) (right). Each curve of a given color represents a specific kind of solution
curve. The characteristic lines R1, R2, B1, B2 are plotted as dashed lines. The black dotted line denotes the asymptotic line (ĀS) given in
Eq. (48). The gray dotted lines around P3 represent the line X� in Eq. (40).
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part of a star. To avoid the inevitable appearance of a
negative-energy-density region, we restrict the value to
−1=3 < w1 < 0 later in this work. In addition, we dismiss
the stretched part of the solution curves to the negative-
energy regions.
The values of s and s̄ satisfy s ≥ vM and s̄ ≤

ð1þ 3w1Þ=ð2w1ð1−w1ÞÞ < 1=2, respectively, for w2 ≥ 0.
When −1=3 < w1 < 0, s̄ is negative definite. Then a
solution curve C which follows the asymptotic line (AS)
describes the near-origin behavior r ∼ 0. The behavior of C
around O is divided into two types: For 0 < w2 ≤ −w1=2,
the solution curve follows the linear behavior in
Eq. (30). On the other hand, when w2 > −w1=2, there
are two different behaviors given in Eqs. (30) and (31).
Therefore, we consider two different cases: (A) 0 < w2 ≤
−w1=2; (B) w2 > −w1=2. For both of the cases, the value
of w1 is restricted to −1=3 < w1 < 0. Specifically for
each case, we choose ðw1; w2Þ ¼ ð−2=7; 1=10Þ and
¼ ð−1=4; 1=2Þ for the cases (A) and (B), respectively.
Examples of solution curves are given in Fig. 6. For type II,
the point O describes an asymptotic infinity r → ∞.
Solution curves for the case (A) are plotted in the left

panel of Fig. 6. Around O, a solution curve has linear
behavior in Eq. (30) only. However, this linear solution
curve does not go to the point P2 but directly goes to the
point P1, which is represented by the gray curve between
them. However, a second-order difference from the linear
one (the gray one) allows the corresponding solution curve
to behave much differently from the gray curve at a distant
point fromO. Examples are the blue and the orange curves.
Let us examine the green curve, which is the linear solution
at P2 in Eq. (37). The radius r takes a maximum value at P2
and decreases to zero as u → −∞. The green curve
approaches the line AS in Eq. (48) asymptotically. From
the other direction (u > 1) of the green curve, the value of r
takes a minimum value at P2. As the time coordinate r
increases, the curve approaches P1. Then, it passes P1 to

form an event horizon from the point of view of outside
observers. Subsequently, the radius r takes a maximum
value at P2 and starts to decrease as u decreases.
Eventually, a naked singularity appears as the curve
approaches the line AS (O7 or O8). A typical solution
curve having (locally) maximum radii is the blue one. Even
though it is not shown obviously in the figure, the origin
(r ¼ 0) corresponds to the limit ðu; vÞ → ð−∞;∞Þ, where
a naked singularity appears when −1=2 < s̄ < 0. The curve
approaches the point P2 where the radius takes a (locally)
maximum value. Then, r decreases and forms an event
horizon where the curve passes P1. Behind the horizon, r
becomes a time coordinate, and the metric describes a
contracting anisotropic universe until it passes P2 once
more. After that, the universe expands until it passes P1
once more to form another event horizon. Outside of P1, the
radius increases until the curve arrives at the pointO, where
O corresponds to the asymptotic infinity. From the point of
view of an outside observer residing in the asymptotic
region, the segment AS-P2-P1 of the solution curve appears
to describe a kind of baby universe behind horizons. Other
than the blue one, there are two kinds of solution curves, the
orange and the red ones. The orange curve begins around
the asymptotic line with a naked singularity at r ¼ 0. As r
increases, the curve approaches O asymptotically. Both
limits of the red curve correspond to naked singularities.
Now, let us explain the right panel of Fig. 6, which

corresponds to the case (B). A crucial difference from the
left panel is that there exist two limiting behaviors atO. The
linear one (30) is described by the gray curve which
extends to u → −∞. On the other hand, the power-law
one (31) is extended to the positive u. The green curve
behaves similarly to that of the left panel until it passes the
horizon. Outside the horizon, the curve approaches O and
the metric describes an asymptotic region. The blue, red,
and orange curves show similar behaviors to those in the
left panel characteristically.

FIG. 6. Typical forms of solution curves for type II. Here, ðw1; w2Þ ¼ ð−2=7; 1=10Þ (i.e., s ¼ 0.273 and s̄ ¼ −0.133) (left),
and ðw1; w2Þ ¼ ð−1=4; 1=2Þ, (i.e., s ¼ 22=3 and s̄ ¼ −18=5) (right). Each curve of a given color represents a specific kind of
solution curve. The characteristic lines R1, R2, B1, B2 are plotted as dashed lines. The black dotted line denotes the asymptotic
line (AS) given in Eq. (48). In the left panel, the gray, blue, and orange curves come from the limiting behavior in Eq. (30)
with differences in the second order.
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C. Type III: − ð1 +w1Þ2=4 ≤ w2 < 0

Finally, we display solution curves for type III, with
1=2 ≤ s < vM and ð1þ 3w1Þ=ð2w1ð1 − w1ÞÞ < s̄ ≤ 1=2.
We also restrict w1 to −1=3 < w1 < 0 to protect from
appearance of a negative-energy-density region.
As discussed just below Eq. (48), the asymptotic line

does not play an important role in this case, because
solution curves do not converge on the line for large juj
and jvj. The behaviors of a solution curve around O are
given by Eq. (30), where O plays the role of an origin
r ¼ 0. Specifically, we choose ðw1; w2Þ ¼ ð−1=4;−1=30Þ.
Examples of solution curves are given in Fig. 6.
The linear solution curve at the point O in Eq. (30) is

plotted as the gray curve. After the gray curve departs from
the point, the curve passes P2 vertically from the bottom
and then approaches ðu; vÞ → ð−∞;∞Þ, where a naked
singularity exists. The linear solution curve which departs
P2 (37) (the green curve) in the direction of increasing u
approaches P1 as r increases. A horizon will be formed at
P1. The curve passes P2 once more to form a maximal-
radius surface. Then, it goes to ðu; vÞ → ð−∞;∞Þ, where a
naked singularity exists. A typical solution curve having
maximum radii in this case is the blue one. The solution
curve begins with a naked singularity with zero radius at the
south pole [ðu; vÞ → ð−∞;∞Þ] and has a maximal radius at
P2. After the bounce of the radius, an event horizon exists
at P1. Outside of P1, a time-dependent cosmological region
exists, where the size of the universe may shrink or expand.
The solution curve enters into the static region once
more through P1 and forms another event horizon. After
that, there appears another locally maximum radius surface
at P2. Then, another naked singularity appears at the
north pole.

VII. SUMMARY

We have studied spherically symmetric geometries made
of an anisotropic perfect fluid based on general relativity.
The angular pressure p2 ¼ w2ρ may differ from the radial
pressure p1 ¼ w1ρ, but because of spherical symmetry, the
pressure between different angular directions should be
identical. To find and classify black hole solutions in closed
space, we studied the conditions for a metric to form closed
space and an event horizon. In a general situation, we have
found that a static surface of the locally maximal radius
exists only when −1 < w1 < 0.
The Einstein equation for anisotropic fluids is eventually

cast as a first-order autonomous equation in a two-dimensional
plane of scale-invariant variables ðu≡2mðrÞ=r;v¼4πr2ρÞ.
The equation is equivalent to the TOV equation in general
relativity and to the Lane-Emden equation in Ref. [22] if it
is supported by Eq. (17). We found that the autonomous
equation is characterized by four specific lines, on which
the integral curves of the equation are parallel to the
axes u or v. In particular, the line u ¼ 1 (boundary of

static/dynamical regions) and v ¼ 0 (boundary of the
positive/negative-energy regions) play important roles,
because the solution curves may not pass the lines without
the use of specific points; i.e., ðu; vÞ ¼ ð1; 0Þ. The autono-
mous equation can be classified into three cases depending
on the arrangement of the specific lines. Then, we dis-
played various solution curves numerically.
We first illustrated the behaviors of solution curves for the

known exact solutions given in Ref. [1] for the case with
w1 ¼ −1=3 ¼ w2. One of the exact solutions describes a
black hole solution in a closed spacetime. However, it bears
two deficits—the appearances of a naked singularity and a
region of negative energy density. These defects may not
generally occur for an anisotropic perfect fluid, and we try to
find explicit conditions to avoid them. We found that the
negative-energy-density problem can be solved when w1 is
limited to−1=3 < w1 < 0. In addition, there exists a solution
where the naked singularity can be hidden under a horizon
when the fluid violates the strong energy condition. Analytic
solutions corresponding to this case are not known.However,
the corresponding solution curve is plotted as a blue curve in
the left panel of Fig. 5, and the physical properties are given
in Tables I and II. In summary, we found that there exist
black hole solutions without a naked singularity in closed
space when the matter satisfies ρþ 3p1 > 0, and ρ > 0 but
violates the strong energy condition. For all other cases, at
least one of the deficits survives.
Note that a regular star solution should begin at Oð0; 0Þ,

because its density must be finite and its mass should go to
zero as r → 0. The point O corresponds to the origin r ¼ 0
only when w2 < 0, which is satisfied with cases I and III.
The corresponding solution curve is plotted as a gray curve
in Figs. 4, 5, and 7. When w2 < −ð1þ w1Þ=2, the curve
extends to form a maximal-radius surface, where the value
of vmonotonically decreases and u is held. Then, the radius
bounces back to decrease. At a smaller radius, an event
horizon exists to hide a singularity behind it. In this sense, it
depicts a combined system of a star and a black hole which
exist in the Arctic and Antarctic, respectively. On the other
hand, when −ð1þ w1Þ=2 < w2 < 0, the curve extends to

FIG. 7. Solution curves for the type III. In this figure, we
choose w1 ¼ −1=4 and w2 ¼ −1=30 (i.e., s ¼ 74=45 and
s̄ ¼ −14=75).

HYEONG-CHAN KIM PHYSICAL REVIEW D 96, 064053 (2017)

064053-12



form a maximal radius surface where the value of v
monotonically increases and u is held. At a smaller radius,
the curve extends to the region with u → −∞. In this sense,
the solution curve describes a combined system of a star
and a naked singularity. In fact, there exists a regular star if
w2 ≤ w1 < 0, where the solution curve begins at O with
r ¼ 0. For larger values of w2, the point O becomes a
singular origin or represents an asymptotic infinity. An
interesting possibility of the present analysis is that there
could exist static solutions between matters and black hole.
Therefore, the analysis may open a possibility to study a
system having a black hole inside a star.
A quest to be undertaken in the future is to improve the

stability of the solutions, which were shown to be unstable

in Ref. [19]. The main origin of the instability is the
negativity of the radial pressure. There could be various
ways to avoid the instability, such as introducing higher-
curvature gravity theory, other matter, and a cosmological
constant. The most convenient way is to introduce a
cosmological constant to an ordinary perfect fluid with a
positive pressure, which gives a negative equation of state
naturally without introducing instability.
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